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New strutures based on ompletions ⋆Gilles BertrandUniversité Paris-Est, Laboratoire d'Informatique Gaspard-MongeEquipe A3SI, ESIEE ParisAbstrat. We propose new axioms relative to ombinatorial topology.These axioms are settled in the framework of ompletions whih areindutive properties expressed in a delarative way, and that may beombined.We introdue several ompletions for desribing dyads. A dyad is a pairof omplexes whih are, in a ertain sense, linked by a �relative topology�.We �rst give some basi properties of dyads, then we introdue a seondset of axioms for relative dendrites. This allows us to establish a theo-rem whih provides a link between dyads and dendrites, a dendrite is anayli omplex whih may be also desribed by ompletions. Thanks toa previous result, this result makes lear the relation between dyads, rela-tive dendrites, and omplexes whih are ayli in the sense of homology.Keywords: Ayli omplexes, Combinatorial topology, Simpliial Com-plexes, Collapse, Completions.1 IntrodutionSimple homotopy plays a fundamental role in ombinatorial topology [1�7℄. Ithas also been shown that the ollapse operation is fundamental to interpretsome notions relative to homotopy in the ontext of omputer imagery [8�10℄,see also [11�13℄.In this paper, we further investigate an axiomati approah related to simplehomotopy. This approah has been introdued in [14℄ where the notion of adendrite was presented through two simple axioms. A dendrite is an ayliobjet. A theorem asserts that an objet is a dendrite if and only if it is ayliin the sense of homology.Here, we present new axioms for desribing dyads. Intuitively, a dyad is aouple of objets (X,Y ), with X ⊆ Y , suh that the yles of X are �at the rightplae with respet to the ones of Y �. Let us onsider Fig. 1, where an objet
X , and two objets Y ⊆ X , Z ⊆ X are depited. We see that it is possible toontinuously deform Y onto X , this deformation keeping Y inside X . Thus, thepair (Y,X) is a dyad. On the other hand, Z is homotopi to X , but Z is not �atthe right plae�, therefore (Z,X) is not a dyad.
⋆ This work has been partially supported by the �ANR-2010-BLAN-0205 KIDICO�projet.
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X Y ZFig. 1. An objet X (an annulus), and two objets Y ⊆ X, Z ⊆ X (two simple losedurves). The pair (Y,X) is a dyad, while (Z,X) is not.The paper is organized as follows. First, we give some basi de�nitions forsimpliial omplexes (Se. 2). Then, we reall some basi fats relative to thenotion of a ompletion (Se. 3), ompletions will be used as a language fordesribing our axioms. We also reall the de�nition of a dendrite (Se. 4). Inthe two following setions we introdue new axioms for presenting the notionof a dyad (Se. 5), and the notion of a relative dendrite (Se. 6). In Se. 7, wegive a theorem (Th. 4) whih makes lear the link between dyads and dendrites.Thanks to a previous result, this result makes lear the relation between dyads,relative dendrites, and omplexes whih are ayli in the sense of homology.The paper is self ontained. In partiular, almost all proofs are inluded.2 Basi de�nitions for simpliial omplexesLet X be a �nite family omposed of �nite sets. The simpliial losure of X is theomplex X− = {y ⊆ x | x ∈ X}. The family X is a (�nite simpliial) omplexif X = X−. We write S for the olletion of all �nite simpliial omplexes. Notethat ∅ ∈ S and {∅} ∈ S, ∅ is the void omplex, and {∅} is the empty omplex.Let X ∈ S. An element of X is a simplex of X or a fae of X . A faet of Xis a simplex of X whih is maximal for inlusion.A simpliial subomplex of X ∈ S is any subset Y of X whih is a simpliialomplex. If Y is a subomplex of X , we write Y � X .Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number ofits elements minus one. The dimension of X , written dim(X), is the largestdimension of its simplies, the dimension of ∅ is de�ned to be −1.A omplex A ∈ S is a ell if A = ∅ or if A has preisely one non-emptyfaet x. We set A◦ = A \ {x} and ∅◦ = ∅. We write C for the olletion of allells. A ell α ∈ C is a vertex if dim(α) = 0.The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. We say that

X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if X ∩ Y = ∅. Thus,
X and Y are disjoint if and only if X ∩ Y = ∅ or X ∩ Y = {∅}.If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simpliial omplex
XY suh that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and
XY = X if Y = {∅}. The join αX of a vertex α and a omplex X ∈ S is a one.Important onvention. In this paper, if X,Y ∈ S, we impliitly assume that
X and Y have disjoint ground sets whenever we write XY .



New strutures based on ompletions 3Let A ∈ C and X � A. The dual of X for A is the simpliial omplex,written X∗

A
, suh that X∗

A
= {x ∈ A | (A \ x) 6∈ X}.We have ∅∗

A
= A and {∅}∗

A
= A◦, and, for any A ∈ C, we have the following:- If X � A, then (X∗

A
)∗
A
= X .- If X � A, Y � A, then (X ∪ Y )∗

A
= X∗

A
∩ Y ∗

A
and (X ∩ Y )∗

A
= X∗

A
∪ Y ∗

A
.3 CompletionsWe give some basi de�nitions for ompletions, they will allow us to formulateour axioms as well as to ombine them. A ompletion may be seen as a rewritingrule whih permits to derive olletions of sets. See [14℄ for more details.Let S be a given olletion and let K be an arbitrary subolletion of S. Thus, wehave K ⊆ S. In the sequel of the paper, the symbol K, with possible supersripts,will be a dediated symbol (a kind of variable).Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that K is �nitary,if F is �nite whenever (F,G) ∈ K.Let 〈K〉 be a property whih depends on K. We say that 〈K〉 is a ompletion (on

S) if 〈K〉 may be expressed as the following property:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉where K is an arbitrary �nitary binary relation on 2S.If 〈K〉 is a property whih depends on K, we say that a given olletion X ⊆ Ssatis�es 〈K〉 if the property 〈K〉 is true for K = X.Theorem 1. [14℄ Let 〈K〉 be a ompletion on S and let X ⊆ S. There exists,under the subset ordering, a unique minimal olletion whih ontains X andwhih satis�es 〈K〉.If 〈K〉 is a ompletion on S and if X ⊆ S, we write 〈X; K〉 for the uniqueminimal olletion whih ontains X and whih satis�es 〈K〉.Let 〈K〉 be a ompletion whih is expressed as the above property 〈K〉. Bya �xed point property, the olletion 〈X; K〉 may be obtained by starting from
K = X, and by iteratively adding to K, until idempotene, all the sets G suhthat (F,G) ∈ K and F ⊆ K (see [14℄).Let 〈K〉 and 〈Q〉 be two ompletions on S. It may be seen that 〈K〉 ∧ 〈Q〉is a ompletion, the symbol ∧ standing for the logial �and�. In the sequel ofthe paper, we write 〈K,Q〉 for 〈K〉 ∧ 〈Q〉. Also, if X ⊆ S, the notation 〈X; K,Q〉stands for the smallest olletion whih ontains X and whih satis�es 〈K〉∧〈Q〉.Example. Let us onsider the olletion S = S. Thus, K denotes an arbitraryolletion of simpliial omplexes. We de�ne the property 〈Υ 〉 as follows:
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T 6= {∅}. 〈Υ 〉Let K be the binary relation on 2S suh that (F,G) ∈ K i� there exist S, T ∈ S,with F = {S, T }, G = {S ∪ T }, and S ∩ T 6= {∅}. We see that K is �nitaryand that 〈Υ 〉 may be expressed as the property 〈K〉. Thus 〈Υ 〉 is a ompletion.Now, let us onsider the olletion Π = 〈C;Υ 〉. It may be heked that Π is



4 Leture Notes in Computer Siene: DGCI 2013preisely the olletion of all simpliial omplexes whih are (path) onneted(see also [17℄ where the property 〈Υ 〉 is used in a di�erent ontext). Having inmind the above iterative proedure, 〈C, Υ 〉 may be seen as a dynami struturewhere the ompletion 〈Υ 〉 ats as a generator, whih, from C, makes it possibleto enumerate all �nite onneted simpliial omplexes.4 DendritesThe notion of a dendrite was introdued in [14℄ as a way for de�ning a remarkableolletion made of ayli omplexes.In the rest of the paper, K will denote an arbitrary subolletion of S.De�nition 1. We de�ne the two ompletions on S: For any S, T ∈ S,
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉We set R = 〈C;D1〉 and D = 〈C;D1,D2〉, thus we have R ⊆ D.Eah element of R is a rami�ation and eah element of D is a dendrite.Let us reall some basi de�nitions relative to simple homotopy [1℄, note thatthese notions may also be introdued by the means of ompletions [14℄.Let X,Y ∈ S and x, y be two distint faes of X . If y is the only fae of Xwhih ontains x, then Y = X\{x, y} is an elementary ollapse ofX . We say that
X ollapses onto Y , if there exists a sequene 〈X0, ..., Xk〉 suh that X0 = X ,
Xk = Y , and Xi is an elementary ollapse of Xi−1, i ∈ [1, k]. The omplex Xis ollapsible if X ollapses onto ∅. We say that X is (simple) homotopi to Yif there exists a sequene 〈X0, ..., Xk〉 suh that X0 = X , Xk = Y , and either
Xi is an elementary ollapse of Xi−1, or Xi−1 is an elementary ollapse of Xi,
i ∈ [1, k]. The omplex X is (simply) ontratible if X is simple homotopi to ∅.For example, if X is a tree, then X is ollapsible, X is a dendrite, and alsoa rami�ation. In fat, any ollapsible omplex is a rami�ation [6℄. The Bing'shouse with two rooms [15℄ and the dune hat [16℄ are lassial examples ofomplexes whih are ontratible but not ollapsible. Both of them are dendrites.In fat, it was shown [14℄ that any simply ontratible omplex is a dendrite.Furthermore it was shown that:- a omplex is a dendrite if and only if it is ayli in the sense of homology; and- a omplex is a dendrite if and only if its suspension is simply ontratible.5 DyadsIn this setion, we introdue the notion of a dyad and give some propositionswhih are neessary to establish one of the main result of the paper (Th. 4). Seethe introdution and Fig. 1 for an intuitive presentation of a dyad. See also Fig.2 for an illustration of the axiom 〈Ẍ1〉.
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R S T

Fig. 2. Two objets R, S whih onstitute a dyad (R,S). An objet T whih is gluedto S. The ouple (S ∩ T, T ) is a dyad, thus, by axiom 〈Ẍ1〉, (R,S ∪ T ) is also a dyad.We set S̈ = {(X,Y ) | X,Y ∈ S, X � Y } and C̈ = {(A,B) ∈ S̈ | A,B ∈ C}.In the sequel of the paper, K̈ will denote an arbitrary subolletion of S̈. Fur-thermore, α and β will always denote verties.De�nition 2. We de�ne three ompletions on S̈: For any (R,S) ∈ S̈, T ∈ S,-> If (R,S) ∈ K̈ and (S ∩ T, T ) ∈ K̈, then (R,S ∪ T ) ∈ K̈. 〈Ẍ1〉-> If (R,S) ∈ K̈ and (R,S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈Ẍ2〉-> If (R,S ∪ T ) ∈ K̈ and (S ∩ T, T ) ∈ K̈, then (R,S) ∈ K̈. 〈Ẍ3〉We set Ẍ = 〈C̈; Ẍ1, Ẍ2, Ẍ3〉. Eah element of Ẍ is a dyad.We introdue the following ompletions on S̈ (the symbols T̈, Ü, L̈ standrespetively for �transitivity�, �upper on�uene�, and �lower on�uene�):For any (R,S), (S, T ), (R, T ) ∈ S̈,-> If (R,S) ∈ K̈ and (S, T ) ∈ K̈, then (R, T ) ∈ K̈. 〈T̈〉-> If (R,S) ∈ K̈ and (R, T ) ∈ K̈, then (S, T ) ∈ K̈. 〈Ü〉-> If (R, T ) ∈ K̈ and (S, T ) ∈ K̈, then (R,S) ∈ K̈. 〈L̈〉Considering omplexes R,S, T suh that R � S � T , we see that we obtaindiretly 〈T̈〉, 〈Ü〉, 〈L̈〉 from 〈Ẍ1〉, 〈Ẍ2〉, 〈Ẍ3〉, respetively. Thus, we have:Proposition 1. The olletion Ẍ satis�es the properties 〈T̈〉, 〈Ü〉, and 〈L̈〉.Proposition 2. For any X ∈ S, we have (∅, αX) ∈ Ẍ.Proof. If X = ∅, then (∅, αX) ∈ Ẍ (sine (∅, ∅) ∈ C̈). If X = {∅}, then
(∅, αX) ∈ Ẍ (sine αX = α and (∅, α) ∈ C̈). Suppose X 6= ∅ and X 6= {∅}.i) If X has a single faet, then X ∈ C. Thus (∅, αX) ∈ Ẍ (sine (∅, αX) ∈ C̈);ii) If X has more than one faet, then there exists X ′, X ′′ ∈ S suh that X =
X ′ ∪ X ′′, and Card(X ′) < Card(X), Card(X ′′) < Card(X). Suppose that
(∅, αX ′) ∈ Ẍ, (∅, αX ′′) ∈ Ẍ, and (∅, α(X ′ ∩ X ′′)) ∈ Ẍ. Then, by 〈Ü〉, we have
(α(X ′∩X ′′), αX ′′) ∈ Ẍ. Therefore, by 〈Ẍ1〉 (setting R = ∅, S = αX ′, T = αX ′′),we have (∅, αX) ∈ Ẍ. The result follows by indution on Card(X). �Proposition 3. For any X ∈ S, we have (X,X) ∈ Ẍ.Proof. By Prop. 2, we have (∅, αX) ∈ Ẍ. Sine Ẍ satis�es 〈Ü〉, it impliesthat (αX,αX) ∈ Ẍ (setting R = ∅, and S = T = αX). By 〈Ẍ2〉 (setting
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R = S = αX , and T = X), this gives (αX ∩X,X) = (X,X) ∈ Ẍ. �We de�ne two ompletions on S̈: For any S, T ∈ S,-> If (S ∩ T, T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈. 〈Ÿ1〉-> If (S, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈Ÿ2〉We give, hereafter, a theorem (Th. 2) whih provides another way to gen-erate the olletion Ẍ. This theorem will be used in setion 7 to establish alink between dendrites and dyads. Before, we make a remark on a basi prop-erty of ompletions whih allows one to establish the equivalene between twoompletions strutures. This property is neessary for the proof of Th. 2.Remark 1. Let 〈K〉 be a ompletion on S and let X ⊆ S. It may be shown [14℄that we have 〈X; K〉 = ∩{Y ⊆ S | X ⊆ Y and Y satis�es 〈K〉}. Thus, if agiven olletion Y ⊆ S is suh that X ⊆ Y and Y satis�es 〈K〉, then we haveneessarily 〈X; K〉 ⊆ Y.Theorem 2. We have Ẍ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉.Proof. We set Ẍ′ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉. As a onsequene of Prop. 3, wean obtain 〈Ÿ1〉 and 〈Ÿ2〉 from 〈Ẍ1〉 and 〈Ẍ2〉, respetively (setting R = S).The olletion Ẍ also satis�es the properties 〈T̈〉, 〈Ü〉, 〈L̈〉 (Prop. 1). Thus, sine
C̈ ⊆ Ẍ, we have Ẍ′ ⊆ Ẍ (see remark 1). Now, let (R,S) ∈ S̈ and T ∈ S:- Suppose (R,S) ∈ Ẍ

′ and (S∩T, T ) ∈ Ẍ
′. Then, by 〈Ÿ1〉, we have (S, S∪T ) ∈ Ẍ

′.Therefore, by 〈T̈〉, we have (R,S ∪ T ) ∈ Ẍ′,- Suppose (R,S) ∈ Ẍ′ and (R,S ∪ T ) ∈ Ẍ′. Then, by 〈Ü〉, we have (S, S ∪ T )
∈ Ẍ′. Therefore, by 〈Ÿ2〉, we have (S ∩ T, T ) ∈ Ẍ′,- Suppose (R,S ∪ T ) ∈ Ẍ′ and (S ∩ T, T ) ∈ Ẍ′. Then, by 〈Ÿ1〉, (S, S ∪ T ) ∈ Ẍ′.Therefore, by 〈L̈〉, we have (R,S) ∈ Ẍ′.It follows that Ẍ′ satis�es the three properties 〈Ẍ1〉, 〈Ẍ2〉, 〈Ẍ3〉. Thus, sine
C̈ ⊆ Ẍ′, we have Ẍ ⊆ Ẍ′ (see remark 1). �6 Relative dendritesIn this setion, we introdue new axioms for de�ning the notion of a relativedendrite. We will see in the sequel (next setion) that these axioms provideanother way to desribe dyads. We set C̈+ = C̈ ∪ {({∅}, {∅})}.De�nition 3. We de�ne two ompletions on S̈: For any (S, T ), (S′, T ′) ∈ S̈,-> If (S, T ), (S′, T ′), (S ∩ S′, T ∩ T ′) ∈ K̈, then (S ∪ S′, T ∪ T ′) ∈ K̈. 〈Z̈1〉-> If (S, T ), (S′, T ′), (S ∪ S′, T ∪ T ′) ∈ K̈, then (S ∩ S′, T ∩ T ′) ∈ K̈. 〈Z̈2〉Eah element of 〈C̈+; Z̈1, Z̈2〉 is alled a relative dendrite.In Fig. 3, two examples of two ouples (S, T ), (S′, T ′) ∈ S̈ whih satisfy theonditions of 〈Z̈1〉 are given. Thus, in these two examples, (S ∪ S′, T ∪ T ′) is arelative dendrite.
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T’(a) (b)Fig. 3. (a) and (b): Two examples of two ouples (S, T ), (S′, T ′) ∈ S̈ whih satisfy theonditions of 〈Z̈1〉 (we onsider triangulations of these objets). In (a), S and S′ aretwo simple open urves, S ∩S′ is a omplex made of two verties. In (b), S and S′ arealso two simple open urves, but S ∩ S′ is a omplex made of a segment.In Fig. 3 (a), (S ∪S′, T ∪S′) and (T ∪S′, T ∪T ′) are dyads (this fat may beseen using the forthoming Prop. 9). Then, using 〈T̈〉, it is possible to generate
(S ∪ S′, T ∪ T ′) with the axioms of a dyad.Now, we observe that, in Fig. 3 (b), (S ∪ S′, T ∪ S′) is not a dyad (it an beheked that X and Y must have the same Euler harateristi whenever (X,Y )is a dyad). Thus, it is not possible to generate, in a straightforward manner, therelative dendrite (S ∪ S′, T ∪ T ′) with the axioms of a dyad.Remark 2. As a diret onsequene of the de�nitions of 〈Z̈1〉, 〈Z̈2〉, and the oneof a dendrite, we have 〈C̈; Z̈1, Z̈2〉 ⊆ {(X,Y ) ∈ S̈ | X ∈ D, Y ∈ D}. This fatemphasizes the role of ({∅}, {∅}) in 〈C̈+; Z̈1, Z̈2〉.Let (X,Y ) ∈ S̈. If α is a vertex suh that αX ∩ Y = X , we say that αX ∪ Yis a one on (X,Y ), and we write αX ∪̈ Y for αX ∪ Y .Proposition 4. Let Z ∈ S and let α be an arbitrary vertex. There exists aunique ouple (X,Y ) ∈ S̈ suh that Z = αX ∪̈ Y .Thus, by Prop. 4, if Z ∈ S and if α is an arbitrary vertex, the omplexes Xand Y are spei�ed whenever we write Z = αX ∪̈ Y . Note that we may have
α 6� Z, in this ase X = ∅ and Z = Y .Proposition 5. Let Z,Z ′, Z ′′ ∈ S.We set Z = αX ∪̈ Y , Z ′ = αX ′ ∪̈ Y ′, and Z ′′ = αX ′′ ∪̈ Y ′′.1) If Z = Z ′ ∪ Z ′′, then X = X ′ ∪X ′′ and Y = Y ′ ∪ Y ′′;2) If Z = Z ′ ∩ Z ′′, then X = X ′ ∩X ′′ and Y = Y ′ ∩ Y ′′.Proof. The result follows from 1), 2), and Prop. 4.1) If Z = Z ′ ∪ Z ′′, then Z = α(X ′ ∪ X ′′) ∪ (Y ′ ∪ Y ′′). Furthermore, sine
(X ′ ∪ X ′′) ⊆ (Y ′ ∪ Y ′′) and sine α is disjoint from Y ′ ∪ Y ′′, we have α(X ′ ∪
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X ′′) ∩ (Y ′ ∪ Y ′′) = X ′ ∪X ′′.2) Suppose Z = Z ′ ∩ Z ′′. Then Z = (αX ′ ∪ Y ′) ∩ (αX ′′ ∪ Y ′′) = α(X ′ ∩X ′′) ∪
(Y ′∩Y ′′)∪(αX ′∩Y ′′)∪(αX ′′∩Y ′). Sine (αX ′∩Y ′′)∪(αX ′′∩Y ′) ⊆ Y ′∩Y ′′, wehave Z = α(X ′∩X ′′)∪(Y ′∩Y ′′). Furthermore, sine (X ′∩X ′′) ⊆ (Y ′∩Y ′′) andsine α is disjoint from Y ′ ∩ Y ′′, we have α(X ′ ∩X ′′)∩ (Y ′ ∩ Y ′′) = X ′ ∩X ′′. �Theorem 3. Let (X,Y ) ∈ S̈. The ouple (X,Y ) is a relative dendrite if andonly if αX ∪̈ Y is a dendrite.Proof.1) If (X,Y ) ∈ C̈+, we see that αX ∪̈ Y is a rami�ation. Thus, αX ∪̈ Y isa dendrite. Suppose R = αS ∪̈ T and R′ = αS′ ∪̈ T ′ are dendrites. Then, bythe very de�nition of a dendrite, R ∩ R′ is a dendrite if and only if R ∪ R′ is adendrite. Consequently, by Prop. 5, α(S∩S′) ∪̈ (T ∩T ′) is a dendrite if and onlyif α(S ∪ S′) ∪̈ (T ∪ T ′) is a dendrite. By the preeding remarks, we may a�rm,by indution on 〈C̈+; Z̈1, Z̈2〉, that αX ∪̈ Y is a dendrite whenever (X,Y ) is arelative dendrite.2) Suppose Z = αX ∪̈ Y is a dendrite.i) Suppose Z ∈ C. If X = ∅, we have (X,Y ) ∈ C̈. If X = {∅}, we must have
Y = {∅}, otherwise Z would not be onneted, thus (X,Y ) ∈ C̈+. If X 6= ∅ and
X 6= {∅}, it may be seen that we must have X ∈ C and Y = X , thus (X,Y ) ∈ C̈.ii) Suppose we have Z = Z ′∪Z ′′, with Z ′, Z ′′, Z ′∩Z ′′ ∈ D. We set Z ′ = αX ′ ∪̈ Y ′and Z ′′ = αX ′′ ∪̈ Y ′′. If (X ′, Y ′), (X ′′, Y ′′), (X ′ ∩ X ′′, Y ′ ∩ Y ′′) are relativedendrites, then (X ′∪X ′′, Y ′ ∪Y ′′) is a relative dendrite (by 〈Z̈1〉), whih meansthat (X,Y ) is a relative dendrite (Prop. 5 (1)).iii) Suppose we have Z = Z ′∩Z ′′, with Z ′, Z ′′, Z ′∪Z ′′ ∈ D. We set Z ′ = αX ′ ∪̈ Y ′and Z ′′ = αX ′′ ∪̈ Y ′′. If (X ′, Y ′), (X ′′, Y ′′), (X ′ ∪ X ′′, Y ′ ∪ Y ′′) are relativedendrites, then (X ′∩X ′′, Y ′ ∩Y ′′) is a relative dendrite (by 〈Z̈2〉), whih meansthat (X,Y ) is a relative dendrite (Prop. 5 (2)).By i), ii), and iii), we may a�rm, by indution on 〈C;D1,D2〉, that (X,Y ) is arelative dendrite whenever αX ∪̈ Y is a dendrite. �7 Dyads and dendritesThe goal of this setion is to derive a theorem (Th. 4) whih makes lear thelink between dyads and dendrites, this link is formulated with the notion of arelative dendrite. The proof of the theorem is made possible mainly thanks tothe previous Th. 2 and 3 and the following propositions.In the following proposition, and by the onvention introdued in Setion 2,the notation αA impliitly means that α is disjoint from the ell A. Thus, sine
X � Y � A, αX ∪ Y is a one on (X,Y ) and αY ∗

A
∪X∗

A
is a one on (Y ∗

A
, X∗

A
).Proposition 6. If A ∈ C, and X � Y � A, then (αX ∪̈ Y )∗

αA
= αY ∗

A
∪̈ X∗

A
.Proof. We have (αX ∪ Y )∗

αA
= (αX)∗

αA
∩ Y ∗

αA
. But (αX)∗

αA
= αX∗

A
(byCor. 1 of [14℄) and Y ∗

αA
= αY ∗

A
∪ A (by Cor. 2 of [14℄). Thus, (αX ∪ Y )∗

αA
=

αX∗

A
∩ (αY ∗

A
∪A) = αY ∗

A
∪X∗

A
(sine Y ∗

A
� X∗

A
and X∗

A
� A). �



New strutures based on ompletions 9Proposition 7. Let (X,Y ) be a relative dendrite. We have X ∈ D if and onlyif Y ∈ D.Proof. Let (X,Y ) ∈ S̈ suh that αX ∪̈ Y is a dendrite (see Th. 3).i) Suppose Y ∈ D. Sine αX ∈ D (Prop. 6 of [14℄) then, byD2, we have αX∩Y =
X ∈ D.ii) Let A ∈ C suh that Y � A, we suppose that α is disjoint from A. Suppose
X ∈ D. Thus,X∗

A
∈ D and (αX∪Y )∗

αA
∈ D (Prop. 11 of [14℄). But (αX∪Y )∗

αA
=

αY ∗

A
∪X∗

A
(Prop. 6). Sine αY ∗

A
∈ D, by D2, it implies that αY ∗

A
∩X∗

A
= Y ∗

A
∈ D,thus Y ∈ D (Prop. 11 of [14℄). �Lemma 1. The olletion 〈C̈+; Z̈1, Z̈2〉 satis�es 〈Ÿ1〉 and 〈Ÿ2〉.Proof.i) In 〈Z̈1〉, if we replae S by S ∩ T , S′ by S, and T ′ by S, we obtain:-> If (S ∩ T, T ), (S, S), (S ∩ T, S ∩ T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈.ii) In 〈Z̈2〉, if we replae T by S ∪ T , S′ by T , and T ′ by T , we obtain:-> If (S, S ∪ T ), (T, T ), (S ∪ T, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈.iii) If X ∈ S, then αX ∪̈ X = αX is a dendrite. Thus, by Th. 3, (X,X) isa relative dendrite. In onsequene, if K̈ is the olletion made of all relativedendrites, we obtain 〈Ÿ1〉 and 〈Ÿ2〉 from i) and ii), respetively. �The following is easy to hek.Proposition 8. Let X,Y ∈ S.1) If X,Y ∈ D, then X ∩ Y ∈ D if and only if X ∪ Y ∈ D.2) If X,X ∩ Y ∈ D, then Y ∈ D if and only if X ∪ Y ∈ D.3) If X,X ∪ Y ∈ D, then Y ∈ D if and only if X ∩ Y ∈ D.4) If X ∩ Y,X ∪ Y ∈ D, then X ∈ D if and only if Y ∈ D.Lemma 2. The olletion 〈C̈+; Z̈1, Z̈2〉 satis�es 〈T̈〉, 〈Ü〉, and 〈L̈〉.Proof. Let (R,S) ∈ S̈ and (S, T ) ∈ S̈, and let α, β be two distint vertiesdisjoint from T . Note that αR∪S � αR∪T . We set U = β(αR ∪̈ S) ∪̈ (αR ∪̈ T ).i) We observe that U = (αβR) ∪ (βS ∪ T ). We have αβR ∈ D, and (αβR) ∩

(βS ∪T ) = βR ∈ D. Thus, by Prop. 8 (2), U ∈ D if and only if βS ∪T ∈ D, i.e.,if and only if (S, T ) is a relative dendrite (Th. 3).ii) Suppose (S, T ) is a relative dendrite. By i) and Th. 3, (αR ∪̈ S, αR ∪̈ T )is a relative dendrite. By Prop. 7, αR ∪̈ S is a dendrite if and only if αR ∪̈ Tis a dendrite. By Th. 3, it follows that (R,S) is a relative dendrite if and onlyif (R, T ) is a relative dendrite. This fat allows us to a�rm that the olletion
〈C̈+; Z̈1, Z̈2〉 satis�es 〈T̈〉 and 〈L̈〉.iii) Suppose that (R,S) and (R, T ) are relative dendrites, thus αR ∪̈ S and
αR ∪̈ T are dendrites (Th. 3). We have U = β(αR ∪̈ S) ∪̈ (αR ∪̈ T ) and
β(αR ∪̈ S)∩ (αR ∪̈ T ) = αR ∪̈ S. Thus, we see that, by D1, the omplex U is adendrite. By i), it follows that (S, T ) is a relative dendrite. This last fat allowsus to a�rm that the olletion 〈C̈+; Z̈1, Z̈2〉 satis�es 〈Ü〉. �



10 Leture Notes in Computer Siene: DGCI 2013Lemma 3. If X ∈ D, then (∅, X) ∈ Ẍ.Proof.i) If X ∈ C, then (∅, X) ∈ C̈. Thus (∅, X) ∈ Ẍ.ii) Let S, T ∈ D suh that S∩T ∈ D. By 〈D1〉, we have S∪T ∈ D. Suppose (∅, S),
(∅, T ), (∅, S ∩ T ) ∈ Ẍ. We have (S ∩ T, T ) ∈ Ẍ (Prop. 1 and 〈Ü〉). Therefore
(S, S ∪ T ) ∈ Ẍ (Th. 2 and 〈Ÿ1〉). Then (∅, S ∪ T ) ∈ Ẍ (Prop. 1 and 〈T̈〉).iii) Let S, T ∈ D suh that S ∪ T ∈ D. By 〈D2〉, we have S ∩ T ∈ D. Suppose
(∅, S), (∅, T ), (∅, S∪T ) ∈ Ẍ. We have (S, S∪T ) ∈ Ẍ (Prop. 1 and 〈Ü〉). Therefore
(S ∩ T, T ) ∈ Ẍ (Th. 2 and 〈Ÿ2〉). Then (∅, S ∩ T ) ∈ Ẍ (Prop. 1 and 〈L̈〉).By the very de�nition of a dendrite, the result follows by indution. �The following theorem is one of the main results of the paper. Intuitively,it asserts that, if (X,Y ) is a dyad, then we anel out all yles of Y (i.e., weobtain an ayli omplex), whenever we anel out those of X (by the way ofa one, see Th. 3). Furthermore, Th. 4 asserts that, if we are able to anel allyles of Y by suh a way, then (X,Y ) is a dyad.Theorem 4. Let (X,Y ) ∈ S̈. We have (X,Y ) ∈ Ẍ if and only if (X,Y ) is arelative dendrite.Proof.i) Suppose (X,Y ) is a relative dendrite, i.e., (X,Y ) ∈ 〈C̈+; Z̈1, Z̈2〉. By Th.3, we have αX ∪̈ Y ∈ D and, by Lemma 3, (∅, αX ∪̈ Y ) ∈ Ẍ. We also have
(∅, αX) ∈ Ẍ (Prop. 2). It means that (αX,αX ∪̈ Y ) ∈ Ẍ (Prop. 1 and 〈Ü〉). Weobtain (αX ∩ Y, Y ) = (X,Y ) ∈ Ẍ (Th. 2 and 〈Ÿ2〉). Thus, 〈C̈+; Z̈1, Z̈2〉 ⊆ Ẍ.ii) The olletion 〈C̈+; Z̈1, Z̈2〉 ontains C̈ and satis�es 〈Ÿ1〉, 〈Ÿ2〉, 〈T̈〉, 〈Ü〉, and
〈L̈〉 (Lemmas 1 and 2). Thus 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉 ⊆ 〈C̈+; Z̈1, Z̈2〉 (see remark 1).By Th. 2, the result is Ẍ ⊆ 〈C̈+; Z̈1, Z̈2〉. �Trivially, we have X ∈ D if and only if α∅ ∪̈ X ∈ D. Thus, by Th. 3, X ∈ D ifand only if (∅, X) is a relative dendrite. It follows that, as a diret onsequeneof Th. 4, we have the following.Corollary 1. Let X ∈ S. We have X ∈ D if and only if (∅, X) ∈ Ẍ.The following fat will be used for the illustration of the next setion.Proposition 9. Let X,Y, Z ∈ S suh that X � Y � Z.If Y ollapses onto X, then (X,Z) ∈ Ẍ if and only if (Y, Z) ∈ Ẍ.If Z ollapses onto Y , then (X,Y ) ∈ Ẍ if and only if (X,Z) ∈ Ẍ.Proof. If Y ollapses onto X , then it may be seen that U ′ = αY ∪̈ Zollapses onto V ′ = αX ∪̈ Z. Thus, U ′ is simple homotopi to V ′. If Z ollapsesonto Y , then U ′′ = αX ∪̈ Z ollapses onto V ′′ = αX ∪̈ Y . Again, U ′′ is simplehomotopi to V ′′. The result follows from Th. 3, Th. 4, and from Prop. 12 of[14℄. This last proposition ensures that a omplex S is a dendrite whenever it issimple homotopi to a dendrite. �
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(d) (e) (f)Fig. 4. (a): A triangulation D of the dune hat, verties with the same label have to beidenti�ed, (b): The omplex X = D \ {1, 5, 6} and the omplex Y � X (highlighted),(): The omplex Z (highlighted) ollapses onto Y , (d): The omplex Z ollapses onto
T (highlighted), (e) and (f): The �rst steps of a ollapse sequene of X onto T .8 The dune hatWe give, in this setion, an illustration of the previous notions. We onsider theomplex D whih is the triangulation of the dune hat [16℄ depited in Fig. 4 (a).As mentioned before, the dune hat is ontratible but not ollapsible. In fat,it is possible to �nd a ollapsible omplex whih ollapses onto D (e.g., see Th.1of [16℄). This shows that D is a dendrite. In the following, we will see that itis possible to reognize D as a dendrite without onsidering any omplex largerthan D (by using only �internal moves�).We onsider the omplex X = D \ {1, 5, 6}, we denote by C the ell whosefaet is {1, 5, 6}, and by Y the omplex Y = C ∩ X , see Fig. 4 (b). We willsee below that (Y,X) ∈ Ẍ. By 〈Ÿ1〉, this fat implies (C,C ∪ X) ∈ Ẍ, i.e.,
(C,D) ∈ Ẍ. Sine (∅, C) ∈ Ẍ, by 〈T̈〉, this implies (∅, D) ∈ Ẍ. Thus, by Cor. 1of Th. 4, we get D ∈ D. Now, we hek that (Y,X) ∈ Ẍ using Prop. 9:- The omplex Z of Fig. 4 () ollapses onto Y , thus (Y,X) ∈ Ẍ if (Z,X) ∈ Ẍ;- Z ollapses onto the omplex T of Fig. 4 (d), thus (Z,X) ∈ Ẍ if (T,X) ∈ Ẍ;- It ould be heked thatX ollapses onto T , the �rst steps of a ollapse sequeneare given 4 (e) and (f). Thus, sine (T, T ) ∈ Ẍ, we have (T,X) ∈ Ẍ.
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