
HAL Id: hal-00835540
https://hal.science/hal-00835540v1

Submitted on 21 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Bar Recursion and Choice in a Classical Setting
Valentin Blot, Colin Riba

To cite this version:
Valentin Blot, Colin Riba. On Bar Recursion and Choice in a Classical Setting. Programming
Languages and Systems - 11th Asian Symposium, APLAS 2013, Dec 2013, Melbourne, Australia.
pp.349-364, �10.1007/978-3-319-03542-0_25�. �hal-00835540�

https://hal.science/hal-00835540v1
https://hal.archives-ouvertes.fr

On Bar Recursion and Choice in a Classical

Setting

Valentin Blot and Colin Riba

ENS de Lyon, Université de Lyon, LIP ⋆

valentin.blot@ens-lyon.fr http://perso.ens-lyon.fr/valentin.blot/

colin.riba@ens-lyon.fr http://perso.ens-lyon.fr/colin.riba/

Abstract. We show how Modified Bar-Recursion, a variant of Spector’s
Bar-Recursion due to Berger and Oliva can be used to realize the Axiom
of Choice in Parigot’s Lambda-Mu-calculus, a direct-style language for
the representation and evaluation of classical proofs.
We rely on Hyland-Ong innocent games. They provide a model to per-
form the usual infinitary reasoning on Bar-Recursion needed for the re-
alization of classical choice, and where, moreover, the standard datatype
of natural numbers is in the image of a CPS-translation.

1 Introduction

Peano’s Arithmetic in all finite types (PAω) is a multisorted version of first-
order Peano’s Arithmetic, with one sort for each simple type, together with the
constants of Gödel’s System T and their defining equations. When augmenting
PAω with the Axiom of Choice (CAC), we obtain a system known to contain large
parts of classical analysis (see e.g. [9, 16]). A similar system can be obtained by
extending Peano’s Arithmetic to Second-Order Logic (see e.g. [16]).

We are interested here in the realizability interpretation of PAω+CAC. Real-
izability is a mathematical tool, part of the Curry-Howard correspondence, used
to extract computational content from formal proofs.

The usual route to get a computational interpretation of (some extension of)
PAω is to apply a negative translation, yielding proofs in (some extension of)
Heyting’s Arithmetic in all finite types (HAω, the intuitionist variant of PAω, see
e.g. [19]), followed by a computational interpretation of the translated proofs.
Realizability for HAω can be obtained in simply-typed settings, typically using
Gödel’s System T. In this way, CAC is translated to a formula which can be
realized by combining a realizer of the Intuitionistic Axiom of Choice (IAC) with
a realizer of the Double Negation Shift (DNS, see Sect. 3). Intuitionistic choice
is easily realizable, and realizers of DNS can be obtained by adapting Spector’s
Bar-Recursion to realizability [3, 4].

We are interested here in a computational interpretation of PAω+CAC based
on a realizability interpretation directly for classical proofs. It has been noted by
Griffin [6] that the control operator call/cc of the functional language Scheme

⋆ UMR 5668 CNRS ENS Lyon UCBL INRIA

http://perso.ens-lyon.fr/valentin.blot/
http://perso.ens-lyon.fr/colin.riba/

2

can be typed using Peirce’s Law, which gives full Classical Logic when added
to Intuitionistic Logic. Since then, there have been much work on calculi for
Classical Logic, starting from Parigot’s λµ-calculus [14]. Moreover, Krivine has
developed a notion of Classical Realizability for Second-Order Peano’s Arith-
metic which relies on Girard’s System F [10] (see also [13, 12]).

In this paper, we investigate a version of Spector’s Bar-Recursion in a clas-
sical realizability setting for PAω, obtained by adapting Krivine’s Realizability
to a simply-typed extension of Parigot’s λµ-calculus. Our main point concerns
Bar-Recursion. Handling Bar-Recursion in realizability (typically to show that
it realizes DNS) involves some reasoning on infinite non-constructive objects.
This infinitary reasoning can be made directly at the level of a programming
language extended with infinite terms, as in [3]. Another possibility, as done
in [4], is to internalize realizability in the logic, and reason within the logic on
finite terms under some axioms (typically bar-induction) which can only be val-
idated in an infinitary model (typically a model of PCF). Similarly to [3] and
contrary to [4], our notion of realizability is not internalized in the logic. For
extraction of programs from proofs, our approach is similar to [4]: we separate
the programming language, which is kept finitary, from the infinitary model in
which the realizability argument is made.

It is well-known that most non-degenerate models and operational semantics
for the λµ-calculus rely on CPS translations. We work here with the call-by-name
translation of Lafont-Reus-Streicher (see e.g. [18, 15]). However, a difficulty arises
with Bar-Recursion: the CPS translation makes its types seemingly too high to
conclude with the usual argument [4, 3]. A solution is given by the innocent
unbracketed Hyland-Ong game model of PCF [8, 11]: the usual flat game arena
of natural numbers can be built as a CPS translation in the coproduct completion
of the model (this was observed, but not exploited, in [11]).

We define a notion of classical realizability in this game model. Our main
result is that the usual realizer of classical choice obtained by combining a realizer
of IAC with Berger-Oliva’s variant of Bar-Recursion [4], is indeed a realizer of
classical choice in our framework. We then obtain an extraction result for the
λµ-terms by a logical relation argument (see e.g. [2]), relating the operational
semantics and the model.

The paper is organized as follows: We begin by presenting PAω in Sect. 2. We
then briefly discuss the usual computational interpretation of CAC by negative
translation in Sect. 3. In Sect. 4, we present the bare minimum we need on
Hyland-Ong games. Parigot’s λµ-calculus, as well as its game interpretation and
its operational semantics are discussed in Sect. 5. We then devise our notion of
realizability in Sect. 6 and discuss the realization of CAC in Sect. 7. Detailed
proofs are given in Appendices.

2 Peano’s Arithmetic in All Finite Types

In this section, we briefly discuss the logical system on which we work in this pa-
per, namely PAω (Peano’s Arithmetic in all finite types), as well as its extension

3

with the axiom of choice. We build on usual versions of HAω (see e.g. [19, 9]),
with ideas of [14, 10] for classical logic.

Language. The language of PAω is multisorted, with one sort for each simple
type. We use the following syntax of simple types, where ι is intended to be the
base type of natural numbers:

σ, τ ∈ T ::= ι | σ → τ | σ × τ

We assume given, for each simple type τ , a countable set Vτ = {xτ , yτ , . . . } of
individual variables of type τ . Individuals are simply-typed terms

a, b ∈ I ::= xτ | ab | c

where (ab)τ provided aσ→τ , bσ for some σ, and c ranges over the constants

0ι, Sι→ι, Recτ→(ι→τ→τ)→ι→τ , Pairσ→τ→σ×τ , Pτ1×τ2→τi
i (i = 1, 2), kσ→τ→σ and

s(ρ→σ→τ)→(ρ→σ)→ρ→τ . Let I0 be the set of closed individuals and Iτ0 be the set
of closed individuals of type τ .

Formulas are defined as follows:

A,B ∈ F ::= (aτ 6=τ bτ) | ⊥ | A⇒ B | A ∧B | ∀xτA

Note the atomic inequality (6=τ). It is inspired from Krivine’s work [10] and
will greatly eases our realizability interpretation (see Sect. 6).

We use the following abbreviations:

¬A := A⇒ ⊥ ∃xτA := ¬∀xτ¬A
(a =τ b) := ¬(a 6=τ b) A ∨B := ¬(¬A ∧ ¬B)

Deduction. We consider the following deduction system, parametrized by a set
Ax of axioms (containing only closed formulas).

Γ,A ⊢ A |∆ Γ ⊢ A |∆
(A ∈ Ax)

Γ ⊢ ⊥ |∆

Γ ⊢ aτ 6=τ bτ |∆

Γ,A ⊢ B |∆

Γ ⊢ A⇒ B |∆

Γ ⊢ A⇒ B |∆ Γ ⊢ A |∆

Γ ⊢ B |∆

Γ ⊢ A |∆ Γ ⊢ B |∆

Γ ⊢ A ∧B |∆

Γ ⊢ A1 ∧A2 |∆

Γ ⊢ Ai |∆
(i = 1, 2)

Γ ⊢ A |∆

Γ ⊢ ∀xτA |∆
(x /∈ FV(Γ,∆))

Γ ⊢ ∀xτA |∆

Γ ⊢ A[aτ/x] |∆

Γ ⊢ A |∆,A

(Γ ⊢ ∆,A)

(Γ ⊢ ∆,A)

Γ ⊢ A |∆

4

This system is chosen so as to have a direct extraction of realizers in Parigot’s
λµ-calculus (see Sect. 5 and 6).

Note that the Ex Falso rule is restricted to atomic formulas. For each formula
A one can easily derive Γ ⊢ A | ∆ from Γ ⊢ ⊥ | ∆. The introduction rules for
existential quantification and disjunction are easy to derive:

Γ ⊢ A |∆

Γ ⊢ A ∨B |∆

Γ ⊢ A[aτ/x] |∆

Γ ⊢ ∃xτA |∆

Moreover, one can derive Peirce’s Law and Double Negation Elimination:

Γ ⊢ ((A⇒ B)⇒ A)⇒ A |∆ Γ ⊢ ((A⇒ ⊥)⇒ ⊥)⇒ A |∆

as well as the elimination rules of disjunction and existential quantification:
Γ ⊢ C |∆ provided Γ ⊢ A∨B |∆, Γ,A ⊢ C |∆ and Γ,B ⊢ C |∆; and Γ ⊢ C |∆
provided Γ ⊢ ∃xτA |∆ and Γ,A ⊢ C |∆ with x not free in Γ,C,∆.

Axioms for Equality and Arithmetic. The axioms of PAω are the universal
closures of the following formulas:

– Equality axioms are reflexivity ∀xτ (x =τ x) and Leibniz’s scheme:

for all formula A, ∀xτyτ (A[x/z] ⇒ ¬A[y/z] ⇒ x 6=τ y)

Note that the usual version of Leibniz’s scheme is derivable:

∀xτyτ (x =τ y ⇒ A[x/z] ⇒ A[y/z])

– Equational axioms (with variables of the appropriate types):

kx y =τ x sx y z =τ x z (y z) Pi (Pair x1 x2) =τi xi (i = 1, 2)

Recx y 0 =τ x Recx y (S z) =τ y z (Recx y z)

– Arithmetic axioms are ∀xι(Sx 6=ι 0) and the Induction scheme:

for all formula A, A[0/x] ⇒ ∀xι(A ⇒ A[Sx/x]) ⇒ ∀xιA

We write PAω ⊢ A if ⊢ A| is derivable using the axioms of PAω.

Axiom of Choice. Given τ ∈ T , we write CACι,τ for the following version of
the axiom (scheme) of choice:

for all formula A, (∀xι∃yτA) ⇒ ∃f ι→τ∀xιA[fx/y]

Note that this unfolds to

∀xι(∀yτ (A⇒ ⊥)⇒ ⊥) ⇒ ∀f ι→τ (∀xιA[fx/y]⇒ ⊥) ⇒ ⊥

We write PAω + CACι, for provability in PAω using any CACι,τ for τ ∈ T .

5

3 Intuitionistic Modified Realizability and Bar-Recursion

In this section, we briefly and informally recall the realization of CAC via negative
translation to HAω + DNS, and discuss some aspects of our realization of CAC.

HAω can be obtained from our presentation of PAω by restricting deduction
to intuitionistic sequents, i.e. sequents of the form Γ ⊢ A|. One also has to take
a primitive notion of equality (instead of our primitive (6=τ)), and primitive
existential quantification (disjunction can be coded). Gödel’s negative transla-
tion can be adapted from PAω to HAω: let ()¬ commute over the connectives
of PAω (remember that there is no ∨, ∃ in F), and put ¬¬ in front of atomic
formulas, after having replaced (a 6=τ b) by ¬(a =τ b). It is equivalent to leave
⊥ unchanged and map (a 6=τ b) to ¬(a =τ b).

Let us briefly discuss Modified Realizability. To each closed formula A is
associated a simple type A∗ of potential realizers of A. Actual realizers of A are
closed terms of type A∗ satisfying a property, usually written t A, defined by
induction on A. Typical clauses are:

tι ⊥ := ⊥ tι (a =τ b) := (a =τ b)
t (A⇒ B) := ∀u(u A ⇒ tu B) t ∀xτA := ∀xτ (tx A)
t (A ∧B) := (P1t A ∧ P2t B) t ∃xτA := (P2t A[P1t/x])

Note that this provides a realizer, written tIAC, of intuitionistic choice (IAC
σ,τ)1:

λz.Pair (λx.P1(zx)) (λx.P2(zx)) (∀xσ∃yτA) ⇒ ∃fσ→τ∀xσA[fx/y]

A proof in PAω of a formula A can be mapped to a realizer of the negative
translation A¬ of A2. For CACι,τ , this leads (modulo the intuitionistic equiva-
lence ¬∀¬ ←→ ¬¬∃) to find a realizer of

∀xι¬¬∃yτA¬ ⇒ ¬¬∃f ι→τ∀xιA¬[fx/y]

It is well-known (see e.g. [3, 4, 9]) that such a realizer can be obtained by
combining a realizer of IACι,τ with a realizer of the Double Negation Shift

(∀xι¬¬B) ⇒ ¬¬∀xιB (DNS)

for the instance B := ∃yτA. Assuming Ψ realizes this instance of DNS, we get

λz.λk.Ψz(λa.k(tIACa)) ∀xι¬¬∃yτA¬ ⇒ ¬¬∃f ι→τ∀xιA¬[fx/y]

The reader can check that we obtain the following realizer of CAC:

tCAC := λz.λc.Ψ(t¬¬∃z)(λa.c(λx.P1(ax))(λx.P2(ax))

∀xι(∀yτ (A⇒ ⊥)⇒ ⊥) ⇒ ∀f ι→τ (∀xιA[fx/y]⇒ ⊥) ⇒ ⊥

1 We use the λ-notation for individual terms in I.
2 To get extraction for Π0

2 -formulas, one can adapt Friedman’s trick by defining (tι
⊥) as ⊥⊥(t), where ⊥⊥ is a given predicate, see e.g. [4] and also Sect. 6.

6

with t¬¬∃ := λa.λx.λk.ax(λy.λz.k(Pair y z)) ∀xι¬∀yτ¬A ⇒ ∀xι¬¬∃yτA

Realizers Ψ of DNS can be obtained by adapting Spector’s Bar-Recursion to
realizability [3, 4].

In this paper, we show that (the interpretation in a suitable model of) tCAC
realizes CACι,τ , for a notion of realizability defined for (the interpretation in
a suitable model of) an extension of Parigot’s λµ-calculus [14]. We actually
show that Berger and Oliva’s version of Bar-Recursion [4] realizes a version of
CAC with partially relativized quantifiers (see Sect. 6 and 7). For PAω, the
realizers we obtain seem to translate to the same realizers as obtained by a
negative translation from PAω to HAω followed by Friedman’s translation and a
realizability interpretation, as devised at the beginning of this section. However, a
difficulty arises with Bar-Recursion: if we directly CPS-translate Bar-Recursion,
we obtain a term of type

(ι¬ → (τ → ι¬)→ ι¬)→ ((ι¬ → τ)→ ι¬)→ ι¬

where ι¬ := (ι → ι) → ι. But the types seem too high to conclude using the
usual argument [4, 3].

A solution is to perform a CPS translation such that ι¬ is not too different
from a type of natural numbers in a model of PCF. A natural candidate would
be something like

ι¬ := (ι→ R)→ R

Obvious choices for R (e.g. a one-point object) tend to give degenerated results:
typically, in domains (and even predomains [18]), taking R = {⊥} (R = ∅) gives
a unique inhabitant in ι¬.

We show that this can be solved by using the coproduct completion (given by
the Fam construction, see e.g. [1]) of Hyland-Ong innocent unbracketed games
for PCF. We rely on the fact (observed, but not exploited, in [11]) that in the
coproduct completion of these games, the basic type of natural numbers is of
the form (JNK → R) → R, for the one-move game R and the countable family of
empty games JNK (see Sect. 4).

4 The Model of Hyland-Ong Games

In this section, we present the bare minimum we need on Hyland-Ong games.
We use innocent unbracketed games, combined with the coproduct completion
provided by the Fam construction. Details can be found in e.g. [8, 7, 11, 1].

4.1 Arenas and Strategies

Definition 4.1 (Arena). An arena is a countable forest of moves. Each move
is given a polarity O (for Opponent) or P (for Player or Proponent):

– A root is of polarity O.
– A move which is not a root has the inverse polarity of that of his parent.

7

A root of an arena is also called an initial move. We will often identify an arena
with its set of moves.

Definition 4.2 (Justified sequence). Given an arena A, we define a justified
sequence on A to be a finite word s on A together with a partial justifying
function f : |s|⇀ |s| such that:

– If f(i) is undefined, then si is an initial move.
– If f(i) is defined, then f(i) < i and si is a child of sf(i).

We denote the empty justified sequence by ǫ. Remark here that by definition of
the polarity, if f(i) is undefined (si is initial), then si is of polarity O, and if
f(i) is defined, then si and sf(i) are of opposite polarities. Also, f(0) is never
defined, and so s0 is always an initial O-move. A justified sequence is represented
for example as:

a b c d e f g h i j

If A is an arena, X is a subset of A and s is a justified sequence on A, then s|X
is the subsequence of s consisting of the moves of s which are in X.

Definition 4.3 (Play). A play s on A is an even and alternating justified
sequence of A, i.e., for any i, s2i is a O-move and s2i+1 is a P -move. We
denote the set of plays of A by PA.

A play on an arena is the trace of an interaction between a program and a
context, each one performing an action alternatively.

Definition 4.4 (Strategy). A strategy σ on A is a non-empty even-prefix-
closed set of finite plays on A such that:

– σ is deterministic
– σ is innocent

The definitions of determinism and innocence are standard and can be found for
example in [7, 8].

Cartesian Closed Structure. The constructions we use will sometimes con-
tain multiple copies of the same arena (for example A → A), so we distinguish
the instances with superscripts (for example A(1) → A(2)).

Let U be the empty arena and V be the arena with only one (opponent)
move. If A and B are arenas consisting of the trees A1 . . .Ap and B1 . . .Bq, then
the arenas A → B and A× B can be represented as follows:

A → B : A× B :

B1

A
(1)
1
· · · A

(1)
p

· · · Bq

A
(q)
1
· · · A

(q)
p

A1 · · · Ap B1 · · · Bq

The constructions described here define a cartesian closed category whose objects
are arenas and morphisms are innocent strategies. Details of the construction
can be found in [7, 8]. In the following this category will be denoted as G.

8

4.2 The Fam Construction

Our model is built as a continuation category [18]. In order to make explicit the
double negation translation of the base types, we base the model on the category
of continuations RFam(G), where Fam(G) is a variant of the coproduct completion
described in [1] applied to the category G defined in Sect. 4.1.

Definition 4.5 (Fam(G)). The objects of Fam(G) are families of objects of G
indexed by at most countable sets, and a morphism from {Ai | i ∈ I} to {Bj | j ∈
J} is a function f : I → J together with a family of morphisms of G from Ai to
Bf(i), for i ∈ I.

See [5] for details on the differences with [1]. Note that Fam(G) is a distributive
category with finite products and coproducts, and has exponentials of all sin-
gleton families. The empty product and terminal object is the singleton family
{U}, the empty sum and initial object is the empty family {}, and:

{Ai | i ∈ I} × {Bj | j ∈ J} := {Ai ×Bj | (i, j) ∈ I × J}

{Ai | i ∈ I}+ {Bj | j ∈ J} := {Ck | k ∈ I ⊎ J} where Ck :=

{
Ak if k ∈ I
Bk if k ∈ J

{B0}
{Ai | i∈I} := {Πi∈IB

Ai

0 }

We fix once and for all:
R := {V}

which is an object of Fam(G) as a singleton family. R has all exponentials as

stated above. Note that the canonical morphism δA : A→ R(R
A) is a mono.

The category of continuations RFam(G) is the full subcategory of Fam(G) con-
sisting of the objects of the form RA. The objects of RFam(G) are singleton families,
and RFam(G) is isomorphic to G. We will consider that objects and morphisms of
RFam(G) are arenas and strategies and we will use the vocabulary defined at the
end of Sect. 4.1 on RFam(G) also.

4.3 The Type Structure

We use the lambda notation in RFam(G), i.e. we build simply-typed λ-terms with
constants in RFam(G). We write them using bold symbols (such as λ, 〈 , 〉 etc) in
order make no confusion with the syntactic λµ-terms of Section 5.

Interpretation of Simple Types. Let JNK be the object {Un | n ∈ N} of
Fam(G). We use the interpretation of simple types proposed in [18] (see also [15]).
Given a simple type τ ∈ T , we associate two objects of RFam(G): the object [τ] of
programs of type τ , and the object JτK of continuations of type τ . We let

JιK := R
JNK Jσ → τK := R

JσK×JτK Jσ×τK := JσK+JτK [τ] := R
JτK

Note that Jσ → τK = [σ]× JτK, and moreover

[σ → τ] = R
[σ]×JτK ≃ R

JτKR
JσK

and [σ × τ] ≃ R
JσK × R

JτK

9

Representation of Arithmetic Constants. In Fam(G) a morphism from the
terminal object {U} to JNK = {Un | n ∈ N} is given by a function from the
singleton set to N together with a strategy from U to U . Since there is only one
such strategy, such a morphism is given by a natural number. We will call this
morphism ñ. Similarly a morphism from JNK to JNK is given by a function from
N to N. This leads to a morphism s̃ucc : JNK → JNK for the successor function
on JNK.

Moreover, given a : [τ] (officially, a : {U} → [τ] in Fam(G)), and b : JNK →
[τ]→ [τ], we can define by induction on n ∈ N a morphism r̃a,b : JNK→ [τ] such

that r̃a,b0̃ = a and r̃a,b(ñ+ 1) = bñ(r̃a,b(ñ)). This leads to r̃ec := λa.λb.r̃a,b in
[τ]→ (JNK→ [τ]→ [τ])→ JNK→ [τ].

We now discuss the object of RFam(G) associated to the base type ι. We have:

[ι] := R
R

JNK

= R
R
{Un | n∈N}

≃ R
Πn∈NR ≃ {VΠn∈NV}

Note that this is the usual flat arena of natural numbers:

q
mmmmm

QQQQQ

ZZZZZZZZZZZZZZZ

0 · · · n · · ·

It is easy to see that λk.kñ corresponds to the strategy answering n to the initial
opponent question q. Moreover, the only inhabitants of [ι] are the empty strategy
⊥[ι] and the strategies λk.kñ for n ∈ N.

The arithmetical constants of System T will be interpreted in RFam(G) using
succ : [ι] → [ι] defined as succ := λn.λk.n(λx.k(s̃uccx)) and rec : [τ] → [ι →
τ → τ] → [ι] → [τ] with rec := λu.λv.λn.λk.n(λx.r̃ecu(λy.v•(λk.ky))xk),
where v• := λx.λy.λz.v〈x, y, z〉 (see [5] for details).

It is convenient to use the notations ()
•
and ()

◦
for resp. curryfication and

uncurryfication. Note that as with v• above, the amount to which an expression
is curryfied/uncurryfied depends on the context, and moreover that in G, ()•

and ()
◦
are the identity.

5 Lambda-Mu-Calculus

We present here an extension of Parigot’s λµ-calculus [14] that we will use as
a programming language for our realizers. We begin by a basic language, which
essentially adds pairs and products to the original calculus. We then present
an extension with the arithmetic constants of Gödel’s System T, which will be
used for the realization of PAω. Finally, we discuss the interpretation, along the
lines of [15], of the calculus in the model RFam(G), and present an operational
semantics using an abstract machine adapted from [18].

Syntax and Typing. We assume given two countable sets Var = {x, y, z, . . . }
and CVar = {α, β, γ, . . . } of respectively term and continuation variables. The
λµ-terms are defined as follows:

t, u ∈ Λ ::= x | λx.t | tu | µα.v | 〈t, u〉 | p1(t) | p2(t)
where v is a named term: v ::= [α]t

10

They are typed by extending Parigot’s system [14] with rules for product types:

Γ, x : τ ⊢ x : τ |∆

Γ ⊢ t : τ |∆,α : τ

[α]t : (Γ ⊢ ∆,α : τ)

v : (Γ ⊢ ∆,α : τ)

Γ ⊢ µα.v : τ |∆

Γ, x : τ ⊢ t : σ |∆

Γ ⊢ λx.t : τ → σ |∆

Γ ⊢ t : σ → τ |∆ Γ ⊢ u : σ |∆

Γ ⊢ tu : τ |∆

Γ ⊢ t : τ |∆ Γ ⊢ u : σ |∆

Γ ⊢ 〈t, u〉 : τ × σ |∆

Γ ⊢ t : τ1 × τ2 |∆

Γ ⊢ pi(t) : τi |∆
(i = 1, 2)

Extension with Arithmetic Constants. We write ΛT for the set of λµ-terms
obtained by extending the grammar of Λ with the following productions:

t, u ::= . . . | n | succ | rec(t, u)

where n ∈ N. We extend the typing rules of Λ with the following ones:

Γ ⊢ n : ι |∆ Γ ⊢ succ : ι→ ι |∆

Γ ⊢ t : τ |∆ Γ ⊢ u : ι→ τ → τ |∆

Γ ⊢ rec(t, u) : ι→ τ |∆

Interpretation in RFam(G). The interpretation of ΛT in RFam(G) follows the
lines of [15]. A term ⊢ t : τ | is interpreted by [t] ∈ [τ]. To make the presentation
simpler, we use λ-expressions in RFam(G) build from the variables of ΛT with the
following convention: a term variable x of type τ (resp. a continuation variable
α of type σ) in ΛT becomes a variable x of type [τ] (resp. a variable α of type
JσK) in the λ-calculus of RFam(G):

[x] := x [n] := λk.kñ [µα.[β]t] := λα.[t]β
[λx.t] := λ〈x, k〉.[t]k
[tu] := λk.[t]〈[u], k〉

[succ] := λ〈n, k〉. succ nk

[〈t, u〉] := λk.case k{[t], [u]}
[pi(t)] := λk.[t](inik)

[rec(t, u)] := λ〈n, k〉.rec [t][u]nk

Operational Semantics. We now present an operational semantics for ΛT

using an abstract machine. The machine is derived from the interpretation of ΛT

in RFam(G), following the method of [18]. Our machine is actually an adaptation
of the machine of [18] to a typed language with arithmetic constants.

The machine evaluates triples of the form (t, e, π), where t is a λµ-term, e is an
environment and π is a stack. Environments map term variables to closures and
continuation variables to stacks. Stacks, closures and environments are defined
by mutual induction as usual:

Env. e ∈ E ::= ε | (x, c) :: e | (α, π) :: e
Closures c ∈ C ::= (t, e)
Stacks π ∈ Π ::= ⋆ | 〈c, π〉 | kpi(π) | ksucc(π) | krec(t, u, c, π)

11

We let e(x) := c if (x, c) is the first occurrence of the form (x, c′) in e, and define
e(α) similarly. Let dom(e) be the domain of the partial map e().

The evaluation rules are the following:

(x, e, π) ≻ (t, e′, π) if e(x) = (t, e′)

(tu, e, π) ≻ (t, e, 〈(u, e), π〉)
(λx.t, e, 〈c, π〉) ≻ (t, (x, c) :: e, π)

(µα.[β]t, e, π) ≻ (t, (α, π) :: e, π′) if ((α, π) :: e)(β) = π′

(pi(t), e, π) ≻ (t, e, kpi(π)) i = 1, 2
(〈t1, t2〉, e, kpi(π)) ≻ (ti, e, π) i = 1, 2

(succ, e, 〈(t, e′), π〉) ≻ (t, e′, ksucc(π))
(n, e, ksucc(π)) ≻ (n+ 1, e, π)

(rec(t, u), e, 〈(v, e′), π〉) ≻ (v, e′, krec(t, u, e, π))
(0, e, krec(t, u, e′, π)) ≻ (t, e′, π)

(n+ 1, e, krec(t, u, e′, π)) ≻ (u, e′, 〈(n, e), 〈(rec(t, u)n, e′), π〉〉)

The correctness of the machine (i.e. reduction preserves semantics) can be
proved as usual3 (see e.g. [18]). For extraction, we actually only need the property
stated in Prop. 7.3, to be discussed in presence of Bar-Recursion.

6 Classical Realizability

In this section, we present our notion of realizability. It is highly inspired from
Krivine’s Realizability [10], but adapted to the simply-typed model RFam(G).

The main idea, adapting Krivine’s ideas to the typed continuation category
RFam(G), would be to fix a Pole ⊥⊥ ⊆ {[n] | n ∈ N}, and then associate to each
formula A a type A∗ and a set A ⊆ JA∗K defined by induction on A. Realizers
would then be terms in A⊥⊥ ⊆ [A∗], the Orthogonal of A.

We choose to have ⊥⊥ ⊆ [ι] to get extraction (see Prop. 7.4). This causes
difficulties since [ι] = RJιK is not a base type in RFam(G). Roughly speaking, our
choice for ⊥⊥ leads to ⊥∗ := ι, but there are not enough contexts in JιK = {⊥JιK},
since applying ⊥JιK to a numeral [n] gives the empty strategy on R. A solution
is to add some space in the interpretations, and have A ⊆ JιK → JA∗K and
A⊥⊥ ⊆ JιK → [A∗] for a formula A. For instance, we can then have λk.k as a
basic context “at type” JιK (actually JιK→ JιK).

The definition of realizability involves two additional translations, that we
present now. First, to each formula A, we associate the simple type A∗:

(aτ 6=τ bτ)
∗

:= ι ⊥∗ := ι (∀xτA)
∗

:= τ → A∗

(A⇒ B)
∗

:= A∗ → B∗ (A ∧B)
∗

:= A∗ ×B∗

3 Since the model RFam(G) is typed, this would involve typing rules for environments
and stacks.

12

Moreover, we map each individual term a ∈ I to a λµ-term a† ∈ ΛT :

xτ † := x (ab)
†

:= a†b† s† := λxyz.xz(yz)

k† := λxy.x 0† := 0 S† := succ

Rec† := λxy.rec(x, y) Pair† := λxy.〈x, y〉 Pi
† := λx.pi(x)

The Realizability Construction. To a formula A, we will associate two sets
||A|| ⊆ JιK → JA∗K and |A| ⊆ JιK → [A∗]. These sets will only be defined for
closed formulas. It is convenient (and necessary to deal with CAC in Sect. 7) to
allow parameters in RFam(G). In order to realize the induction axiom, we must
restrict to the total elements of RFam(G). For a simple type τ , the set τ t ⊆ [τ] of
its total elements is defined by induction on τ . Let ιt := {[n] | n ∈ N}, and
using curryfied notation:

(σ → τ)
t

:= {a | ∀b ∈ σt, ab ∈ τ t}
(σ × τ)

t
:= {a | p1(a) ∈ σt & p2(a) ∈ τ t}

Lemma 6.1. For all a ∈ Iτ0 , [a
†] ∈ τ t.

We now only consider closed formulas with parameters of the appropriate
type in τ t (τ ∈ T). Let ⊥⊥ ⊆ ιt.

First, given A ⊆ JιK→ JA∗K, we define A⊥⊥ ⊆ JιK→ [A∗] as

A⊥⊥ := {a ∈ JιK→ [A∗] | ∀b ∈ A, λk.ak(bk) ∈ ⊥⊥}

If moreover B ⊆ JιK→ JB∗K, we let

A⊥⊥ · B := {λk.〈ak, bk〉 ∈ JιK→ [A∗]× JB∗K | a ∈ A⊥⊥ & b ∈ B}

We now define the sets |A| ⊆ JιK→ [A∗] and ||A|| ⊆ JιK→ JA∗K for a formula A.

We let |A| ⊆ JιK → [A∗] be ||A||⊥⊥, and define ||A|| ⊆ JιK → JA∗K by induction
on A as follows:

||⊥|| := {λk.k} ||A⇒ B|| := |A| · ||B||

||a 6=τ b|| :=

{
∅ if [a†] 6= [b†]
{λk.k} otherwise

||A ∧B|| := {λk.in1(ak) | a ∈ ||A||} ∪ {λk.in2(bk) | b ∈ ||B||}
||∀xτA|| :=

⋃
a∈τ t{λk.〈a, bk〉 | b ∈ ||A[a/x]||}

Realization of Equality and Arithmetic Axioms. We now discuss the
realization of the axioms of PAω.

First, it is easy to see that all equational axioms (including reflexivity) are
realized by the identity:

Lemma 6.2. We have λk.[λx.x] ∈ |a =τ a|. Moreover,

λk.[λx.x] ∈ |k a b =τ a| λk.[λx.x] ∈ |s a b c =τ ac(bc)|

λk.[λx.x] ∈ |Rec a b 0 =τ a| λk.[λx.x] ∈ |Rec a b (S c) =τ bc(Rec a b c)|

where in each case, individuals a, b, c are in the appropriate τ t, σt, ρt.

13

The realization of our version of Leibniz’s scheme is obtained by applying
realizers of the first premise to realizers of the second premise.

Lemma 6.3. λk.[λx.λy.yx] ∈ |A[aτ/zτ] ⇒ ¬A[bτ/zτ] ⇒ aτ 6=τ bτ |.

For the Arithmetic axioms, it is easy to see that (Sa 6=ι 0) is realized by any
natural number. As expected, the recursor rec(,) realizes induction.

Lemma 6.4. (i) For all n ∈ N and all a ∈ ιt, we have λk.[n] ∈ |Sa 6=ι 0|.
(ii) λk.[λx.λy.rec(x, y)] ∈ |A[0/x] ⇒ ∀xι(A ⇒ A[Sx/x]) ⇒ ∀xιA|.

Adequacy for Classical Proofs. Adequacy of the realizability interpretation
is proved as usual (see App. A).

Theorem 6.5. Let Γ,A,∆ with Γ = A1, . . . , An, ∆ = B1, . . . , Bm, and such
that FV(Γ,A,∆) ⊆ {xτ1

1 , . . . , xτk
k }.

From a proof of Γ ⊢ A |∆ in PAω one can build a term

x1 : τ1, . . . , xk : τk, y1 : A1
∗, . . . , yn : An

∗ ⊢ t : A∗ | α1 : B1
∗, . . . , αm : Bm

∗

such that for all c1 ∈ τ1
t, . . . , ck ∈ τk

t, all a1 ∈ |A1[c/x]|, . . . , an ∈ |An[c/x]|,
and all b1 ∈ ||B1[c/x]||, . . . , bm ∈ ||Bm[c/x]||, we have

λk.[t][c/x][a1k/y1, . . . , ank/yn, b1k/α1, . . . , bmk/αm] ∈ |A[c/x]|

In particular, from a proof of ⊢ A| in PAω with A closed, one can build a term
⊢ t : A∗| such that λk.[t] ∈ |A|.

Extraction. Extraction of witnessing programs from realizable (and hence from
provable) Π0

2 statements is performed as usual. We come back on this point in
Sect. 7 (Prop. 7.4) in presence of CAC and Bar-Recursion.

7 Realization of Classical Choice

In this section we discuss the realization of the classical axiom of choice CACι, .
Our realizer is based on Berger & Oliva’s variant of Spector’s Bar-Recursion [4].

Extension of the λµ-Calculus with Bar-Recursion. We extend the set
ΛT with constants for bar-recursion: t, u ∈ ΛΨ ::= . . . | Ψτ (t, u)〈s0, . . . , sn〉,
where n ∈ N and τ ∈ T .

These constants are typed as follows: Γ ⊢ Ψτ (t, u)〈s0, . . . , sn〉 : ι |∆ whenever
Γ ⊢ t : ι → (τ → ι) → ι |∆, Γ ⊢ u : (ι → τ) → ι |∆ and Γ ⊢ si : τ |∆ for all
0 ≤ i ≤ n.

The operational semantics uses some auxiliary terms. We define by induction
on τ the terms ⊢ exτ : ι → τ |. Let exι := λx.x, exτ→σ := λx.λ .exσx and
exτ×σ := λx.〈exτx, exσx〉.

14

Moreover, given n ∈ N, s0, . . . , sn, t ∈ ΛΨ , we let 〈s0, . . . , sn〉@t be a term
(written using rec) such that for all e, e′ ∈ E, π ∈ Π and m ∈ N,

(〈s0, . . . , sn〉@t, e, 〈(m, e′), π〉) ≻

{
(sm, e, π) if m ≤ n

(t, e, 〈(m− (n+ 1), e′), π〉) otherwise

The operational semantics of Ψτ (t, u)〈s1, . . . , sn〉 is given by:

(Ψτ (t, u)〈s0, . . . , sn〉, e, π) ≻

(u, e, 〈(〈s0, . . . , sn〉@λ .exτ (t n+ 1λx.Ψτ (t, u)〈s0, . . . , sn, x〉), e), π〉)

The Bar-Recursor in RFam(G). We now define the strategies interpreting Ψτ

in RFam(G). Fix τ ∈ T . First, given a0, . . . , an ∈ [τ], and b ∈ [ι→ τ], let

〈a0, . . . , an〉@b := [〈x0, . . . , xn〉@y][a0/x0, . . . , an/xn, b/y]

For each m ∈ N, we will define by induction on m a family of strategies (Ψ̃m
n)n∈N.

Each Ψ̃m
n will be in [τ]n → τ̃Ψ , where [τ]0 := {U}, [τ]n+1 := [τ]× [τ]n and

τ̃Ψ := [ι→ (τ → ι)→ ι]→ [(ι→ τ)→ ι]→ [ι]

We let Ψ̃0
n := λ〈x1, . . . , xn〉.⊥τ̃Ψ and

Ψ̃m+1
n := λ〈x1, . . . , xn〉.λb.λc.c

•(〈x1, . . . , xn〉@

λ .[exτ]
•
(b• [n+ 1] (λx.Ψ̃m

n 〈x1, . . . , xn, x〉 b c)
◦
))

Given a0, . . . , an ∈ [τ], we now define a strategy Ψ̃τ
〈a0,...,an〉

using the CPO struc-

ture on G (and hence on Fam(G)). Note that the family (Ψ̃m
n+1〈a0, . . . , an〉)m∈N

is directed. We let Ψ̃τ
〈a0,...,an〉

:=
∨

m∈N
Ψ̃m
n+1〈a0, . . . , an〉

and [Ψτ (t, u)〈s0, . . . , sn〉] := Ψ̃τ
〈[s0],...,[sn]〉

[t][u].

Realization of CACι, . We discuss here the realization of CACι,τ using (the
interpretation in ΛΨ) of the term tCAC build in Sect. 3, where we take suitable
instances of Ψτ (,)〈. . . 〉 for Bar-Recursion. We let

tτ,A
CAC

:= λz.λc.Ψτ×A∗(t¬¬∃z, λa.c(λx.p1(ax))(λx.p2(ax)))〈〉
where t¬¬∃ := λa.λx.λk.ax(λy.λz.k〈y, z〉)

Proposition 7.1. λk.[tτ,A
CAC

] ∈
|∀xι(∀yτ (A⇒ ⊥)⇒ ⊥) ⇒ ∀f ι→τ (∀xιA[fx/y]⇒ ⊥) ⇒ ⊥|.

The proof of Prop. 7.1 is deferred to App. C. Contrary to e.g. [3, 4], we do
not rely on the decomposition of CAC as IAC+DNS discussed in Sect. 3. Rather,
we show directly that Bar-Recursion realizes a form of choice.

15

The main point is to decompose the notion of realizability proposed in Sect. 6
w.r.t. the relativization of quantifiers. We first extend the formulas:

A,B ::= . . . | ∀̃xτA | (rτ (a
τ)×A)⇒ B

Hence, in extended formulas, the construction (rτ (a) × A) is only allowed to
appear to the left of an implication. Realizability is extended as follows:

||∀̃xτA|| :=
⋃

a∈τ t ||A[a/x]||
||(rτ (c)×A)⇒ B|| := {λk.〈λk′.case k′{c, ak}, bk〉 | a ∈ |A| & b ∈ ||B||}

Extended formulas and their realizability interpretation rely on ideas introduced
in Krivine’s Realizability [10] (see also [12]). We also extend the mapping ()

∗
:

(∀̃xτA)
∗

:= A∗ ((rτ (a)×A)⇒ B)
∗

:= τ ×A∗ → B∗

The following is the key for Prop. 7.1. It is shown as usual, see e.g. [3, 4].

Lemma 7.2. Let B such that (B ⇒ ⊥) is an extended formula.
Assume b ∈ |∀xι(∀̃yτ (B ⇒ ⊥)⇒ ⊥)| and c ∈ |∀̃f ι→τ (∀xιB[fx/y]⇒ ⊥)|.

Then λk.Ψ̃B∗

〈〉 (bk)(ck) ∈ |⊥|.

Computational Adequacy and Extraction. For extraction, we rely on the
following property relating the evaluation of λµ-terms with their interpretation
in RFam(G). The proof is deferred to App. B.

Proposition 7.3. (i) If ⊢ t : ι| in ΛΨ , then for all n ∈ N we have (t, ε, ⋆) ≻
(n, e, ⋆) if [t] = [n].

(ii) Let ⊢ t : ι → ι in ΛΨ . For all n,m ∈ N, if λk.[t]〈[n], k〉 = [m] then
(tn, ε, ⋆) ≻ (m, e, ⋆).

Extraction of witnessing programs from realizable (and hence from provable)
Π0

2 statements is performed as usual:

Proposition 7.4. From a proof of PAω + CACι, ⊢ ∀xι∃yι(a =ι 0) (where
FV(a) ⊆ {x, y}), we can extract a term ⊢ t : ι→ ι| such that for all n ∈ N, there
is m ∈ N such that (tn, ε, ⋆) ≻ (m, e, ⋆) and [a†][[n]/x, [m]/y] = [0].

Proof (sketch). By adequacy, we get u s.t. λk.[u] ∈ |∀xι¬∀yι(a 6=ι 0)|. Let n ∈ N

and fix ⊥⊥ := {[m] | [a†][[n]/x, [m]/y] = [0]}. We thus have λk.[un(λx.x)] ∈ |⊥|.
This implies [un(λx.x)] = [m] with [m] ∈ ⊥⊥. We conclude by Prop. 7.3.(ii). ⊓⊔

8 Conclusion

We presented a notion of classical realizability for PAω +CAC based on Hyland-
Ong innocent unbracketed games for a simply-typed extension of Parigot’s λµ-
calculus. It is not clear whether in our approach decomposes CAC as IAC+DNS,
because of the interaction of the CPS translation with Friedman’s trick.

Further works will concern this question, a comparison with [17], where Bar-
Recursion is used in an untyped Classical Realizablity model, as well as trying
to extend the result to non-innocent games (along the lines of [5]), known to rise
problems with Bar-Recursion [3].

16

References

[1] S. Abramsky and G. McCusker. Call-by-Value Games. In Proceedings of CSL’97,
LNCS, pages 1–17. Springer, 1997.

[2] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998.

[3] S. Berardi, M. Bezem, and T. Coquand. On the Computational Content of the
Axiom of Choice. Journal of Symbolic Logic, 63(2):600–622, 1998.

[4] U. Berger and P. Oliva. Modified bar recursion and classical dependent choice.
Lecture Notes in Logic, 20:89–107, 2005.

[5] V. Blot. Realizability for Peano Arithmetic with Winning Conditions in HO
Games. To appear in Proceedings of TLCA’13, 2013.

[6] T. Griffin. A Formulae-as-Types Notion of Control. In POPL’90, pages 47–58.
ACM Press, 1990.

[7] R. Harmer. Games and Full Abstraction for Nondeterministic Languages. PhD
thesis, Imperial College, London, 1999.

[8] J. M. E. Hyland and C.-H. Ong. On Full Abstraction for PCF: I, II, and III.
Information and Computation, 163(2):285–408, 2000.

[9] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in

Mathematics. Springer Monographs in Mathematics. Springer, 2008.
[10] J.-L. Krivine. Realizability in classical logic. In Interactive models of computation

and program behaviour, volume 27 of Panoramas et synthèses, pages 197–229.
Société Mathématique de France, 2009.

[11] J. Laird. A Semantic analysis of control. PhD thesis, University of Edimbourgh,
1998.

[12] A. Miquel. Existential witness extraction in classical realizability and via a neg-
ative translation. Logical Methods in Computer Science, 7(2), 2011.

[13] P. Oliva and T. Streicher. On Krivine’s Realizability Interpretation of Classical
Second-Order Arithmetic. Fundam. Inform., 84(2):207–220, 2008.

[14] M. Parigot. Lambda-My-Calculus: An Algorithmic Interpretation of Classical
Natural Deduction. In LPAR, volume 624 of LNCS, pages 190–201. Springer,
1992.

[15] P. Selinger. Control Categories ans Duality: on the Categorical Semantics of the
Lambda-Mu Calculus. Mathematical Structures in Computer Science, 11:207–260,
2001.

[16] S. G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic.
Cambridge University Press, 2nd edition, 2010.

[17] T. Streicher. A Classical Realizability Model araising from a Stable Model of
Untyped Lambda-Calculus. Unpublished Notes, 2013.

[18] T. Streicher and B. Reus. Classical Logic, Continuation Semantics and Abstract
Machines. J. Funct. Program., 8(6):543–572, 1998.

[19] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and

Analysis, volume 344 of LNM. Springer Verlag, 1973.

17

A Adequacy of the Realizability Interpretation

In this appendix, we give a proof of adequacy of our realizability interpretation
(Thm. 6.5).

Lemma A.1. If c ∈ JιK→ [τ → A∗], then:

c ∈ |∀xτA| ⇔ ∀e ∈ τ t,λk.[xy][ck/x, e/y] ∈ |A[e/x]|

Proof. One one hand:

c ∈ |∀xτA| ⇔ ∀d ∈ ||∀xτA||,λk.ck(dk) ∈ ⊥⊥
⇔ ∀e ∈ τ t, ∀b ∈ ||A[e/x]||,λk.ck((λk′.〈e, bk′〉)k) ∈ ⊥⊥
⇔ ∀e ∈ τ t, ∀b ∈ ||A[e/x]||,λk.ck〈e, bk〉 ∈ ⊥⊥

and on the other hand if e ∈ τ t and b ∈ ||A[e/x]|| then:

λk.(λk′.[xy][ck′/x, e/y])k(bk) = λk.([xy][ck/x, e/y])(bk)
= λk.((λk′.x〈y, k′〉)[ck/x, e/y])(bk)
= λk.(λk′.ck〈e, k′〉)(bk)
= λk.ck〈e, bk〉

therefore:

c ∈ |A⇒ B| ⇔ ∀e ∈ τ t, ∀b ∈ ||A[e/x]||,λk.(λk′.[xy][ck′/x, e/y])k(bk) ∈ ⊥⊥

that is:

c ∈ |A⇒ B| ⇔ ∀e ∈ τ t,λk′.[xy][ck′/x, e/y] ∈ |A[e/x]|

⊓⊔

Lemma A.2. If A is such that FV(A) = {xτ} and if for all e ∈ τ t, b ∈ |A[e/x]|,
then λk.[λx.y][bk/y] ∈ |∀xτA|.

Proof. From lemma A.1 we have:

λk.[λx.y][bk/y] ∈ |∀xτA| ⇔ ∀e ∈ τ t,λk.[xy′][(λk′.[λx.y][bk′/y])k/x, e/y′] ∈ |A[e/x]|

but since:

λk.[xy′][(λk′.[λx.y][bk′/y])k/x, e/y′] = λk.[xy′][[λx.y][bk/y]/x, e/y′]
= λk.[(λx.y)y′][bk/y, e/y′]
= λk.[y][bk/y, e/y′]
= λk.y[bk/y, e/y′]
= λk.bk
= b

We have:
λk.[λx.y][bk/y] ∈ |∀xτA| ⇔ ∀e ∈ τ t, b ∈ |A[e/x]|

from which we conclude since b ∈ |A[e/x]|. ⊓⊔

18

Lemma A.3. If c ∈ JιK→ [A∗ → B∗], then:

c ∈ |A⇒ B| ⇔ ∀a ∈ |A|,λk.[xy][ck/x, ak/y] ∈ |B|

Proof. One one hand:

c ∈ |A⇒ B| ⇔ ∀d ∈ ||A⇒ B||,λk.ck(dk) ∈ ⊥⊥
⇔ ∀a ∈ |A|, ∀b ∈ ||B||,λk.ck((λk′.〈ak′, bk′〉)k) ∈ ⊥⊥
⇔ ∀a ∈ |A|, ∀b ∈ ||B||,λk.ck〈ak, bk〉 ∈ ⊥⊥

and on the other hand if a ∈ |A| and b ∈ ||B|| then:

λk.(λk′.[xy][ck′/x, ak′/y])k(bk) = λk.([xy][ck/x, ak/y])(bk)
= λk.((λk′.x〈y, k′〉)[ck/x, ak/y])(bk)
= λk.(λk′.ck〈ak, k′〉)(bk)
= λk.ck〈ak, bk〉

therefore:

c ∈ |A⇒ B| ⇔ ∀a ∈ |A|, ∀b ∈ ||B||,λk.(λk′.[xy][ck′/x, ak′/y])k(bk) ∈ ⊥⊥

that is:

c ∈ |A⇒ B| ⇔ ∀a ∈ |A|,λk′.[xy][ck′/x, ak′/y] ∈ |B|

⊓⊔

Lemma A.4. If |A| ⊆ |B|, then λk.[λx.x] ∈ |A⇒ B|

Proof. From lemma A.3 we have:

λk.[λx.x] ∈ |A⇒ B| ⇔ ∀a ∈ |A|,λk.[xy][(λk′.[λx.x])k/x, ak/y] ∈ |B|

but since:

λk.[xy][(λk′.[λx.x])k/x, ak/y] = λk.[xy][[λx.x]/x, ak/y]
= λk.[(λx.x)y][ak/y]
= λk.[y][ak/y]
= λk.y[ak/y]
= λk.ak
= a

We have:
λk.[λx.x] ∈ |A⇒ B| ⇔ ∀a ∈ |A|, a ∈ |B|

from which we conclude using |A| ⊆ |B|. ⊓⊔

Lemma A.5. If c ∈ JιK→ [A∗ ×B∗], then:

c ∈ |A ∧B| ⇔ ∀a ∈ |A|,λk.[p1(x)][ck/x] ∈ |A|
and ∀b ∈ |B|,λk.[p2(x)][ck/x] ∈ |B|

19

Proof. One one hand:

c ∈ |A ∧B| ⇔ ∀d ∈ ||A ∧B||,λk.ck(dk) ∈ ⊥⊥
⇔ ∀a ∈ ||A||,λk.ck((λk′.in1(ak

′))k) ∈ ⊥⊥
and ∀b ∈ ||B||,λk.ck((λk′.in2(bk

′))k) ∈ ⊥⊥
⇔ ∀a ∈ ||A||,λk.ck(in1(ak)) ∈ ⊥⊥

and ∀b ∈ ||B||,λk.ck(in2(bk)) ∈ ⊥⊥

and on the other hand if a ∈ ||A|| then:

λk.(λk′.[p1(x)][ck
′/x])k(ak) = λk.([p1(x)][ck/x])(ak)

= λk.(λk′.x(in1k
′))[ck/x])(ak)

= λk.(λk′.ck(in1k
′))(ak)

= λk.ck(in1(ak))

and similarly, if b ∈ ||B|| then:

λk.(λk′.[p2(x)][ck
′/x])k(bk) = λk.ck(in2(2k))

therefore:

c ∈ |A ∧B| ⇔ ∀a ∈ ||A||,λk.(λk′.[p1(x)][ck
′/x])k(ak) ∈ ⊥⊥

and ∀B ∈ ||B||,λk.(λk′.[p2(x)][ck
′/x])k(bk) ∈ ⊥⊥

that is:

c ∈ |A ∧B| ⇔ λk′.[p1(x)][ck
′/x] ∈ |A| and λk′.[p2(x)][ck

′/x] ∈ |B|

⊓⊔

Lemma A.6. We have λk.[λx.x] ∈ |e =τ e|. Moreover,

λk.[λx.x] ∈ |k e f =τ e| λk.[λx.x] ∈ |s e f g =τ eg(fg)|

λk.[λx.x] ∈ |Rec e f 0 =τ e| λk.[λx.x] ∈ |Rec e f (S g) =τ fg(Rec e f g)|

where in each case, individuals e, f, g ∈ τ t have the appropriate types τ .

Proof. First remark that if e, f ∈ τ t are such that e = f , then ||e 6=τ f || =
{λk.k} = ||⊥||, so |e 6=τ f | = |⊥|. Since |e =τ f | is |e 6=τ f ⇒ ⊥|, we have
λk.[λx.x] ∈ |e =τ f | by lemma A.4. All the results of the lemma are then
instances of this, using the interpretation of the terms in the model and its
adequacy. For example if e ∈ τ t and f ∈ σt, then:

[k†xy][e/x, f/y] = [(λxy.x)xy][e/x, f/y] = [x][e/x, f/y] = x[e/x, f/y] = e

⊓⊔

Lemma A.7. λk.[λx.λy.yx] ∈ |A[e/z] ⇒ ¬A[f/z] ⇒ e 6=τ f | for e, f ∈ τ t.

20

Proof. From lemma A.3 we have:

λk.[λx.λy.yx] ∈ |A[e/z]⇒ ¬A[f/z]⇒ e 6=τ f |
⇔ ∀a ∈ |A[e/z]|,λk.[x′y′][[λx.λy.yx]/x′, ak/y′] ∈ |¬A[f/z]⇒ e 6=τ f |

but:
λk.[x′y′][[λx.λy.yx]/x′, ak/y′] = λk.[(λx.λy.yx)y′][ak/y′]

= λk.[λy.yy′][ak/y′]
= λk.[λy.yx][ak/x]

Then we have:

λk.[λx.λy.yx] ∈ |A[e/z]⇒ ¬A[f/z]⇒ e 6=τ f |
⇔ ∀a ∈ |A[e/z]|,λk.[λy.yx][ak/x] ∈ |¬A[f/z]⇒ e 6=τ f |
⇔ ∀a ∈ |A[e/z]|, ∀b ∈ |¬A[f/z]|,λk.[x′y′][[λy.yx][ak/x]/x′, bk/y′] ∈ |e 6=τ f |

but:

λk.[x′y′][[λy.yx][ak/x]/x′, bk/y′] = λk.[(λy.yx)y′][ak/x, bk/y′]
= λk.[y′x][ak/x, bk/y′]
= λk.[yx][ak/x, bk/y]
= λk.[xy][bk/x, ak/y]

therefore:

λk.[λx.λy.yx] ∈ |A[e/z]⇒ ¬A[f/z]⇒ e 6=τ f |
⇔ ∀a ∈ |A[e/z]|, ∀b ∈ |¬A[f/z]|,λk.[xy][bk/x, ak/y] ∈ |e 6=τ f |

If e 6= f , then |e 6=τ f | = JιK → [ι] and we are done. If e = f , then |¬A[f/z]| =
|¬A[e/z]| = |A[e/z] ⇒ ⊥|, so by lemma A.3, if a ∈ |A[e/z]| and b ∈ |¬A[f/z]|,
then λk.[xy][bk/x, ak/y] ∈ |⊥| = |e 6=τ f | (since e = f). ⊓⊔

Lemma A.8. If e, f ∈ Iτ0 are closed first order terms with parameters such that
[e†] = [f†], then for any formula A with FV(A) = {xτ}, we have ||A[e/x]|| =
||A[f/x]||.

Proof. We first prove that for any g ∈ Iσ with parameters and FV(g) = {xτ},

we have [g[e/x]
†
] = [g[f/x]

†
] by induction on the structure of the term g. Then

the proof goes by induction on the structure of the formula A. ⊓⊔

Lemma A.9. (i) For all n ∈ N and all e ∈ ιt, we have λk.[n] ∈ |Se 6=ι 0|.
(ii) λk.[λx.λy.rec(x, y)] ∈ |A[0/x] ⇒ ∀xι(A ⇒ A[Sx/x]) ⇒ ∀xιA|.

Proof. (i) Since for any e ∈ ιt there is some m ∈ N such that e = [m], we have:

[S†x][e/x] = [S†x][[n]/x]
= [S†n]
= [succn]
= [n+ 1]

21

so [S†x][e/x] = [n+ 1] 6= [0] = [0†]. Therefore ||Se 6=ι 0|| = ∅, so |Se 6=ι 0| =
JιK→ [ι], and therefore for any n ∈ N we have λk.[n] ∈ |Se 6=ι 0|.
(ii) We have by lemmas A.3 and A.1:

λk.[λx.λy.rec(x, y)] ∈ |A[0/x]⇒ ∀xι(A⇒ A[Sx/x])⇒ ∀xιA|
⇔ ∀a0 ∈ |A[0/x]|,

λk.[xy][(λk′.[λx′.λy′.rec(x′, y′)])k/x, a0k/y] ∈ |∀x
ι(A⇒ A[Sx/x])⇒ ∀xιA|

⇔ ∀a0 ∈ |A[0/x]|,
λk.[xy][[λx′.λy′.rec(x′, y′)]/x, a0k/y] ∈ |∀x

ι(A⇒ A[Sx/x])⇒ ∀xιA|
⇔ ∀a0 ∈ |A[0/x]|,

λk.[(λx′.λy′.rec(x′, y′))y][a0k/y] ∈ |∀x
ι(A⇒ A[Sx/x])⇒ ∀xιA|

⇔ ∀a0 ∈ |A[0/x]|,
λk.[λy′.rec(y, y′)][a0k/y] ∈ |∀x

ι(A⇒ A[Sx/x])⇒ ∀xιA|
⇔ ∀a0 ∈ |A[0/x]|,

λk.[λy.rec(x, y)][a0k/x] ∈ |∀x
ι(A⇒ A[Sx/x])⇒ ∀xιA|

⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x
ι(A⇒ A[Sx/x])|,

λk.[xy][(λk′.[λy′.rec(x, y′)][a0k/x])k/x, a1k/y] ∈ |∀x
ιA|

⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x
ι(A⇒ A[Sx/x])|,

λk.[xy][[λy′.rec(x, y′)][a0k/x]/x, a1k/y] ∈ |∀x
ιA|

⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x
ι(A⇒ A[Sx/x])|,

λk.[(λy′.rec(x, y′))y][a0k/x, a1k/y] ∈ |∀x
ιA|

⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x
ι(A⇒ A[Sx/x])|,

λk.[rec(x, y)][a0k/x, a1k/y] ∈ |∀x
ιA|

⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x
ι(A⇒ A[Sx/x])|, ∀e ∈ ιt,

λk.[xz][(λk′.[rec(x, y)][a0k
′/x, a1k

′/y])k/x, e/z] ∈ |A[e/x]|
⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x

ι(A⇒ A[Sx/x])|, ∀e ∈ ιt,
λk.[xz][[rec(x, y)][a0k/x, a1k/y]/x, e/z] ∈ |A[e/x]|

⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x
ι(A⇒ A[Sx/x])|, ∀a ∈ ιt,

λk.[rec(x, y)z][a0k/x, a1k/y, e/z] ∈ |A[e/x]|
⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x

ι(A⇒ A[Sx/x])|, ∀n ∈ N,
λk.[rec(x, y)z][a0k/x, a1k/y, [n]/z] ∈ |A[[n]/x]|

⇔ ∀a0 ∈ |A[0/x]|, ∀a1 ∈ |∀x
ι(A⇒ A[Sx/x])|, ∀n ∈ N,

λk.[rec(x, y)n][a0k/x, a1k/y] ∈ |A[[n]/x]|

Since for all e ∈ ιt there is some n ∈ N such that e = [n], and therefore
|A[e/x]| = |A[[n]/x]|. Let us fix a0 ∈ |A[0/x]| and a1 ∈ |∀x

ι(A⇒ A[Sx/x])|. We
have:

a1 ∈ |∀x
ι(A⇒ A[Sx/x])|

⇔ ∀e ∈ ιt,λk.[xy][a1k/x, e/y] ∈ |A[e/x]⇒ A[Se/x]|
⇔ ∀n ∈ N,λk.[xy][a1k/x, [n]/y] ∈ |A[[n]/x]⇒ A[S[n]/x]|
⇔ ∀n ∈ N,λk.[xn][a1k/x] ∈ |A[[n]/x]⇒ A[S[n]/x]|
⇔ ∀n ∈ N, ∀a2 ∈ |A[[n]/x]|,λk.[xy][(λk

′.[xn][a1k
′/x])k/x, a2k/y] ∈ |A[S[n]/x]|

⇔ ∀n ∈ N, ∀a2 ∈ |A[[n]/x]|,λk.[xy][[xn][a1k/x]/x, a2k/y] ∈ |A[S[n]/x]|
⇔ ∀n ∈ N, ∀a2 ∈ |A[[n]/x]|,λk.[xny][a1k/x, a2k/y] ∈ |A[S[n]/x]|
⇔ ∀n ∈ N, ∀a2 ∈ |A[[n]/x]|,λk.[xny][a1k/x, a2k/y] ∈ |A[[n+ 1]/x]|

22

by lemma A.8, since [(S[n])
†
] = [(Sx)

†
][[n]/x] = [succx][[n]/x] = [succn] =

[n+ 1]. We now prove by induction on n ∈ N that:

λk.[rec(x, y)n][a0k/x, a1k/y] ∈ |A[[n]/x]|

– n = 0:

λk.[rec(x, y)0][a0k/x, a1k/y] = λk.[x][a0k/x, a1k/y]
= λk.x[a0k/x, a1k/y]
= λk.a0k
= a0 ∈ |A[0/x]| = |A[[0

†]/x]| = |A[[0]/x]|

– n = m+ 1: the induction hypothesis gives:

λk.[rec(x, y)m][a0k/x, a1k/y] ∈ |A[[m]/x]|

and a1 is such that:

∀a2 ∈ |A[[m]/x]|,λk.[xmy][a1k/x, a2k/y] ∈ |A[[m+ 1]/x]|

therefore:

λk.[xmy][a1k/x, (λk
′.[rec(x′, y′)m][a0k

′/x′, a1k
′/y′])k/y] ∈ |A[[m+ 1]/x]|

but:
λk.[xmy][a1k/x, (λk

′.[rec(x′, y′)m][a0k
′/x′, a1k

′/y′])k/y]
= λk.[xmy][a1k/x, [rec(x

′, y′)m][a0k/x
′, a1k/y

′]/y]
= λk.[xm(rec(x′, y′)m)][a1k/x, a0k/x

′, a1k/y
′]

= λk.[y′m(rec(x′, y′)m)][a0k/x
′, a1k/y

′]
= λk.[ym(rec(x, y)m)][a0k/x, a1k/y]
= λk.[rec(x, y)m+ 1)][a0k/x, a1k/y]

so we conclude:

λk.[rec(x, y)n)][a0k/x, a1k/y] ∈ |A[[n]/x]|
⊓⊔

We associate to each axiom A a closed typed λµ-term ξA as follows:

ξ∀xτ (x=τx) = λxy.y : τ → ι→ ι
ξ∀xτ∀yτ (A[x]⇒¬A[y]⇒x 6=τy) = λxyuv.vu : τ → τ → A∗ → (A∗ → ι)→ ι

ξ∀xτ∀yσ(kxy=τx) = λxyu.u : τ → σ → ι→ ι)→ ι
ξ∀xτ∀yσ∀zν(sxyz=νxz(yz)) = λxyzu.u : τ → σ → ν → ι→ ι

ξ∀xι(Sx 6=ι0) = λx.0 : ι→ ι
ξ∀xτ∀yι→τ→τ (Recxy0=τx) = λxyu.u : τ → (ι→ τ → τ)→ ι→ ι

ξ∀xτ∀yι→τ→τ∀zι(RecxySz=τyz(Recxyz)) = λxyzu.u : τ → (ι→ τ → τ)→ ι→ ι→ ι
ξA[0]⇒∀yτ (A[y]⇒A[Sy])⇒∀xιA[x] = λuv.rec(u, v) : A∗ → (ι→ A∗ → A∗)→ ι→ A∗

We extend the translation ()
∗
to contexts in the obvious way: (A1, . . . , An)

∗
is

translated to x1 : A1
∗, . . . , xn : An

∗.

23

We translate each derivation
ε

Γ ⊢ A |∆
to a typing derivation of x : τ , Γ ∗ ⊢

ε∗ : A∗ | ∆∗ and each derivation
ε

(Γ ⊢ ∆)
to a typing derivation of ε∗ : (x :

τ , Γ ∗ ⊢ ∆∗), where the free variables xτ of Γ,A,∆ occur as x : τ in x : τ :

(

Γ,A ⊢ A |∆

)∗

=
x : τ , Γ ∗, x : A∗ ⊢ x : A∗ |∆∗

where x = FV(Γ,A,∆)

(

Γ ⊢ A |∆
(A axiom)

)∗

=

...

x : τ , Γ ∗ ⊢ ξA : A∗ |∆∗
where x = FV(Γ,∆)

ε

Γ ⊢ ⊥ |∆

Γ ⊢ aτ 6=τ bτ |∆

∗

=

...

x : τ ,y : σ, Γ ∗ ⊢ ε∗ : ι |∆∗
where y = FV(aτ , bτ)

ε

Γ,A ⊢ B |∆

Γ ⊢ A⇒ B |∆

∗

=

...

x : τ , Γ ∗, y : A∗ ⊢ ε∗ : B∗ |∆∗

x : τ , Γ ∗ ⊢ λy.ε∗ : A∗ → B∗ |∆∗

ε

Γ ⊢ A⇒ B |∆

ζ

Γ ⊢ A |∆

Γ ⊢ B |∆

∗

=

...

x : τ , Γ ∗ ⊢ ε∗ : A∗ → B∗ |∆∗

...

x : τ , Γ ∗ ⊢ ζ∗ : A∗ |∆∗

x : τ , Γ ∗ ⊢ ε∗ζ∗ : B∗ |∆∗

ε

Γ ⊢ A |∆

ζ

Γ ⊢ B |∆

Γ ⊢ A ∧B |∆

∗

=

...

x : τ , Γ ∗ ⊢ ε∗ : A∗ |∆∗

...

x : τ , Γ ∗ ⊢ ζ∗ : B∗ |∆∗

x : τ , Γ ∗ ⊢ 〈ε∗, ζ∗〉 : A∗ ×B∗ |∆∗

ε

Γ ⊢ A1 ∧A2 |∆

Γ ⊢ Ai |∆
(i = 1, 2)

∗

=

...

x : τ , Γ ∗ ⊢ ε∗ : A∗ ×B∗ |∆∗

x : τ , Γ ∗ ⊢ pi(ε∗) : Ai
∗ |∆∗

ε

Γ ⊢ A |∆

Γ ⊢ ∀xτA |∆
(x /∈ FV(Γ,∆))

∗

=

...

x : τ , x : τ, Γ ∗ ⊢ ε∗ : A∗ |∆∗

x : τ , Γ ∗ ⊢ λx.ε∗ : τ → A∗ |∆∗

ε

Γ ⊢ ∀xτA |∆

Γ ⊢ A[aτ/x] |∆

∗

=

...

x : τ ,y : σ, Γ ∗ ⊢ ε∗ : τ → A∗ |∆∗

x : τ ,y : σ, Γ ∗ ⊢ ε∗aτ † : A∗ |∆∗
where y = FV(aτ)

24

ε

Γ ⊢ A |∆,A

(Γ ⊢ ∆,A)

∗

=

...

x : τ , Γ ∗ ⊢ ε∗ : A∗ |∆∗, α : A∗

[α]ε∗ : (x : τ , Γ ∗ ⊢ ∆∗, α : A∗)

ε

(Γ ⊢ ∆,A)

Γ ⊢ A |∆

∗

=

...

ε∗ : (x : τ , Γ ∗ ⊢ ∆∗, α : A∗)

x : τ , Γ ∗ ⊢ µα.ε∗ : A∗ |∆∗

Theorem A.10. Let
ε

Γ ⊢ A |∆
in PAω, with FV(Γ,A,∆) ⊆ {xτ1

1 , . . . , xτk
k },

Γ = A1, . . . , An and ∆ = B1, . . . , Bm.
Then

x1 : τ1, . . . , xk : τk, y1 : A1
∗, . . . , yn : An

∗ ⊢ ε∗ : A∗ | α1 : B1
∗, . . . , αm : Bm

∗

is such that for all c1 ∈ τ1
t, . . . , ck ∈ τk

t, all a1 ∈ |A1[c/x]|, . . . , an ∈ |An[c/x]|,
and all b1 ∈ ||B1[c/x]||, . . . , bm ∈ ||Bm[c/x]||, we have

λk.[ε∗][c/x,ak/y, bk/α] ∈ |A[c/x]|

Proof. By induction on the structure of the derivation:

– ε =
Γ,A ⊢ A |∆

:

λk.[ε∗][c/x,ak/y, ak/x, bk/α] = λk.[x][ak/x] = λk.ak = a ∈ |A[c/x]|

– ε =
Γ ⊢ A |∆

(A axiom): then by lemmas A.6 A.7 A.9 we have λk.[ε∗] =

λk.[ξA] ∈ |A| = |A[c/x]| since A is closed. Moreover, since ξA is closed,

λk.[ε∗][c/x,ak/y, bk/α] = λk.[ε∗] ∈ |A[c/x]|

– ε =

ε′

Γ ⊢ ⊥ |∆

Γ ⊢ aτ 6=τ bτ |∆
: this comes from the fact that since ||a 6=τ b|| ⊆

{λk.k} = ||⊥⊥||, we have |⊥⊥| ⊆ |a 6=τ b|

– ε =

ε′

Γ,A ⊢ B |∆

Γ ⊢ A⇒ B |∆
: the induction hypothesis gives for any c1 ∈ τ1

t, . . . , ck ∈

τk
t, a1 ∈ |A1[c/x]|, . . . , an ∈ |An[c/x]|, b1 ∈ ||B1[c/x]||, . . . , bm ∈ ||Bm[c/x]||:

∀a ∈ |A[c/x]|,λk.[ε′
∗
][c/x,ak/y, ak/y, bk/α] ∈ |B[c/x]|

using lemma A.3, in order to prove:

λk.[λy.ε′
∗
][c/x,ak/y, bk/α] ∈ |A[c/x]⇒ B[c/x]|

25

it suffices to prove:

∀a ∈ |A[c/x]|,λk.[xy][(λk′.[λy.ε′
∗
][c/x,ak′/y, bk′/α])k/x, ak/y] ∈ |B[c/x]|

but if a ∈ |A[c/x]|, then:

λk.[xy][(λk′.[λy.ε′
∗
][c/x,a(k′)/y, b(k′)/α])k/x, ak/y]

= λk.[xy][[λy.ε′
∗
][c/x,ak/y, bk/α]/x, ak/y]

= λk.[(λy.ε′
∗
)y][c/x,ak/y, bk/α, ak/y]

= λk.[(λy.ε∗)y][c/x,ak/y, bk/α, ak/y]
= λk.[ε′

∗
][c/x,ak/y, bk/α, ak/y]

so we conclude using the induction hypothesis.

– ε =

ε′

Γ ⊢ A⇒ B |∆

ζ

Γ ⊢ A |∆

Γ ⊢ B |∆
: let c1 ∈ τ1

t, . . . , ck ∈ τk
t, a1 ∈ |A1[c/x]|,

. . . , an ∈ |An[c/x]|, b1 ∈ ||B1[c/x]||, . . . , bm ∈ ||Bm[c/x]||. By induction
hypothesis we have:

λk.[ε′
∗
][c/x,ak/y, bk/α] ∈ |A[c/x]⇒ B[c/x]|

so by lemma A.3 we get:

∀a ∈ |A[c/x]|,λk.[xy][(λk′.[ε′
∗
][c/x,ak′/y, bk′/α])k/x, ak/y] ∈ |B[c/x]|

but:
λk.[xy][(λk′.[ε′

∗
][c/x,ak′/y, bk′/α])k/x, ak/y]

= λk.[xy][[ε′
∗
][c/x,ak/y, bk/α]/x, ak/y]

= λk.[ε′
∗
y][c/x,ak/y, bk/α, ak/y]

and since again by induction hypothesis we have:

λk.[ζ∗][c/x,ak/y, bk/α] ∈ |A[c/x]|

we get:

λk.[ε′
∗
y][c/x,ak/y, bk/α, (λk′.[ζ∗][c/x,ak′/y, bk′/α])k/y] ∈ |B[c/x]|

so we can conclude since:

λk.[ε′
∗
y][c/x,ak/y, bk/α, (λk′.[ζ∗][c/x,ak′/y, bk′/α])k/y]

= λk.[ε′
∗
y][c/x,ak/y, bk/α, [ζ∗][c/x,ak/y, bk/α]/y]

= λk.[ε′
∗
ζ∗][c/x,ak/y, bk/α]

– ε =

ε′

Γ ⊢ A |∆

ζ

Γ ⊢ B |∆

Γ ⊢ A ∧B |∆
: by induction hypothesis we have:

λk.[ε′
∗
][c/x,ak/y, bk/α] ∈ |A[c/x]|

26

and
λk.[ζ∗][c/x,ak/y, bk/α] ∈ |B[c/x]|

Using lemma A.5, we have:

λk.[〈ε′∗, ζ∗〉][c/x,ak/y, bk/α] ∈ |A[c/x] ∧B[c/x]|
⇔ λk.[p1(x)][(λk

′.[〈ε′∗, ζ∗〉][c/x,ak′/y, bk′/α])k/x] ∈ A[c/x]
∗

and λk.[p2(x)][(λk
′.[〈ε′∗, ζ∗〉][c/x,ak′/y, bk′/α])k/x] ∈ B[c/x]

∗

⇔ λk.[p1(x)][[〈ε
′∗, ζ∗〉][c/x,ak/y, bk/α]/x] ∈ A[c/x]

∗

and λk.[p2(x)][[〈ε
′∗, ζ∗〉][c/x,ak/y, bk/α]/x] ∈ B[c/x]

∗

⇔ λk.[p1(〈ε
′∗, ζ∗〉)][c/x,ak/y, bk/α] ∈ A[c/x]

∗

and λk.[p2(〈ε
′∗, ζ∗〉)][c/x,ak/y, bk/α] ∈ B[c/x]

∗

⇔ λk.[ε′
∗
][c/x,ak/y, bk/α] ∈ A[c/x]

∗

and λk.[ζ∗][c/x,ak/y, bk/α] ∈ B[c/x]
∗

which is true by induction hypothesis.

– ε =

ε′

Γ ⊢ A1 ∧A2 |∆

Γ ⊢ Ai |∆
(i = 1, 2): let us take i = 1 (the other case is similar).

The induction hypothesis gives us:

λk.[ε′
∗
][c/x,ak/y, bk/α] ∈ |A1[c/x] ∧A2[c/x]|

so we get by lemma A.5:

λk.[p1(x)][(λk
′.[ε′

∗
][c/x,ak′/y, bk′/α])k/x] ∈ |A1[c/x]|

but:
λk.[p1(x)][(λk

′.[ε′
∗
][c/x,ak′/y, bk′/α])k/x]

= λk.[p1(x)][[ε
′∗][c/x,ak/y, bk/α]/x]

= λk.[p1(ε
′∗)][c/x,ak/y, bk/α]

so we can conclude.

– ε =

ε′

Γ ⊢ A |∆

Γ ⊢ ∀xτA |∆
(x /∈ FV(Γ,∆)): by induction hypothesis we have:

∀c ∈ τ t,λk.[ε′
∗
][c/x,ak/y, bk/α] ∈ |A[c/x, c/x]|

First, since x is not free in A1, . . . , An, B1, . . . , Bm we have |Ai[c/x, c/x]| =
|Ai[c/x]| and ||Bi[c/x, c/x]|| = ||Bi[c/x]||, so we still have ai ∈ |Ai[c/x]|
and bi ∈ ||Bi[c/x]||. Using lemma A.1, we have:

λk.[λx.ε′
∗
][c/x,ak/y, bk/α] ∈ |∀xτA[c/x]|

⇔ ∀c ∈ τ t,λk.[zx][(λk′.[λx.ε′
∗
][c/x,ak′/y, bk′/α])k/z, c/x] ∈ |A[c/x, c/x]|

⇔ ∀c ∈ τ t,λk.[zx][[λx.ε′
∗
][c/x,ak/y, bk/α]/z, c/x] ∈ |A[c/x, c/x]|

⇔ ∀c ∈ τ t,λk.[(λx.ε′
∗
)x][c/x,ak/y, bk/α, c/x] ∈ |A[c/x, c/x]|

and we conclude by induction hypothesis.

27

– ε =

ε′

Γ ⊢ ∀xτA |∆

Γ ⊢ A[aτ/x] |∆
: by induction hypothesis we have:

λk.[ε′
∗
][c/x,ak/y, bk/α] ∈ |∀xτA[c/x]|

Using lemma A.1, we have:

∀e ∈ τ t,λk.[zx][(λk′.[ε′
∗
][c/x,ak′/y, bk′/α])k/z, e/x] ∈ |A[c/x, e/x]|

so by taking e = [a†][c/x] we have:

λk.[zx][(λk′.[ε′
∗
][c/x,ak′/y, bk′/α])k/z, e/x]

= λk.[zx][[ε′
∗
][c/x,ak/y, bk/α]/z, [a†][c/x]/x]

= λk.[ε′
∗
x][c/x,ak/y, bk/α, [a†][c/x]/x]

= λk.[ε′
∗
a†][c/x,ak/y, bk/α]

since on the other hand we have |A[c/x, [a†][c/x]/x]| = |A[aτ/x][c/x]| we
obtain:

λk.[ε′
∗
a†][c/x,ak/y, bk/α] ∈ |A[aτ/x][c/x]|

– ε =

ε′

Γ ⊢ A |∆,A

(Γ ⊢ ∆,A)
: we prove here that for any c1 ∈ τ1

t, . . . , ck ∈ τk
t, a1 ∈

|A1[c/x]|, . . . , an ∈ |An[c/x]|, b1 ∈ ||B1[c/x]||, . . . , bm ∈ ||Bm[c/x]|| and
b ∈ ||A[c/x]||, we have:

λk.[[α]ε′
∗
][c/x,ak/y, bk/α, bk/α] ∈ ⊥⊥

where [[α]t] is [t]α. The induction hypothesis gives:

λk.[ε′
∗
][c/x,ak/y, bk/α, bk/α] ∈ |A[c/x]|

and we have:

λk.[[α]ε′
∗
][c/x,ak/y, bk/α, bk/α]

= λk.([ε′
∗
]α)[c/x,ak/y, bk/α, bk/α]

= λk.([ε′
∗
](bk))[c/x,ak/y, bk/α, bk/α]

= λk.[ε′
∗
][c/x,ak/y, bk/α, bk/α](bk)

= λk.(λk′.[ε′
∗
][c/x,ak′/y, bk′/α, bk′/α])k(bk)

which is in ⊥⊥ using the induction hypothesis and the fact that b ∈ ||A[c/x]||.

– ε =

ε′

(Γ ⊢ ∆,A)

Γ ⊢ A |∆
: the previous point gives us:

∀b ∈ ||A[c/x]||,λk.[ε′
∗
][c/x,ak/y, bk/α, bk/α] ∈ ⊥⊥

so if we define [µα.t] = λα.[t] (so we still have [µα.[β]t] = λα[t]β), we prove:

λk.[µα.ε′
∗
][c/x,ak/y, bk/α] ∈ |A[c/x]|

28

In order to do that we choose b ∈ ||A[c/x]|| and we prove:

λk.(λk′.[µα.ε′
∗
][c/x,ak′/y, bk′/α])k(bk) ∈ ⊥⊥

but since we have:

λk.(λk′.[µα.ε′
∗
][c/x,ak′/y, bk′/α])k(bk)

= λk.[µα.ε′
∗
][c/x,ak/y, bk/α](bk)

= λk.[µα.ε′
∗
](bk)[c/x,ak/y, bk/α]

= λk.[µα.ε′
∗
]α[c/x,ak/y, bk/α, bk/α]

= λk.(λα.[ε′
∗
])α[c/x,ak/y, bk/α, bk/α]

= λk.[ε′
∗
][c/x,ak/y, bk/α, bk/α]

which is in ⊥⊥ by the previous point.
⊓⊔

B Computational Adequacy

The correctness of the machine of Sect. 5 (i.e. reduction preserves semantics)
can be proved as usual (see e.g. [18]). Note that since the model Fam(G) is typed,
this would involve typing rules for environments and stacks.

For extraction, we acutally only need to show Proposition 7.3:

(i) If ⊢ t : ι| in ΛΨ , then for all n ∈ N we have (t, ε, ⋆) ≻ (n, e, ⋆) if [t] = [n].
(ii) Let ⊢ t : ι → ι in ΛΨ . For all n,m ∈ N, if λk.[t]〈[n], k〉 = [m] then

(tn, ε, ⋆) ≻ (m, e, ⋆).

We prove this property here.
We use the usual technique of logical relations, and deal with Bar-Recursion

using the usual technique for the PCF fixpoint operator (see e.g. [2]). As sug-
gested by the interpretation of the calculus in RFam(G), and similarly to what we
have done for realizability (see Sect. 6 and App A), our logical relations will be
build by orthogonality.

Idealy, we would process as follows: We would fix a binary relation ⊤⊤ between
(ΛΨ ×E×Π) and (strategies on) [ι], and as usual assume that ⊤⊤ is closed under
anti-evaluation, i.e.

(t, e, π)⊤⊤ a =⇒ (t′, e′, π′)≻ (t, e, π) =⇒ (t′, e′, π′)⊤⊤ a

and that for all (t, e, π) we have

(t, e, π)⊤⊤⊥[ι]

We would then devise a relation Rτ ⊆ Π×JτK for each simple type τ , and obtain
by orthogonality a relation R⊤⊤

τ ⊆ C× [τ]. However, we face a similar problem as
with realizability in Sect. 6: we want to observe termination at [ι] = RJιK, which
is not a basic type. Moreover, the only strategy on JιK is the empty strategy;
and applying it to (the interpretation of) a numeral [n] gives the empty strategy

29

on R (which is the only possible one since R is the arena with just one (initial)
oponent move).

Hence, we preceed similarly as for realizability, and consider for each simple
type τ relations Rτ ⊆ Π × (JιK → JτK) and R⊤⊤

τ ⊆ C × (JιK → JτK). The main
point, given by Lemma B.5, is that we can define Rι so that for all n ∈ N, we
have ((n, e),λk.[n]) ∈ R⊤⊤

ι .

B.1 The Logical Relation

Let ⊤⊤ be a binary relation between (ΛΨ × E × Π) and (strategies on) [ι]. We
assume that ⊤⊤ is closed under anti-evaluation, i.e.

(t, e, π)⊤⊤ a =⇒ (t′, e′, π′)≻ (t, e, π) =⇒ (t′, e′, π′)⊤⊤ a

and that for all (t, e, π) we have

(t, e, π)⊤⊤⊥[ι]

Recall from Section 4 that we use a simply-typed λ-calculus with constants
in Fam(G).

To each simple type τ , we will associate two binary relations

Rτ ⊆ Π × (JιK→ JτK) and R⊤⊤
τ ⊆ C× (JιK→ [τ])

First, given any A ⊆ Π × (JιK→ JτK), we let A⊤⊤ ⊆ C× (JιK→ [τ]) be

{((t, e), a) | ∀(π, b) ∈ A, (t, e, π)⊤⊤ λk.ak(bk)}

If moreover B ⊆ Π × (JιK→ JσK), we define (A⊤⊤ · B) ⊆ Π × (JιK→ Jτ → σK) as

{(〈c, π〉,λk.〈ak, bk〉) | (c, a) ∈ A⊤⊤ and (π, b) ∈ B}

For the moment, we assume given some Rι ⊆ Π× (JιK→ JιK), and define Rτ

by induction on τ as follows:

Rσ×τ := {(kp1(π),λk.in1(ak)) | (π, a) ∈ Rσ}
∪ {(kp2(π),λk.in2(ak)) | (π, a) ∈ Rτ}

Rσ→τ := (R⊤⊤
σ · Rτ)

This definition of Rτ with Rι arbitrary is sufficient to deal with the λµ-
calculus with products. The actual definition on Rι will be given in App. B.2,
when discussing arithmetic constants.

Theorem B.1 (Adequacy for the λµ-Calculus with Products). If

x1 : τ1, . . . , xn : τn ⊢ t : τ | α1 : σ1, . . . , αm : σm

then for all
(u1, e1)R

⊤⊤
τ1

b1, . . . , (un, en)R
⊤⊤
τn

bn

30

and all
π1 Rσ1

a1, . . . , πm Rσm
am

we have
(t, e)R⊤⊤

τ λk.t(k)

where

e := (x1, (u1, e1)) :: · · · :: (xn, (un, en)) :: (α1, π1) :: · · · :: (αm, πm) :: ε

and

t(k) := [t][b1(k)/x1, . . . , bn(k)/xn, a1(k)/α1, . . . , am(k)/αm]

In particular, if ⊢ t : τ |, then we have ((t, ε),λk.[t]) ∈ R⊤⊤
τ .

Proof. By induction on typing judgments. In the following, we let Γ be the
context x1 : τ1, . . . , xn : τn and ∆ be α1 : σ1, . . . , αm : σm. Unless stated
otherwise, we will always assume given (ui, ei, bi)1≤i≤n and (πj , aj)1≤j≤m as in
the statement of the theorem.

We reason by cases on the last applied typing rule.

Γ, x0 : τ ⊢ x0 : τ |∆

Let ((u0, e0), b0) ∈ R
⊤⊤
τ and (π, a) ∈ Rτ . We have to show

((u0, e0), b0)⊤⊤ λk.t(k)(ak)

We have
(t, e, π) ≻ (u0, e0, π)

and
λk.t(k) = λk.b0k = b0

We are done since by assumption,

(u0, e0, π)⊤⊤ λk.b0k(ak)

Γ, x : τ ⊢ t : σ |∆

Γ ⊢ λx.t : τ → σ |∆

Let ((u0, e0), b0) ∈ R
⊤⊤
τ and (π, a) ∈ Rσ. We have to show

(λx.t, e, 〈(u0, e0), π〉)⊤⊤ λk.(λ〈x, k′〉.t(k)k′)〈b0k, ak〉

We have
(λx.t, e, 〈(u0, e0), π〉) ≻ (t, ((x, (u0, e0)) :: e, π)

and
λk.(λ〈x, k′〉.t(k)k′)〈b0k, ak〉 = λk.t(k)[b0k/x](ak)

31

and we are donce since by induction hypothesis

(t, (x, (u0, e0)) :: e, π)⊤⊤ λk.t(k)[b0k/x](ak)

Γ ⊢ t : σ → τ |∆ Γ ⊢ u : σ |∆

Γ ⊢ tu : τ |∆

Let (π, a) ∈ Rτ . We have to show

(tu, e, π)⊤⊤ λk.(λk′.t(k)〈u(k), k′〉)(ak)

We have
(tu, e, π) ≻ (t, e, 〈(u, e), π〉)

and
λk.(λk′.t(k)〈u(k), k′〉)(ak) = λk.t(k)〈u(k), ak〉

We are done, since on the one hand by induction hypothesis

((t, e),λk.t(k)) ∈ R⊤⊤
σ→τ

and on the other hand

(〈(u, e), π〉,λk.〈u(k), ak〉) ∈ Rσ→τ

since by induction hypothesis

((u, e),λk.u(k)) ∈ R⊤⊤
σ

Γ ⊢ t1 : τ1 |∆ Γ ⊢ t2 : τ2 |∆

Γ ⊢ 〈t1, t2〉 : τ1 × τ2 |∆

Let (π, a) ∈ Rτi . Hence (kpi(π),λk.ini(ak)) ∈ Rτ1×τ2 . We have to show

(〈t1, t2〉, e, kpi(π))⊤⊤ λk.(λk′.case k′{t1(k), t2(k)})(ini(ak))

We have
(〈t1, t2〉, e, kpi(π)) ≻ (ti, e, π)

and
λk.(λk′.case k′{t1(k), t2(k)})(ini(ak)) = λk.ti(k)(ak)

and we are donce since by induction hypothesis

((ti, e),λk.ti(k)) ∈ R
⊤⊤
τi

Γ ⊢ t : τ1 × τ2 |∆

Γ ⊢ pi(t) : τi |∆
(i = 1, 2)

Let (π, a) ∈ Rτi . We have have to show

(pi(t), e, π)⊤⊤ λk.(λk′.t(k)(inik
′))(ak)

32

We have

(pi(t), e, π) ≻ (t, e, kpi(π))

and we are done since

(kpi(π),λk.ini(ak)) ∈ Rτ1×τ2

and since by induction hypothesis

((t, e),λk.t(k)) ∈ R⊤⊤
τ1×τ2

Γ ⊢ t : τ |∆,α : τ

[α]t : (Γ ⊢ ∆,α : τ)

t : (Γ ⊢ ∆,α : τ)

Γ ⊢ µα.t : τ |∆

It is actually sufficent to consider the case of

Γ ⊢ t : σ |∆,β : σ

...
Γ ⊢ µα.[β]t : τ | (∆,β : σ) \ {α : τ}

Let (π, a) ∈ Rτ . Note that we can have either α = β (in which case τ = σ) or
α = β. In both cases, by assumption we can assume given (π′, a′) ∈ Rσ. We
have to show

(µα.[β]t, e, π)⊤⊤ λk.(λα.t(k)(a′k))(ak)

We have

(µα.[β]t, e, π) ≻ (t, (α, π) :: e, π′)

and we are done since by induction hypothesis

((t, (α, π) :: e),λk.t(k)[ak/α]) ∈ R⊤⊤
σ

⊓⊔

B.2 Adequacy for Arithmetical Constants

From now on, we let (t, e, π) ⊤⊤ a iff either a = ⊥[ι] or a = [n] and (t, e, π) ≻
(n, e′, ⋆) for some n ∈ N and e′ ∈ E.

We now proceed to the definition of Rι. It will be defined as a least fixpoint
in the complete lattice P(Π × (JιK → JιK)). Given X ⊆ Π × (JιK → JιK), let
F (X) ⊆ Π × (JιK→ JιK) be

{(⋆,λk.k)}

∪ {(ksucc(π),λk.k̃succ (ak)) | (π, a) ∈ X}

∪
⋃

A⊆Π×(JιK→JτK){(krec(u, v, e, π),λk.k̃rec (bk) (ck) (ak)) |

((u, e), b) ∈ A⊤⊤, ((v, e), c) ∈ (X⊤⊤ · A⊤⊤ · A)⊤⊤ & (π, a) ∈ A}

33

where
k̃succ := λa.λn.a(s̃uccn)

k̃rec := λb.λc.λa.λn.r̃ec b (λm.c•(λk.km))na
where c• := λx.λy.λz.c〈x, y, z〉

Note that
succ = λnλk.n (k̃succ k)

rec = λu.λv.λn.λk.n (k̃recu v k)

Lemma B.2. If X ⊆ Y then F (X) ⊆ F (Y).

Proof. Let (π, a) ∈ F (X). We show (c, a) ∈ F (Y) by cases on the form of π. If π
is of the form ⋆ or ksucc(π′) then the result is trivial. The remaining case follows
from the following (usual) observation: since X ⊆ Y implies Y ⊤⊤ ⊆ X⊤⊤ we have
(Y ⊤⊤ · A⊤⊤ · A) ⊆ (X⊤⊤ · A⊤⊤ · A) hence (X⊤⊤ · A⊤⊤ · A)⊤⊤ ⊆ (Y ⊤⊤ · A⊤⊤ · A)⊤⊤. ⊓⊔

Using Tarski’s fixpoint theorem, we let Rι be least fixed-point of F . Hence,

Rι = Fλ(∅)

for some ordinal λ. For ordinals α ≤ λ, let

Rα
ι := Fα(∅)

Note that
Rβ+1

ι = F (Rβ
ι)

In other words, Rι is the smallest subset of Π × (JιK→ JιK) such that

– (⋆,λk.k) ∈ Rι,

– if (π, a) ∈ Rι, then (ksucc(π),λk.k̃succ(ak)) ∈ Rι, and
– if A ⊆ Π × (JιK → JτK), then for all u, v, e, π and all a, b, c such that

((u, e), b) ∈ A⊤⊤, ((v, e), c) ∈ (R⊤⊤
ι · A

⊤⊤ · A)⊤⊤, and (π, a) ∈ A, we have

(krec(u, v, e, π),λk.k̃rec(bk)(ck)(ak))) ∈ Rι

Lemma B.3. ((succ, e),λk.[succ]) ∈ R⊤⊤
ι→ι

Proof. We have to show

(succ, e, π)⊤⊤ λk.λ〈n, y〉.(succ n y)(ak)

for all (π, a) ∈ Rι→ι. Since Rι→ι = R
⊤⊤
ι · Rι, this amounts to show

(succ, e, 〈(t, e′), π〉)⊤⊤ λk. succ (ak) (bk)

for all ((t, e′), a) ∈ R⊤⊤
ι and all (π, b) ∈ Rι. But

(succ, e, 〈(t, e′), π〉) ≻ (t, e′, ksucc(π))

On the other hand,

λk. succ (ak) (bk) = λk.ak(λn.bk(s̃uccn))

= λk.(ak)(k̃succ (bk))

and we are done since ((t, e′), a) ∈ R⊤⊤
ι and (ksucc(π),λk.k̃succ (bk)) ∈ Rι. ⊓⊔

34

Lemma B.4. Let τ ∈ T , A ⊆ Π× (JιK→ JτK), and α ≤ λ. For all u, v ∈ Λ, e ∈
E, b ∈ JιK → [τ], and c ∈ JιK → [ι → τ → τ] such that ((u, e), b) ∈ A⊤⊤ and
((v, e), c) ∈ (Rα

ι
⊤⊤ · A⊤⊤ · A)⊤⊤, we have

((rec(u, v), e),λk.λ〈n, y〉.rec (bk) (ck)n y) ∈ (Rα
ι
⊤⊤ · A)⊤⊤

In partcular, if A = Rτ and α = λ, then we get

((rec(u, v), e),λk.λ〈n, y〉.rec (bk) (ck)n y) ∈ R⊤⊤
ι→τ

Proof. We have to show

(rec(u, v), e, 〈(t, e′), π〉)⊤⊤ λk.rec (bk) (ck) (ak) (dk)

for all ((t, e′), a) ∈ Rα
ι
⊤⊤ and all (π, d) ∈ A. We have

(rec(u, v), e, 〈(t, e′), π〉) ≻ (t, e′, krec(u, v, e, π))

On the other hand,

λk.rec (bk) (ck) (ak) (dk) = λk.ak(λn.r̃ec(bk)(λy.(ck)
•
(λk′.k′y))n(dk))

where (ck)
•
:= λx.λy.λz.(ck)〈x, y, z〉

= λk.ak(k̃rec(bk)(ck)(dk))

We are done as ((t, e′), a) ∈ R⊤⊤
ι and (krec(u, v, e, π),λk.k̃rec(bk)(ck)(dk)) ∈ Rι.

⊓⊔

Lemma B.5. For all n ∈ N and all e ∈ E, we have ((n, e),λk.[n]) ∈ R⊤⊤
ι .

Proof. We show by induction on ordinals α ≤ λ that for all (π, a) ∈ Rα
ι , we have

(n, e, π)⊤⊤ λk.[n](ak) for all n ∈ N and all e ∈ E.
First, if α is a limit ordinal, then

Rα
ι =

⋃

β<α

Rβ
ι .

Hence (π, a) ∈ Rα
ι iff (π, a) ∈ Rβ

ι for some β < α and the result follows directly
by induction hypothesis.

Otherwise, α is either ∅ or a limit ordinal β + 1. We reason by cases on
(π, a) ∈ Rα

ι .

– Case of (⋆,λk.k). Given n ∈ N and e ∈ E, we have to show

(n, e, ⋆)⊤⊤ λk.[n]((λk′.k′)k)

But we are done since

λk.[n]((λk′.k′)k) = λk.[n]k = [n]

35

– Case of (ksucc(π),λk. ˜ksucc(ak)). In this case we have α = β+1 and (π, a) ∈
Rβ

ι . Given n ∈ N and e ∈ E, we have to show

(n, e, ksucc(π))⊤⊤ λk.[n]((λk′.k̃succ(ak′))k)

First, we have

(n, e, ksucc(π)) ≻ (n+ 1, e, π)

On the other hand

λk.[n]((λk′.k̃succ(ak′))k) = λk.[n](k̃succ(ak))

= λk.(λk′.k′ñ)(k̃succ(ak))

= λk.k̃succ(ak)ñ
= λk.(λa.λn.a(s̃uccn))(ak)ñ
= λk.ak(s̃uccñ)

= λk.akñ+ 1

= λk.(λk′.k′ñ+ 1)(ak)
= λk.[n+ 1](ak)

Now we are done since by induction hypothesis, we have

(n+ 1, e, π)⊤⊤ λk.[n+ 1](ak)

– Case of (krec(u, v, e, π),λk.k̃rec(bk)(ck)(ak)). In this case we have α = β+1

and ((u, e), b) ∈ A⊤⊤, ((v, e), c) ∈ (Rβ
ι

⊤⊤
· A⊤⊤ · A)⊤⊤, and (π, a) ∈ A for some

A ⊆ Π × (JιK→ JτK).

We have to show that for all n ∈ N and all e′ ∈ E, we have

(n, e′, krec(u, v, e, π))⊤⊤ λk.[n](k̃rec(bk)(ck)(ak))

We reason by cases on n ∈ N.

• If n = 0, then we have

(0, e′, krec(u, v, e, π)) ≻ (u, e, π)

On the other hand,

λk.[0](k̃rec(bk)(ck)(ak)) = λk.r̃ec(bk)(λm.(ck)
•
(λk′.k′m))0̃(ak)

where (ck)
•
:= λx.λy.λz.ck〈x, y, z〉

= λk.bk(ak)

We are done since ((u, e), b) ∈ A⊤⊤ and (π, a) ∈ A by assumption.

• Otherwise, n = m+ 1. We have

(m+ 1, e′, krec(u, v, e, π)) ≻ (v, e, 〈(m, e′), 〈(rec(u, v)m, e), π〉〉)

36

On the other hand,

λk.[m+ 1](k̃rec(bk)(ck)(ak)) = λk.[m+ 1](λx.r̃ec(bk)(λm.(ck)
•
(λk′.k′m))x(ak))

= λk.r̃ec(bk)(λm.(ck)
•
(λk′.k′m))m̃+ 1(ak)

= λk.(ck)
•
[m](r̃ec(bk)(λm.(ck)

•
(λk′.k′m))m̃)(ak)

= λk.(ck)
•
[m](λy.r̃ec(bk)(λm.(ck)

•
(λk′.k′m))m̃y)(ak)

= λk.(ck)
•
[m](λy.[m](λx.r̃ec(bk)(λm.(ck)

•
(λk′.k′m))xy))(ak)

= λk.(ck)〈[m], 〈λy.rec (bk) (ck) [m] y, ak〉〉
where (ck)

•
:= λx.λy.λz.ck〈x, 〈y, z〉〉

Since ((v, e), c) ∈ (Rβ
ι

⊤⊤
· A⊤⊤ · A)⊤⊤, we are done if

(〈(m, e′), 〈(rec(u, v)m, e), π〉〉,λk.〈[m], 〈λy.rec (bk) (ck) [m] y, ak〉〉) ∈ Rβ
ι

⊤⊤
·A⊤⊤·A

Now, by induction hypothesis we have ((m, e),λk.[m]) ∈ Rβ
ι

⊤⊤
. We thus

have to show

(〈(rec(u, v)m, e), π〉,λk.〈λy.rec (bk) (ck) [m] y, ak〉) ∈ A⊤⊤ · A

Since (π, a) ∈ A, we are done if

((rec(u, v)m, e),λk.λy.rec (bk) (ck) [m] y) ∈ A⊤⊤

Let (π′, a′) ∈ A. Note that

(rec(u, v)m, e, π′) ≻ (rec(u, v), e, 〈(m, e), π′〉)

On the other hand,

λk.(λy.rec (bk) (ck) [m] y)(a′k) = λk.(λ〈x, y〉.rec (bk) (ck)x y)〈[m], a′k〉

Now, we are done since by induction hypothesis we have ((m, e),λk.[m]) ∈

Rβ
ι

⊤⊤
, hence

(〈(m, e), π′〉,λk.〈[m], a′k〉) ∈ Rβ
ι

⊤⊤
· A

and by Lemma B.4:

((rec(u, v), e),λk.λ〈x, y〉.rec (bk) (ck)x y) ∈ (Rβ
ι

⊤⊤
· A)⊤⊤

⊓⊔

It is now easy to extend computational adequacy (Thm. B.1) to the type
system of the λµ-calculus with products extended with the typing rules for arith-
metical constants of Section 5. We only detail the case of the recursor:

Γ ⊢ t : τ |∆ Γ ⊢ u : ι→ τ → τ |∆

Γ ⊢ rec(t, u) : ι→ τ |∆

Assuming the conventions used in the proof of Thm. B.1, we have to show

(rec(t, u), e),λk.λ〈n, k′〉.rec t(k) u(k) n k′) ∈ R⊤⊤
ι→τ

This directly follows from Lemma B.4, since by hypothesis we have ((t, e),λk.t(k)) ∈
R⊤⊤

τ and ((u, e),λk.u(k)) ∈ R⊤⊤
ι→τ→τ .

37

B.3 Adequacy for Bar-Recursion

We now discuss computational adequacy for the bar-recursor Ψ . We use the well-
known technique of fixpoint induction, as in the usual proofs of computational
adequacy for PCF (see e.g. [2]).
We rely on the following remarks (for all type σ):

1. For all (t, e) we have ((t, e),⊥JιK→[σ]) ∈ R
⊤⊤
σ .

Proof. Given (π, a) ∈ Rσ, we have

((t, e), π)⊤⊤ λk.⊥JιK→[σ]k(ak)

since λk.⊥JιK→[σ]k(ak) = ⊥[ι]. ⊓⊔

2. Let (t, e) and let (bm)m∈N ∈ JιK → [σ] be a directed family such that
((t, e), bm) ∈ R⊤⊤

σ for all m ∈ N. Then ((t, e),
∨

m∈N
bm) ∈ R⊤⊤

σ .

Proof. Given (π, a) ∈ Rσ, we have to show

(t, e, π)⊤⊤ λk.(
∨

m∈N

bm)k(ak)

We have
λk.

∨

m∈N

(bmk(ak))

If λk.bmk(ak) = ⊥[ι] for all m, then λk.
∨

m∈N
(bmk(ak)) = ⊥[ι] and we are

done.
Otherwise, there is some m ∈ N such that λk.bmk(ak) = [n] for some n ∈ N,
and we have λk.

∨
m∈N

(bmk(ak)) = [n]. But we are done since by assumption,
λk.bmk(ak) = [n] implies (t, e, π) ≻ (n, e′, ⋆). ⊓⊔

We now fix τ ∈ T , e ∈ E, ((t, e), a) ∈ R⊤⊤
ι→(τ→ι)→τ and ((u, e), b) ∈ R⊤⊤

(ι→τ)→τ .

Given c0, . . . , cn ∈ [τ], we let

Ψ̃m
〈c0,...,cn〉

:= Ψ̃m
n+1〈c0, . . . , cn〉

We show that for all m ∈ N, we have

((Ψτ (t, u)〈s0, . . . , sn〉, e),λk.Ψ̃
m
〈a0k,...,ank〉

(ak)(bk)) ∈ R⊤⊤
ι

for all n ∈ N and all ((s0, e), b0), . . . , ((sn, e), bn) ∈ R
⊤⊤
τ .

We reason by induction on m ∈ N. The base case m = 0 follows from Rem (1)
above.

For the induction step, first note that thanks to the results of App. B.1
and B.2, we have the adequacy for the construction 〈. . . 〉@ :

((〈s0, . . . , sn〉@c, e),λk.〈a0k, . . . , ank〉@(ck)) ∈ R⊤⊤
ι→τ (((v, e), c) ∈ R⊤⊤

ι→τ)

38

Let now (π, d) ∈ Rι. We have to show:

(Ψτ (t, u)〈s0, . . . , sn〉, e, π)⊤⊤ λk.Ψ̃m+1
〈a0k,...,ank〉

(ak)(bk)(dk)

We have

(Ψτ (t, u)〈s0, . . . , sn〉, e, π) ≻
(u, e, 〈(〈s0, . . . , sn〉@λ .exτ (t n+ 1λx.Ψτ (t, u)〈s0, . . . , sn, x〉), e), π〉)

and λk.Ψ̃m+1
〈a0k,...,ank〉

(ak)(bk)(dk) =

λk.(bk)〈〈a0k, . . . , ank〉@

λ〈 , k0〉.[exτ]〈λk1.(ak)〈[n+ 1],λ〈x, k2〉.Ψ̃
m
〈a0k,...,ank,x〉

(bk)(ck)k2, k1〉, k0〉, (dk)〉

Now we are done since by induction hypothesis:

(λx.Ψτ (t, u)〈s0, . . . , sn, x〉,λk.λ〈x, k
′〉.Ψ̃m

〈a0k,...,ank,x〉
k′) ∈ R⊤⊤

τ→ι

Using Rem (2) above we conclude:

Lemma B.6. Let τ ∈ T , e ∈ E, ((t, e), a) ∈ R⊤⊤
ι→(τ→ι)→τ and ((u, e), b) ∈

R⊤⊤
(ι→τ)→τ .

Let moreover n ∈ N and ((s0, e), b0), . . . , ((sn, e), bn) ∈ R
⊤⊤
τ .

We have:

((Ψτ (t, u)〈s0, . . . , sn〉, e),λk.Ψ̃
τ
〈a0k,...,ank〉

(ak)(bk)) ∈ R⊤⊤
ι

B.4 Proof of Proposition 7.3

Corollary B.7. (i) If ⊢ t : ι| in ΛΨ , then for all n ∈ N we have (t, ε, ⋆) ≻
(n, e, ⋆) if [t] = [n].

(ii) Let ⊢ t : ι → ι in ΛΨ . For all n,m ∈ N, if λk.[t]〈[n], k〉 = [m] then
(tn, ε, ⋆) ≻ (m, e, ⋆).

Proof. (i) By Thm. B.1, together with Lemmas B.3, B.4, B.5 and B.6, we have
(t, ε)R⊤⊤

ι λk.[n]. Since (⋆,λk.k) ∈ Rι, it follows that

(t, ε, ⋆)⊤⊤ λk.[n]((λk′.k′)k)

and we are done by definition of ⊤⊤ since λk.[n]((λk′.k′)k) = λk.[n]k = [n]
(note that the later holds even without using the η-rule, since [n] = λk.kñ).

(ii) Follows from (i) since for all n ∈ N, we have ((n, ε),λk.[n]) ∈ R⊤⊤
ι by

Lemma B.5. ⊓⊔

39

C Realization of Classical Choice Using Bar-Recursion

In this Appendix, we prove Proposition 7.1. We recall its statement:

Proposition C.1. λk.[tτ,A
CAC

] ∈
|∀xι(∀yτ (A⇒ ⊥)⇒ ⊥) ⇒ ∀f ι→τ (∀xιA[fx/y]⇒ ⊥) ⇒ ⊥|

Recall that

tτ,A
CAC

= λz.λc.Ψτ×A∗(t¬¬∃z, λa.c(λx.p1(ax))(λx.p2(ax)))〈〉
where t¬¬∃ = λa.λx.λk.ax(λy.λz.k〈y, z〉)

The main point is to decompose the notion of realizability proposed in Sect. 6
w.r.t. the relativization of quantifications. It is convenient to extend the formulas
defined in Sect. 2:

A,B ::= . . . | ∀̃xτA | (rτ (a
τ)×A)⇒ B

Hence, in extended formulas, the construction (rτ (a) × A) is only allowed to
appear to the left of an implication. The definition of realizability is extended
as follows:

||∀̃xτA|| :=
⋃

a∈τ t ||A||[a/x]
||(rτ (c)×A)⇒ B|| := {λk.〈λk′.case k′{c, ak}, bk〉 | a ∈ |A| & b ∈ ||B||}

Extended formulas and their realizability interpretation are inspired from ideas
used in Krivine’s Realizability [10]. We also extend the mapping ()

∗
of Section 6,

mapping extended formulas to simple types:

(∀̃xτA)
∗

:= A∗

((rτ (a)×A)⇒ B)
∗

:= τ ×A∗ → B∗

The following is the key for Proposition C.1. The argument is the usual one
for bar-recursion, see e.g. [3, 4].

Lemma C.2. Let B such that B ⇒ ⊥ is an extended formula. Assume

b ∈ |∀xι(∀̃yτ (B ⇒ ⊥)⇒ ⊥)| and c ∈ |∀̃f ι→τ (∀xιB[fx/y]⇒ ⊥)|

Then λk.Ψ̃B∗

〈〉 (bk)(ck) ∈ |⊥|.

Recall that we use notations ()
•
and ()

◦
for resp. currfication and un-

curryfication. Recall also that the amount to which an expression is curry-
fied/uncurryfied depends on the context, and moreover that in G, ()• and ()

◦

are the identity.

Proof. First, note that for all extended formula A, we have exA∗ ∈ |∀̃x(⊥ ⇒ A)|.
This can be easily proved by induction on A.

40

Recall that for all a0, . . . , an ∈ [B∗], we have

Ψ̃B∗

〈a0,...,an〉
(bk)(ck) = (ck)

•
(〈a0, . . . , an〉@

λ .[exB∗]
•
((bk)

•
[n+ 1] (λx.Ψ̃B∗

〈a0,...,an,x〉
(bk) (ck))

◦
))

Assume now that λk.Ψ̃B∗

〈〉 (bk)(ck) /∈ |⊥|. Since ||⊥|| = {λk.k}, this means

that λk.Ψ̃B∗

〈〉 (bk)(ck)k /∈ ⊥⊥. By assumption on c, again since ||⊥|| = {λk.k},

this implies that there is f ∈ (ι→ τ)
t
such that

λk.λ .[exB∗]
•
((bk)

•
[0] (λx.Ψ̃B∗

〈x〉 (bk) (ck))
◦
) /∈ |∀xιB[fx/y]|

By assumption on b, this implies that

λk.λ〈x, k′〉.Ψ̃B∗

〈x〉 (bk) (ck) k′ /∈ |∀̃y(B[[0]/x]⇒ ⊥)|

Hence, there is d0 ∈ τ t and e0 ∈ JιK→ [B∗] such that e0 ∈ |B[[0]/x, d0/y]| and

λk.(λ〈x, k′〉.Ψ̃B∗

〈x〉 (bk) (ck) k′)〈e0k, (λk
′′.k′′)k〉 /∈ ⊥⊥

that is λk.Ψ̃B∗

〈e0k〉
(bk)(ck)k /∈ ⊥⊥.

By iterating the argument (using classical choice), we obtain a sequence
(dn, en)n∈N such that for all n ∈ N,

(i) dn ∈ τ t,
(ii) en ∈ |B[[n]/x, dn/y]|,

(iii) λk.Ψ̃B∗

〈e0k,...,enk〉
(bk)(ck)k /∈ ⊥⊥.

Let now f ∈ [ι → τ] be an innocent strategy such that f [n] = dn for all n ∈ N.
Note that f ∈ (ι→ τ)

t
. Let moreover g be such that g[n] = en for all n ∈ N. It

follows that

h := λk.λ〈x, k′〉.g◦〈x, k′〉k ∈ |∀xιB[fx/y]|

By assumption on c, we have λk.λk′.ck〈hk, k′〉 ∈ |⊥|. By continuity of c, this
implies that there is n ∈ N such that

λk.(ck)
•
(〈e0k, . . . , enk〉@

λ .[exB∗]
•
((bk)

•
[n+ 1] (λx.Ψ̃B∗

〈e0k,...,enk,x〉
(bk) (ck))

◦
))k ∈ ⊥⊥

It follows that

λk.Ψ̃B∗

〈e0k,...,enk〉
(bk) (ck) ∈ ⊥⊥

a contradiction. ⊓⊔

We can now prove Proposition C.1.

41

Proof (of Prop. C.1). Let A be a formula. We have to show that λk.[tτ,A
CAC

] realizes
the formula

|∀xι(∀yτ (A⇒ ⊥)⇒ ⊥) ⇒ ∀f ι→τ (∀xιA[fx/y]⇒ ⊥) ⇒ ⊥|

We apply Lemma C.2 withB := (rτ (y)×A), and obtain that λk.Ψ̃τ×A∗

〈〉 (bk)(ck) ∈

|⊥| provided

b ∈ |∀xι(∀̃yτ ((rτ (y)×A)⇒ ⊥)⇒ ⊥)|

and c ∈ |∀̃f ι→τ (∀xι(rτ (fx)×A[fx/y])⇒ ⊥)|

In order to conclude, it remains to show the two following points:

λk.[λa.λx.λb.ax(λy.λz.b〈y, z〉)] ∈

|∀xι(∀yτ (A⇒ ⊥)⇒ ⊥) ⇒ ∀xι(∀̃yτ ((rτ (y)×A)⇒ ⊥)⇒ ⊥)| (1)

and

λk.[λc.λa.c(λx.p1(ax))(λx.p2(ax))] ∈

|∀f ι→τ (∀xιA[fx/y]⇒ ⊥) ⇒ ∀̃f ι→τ (∀xι(rτ (fx)×A[fx/y])⇒ ⊥)| (2)

1. Let a ∈ |∀xι(∀yτ (A⇒ ⊥)⇒ ⊥)|, n ∈ N and b ∈ |∀̃yτ ((rτ (y)×A)⇒ ⊥)|.
We have to show that

λk.[λa.λx.λb.ax(λy.λz.b〈y, z〉)]〈ak, [n], bk, k〉 ∈ ⊥⊥

i.e. that

λk.ak〈[n],λ〈y, z, k′〉.bk〈λk′′.case k′′{y, z}, k′〉, k〉 ∈ ⊥⊥

Hence we are done if

λk.λ〈y, z, k′〉.bk〈λk′′.case k′′{y, z}, k′〉 ∈ |∀yτ (A⇒ ⊥)|

But if c ∈ τ t and d ∈ |A|, we have

λk.〈λk′.case k′{c, dk}, k〉 ∈ ||(rτ (c)×A)⇒ ⊥||

and we are done by assumption on b.
2. The proof is similar to that of (1). ⊓⊔

Table of Contents

On Bar Recursion and Choice in a Classical Setting 1
Valentin Blot and Colin Riba

	On Bar Recursion and Choice in a Classical Setting

