
HAL Id: hal-00835567
https://hal.science/hal-00835567v1

Submitted on 19 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QUASL: A Framework for Question Answering and its
Application to Business Intelligence

Nicolas Kuchmann-Beauger, Falk Brauer, Marie-Aude Aufaure

To cite this version:
Nicolas Kuchmann-Beauger, Falk Brauer, Marie-Aude Aufaure. QUASL: A Framework for Ques-
tion Answering and its Application to Business Intelligence. Proceedings of the 7th International
Conference on Research Challenges in Information Science, 2013, pp.143. �hal-00835567�

https://hal.science/hal-00835567v1
https://hal.archives-ouvertes.fr

QUASL: A Framework for Question Answering
and its Application to Business Intelligence

Nicolas Kuchmann-Beauger
SAP France

Levallois-Perret, France
nicolas.kuchmann-beauger@graduates.centraliens.net

Falk Brauer
SAP Asia Pte Ltd

Singapore
falk.brauer@sap.com

Marie-Aude Aufaure
École Centrale Paris

Châtenay-Malabry, France
marie-aude.aufaure@ecp.fr

Abstract—Question Answering (Q&A) from structured data
is a technique that may revolutionize enterprise search. A very
promising use-case for such technology is Business Intelligence
(BI). In order to make BI more accessible to end-users, some
efforts have been made in the field of search for existing
reports. However, the problem of converting an end-user’s natural
language input to a valid structured query in an ad-hoc fashion
hasn’t been sufficiently solved yet. In this paper we present a
framework for Q&A systems that operate on structured data.
The main innovation is that the framework allows defining a
mapping between recognized semantics of a user’s questions to a
structured query model that can be executed on arbitrary data
sources. It bases on popular standards like RDF and SparQL
and is therefore very easy to adapt to other domains or use-
cases. We will describe the application of this framework at
hand of a BI question answering use-case, which also includes
the personalization of generated queries, demonstrating the real-
world applicability of our approach. In our experiments, we
demonstrate that with our approach one can easily achieve a
similar answering quality as one of the most popular Q&A
systems on the Web.

I. INTRODUCTION

In the last decades data warehouses became an important
information source for decision making and controlling. A lot
of progress has been made to support casual end-users by
allowing interactive navigation inside complex reports or dash-
boards (e.g. by interactive filtering or calling OLAP-operations
such as drill-down in a user-friendly way). In addition there
has been a lot of effort in making reports or dashboards
searchable. However, most casual users still have to rely on
pre-canned reports that are provided by the IT-department of
a company because todays’ Business Intelligence (BI) self-
service tools still require a lot of technical insights such as an
understanding of the data warehouse schema. This is especially
cumbersome because data warehouses grew dramatically in
size and complexity. A popular use-case for BI is for instance
the segmentation of customers to plan marketing campaigns
(e.g. to derive the most valuable, middle-aged customers in a
certain region). It is not unusual that business users who plan
a campaign have to cope with hundreds of key performance
indicators (KPIs) and attributes, which they have to combine
in an ad-hoc fashion to cluster their customer base. A keyword
or even natural language-based interface to formulate their
information need would ease this task a lot. This can be
underlined with the recent success of question answering
systems, such as WolframAlpha1, especially in conjunction

1See http://www.wolfram.com/mathematica/.

with speech-to-text technologies like Siri2 and the huge efforts
in the database community to enable keyword-based search in
databases (e.g. [1], [2], [3]).

However, the keyword based approaches developed so
far lack many important features to fully enable a question-
driven data exploration by end-users, where the consideration
of range queries, the support to include application-specific
vocabulary (e.g. “middle-aged”) or leveraging of the users’
context (e.g. “customers in my region”) are only the most
obvious ones. Note that the problem is not only to extract
semantics from a user’s question (e.g. from a range phrase
such as “between 1999 and 2012”), which is supported by
our framework as well. The more important problem is to
relate findings detected in a user’s question to formulate a
well-defined structured query. The framework presented in this
paper supports the whole process of defining and executing
a domain or application-specific Question Answering system.
We provide a basic infrastructure for entity recognition, which
we briefly introduce in section IV. The main innovation, i.e.
the declarative description of constraints on the user input and
background knowledge; definition of variables to be used in
the structured query and the mapping of this variables into
arbitrary structured queries will be discussed in section V
and section VI. In section VII, we elaborate the ranking of
computed structured queries. The experimental evaluation of
our framework can be found in section VIII and the related
work in section IX. However, before going into the details of
our approach, we like to introduce the problem in section II
and give an overview on the system and the data structures
that we leverage in section III.

II. PROBLEM STATEMENT

In general, the problem of Question Answering (Q&A)
from structured data can be formalized as follows: given a
structured query language L and a user’s question q, we define
a mapping q 7→ R to a ranked list R (results) of structured
queries r1, r2, . . . , rn ∈ L, where ri represents the i-th highest
scored interpretation of the user’s questions with respect to the
data and metadata of the underlying structured data source. We
focus in this paper on multi-dimensional queries (structured
queries) and data warehouses (data sources), without restricting
the generality of our approach. A simple multi-dimensional
query (see [4] for a more detailed definition) is usually repre-
sented by a number of dimensions (organized in hierarchies) or
their attributes, measures (aggregated KPIs with respect to the

2http://www.apple.com/iphone/features/#siri.

top 5 middle-aged customers in my city
top-k dimension

[begin] [end]

custom rule context

value filter

[order] [nb] [meas]
top 5 ?1customer

[dim]

range filter

age

[dim]
20 30 city Palo Alto

[dim] [value]

order & truncation basic query

[meas]
?1customer

[dim]

[nb] – number of items
[dim] – dimension
[meas] – measure
?1 – unknown artifact

(a) A user’s question and derived semantic units (comparable to a parse tree
in natural language processing). Successive tokens that satisfy some constraints
(e.g. linguistics pattern or dictionary matches) are marked with dotted boxes.
Inferred semantics are drawn with solid rectangles. These semantic units of
recognized entities form parts of potential structured queries that might fullfill
the users information need. In addition, the system has to propose a measure
for ‘?1’ to compute a valid multi-dimensional query.

SELECT
sum(Invoice_Line."DAYS"
* Invoice_Line."NB_GUESTS"
* Service."PRICE") AS revenue,
Customer."LAST_NAME" AS customer
FROM City
INNER JOIN Customer
ON (City."CITY_ID"=Customer."CITY_ID")
INNER JOIN Sales
ON (Sales."CUST_ID"=Customer."CUST_ID")
INNER JOIN Invoice_Line
ON (Invoice_Line."INV_ID"=Sales."INV_ID")
INNER JOIN Service
ON (Invoice_Line."SERVICE_ID"=Service."SERVICE_ID")
WHERE
city = ’Palo Alto’ AND
age >= 20 AND
age <= 30
GROUP BY
customer
ORDER BY revenue
LIMIT 5

(b) Example SQL query that was generated from the user’s question in figure 1a.
Natural language patterns, constraints given by the data and metadata of the
data warehouse (see figure 2) have been applied to infer query semantics. This
was mapped to a logical, multi-dimensional query, which in turn was translated
to SQL. Note, that the ‘revenue’ represents a proposed measure, depicted as
‘?1’ in figure 1a. The computation of the measure ‘revenue’ and the join paths
are configured in the metadata of the warehouse.

Fig. 1: Translating a user’s question into a structured query.

used dimensions or attributes) and filters. It is executed on top
of a physical or virtual data cube (through an abtraction layer
generating a mapping to SQL in our case). In addition, result
modifiers (e.g. for sorting and truncation) can be added to a
query. The interested reader might already look up the logical
schema of the example data warehouse used throughout this
paper in figure 2. An example question, q=“Top 5 middle-aged
customers in my city”, is shown in figure 1a, while listing 1b
depicts an example result query r ∈ R in SQL syntax. Note
that the join paths in the example, the aggregation function
sum(), and the expression inside the aggregation function
representing the measure ‘revenue’ are predefined in the data
warehouse metadata. We also depict in figure 1a intermediate
steps to derive the final structured query. Successive tokens that
satisfy some constraints (e.g. ‘customers’, which matches the
name of an entity in the data warehouse metadata) are marked
with dotted-line boxes. Inferred semantics (e.g. the filter for
the age range) are drawn with solid-line rectangles.

In order to derive a structured query r ∈ R from a given
question q, we have to solve a series of problems, which form
a kind of process and which we detail in the following:
(1) Information Extraction: The first step in the processing
is to derive lower-level semantics from the user’s question.
This is, data and metadata of the underlying structured data
source (i.e. domain terminology) have to be recognized (e.g.
‘customers’ refers to the dimension ‘customer’ in the data
warehouse schema). To support more sophisticated queries
(e.g. range queries) and go beyond keyword-like questions,
we allow administrators to define custom vocabulary (such as
‘middle-aged’) and more complex linguistic patterns, which
simple example is ‘top 5’. Such artifacts may export variables,
such as the beginning and ending of the age range for ‘middle-
aged’ or the expected number of objects for ‘top 5’.

(2) Normalization and Transformation: In many cases, we
cannot map the users’ input directly to a structured query. For
instance dates or numbers may be expressed in different forms
(e.g. ‘15000’ as ‘15,000’, ‘15k’ or even ‘fifteen thousand’).
The same holds true for custom vocabulary such as ‘middle-
aged’, which translates to a range on the ‘age’ attribute of
the dimension ‘customer’ (see figure 2). Therefore, we need
a configurable mechanism to translate input variables derived
from linguistic patterns to variables that conform with the
query language L. Similarly, we require a mechanism to define
variables for custom vocabulary (e.g. ‘middle-aged’ defines a
range starting at ‘20’ and ending at ‘30’).
(3) Structural Constraints and Missing Artifacts: One of
the most challenging problems is to generate valid structured
queries (valid in the sense that q ∈ L holds and that q returns
a – maybe empty – result). To go deeper into our example, a
series of constraints need to be considered to generate valid
multi-dimensional queries in a next processing step, such as:
• Artifacts used within a query have to occur in the same data
warehouse (if several ones are used).
• A query contains at least one measure or dimension.
• A query that contains two dimensions requires one or more
measures that connect these dimensions (see figure 2), which
implies that these dimensions relate to the same fact table.
• Different interpretations for ambiguously recognized dimen-
sions (i.e. different matches covering the same text fragment
in the user’s question) shall not be used within the same
structured query because it would change the aggregation level.
• A sorting or truncation criteria (e.g. ‘top 5’) requires usually
an assigned measure (note that several sortings and truncations
can be applied within one query, e.g. for a question like
‘Revenue for the top 5 cities and the top 10 resorts’). If no
measure for a sorting or truncation criteria can be extracted
from the question, the system has to propose at least one

measure, e.g. ‘revenue’, as shown in listing 1b for the missing
input ‘?1’ in figure 1a.

Other constraints that occur in the BI domain are imposed
by the specific application and consideration with respect to the
users’ expectation. Our example application aims to provide
insightful vizualisations to the user’s business. Thus, a user
who types ‘revenue’ as question is not necessarily interested
in the total revenue achieved by the company since its existence
(which a query consisting only of the measure would return).
Most likely, he is interested in a specific aspect such as the
‘revenue per year’ or ‘revenue per resort’, even though he
is not yet sure, which of these aspects he would like to
explore. Therefore, our application proposes in such situations
dimensions that form together with the measures of the user’s
question a valid structured query. Same holds true if the user
does not mention a measure, but only a dimension as shown
in the example in figure 1a. In this case, the system proposes
related measures (here ‘revenue’). Another interesting aspect
is contextualization. A user might have a user profile, which
augments the systems metadata (e.g. with the city the user
is located in). In order to simplify the data exploration and
return more relevant data for his current task, we may leverage
the user profile to impose additional filters. In figure 1a the
user asks for instance for ‘my city’. Knowing that there is
a mapping between ‘Palo Alto’ in the user profile and a
value inside the data underlying the dimension ‘City’, we
may automatically generate a strucured query with a filter
for ‘Palo Alto’. Considering all these structural constraints
and possibilities to augment queries with artifacts from the
underlying metadata, it is obvious that such constraints are
difficult to express and maintain in an imperative programming
model. In section V we will present as one of our major
contributions a declarative way to capture such domain or
application-specific constraints to generate structured queries.
(4) Mapping Artifacts into Structured Queries: Once we
have defined constraints and artifacts that shall be considered,
such as dimensions, measures, attributes and custom variables
(e.g. for ‘top 5’ or ‘middle-aged’), they have to be mapped into
semantic units (e.g. ‘basic query’ or ‘range filter’ as shown in
figure 1a). Now we have to create a new data structure that
represents a query such that artifacts refered in the constraints
are mapped to the respective parts of a structured query.
These are usually projections (i.e. measures and dimensions),
selections (i.e. filters) and result modifiers (such as ordering
or truncation expressions). Again, different query languages,
domains and applications may impose different requirements.
Clearly, measures and dimensions that where recognized as
‘basic query’ in figure 1a have to be included in the projections.
‘Age’ as dimension refered by the range filter derived from
‘middle-aged’ shall not be included in the projections, since
it would change the semantic of the query if included in
the GROUP BY-statement in listing 1b. In general, it is often
application-specific whether a dimension used within a filter
expression shall be mapped to a projection. In our case, there
is a direct mapping from the query result to a chart. Since
most traditional chart types (e.g. bar charts) support only 2
dimensions, we have to reduce the number of projections
to a minimum and therefore split very complex queries into
several ones, each showing different views on the data set.
Another way of reducing the number of projections is to
neglect projections for filters having only one value (e.g. as

reservations

reservation days
future guests

sales

days
number guests
revenue

service

service line

resort

resort country

sales person

invoice date

invoice year

reservation date

reservation year

customer

age

phone number

address
first name

city

region

countrydimension

hierarchy attribute

facts

measure

Fig. 2: Logical data model of an example data warehouse in
notation proposed by Golfarelli et Rizzi [5]: two fact tables
(reservation, sales) define different measures (e.g. revenue or
reservation days). These facts connect the different dimensions
(e.g. customer and sales person). Dimensions are organized
in hierarchies (e.g. customer, city, region, etc.) and may have
assigned a set of attributes (e.g. age for customer).

shown for ‘Palo Alto’ in figure 1b) since it does not change
the semantics of the query.
(5) Scoring of Queries: The previous step generates poten-
tially several structured queries which then have to be ranked
by relevance with respect to the user’s question. We propose a
series of heuristics for ranking generated queries in section VII.

Finally, ranked queries have to be executed. In our ap-
proach, we generate a intermediate query model that is than
serialized and executed on the data source.

III. METADATA MANAGEMENT

An important foundation of the overall framework is the
metadata management and the runtime information captured
in the so called parse graph. We use the term parse graph to
state its close relationship to the term parse tree, often used
in the context of natural language processing. In our case the
parse graph and other metadata required to interpret a question
is captured in form of RDF3 since it is a widely-accepted
standard for representing graphs. We also benefit a lot from the
power of the graph pattern query language SparQL4 as detailed
later on. Note that we use in the remaining paper the terms
resource when we refer to the actual RDF-representation and
node when we describe higher level concepts (even though
they can be seen as synonymous in this paper). In figure 3
we show an example of a parse graph for our example from
figure 1 and other graph-organized metadata. Before discussing
the parse graph itself, we like to detail the metadata graphs.

On top in figure 3 we see a graph capturing the user
profile and below an excerpt of the graph representing the data
warehouse’s schema. We only show one data warehouse (see
‘Resorts’ node) for brevity and only one measure (‘Revenue’),
two dimensions (‘Customer’ and ‘City’) and one attribute
(‘Age’). The node ‘City’ is linked to the location node (‘Palo
Alto’) from the user profile. Currently this link is automatically

3see http://www.w3.org/RDF/.
4SPARQL Protocol and RDF Query Language

UUser#123

?

John Smith
?

US
?

Palo Alto

namelocale location

User Profile

W ResortsM

Revenue

D

Customer
AAge D

City

dimOf

attrOf

dimOf

measOf
Schema

Q

Top 5

middle-aged

customers

my city

hasAnnot

hasAnnot

Parse Graph

C

PatternConfig

P

TopK
P

AgeTerms
P

Context

hasRule hasRule hasRule

Natural Language Patterns

matches

matches

occursIn

matches

matches matches

appliesTo

appliesTo

Fig. 3: Used metadata and parse graph of an example question

established by matching the values of the user profile against
the warehouse’s data. On the bottom we see a graph capturing
metadata of some configured natural language patterns (see
next section). We keep this information inside RDF to relate
these patterns to other resources. For instance the custom
vocabulary for the terms related to age (node labeled with
‘AgeTerms’) – used to identify ‘middle-aged’ – applies to the
schema’s attribute ‘Age’ by its pattern definition. The user
context pattern (‘Context’-node) relates to all user profile nodes
that have a corresponding value in the warehouse’s data (here:
‘Palo Alto’). In addition, the nodes of the natural language
pattern graph have properties like an executable information
extraction rule (see section IV) and a set of variables that can
be exported, e.g. that the ‘TopK’-pattern exports the number
of items and that the ordering is ascending (cf. figure 1a).

The parse graph itself is depicted in the third box from
the top. It is generated by Information Extraction algorithms.
The graph mainly consists of a central node representing

the user’s question (the larger node marked with ‘Q’) and
so-called annotation nodes (depicted with a rectangle shape
in figure 3, labeled with the corresponding fragment of the
users’ question). Annotation nodes capture metadata that was
aquired during the matching process (e.g., when matching data
warehouse’s schema or natural language patterns) and link to
relevant resources used or identified during this process (e.g.,
a dimension or the natural language pattern that were used).
As runtime metadata we keep for instance the position of a
match (offset and length of the matched fragment within the
question), the type of the occured match (e.g., match in data
warehouse metadata or match with natural lanugage patterns)
and a confidence value. In addition Information Extraction
algorithms may capture specific metadata such as instantiated
output variables for natural language patterns (e.g., the ‘5’
extracted from ‘Top 5’). Before going into the details on how to
translate semantics captured during the information extraction
process into structured queries, we like to detail how to derive
a structure such as the one shown in figure 3 and how to
configure natural language patterns.

IV. ENTITY RECOGNITION

To derive a graph structure such as shown in figure 3 we
need to match the user’s question with the metadata and data of
the underlying structured data source and apply all configured
natural language patterns. In the beginning of this section, we
briefly introduce the matching algorithms.The last subsection
contains a more detailed description on how natural language
patterns are configured and executed.

A. Matching Metadata and Data

We use a state-of-the-art information extraction system
(SAP BusinessObjects Text AnalysisTM, a succesor of the
system presented in [6]) with a custom scoring function to
match metadata objects inside the user’s question. As scoring
function for evaluating individual matches we adapted the
scoring that we presented in [7]. In a nutshell, it combines
TF-IDF like metrics with Levenshtein and punishes in addition
matches where the length of a term in the metadata is much
longer than the string that occurs in the users’ question. A
threshold on the score limits the number of matches that are
considered for further processing.

If a substring of the users’ question was identified as
matching a term in the datasource’s metadata (user profile or
schema), the component generates an annotation node in the
parse graph. This node links the matched node and the question
node (cf. figure 3). As discussed before, runtime metadata
such as the offset, length and score of the match are stored as
attributes of the annotation node. Matching dimension values
(used for filters) works in a similar fashion. We did some
optimizations by leveraging the full-text search capabilities of
the underlying database. If a match with some dimension value
(e.g. ‘Palo Alto’) occurs, the system creates an annotation like
for matched metadata, linking the question and the metadata
node, to signal the system that a value for a dimension
was identified. The difference between metadata annotations
mentioned above to the ones created for dimension values is
the annotation type which is assigned to the annotation and
the relation to the metadata node (i.e. ‘hasValue’ instead of
‘matches’).

1 :yearsBackWardsToDateRange
2 rdf:type features:NlpPattern;
3 rdfs:label "Computes the beginning and end date, given a time range in years"ˆˆxsd:string;
4 nlp:outputVariables "yearsBack,rangeBegin,rangeEnd"ˆˆxsd:string;
5 nlp:rule
6 "((<last>|..|<previous>)([OD yearsBack]<POS:Num>[/OD])?<STEM:year>)"ˆˆxsd:string;
7 nlp:computeVariablesWithScript """
8 var today = new Date(); var dd = today.getDate(); var yyyy = today.getFullYear();
9 rangeEnd = calculateEnd(dd,mm,yyyy);
10 rangeBegin = calculateStart(dd,mm,yyyy,yearsBack);
11
12 function calculateEnd(dd,mm,yyyy) {
13 return yyyy + ’-’ + mm + ’-’ + dd;
14 }
15 function calculateStart(dd,mm,yyyy,yearsBack) {
16 return (yyyy-yearsBack) + ’-01-01’;
17 } """ˆˆxsd:string ;
18 nlp:appliesTo dataType:Date;

Listing 1: Pattern to compute dates from ‘last 3 years’.

B. Natural Language Patterns

We developed a very powerful mechanism for natural lan-
guage pattern, which we like to introduce in more detail. It can
be used to implement custom functionality (e.g. range queries,
top-k queries or custom vocabulary such as shown for “middle-
agged” in figure 1a) that goes beyond keyword-matching. As
explained in the previous section, natural language patterns are
configured using RDF (see listing 1 for an example). The three
main parts of a natural language patterns are:
(1) Extraction Rules: The basis for natural language patterns
are extraction rules. In our case we use the CGUL rule
language5, which can be executed using SAP BusinessObjects
Text AnalysisTM. It bases similarly as CPSL [8] or JAPE [9]
on the idea of cascading finite-state grammars meaning that
extraction rules can be built in a cascading way. Thus any
other rule engine can be used for this purpose. We make heavy
use of built-in primitives for part-of-speech tagging, regular
expressions and the option to define and export variables (e.g.
the ‘5’ in ‘top 5’). Note, that a rule might simply consist of a
token or a phrase list, e.g. containing ‘middle-aged’.
(2) Transformation Scripts: Once a rule fired, exported
variables may require some post-processing , e.g. to transform
‘15,000’ or ‘15k’ into ‘15000’, a expression that can be used
within a structured query. In many cases there is also the need
to compute additional variables. The most simple case for such
functionality is to output beginning and ending of the age range
defined by a term such as ‘middle-agged’. To do additional
computations and transformations, we allow to embed scripts
inside a natural language pattern, which can consume output
variables of the extraction rule and can define new variables
as needed.
(3) Referenced Resources: A rule is often specific for a
resource in some metadata graph. For instance in figure 3 the
pattern for ‘AgeTerms’ applies only to the dimension ‘Age’,
the ‘Context’ pattern only to nodes within the user profile and
other patterns apply only to certain data types (e.g. patterns
for ranges to numerical dimension values) – which are also
represented as nodes. In order to restrict the domain of patterns,
we allow to specify referenced resources. Later, we will detail
how these references can be used in generating structured

5http://help.sap.com/businessobject/product guides/boexir4/en/sbo401 ds
tdp ext cust en.pdf

queries.

We can see an example natural language pattern in listing 1.
It does not match our running example question to underline
the power and flexibility of the described mechanism. It depicts
a pattern to compute from a phrase like ‘for the last 3 years’
two date expressions (namely beginning and ending date) that
can be used in a structured query. The example pattern is
presented in the Turtle RDF format6.

The first line defines the URI of the pattern (i.e. the subject
of all following properties). All remaining lines define the
pattern’s properties (in terms of predicates and objects). Line
2 and 3 contain the type and description in the sense of RDF
and RDF-Schema. In line 4 we define the variables that are
output of the pattern, here ‘yearsBack’ and the actual dates
(‘rangeBegin’ and ‘rangeEnd’).

The extraction rule is defined in line 5 and 6. It consists
of some trigger words like ‘last’ or ‘previous’, the exported
number ([OD] marks that the expression between shall be
exported, <POS:Num> references the part-of-speech tag for
numbers) and the ending token ‘year’ (and its stems).

Between line 7 and line 17 stands the script used to
compute the actual values for the variables ‘rangeBegin’ and
‘rangeEnd’. We use JavaScript, because it can be executed
easily in our host programming language (Java) and embed it
into the RDF representation to store the rule definition and the
transformation logic together. In the last line, we define that
this rule only applies to dimensions which have values of data
type ‘Date’.

Once an extraction rule fired and the attached script has
been evaluated, an annotation node in the parse graph is created
as shown in figure 3. The annotation node cares as properties
runtime metadata such as the match position (again offset and
length inside the user’s question), the annotation type and the
computed variables.

V. STRUCTURAL CONSTRAINTS

Once the parse graph is created for a particular user’s
question, the system has to ensure domain- and aplication-
specific constraints. In addition to constraints mentioned in

6http://www.w3.org/TeamSubmission/turtle/

Q

A?a3

hasAnnotation

D?d1

matches

?dL1

W

?w
?wL

D ?d4

dimOf

?dL1

D?m2

measOf

?mL1

A?a2

M?m1

matches

measOf

?mL1

A?a1

?ord
order

?nb
number

PTopK

matches

A?a4

?vL2

D?d2

valueOf

dimOf

?dL2

A?a5

D?d3

matches

dimOf

?dL3

??profileItem

occursIn

?pItemL

U?user

?rel

Where
B DS

dataSource
?wL

PI

project

DE

expression

DR

dim

?dL1

name

ME

MR

meas

?mL1

name

TO

truncate

SE

sorting

by

?ord

order

?nb

limit

FE

select

MS

membSet

VR

memb

?vL1

name

?dL2

type

FE

select

MS

membSet

VR

memb

?pItemL

name

?dL3

type

Construct

Type Abbreviations:
Q - Question Node
A - Annotation
M - Measure
D - Dimension
W - Date Warehouse
P - NL Pattern
U - User
? - ‘arbitrary’

Variable Abbreviations:
?ax - annotation #x
?nb - number of items
?ord - order (DESC/ASC)
?dx - dimension #x
?dLx - dimension label #x
?vLx - member label #x
?mx - measure #x
?mLx - measure label #x
?w - data warehouse
?wL - warehouse label
?pItemL - profile label
?rel - ‘some relationship’

Type Abbreviations:
B - Structured Query
DS - Data Source
TO - Truncation & Order
SE - Sorting Expression
PI - Projection Items
ME - Measure Expression
MR - Measure Reference
DE - Dimension Expression
DR - Dimension Reference
FE - Filter Expression
MS - MemberSet
VR - Value Reference

Variable Abbreviations:
?nb - number of items
?ord - order (DESC/ASC)
?dLx - dimension label #x
?vLx - member label #x
?mLx - measure label #x
?wL - warehouse label
?pItemL - profile label

Fig. 4: Example for parse graph constraints and mapping rules to generate a structrued query (see figure 1)

section II for our BI use-case, other apply on how entities
occur together in the query, the data types of the recognized
entities or to which other entities they relate to. Another
constraint takes the form of entity recommendation when the
user did not include all necessary information to compute a
valid query or to add additional filter for personalization. We
discuss in the following two types of constraints: (1) relational
constraints (see section V-A) which describe situations like
the fact that a dimension and a measure should belong to the
same data warehouse and (2) property constraints, which filter
nodes based on property values (see section V-B), like the fact
that two annotations are overlapping or close to each other.
Then, we discuss a convenient feature of SPARQL 1.17 to
inject additional variables (see section V-C), e.g. to to generate
additional values to be used in the structured query if a certain
graph pattern occurs.

A. Relational Constraints

SPARQL queries are essentially graph patterns. Nodes and
edges are be adressed by URIs or are assigned to variables
which are bound to URIs or literals by the SPARQL query
processor. This mechanism of expressing graph constraints and
of binding variables eases the configuration of our approach
tremendously. Figure 4 is a vizualized example of complex
constraints for selection and mapping rules that are used in
our application setting. On the left-hand side stands an excerpt

7http://www.w3.org/TR/2012/WD-sparql11-query-20120724/

of the constraints and variables used in our BI use-case. The
markers attached to a node represent in contrast to figure 3
assigned variables or URIs. URIs are expressed in short form
and do not care a leading question mark. Edges between
nodes and literals refer to rdfs:label if there are not marked
otherwise. Dashed lines illustrate that a particular part of the
graph pattern is optional (implemented trough an OPTIONAL

statement in SPARQL). Q depicts the user’s question. Below
are annotation nodes and left to them assigned variable names
(like ‘?a1’) which form the parse graph. Other nodes reference
metadata graphs (see figure 3). The nodes like M in figure 4
represent resources, while nodes like represent literals,
which will be reused later for query composition. As discussed
in next section, we map only literal variables to the final query
model, to separate the input and output model on conceptual
level. Note also that we define much more variables in the real-
world use-case, e.g. to handover data types and scores from
the question to the query model, which we leave out of the
examples for sake of brevity. Our example exhibits constraints
for the following situations:
Natural Language Patterns (‘?a1’): The annotation (‘?a1’)
addresses the natural language pattern for TopK (see figure 3).
The TopK pattern exports the variables ‘number’ and ‘order’,
which are bound to ‘?nb’ and ‘?ord’. This rule might be
combined with a rule triggered by phrases like ‘order by . . . ’
to assign a variable holding the dimension or measure such
that an ordering can be applied. In general, different natural
language patterns can be easily combined using property

constraints as explained in next subsection. Patterns for ranges,
custom vocabulary, my-questions etc. are treated similarly. In
particular in situations related to ranges and the mapping of
other data types, we define additional variables for the data
type of certain objects (e.g. ‘Date’ or ‘Numeric’) to handle
them separately in the final query generation. These attributes
eventually influence the serialization of the structured query.
Data Warehouse Metadata (‘?a2’ and ‘?a3’): The anno-
tations ‘?a2’ and ‘?a3’ refer to a recognized measure and
dimension bound via a matches relationship in figure 4 and
triggered by questions like “revenue per year”. An arbitrary
number of measures and two dimensions are allowed (due to
the requirement of rendering charts). By assigning the nodes
for the measure (‘?m1’) and dimension (‘?d1’) to the same
node for the data warehouse (‘?w’) we ensure that these
objects can be used together in a structured query and lead
therefore to a valid query. More precisely we check whether
recognized dimensions and measures are linked through a fact
table (see figure 2). For reuse in the structured query, we assign
the labels of the recognized objects to variables (i.e. ‘?mL1’
for the measure label and ‘?dL1’ for the dimension label).
In some cases the system has to suggest fitting counterparts
(e.g. compatible dimensions) to not aggregate all facts. In the
example in figure 2 we choose ‘?d4’ as dimension if the
question contains only measures and ‘?m2’ as measure if it
contains only dimensions. Thus the system generates multiple
interpretations for the user’s question. The SPARQL blocks
that contain ‘?d4’ and ‘?m2’ are optional and contain a filter
(i.e. a property constraint as explained later) such that they
are only triggered if either ‘?mL1’ or ‘dL1’ are not bound.
The label of the recommended measure or dimension is finally
bound to the respective label variable that would otherwise be
unbound (i.e. ‘?mL1’ or ‘dL1’).
Data Warehouse Values (‘?a4’): Instead of the matches
relationship, we use the URI valueOf to assign the dimension
value to the corresponding dimension (i.e. ‘?d2’). For later
reuse, we assign the label of the value’s node (‘?vL2’), e.g.
‘2009’ for a year, and the dimension value to a variable
(‘?dL2’). In the real-world use-case we consider not only one
match situation (like in the example) but a couple of other
situations, where the declarative approach is very valuable.
For instance, we show here only the case where the matched
value does not belong to an already-recognized dimension
(i.e. ‘d2’ would be an additonal dimension in the query).
For the situation where the value belongs to ‘?d1’ – an
already-recognized dimensions – we define another optional
SPARQL block which is triggered by the valueOf relationship
between the annotation and the corresponding dimension. We
treat single value matches for one dimension differently than
matches on multiple values that belong to the same dimension.
Our declarative approach eases this, because another set of
constraints can be simply defined with separate variables.
Personalization (‘?a5’): Annotation ‘?a5’ shows the person-
alization feature, which applies a filter for a dimension if a
corresponding value is part of the user profile (see ‘my city’ in
figure 1). The constraint captures following situation: an anno-
tation (‘?a5’) refers to a dimension (‘?d3’) that occursIn some
resource (‘?profileItem’) that has some relationship (‘?rel’) to
the user (‘?user’). From the graph pattern, we consider for later
porcessing the label of the dimension (‘?dL3’) and the label
of the user profile that occurs in this dimension (‘?pItemL’).
Note that constraints for personalization (as shown in figure 4)

do not refer to the my-pattern (shown in figure 3) due to space
constraints. If the constraints would be applied as shown here,
we would simply test for every matched dimension whether
there is a value mapping to the user profile. These examples
highlight the flexibility of using SPARQL graph patterns to
manage constraints and variables for query composition in
Q&A systems. Addtitional constraints have to be applied on
property or litteral level (see the following sub-section).

B. Property Constraints

The following details the use of constraints through
SPARQL FILTER statements considered in addition to graph
patterns. They are less important on conceptual level, but have
many practical implications, e.g. to not generate duplicated
queries or to add further functionality, which cannot be ex-
pressed on graph pattern level. The first obvious additional
constraint is to check whether two annotations matching two
distinct dimensions are different:
FILTER(!sameTerm(?a1, ?a2))

We mentioned in section II that it is often crucial to separate
objects that matched the same part of the user’s question
into several structured query; this is even more important for
dimension names because they define the aggregation level of
the final result. This kind of constraints can be expressed using
the metadata acquired during the matching process. Assuming
that the position of a match inside the question has been
assigned to the variable ?o1 and the offset and length of another
annotation are assigned to ?o2 and ?l2, the filter for ensuring
that the latter one does not begin within the range of the first
annotation can be expressed by:
FILTER(?o2 < ?o1 || ?o2 > (?o1 + ?l2)))

Property constraints are also used for more complicated query
generation problems. For instance a generic natural language
pattern for ranges would look similar as the one shown
in figure 1. It would then apply to dataType:Numeric, be
triggered by phrases like ‘between x and y’ and include a
script for normalizing numbers. In combination with matched
numeric dimension values, one can define a filter that tests
whether two members where matched inside the matched
range phrase and generate variables defining the beginning and
ending of a structured range query.

C. Additional Variables

It is often usefull to define default values or to bind
additional variables. An example for a default value would
be to limit the size of the query results if it is not specified
by the user. To do so, we add an optional SPARQL block that
checks the variable ‘?nb’ and assigns a value if it is unbound
using: BIND(1000 AS ?nb).
There are plenty of other use-cases to inject additional vari-
ables, like defining analysis types (which are part of the not-
illustrated metadata that is assigned to a structured query).
These are indicators used to select the best fitting chart type
for a single result. To capture the analysis type, we use certain
trigger-words (see [10]) and additional constraints such as the
number of measures and dimensions and the cardinality of
dimensions. For instance we would select a pie chart if a
single measure and dimensions is mentioned in the question
and the user is interested in a ‘comparison’ (e.g. triggered by
the term ‘compare’ or ‘versus’). However, if the cardinality

of the dimension (which is maintained in the metadata graph)
would exceed a certain value (e.g. 10), a bar chart would be
a better fit because a pie chart would be difficult to interpret
otherwise.

VI. MAPPING TO STRUCTURED QUERIES

For most of the cases like the example given in figure 1a,
a structured query contains a data source, a set of dimensions
and measures, a set of filters and an optional set of result
modifiers, e.g. ordering or truncation expressions. For the
example from figure 1a, a stuctured query could be represented
as follows:

Q1 =

data source = Resorts
dimensions = {Customer}
measures = {Revenue}

filters =

 City = ‘Palo Alto’,
Age ≥ 20,
Age ≤ 30

truncation = {(Revenue, ↓, 5)}

In there, curly brackets represent a set of objects, which

might have a complex structure (e.g. for filters, which con-
sist of a measure or dimension, an operator and a value).
For truncations we use a triple consisting of the dimnesion
or measure on which the ordering is applied, the ordering
direction (ascending ↑, or descending ↓) and the number of
items. Another intepretation for the user’s question would be
Q2, which is similar to Q1 except the proposed measure:

Q2 =

 . . .
measures = {Margin}
. . .
truncation = {Margin, ↓, 5)}

Since the reprentation shown above captures only a fraction of

the potential queries, we use RDF to capture the structure and
semantics of the structured query which is than serialized to
an executable query in a subsequent step. As discussed earlier,
we define in the left part of figure 4 how to derive potential
interpretations (i.e. variables and the constraints between them)
using a SPARQL WHERE clause. Now we need to define the
basic structure of a query (in RDF) and how to map variables
into this model using a SPARQL CONSTRUCT clause (illustrated
in the right part of figure 4). In this way, we separate the
pattern matching, which can be quiet complex, from the actual
mapping problem and ensure a fine-grained flexible control on
how to generate structured queries.

Some of the most important concepts of our query model
are illustrated in figure 4. On the top, stands the root node

B defining a structured query. Below, dashed lines represent
parts that are optional in the left side. These parts of the
CONSTRUCT clause are only triggered if the respective variables
are in the result of the WHERE clause, making it easy to describe
alternative mappings for different situations as described in
the parse graph. Besides of the actual query semantics, we
attach some metadata nodes to the query node such as the
data source DS . It is bound to the variable ‘?w’ representing
the actual data warehouse upon which the generated query
shall be executed. Additional nodes are dedicated to: projection
items PI , capturing all projections that are part of the final
structured query; filter items FI , expressing selections on a
certain measure or dimension and truncation and ordering
clauses TO . The underlying structures are detailed in the
following.

Projections The most important part of the actual query
are projections, which in our use-case consists at least of one
measure and dimension. To give a glimpse on our full query
model and further detail the example, we define different kinds
of expressions (via a common anchestor RDF type) where we
depict here the subclasses measure expression ME and dimen-
sions expression DE . These nodes capture common metadata
(not shown here), such as navigation paths (e.g. for drill-
down operations) or confidence scores and refer to the actual
object that defines the projection, here the measure reference

MR and dimension reference DR . They are in our case the
labels of recognized objects. It does not matter whether we
use the recognized dimensions and measures (derived from
‘m1’ or ‘d1’) or the suggested ones (derived from ‘m2’ or
‘d4’) in the final query since we defined in the WHERE clause
that suggestions are only made if no user input is available.
We plan to include more complex artifacts such as subnodes of
the expression anchestor node to support for instance computed
measures.

Truncation and Ordering The node TO in figure 4 stands
for Truncation and Ordering. It represents ORDER BY and LIMIT

clauses of a structured query or of a certain sub-select within
such a query. Thus, several nodes TO can occur as sub-node
of a query node. If the variable ‘?nb’ is not bound by the
‘TopK’ pattern, the default value as described in section V-C
will be used and a single LIMIT will be generated. The
‘Sorting Expression’ SE representing an ORDER BY is not being
generated in that case because the variable ‘?ord’ is unbound. If
the user entered a question starting with ‘Top. . . ’ both variables
‘?nb’ and ‘?ord’ would be bound and we would suggest an
artifact to apply the ordering (unless the user entered ‘order
by . . . ’, which is parsed by a dedicated pattern). Since top-
k questions usualy relate to a particular measure (even if the
query would be ‘top 5 cities’), we can safely apply the order
to the recognized or suggested measure by simply relating
the node for the ‘Sorting Expression’ SE to the one for the
measure MR . Note that in any case every possible interpretation
with respect to the ORDER BY assigment would be generated.

Filters: Filter expressions depicted as FE represent a set
of members or numerical values in the case of measures
to be used to filter the actual result. From a data model
perspective, filter expressions capture the metadata’s object
(either dimension or measure) on which the restriction is
applied and a set or range of values that defines the actual
restriction. More complex filter expressions can be defined
as well (e.g. containing a sub-query). In our example, we
show only examples for member sets MS containing a single
member which is represented by a value reference VR . In
the first case, a member was directly recognized in the user’s
question. The variable ‘?dL2’ originating from the dimension
‘?d2’ is directly assigned to the member set and a node for
the value reference VR is generated with a property for the
actual value (i.e. ‘?vL1’). Note that we do not need to care
whether the respective dimensions will be considered in the
projections since this can be handled by constraints (see left
part of figure 4). The second example handles personalization
(e.g. “my city”) and uses a filter leveraging the user profile. It
works similarly as the one for matched members except that
the value reference VR relates to the label of the object in the
user profile that cares a similar value as one of the members of
a certain dimension (e.g. ‘Palo Alto’ for the dimension ‘City’).

Range queries are conceptually similar to the ones containing a
member set, no matter whether they are applied on dimensions
or measures. The only difference is that a natural language
pattern is used for detecting numeric or date range expressions
in the user’s question to define variables and that there are
two value references defining the bounds of the actual filter
expression.

As result of the mapping step, we get an RDF graph
containing all potential interpretations (structured queries) of
the user’s question. Since the query model as such reflects the
features of the underlying query language L (e.g. projections
and different types of selections) it is straightforward to
serialize this model to an actual string that can be executed on a
data source. The constraints defined in previous sections ensure
on the one hand how to treat different match situations and on
the other hand that the generated queries are valid. The great
advantage of this approach is that complex constraints can be
defined in a declarative way and that they are to some extend
separated from the mapping problem, making the implemen-
tation much easier in presence of complex requirements. The
generated structured queries must then be scored to provide a
usefull ranking of results and to define an order according to
which the computed queries are eventually executed.

VII. SCORING

The previous step generates potentially several structured
queries which must evenutally be ranked by relevance. To
do so we combine three scoring functions by a weighted
average. These are (1) a confidence measure that bases on text
retrieval metrics, (2) the complexity of the generated structured
query (the higher the complexity the more relevant) and (3)
a measure that determines the selectivity, i.e. the number of
queries that were generated by a certain sub-graph of the
constraint definition (the less results are generated from a sub-
graph the more relevant could be a query).

(1) Entity recognition confidence:. Each entity or natural
language pattern match (e.g., on dimensions, measures or
the top-k pattern) cares a confidence value c. For matched
measures, dimensions or members, the confidence measure
is a variant of the well-known Levenshtein distance. These
values are then aggregated for a particular generated query.
Let r = {m1, . . . ,mk} be the query r decomposed in
its k matching entities or patterns, c1, . . . , ck the assigned
confidence values and θt a weight that is configured for a
particular match type t ∈ T (e.g. on dimension, measure or
natural language pattern). Then the confidence s1(r) of a query
r is formulated as:

s1(r) =

k∑
i=0

θtci,t
k

Note that the weight θt was experimentally determined such
that θt ∈ [0, 1] and

∑
t∈T θt ≤ 1.

(2) Complexity: The complexity is a measure that bases
on the number of objects used to formulate a particular query.
Note that we use here all objects (including suggested ones),
while we considered for confidence only the ones that were
matches in the question. Let r′ = (countt(r))t∈T be the vector
representing the number of entities of type t in r. Then, the

2 4 6 8 10

0.2

0.4

0.6

0.8

1

k

su
cc

es
s@

k

QUASL
QUASL with updated questions

WOLFRAM—ALPHA
WOLFRAM—ALPHA with updated questions

Fig. 5: Success of answering gold standard questions compared
to Wolfram—Alpha

2 4 6 8 10

0.4

0.6

0.8

1

k

su
cc

es
s@

k

QUASL
QUASL with updated questions

WOLFRAM—ALPHA
WOLFRAM—ALPHA with updated questions

Fig. 6: Success of answering gold standard questions compared
to Wolfram—Alpha when ignoring unknown data

complexity of a result r is defined by:

s2(r) =
1

|T |
∑
t∈T

θtr
′
i,t

where θt ∈ (0, 1],
∑

t∈T θt ≤ 1 is for simplicity the same
weight as discussed before.

(3) Selectivity: The selectivity defines how specific a

graph-pattern is with respect to the question. The intention
behind this measure is to boost very specific graph pattern
matches, since they often cover special cases and are therefore
usually more relevant if they occur. This “specificity” is
computed as the inverse number of generated BI queries per
graph pattern (i.e. sub-graphs of the WHERE clause). Let g be a
the sub-graph in the WHERE clause that was used to compute a
structured query r and R(g, q) the set of all queries that where
computed from the question q, given the sub-graph g. Then the
selectivity is computed using:

s3(r) =

{
1

|R(g,q)| if σ 6= 0

0 otherwise

where σ = |R(g, q)| is the number of queries that have been
generated by the sub-graph g.

The above mentioned scores are then aggregated by a
(weighted) average, where we use 1

3 for each of the parameters
in our current set up. The definition of the weighting scheme
is in general generic for all kinds of applications and domains.
However, it remains a future task to empirical verify whether
this heuristics can be applied to other domains.

VIII. EVALUATION

This paper introduces a novel methodology to implement
question answering systems, which is difficult to measure by
quantitative metrics. However, in this section we show that one
can easily implement a system that has a similar quality as a
publicly available question answering system (WolframAlpha).

A. Evaluation corpus and data set

ManyEyes8 is a collaborative platform where users publish
datasets and associated visualizations (i.e. charts). One of the
most popular datasets is from the American Census Bureau9.
We have integrated it in our data warehouse and created
manually the data schemas corresponding to these dataset
(using the original terminology). The corpus of user questions
is composed of the titles of the 50 most popular visualizations
having the census dataset as data source in ManyEyes. Some
of these questions are shown in table I (see last page).

B. Results

For determining the performance of our question answer-
ing system (QUASL), we use the measure success at k that
indicates at which position k the relavant result (i.e. chart)
occurs in average within the list of results. Figure 5 compares
the success for k = 1 (on the left) to k = 10 (on the right) for
QUASL and WolframAlpha. The results for updated questions
stands for results where the questions has been modified in
such a way that the system can better respond (see also table I).
For instance, we have observed that WolframAlpha provides
better results if some questions are prefixed or suffixed with
“US” or “Census” to explicit a restriction to a subset of
available data (“US”) or to the dataset itself (“Census”). Other
questions have been rephrased (e.g., “Where are the rich
people” to “highest houshold income”) to give the systems
a chance to answer them as well. Thus the results for updated

8See www-958.ibm.com/.
9http://www.census.gov/main/www/access.html.

questions show the assumed performance when optimizing
both systems with respect to the type of questions in the gold
standard and the data set.

Given the gold standard’s questions, our system out-
performs WolframAlpha by far. However, we observed that
WolframAlpha seems to include only a fraction of the Census
data set. Therefore, we computed a second plot (see figure 6),
which ignores all questions that could not be answered by
WolframAlpha (assuming that the correpsonding data was not
available to the system). Beforehand, we tried to reformulate
the questions several times to ensure that the data is indeed
unknown. The results in figure 6 show that our system still
performs better up to k ≤ 4 and that the performance of
WolframAlpha is superior to the one of QUASL for k > 4
(under the assumption presented above). Thus, we can assume
overall a more less similar performance of both systems.

C. Discussion

Our experiment shows that QUASL behaves to some extend
similarly as WolframAlpha, which is a well-proven system.
However, in the follwing we like to discuss optimizations
that would further improve our performance for the given
questions. The second column of table I (“updated question”)
depicts modification required for the system to correctly in-
terpret users’ requests. In the last column (“comment”) we
provide a brief explanation on how the system could be easily
improved in order to correctly interpret users’ initial requests.

For instance, the second question “Home ownership by
State” fails, because the term ‘ownership’ is not part of the
terminology of the data warehouse; but the term ‘dewllings’
appears in some measures. Thus, basic linguistic resources
(like WordNet) could be used to relate synonyms or terms with
similar meanings. The fifth question (“And the whitest name in
America is”) also requires little effort to be understood by the
system: the base form of the word ‘whitest’ is ‘white’ (which
is known to the system). Thus adding a stemming component
would lead to an answered question in that case.

An interesting question is “Where are rich people?”. It
would require a little more effort in order to be correctly
processed by QUASL. To answer this question, it requires to
attach additional semantics to the data warhouse to determine
locations that would be recognized by the term ‘where’. In
addition, one would configure a range filter (e.g, using natural
language patterns) to declare the meaning of ‘rich’ (i.e. a
certain income range). The question “of Americans covered
by health insurance” is of similar kind, because the term
“cover” can be translated to a filter on the fact table for “health
insurance”. The question “500MW+ Power Plants” would need
a special natural language pattern to parse “500MW+”.

IX. STATE OF THE ART

Question Answering (Q&A) is a sub-field of Information
Retrieval, and aims at delivering concise answers to queries
expressed in natural language. Research in this area targeted so
far mainly textual corpora. Database retrieval can be classified
into two areas: Natural language interfaces (to databases) and
keyword search (over databases). In the BI domain, retrieval
systems go beyond executing database queries. They offer
visualizations (e.g. charts) as well as reports that best suit

Query Updated query Entities Comment
State Population Change {State, Population change}
Home Ownership Owner-occupied {State, Owner-occupied home ∼ dwellingsby State dwellings by state dwellings}
USA States information {State}
Generation Y in population by year {Year, Population} generation ∼ demographic info.2010 (Ages 10-32) for ages 10-32
And the whitest name names white percent {Name, White percent} whitest ∼ whitein America is
40+ Population Projections {Age, Population
by Age projection}
Average Time Spent {State, Median travel
Commuting by State time to work}
Percent Hispanic by State {State, Hispanic population}
Change in city & town {Town name, Population change}populations

Population {State, County, Town name,
Population}

Domestic Net Migration {State, Domestic net
migration}

Population (by County) {County, Population}
US surnames US names {Count, Name} surnames ∼ names
Age distribution {Age, Male number,
by US population Female number}

Where are rich people? highest {State, Average household income, rich ∼ household incomehousehold income Median household income}
People covered and not covered {State, Covered}
by Health Insurance by State Not covered}
Southeast Asian American {County, Asian and Pacific
Population by US County islander race count}
Dirtiest states from Plant name and {State, Carbon dioxide dirtiest ∼ emissionscoal pollution carbon dioxide emissions emissions}

50MW+ Power Plants Plant name with nameplate {Plant name, 500MW+ ∼ nameplate capacitycapacity > 500MW Nameplate capacity}
Emissions Per State {State, Methane emissions, Nitrogen
Per Capita oxide emissions, Mercury emissions}
US Violent Crime {Crime rate}
Deaths per Year {Cause, Per year}in the United States
Home Valuation of {City, Min valuation,
Major Cities in US Max valuation}
of Americans without Americans not covered {Sate, Without health insurance} health insurance ∼ coveredhealth insurance per state
Percent of men in Mass., {Percent men}15 and over, never married
Marriages in the United States {State, Marriage rage per
per 1,000 women by state 1,000 women}
Percentage of population {County, Percent population
aged 85+, by county aged 85+}
Population by Age Estimate by age {Age, Population estimate} population ∼ numeric estimate
Civilians Employed Amount by category {Occupation category} occupation ∼ categoryby Occupation
Percent of Population {State, Percent population
18+ (by state) of age 18+}
Population categorized Population categorized {Age, Population} areas ∼ statesby ages and areas by ages and states

TABLE I: Excerpt from evaluation corpus. The symbol ‘∼’ indicates how linguistic resources could improve performances

users’ queries. We discuss in the following the most important
approaches in these areas and relate them to our approach.

The Q&A domain is mostly focused on “community
Q&A”. In this sub-domain, several users collaborate together
(in a crowdsourcing way) to answer a question, and the best
candidate is then chosen as the correct answer (usually by the
user who asked the question in a first place). Indeed, social
networks have recently played the front stage in Internet usage.
In this area, several problems have arisen, like the question on
how to route a question to the right expert [11], which can
be seen as a classification task [12], [13]. Subjective Q&A
(i.e. how to sumarize different opinions based on extracted
semantics and statistics) is a topic of interest [14] as well as the
prediction of questions that are not likely to be answered in the
future [15]. Traditional Q&A (answering questions from a text
corpus) is a huge area, but Maybury [16] outlined the various
directions of Q&A systems, like their requirements (in terms of

sought information), scope, complexity, etc. While traditional
Q&A technologies are successful in many application areas,
the algorithms used there cannot be easily applied to business
use-cases with underlying databases. Indeed in this domain,
data sources are mostly structured, for which keyword search
approaches work best for the time beeing. Our approach tries
to fill this gap by providing a methodology to develope domain
and application specific question answering systems.

Keyword search over databases can be seen as a graph
matching problem, where the database is represented as a
graph. Recent approaches [17], [2], [3], [18] translate keyword
queries into a set of structured queries to be ranked. This
problem is known as the minimum Steiner tree problem,
where nodes are are database entities to be associated to
keywords from user’s queries [19], [1], [20], [21], [22]. This
kind of computation is very expensive; besides, keyword-based
approaches suffer by the fact that most of the meaning of

a sentence is not conveyed by its vocabulary (i.e. words or
keywords in the sentence) but by the syntax of the sentence
(i.e. its structure), as pointed out by Orsi & al. [23]. Li et
al. [24] approximate this problem for answering top-k queries
efficiently. Our approach tries to extend the ideas developed in
this area by adding a methodology to express further semantics,
e.g., for range queries or personalization.

In the BI domain, two systems have raised our attention
because they are more closely related than the previous ap-
proaches. First, SODA [25] is a keyword-based search system
over data warehouses. It uses some kinds of patterns to map
keywords and some operators in the user’s query to rules
to generate SQL fragments. It integrates various knowledge
sources like a domain ontology etc. However, this system does
not focus on “using natural language processing to interpret
the input” [25]. Our proposal is thus much more powerful,
e.g., to provide means for including user context or more
complicated natural language patterns and relate them with
other background knowledge, which is of utermost importance
as stated in [26]. Secondly, SAFE [23] is an answering system
dedicated to mobile devices in the medical domain. It uses
patterns, i.e. pre-defined SparQL queries with placeholders
for variables. Each pattern has assigned a predefined natural
language representation (i.e. a question that the user can under-
stand) and the challenge is to rank these questions according
to a keyword input posed by the user. Our approach goes
beyond this idea by the ability to describe complex relations
(constraints) among the recognized entities in a declarative way
and map them into a structured query (which might be SQL,
MDX, SparQL or any proprietary query language).

X. CONCLUSIONS

The methodology and framework presented in this paper
allows developers to implement domain or application specific
question answering systems in a declarative way. In addition,
we elaborated in detail the application of our framework to a
use case in the area of Business Intelligence, where we gener-
ate a dashboard containing charts, tables and the like to answer
a user’s question. The core component of our framework
translates natural language input into structured queries. To
this end, we have adopted a contraint-matching and mapping
approach, and have implemented this approach using semantic
technologies (i.e. with RDF and SPARQL). Our examples have
shown that the framework is highly configurable, and therefore
can be used in very different settings. The experiments showed
that the use-case that was implemented with this framework
has a similar performance as one of the most popular question
answering systems on the Web (WolframAlpha).

The framework is not yet a product, but being evaluated
with customers who provide valuable feedback. As future work
we suggest two major advances. First, scoring of results can be
improved by leveraging user feedback, and we like to include
machine learning approaches to better rank answers (i.e. charts
within a dashboard). Secondly, the system setup could be
automated to some extend by providing example questions
together with corresponding structured queries. To this end
patterns could be automatically generated or at least suggested.
Such an approach would further ease the implemention of
specific question answering systems and potentially empower
end-users to configure their personal system.

REFERENCES

[1] H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: ranked keyword
searches on graphs,” in Proc. SIGMOD 2007.

[2] S. Tata and G. M. Lohman, “Sqak: doing more with keywords,” in Proc.
SIGMOD 2008, pp. 889–902.

[3] T. Tran, P. Cimiano, S. Rudolph, and R. Studer, “Ontology-based
interpretation of keywords for semantic search,” in Proc. ISWC/ASWC
2007, pp. 523–536.

[4] A. Giacometti, P. Marcel, and E. Negre, “Recommending multidimen-
sional queries,” in Proc. DAWAK 2009.

[5] M. Golfarelli and S. Rizzi, “A methodological framework for data
warehouse design,” in Proc. DOLAP 1998, pp. 3–9.

[6] D. A. Hull, “Xerox trec-8 question answering track report,” in Proc.
TREC 1999.

[7] F. Brauer, M. Huber, G. Hackenbroich, U. Leser, F. Naumann, and
W. M. Barczynski, “Graph-based concept identification and disambigua-
tion for enterprise search,” in Proc. WWW 2010, pp. 171–180.

[8] D. E. Appelt and B. Onyshkevych, “The common pattern specification
language,” in Proc. TIPSTER 1998, pp. 23–30.

[9] H. Cunningham, H. Cunningham, D. Maynard, D. Maynard, V. Tablan,
and V. Tablan, “Jape: a java annotation patterns engine,” 1999.

[10] R. Thollot, F. Brauer, W. M. Barczynski, and M.-A. Aufaure, “Text-
to-query: dynamically building structured analytics to illustrate textual
content,” in Proc. EDBT/ICDT 2010.

[11] A. Pal, F. M. Harper, and J. A. Konstan, “Exploring question selection
bias to identify experts and potential experts in community question
answering,” ACM Trans. Inf. Syst., vol. 30, no. 2, pp. 10:1–10:28, 2012.

[12] T. C. Zhou, M. R. Lyu, and I. King, “A classification-based approach
to question routing in community question answering,” in Proc WWW
2012, pp. 783–790.

[13] B. Li, I. King, and M. R. Lyu, “Question routing in community question
answering: putting category in its place,” in Proc. CIKM 2011, pp.
2041–2044.

[14] T. C. Zhou, X. Si, E. Y. Chang, I. King, and M. R. Lyu, “A data-driven
approach to question subjectivity identification in community question
answering,” in Proc. AAAI 2012.

[15] B. Li, T. Jin, M. R. Lyu, I. King, and B. Mak, “Analyzing and predicting
question quality in community question answering services,” in Proc.
WWW 2012, pp. 775–782.

[16] M. Maybury, “New directions in question answering,” in Advances in
Open Domain Question Answering, 2006.

[17] E. Kandogan, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu, “Avatar semantic search: a database approach to information
retrieval,” in Proc. SIGMOD 2006, pp. 790–792.

[18] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu, “Spark: adapting
keyword query to semantic search,” in Proc. ISWC/ASWC 2007, pp.
694–707.

[19] “Dbxplorer: A system for keyword-based search over relational
databases,” in Proc. ICDE 2002, p. 5.

[20] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient ir-style
keyword search over relational databases,” in Proc. VLDB 2003, pp.
850–861.

[21] V. Hristidis and Y. Papakonstantinou, “Discover: keyword search in
relational databases,” in Proc. VLDB 2002.

[22] F. Liu, C. Yu, W. Meng, and A. Chowdhury, “Effective keyword search
in relational databases,” in Proc. SIGMOD 2006, pp. 563–574.

[23] G. Orsi, L. Tanca, and E. Zimeo, “Keyword-based, context-aware
selection of natural language query patterns,” in Proc. EDBT/ICDT
2011, pp. 189–200.

[24] G. Li, X. Zhou, J. Feng, and J. Wang, “Progressive keyword search in
relational databases,” in Proc. ICDE 2009.

[25] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger,
“Soda: Generating sql for business users,” in Proc. VLDB 2012.

[26] M. A. Hearst, “’natural’ search user interfaces,” Commun. ACM, vol. 54,
no. 11, pp. 60–67, Nov. 2011.

