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On Bar Recursion and Choice in a Classical Setting

We show how Modified Bar-Recursion, a variant of Spector's Bar-Recursion due to Berger and Oliva can be used to realize the Axiom of Choice in Parigot's Lambda-Mu-calculus, a direct-style language for the representation and evaluation of classical proofs. We rely on Hyland-Ong innocent games. They provide a model to perform the usual infinitary reasoning on Bar-Recursion needed for the realization of classical choice, and where, moreover, the standard datatype of natural numbers is in the image of a CPS-translation.

Introduction

Peano's Arithmetic in all finite types (PA ω ) is a multisorted version of firstorder Peano's Arithmetic, with one sort for each simple type, together with the constants of Gödel's System T and their defining equations. When augmenting PA ω with the Axiom of Choice (CAC), we obtain a system known to contain large parts of classical analysis (see e.g. [START_REF] Kohlenbach | Applied Proof Theory: Proof Interpretations and their Use in Mathematics[END_REF][START_REF] Simpson | Subsystems of Second Order Arithmetic[END_REF]). A similar system can be obtained by extending Peano's Arithmetic to Second-Order Logic (see e.g. [START_REF] Simpson | Subsystems of Second Order Arithmetic[END_REF]).

We are interested here in the realizability interpretation of PA ω + CAC. Realizability is a mathematical tool, part of the Curry-Howard correspondence, used to extract computational content from formal proofs.

The usual route to get a computational interpretation of (some extension of) PA ω is to apply a negative translation, yielding proofs in (some extension of) Heyting's Arithmetic in all finite types (HA ω , the intuitionist variant of PA ω , see e.g. [START_REF] Troelstra | Metamathematical Investigation of Intuitionistic Arithmetic and Analysis[END_REF]), followed by a computational interpretation of the translated proofs. Realizability for HA ω can be obtained in simply-typed settings, typically using Gödel's System T. In this way, CAC is translated to a formula which can be realized by combining a realizer of the Intuitionistic Axiom of Choice (IAC) with a realizer of the Double Negation Shift (DNS, see Sect. 3). Intuitionistic choice is easily realizable, and realizers of DNS can be obtained by adapting Spector's Bar-Recursion to realizability [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF][START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF].

We are interested here in a computational interpretation of PA ω + CAC based on a realizability interpretation directly for classical proofs. It has been noted by Griffin [6] that the control operator call/cc of the functional language Scheme ⋆ UMR 5668 CNRS ENS Lyon UCBL INRIA can be typed using Peirce's Law, which gives full Classical Logic when added to Intuitionistic Logic. Since then, there have been much work on calculi for Classical Logic, starting from Parigot's λµ-calculus [START_REF] Parigot | Lambda-My-Calculus: An Algorithmic Interpretation of Classical Natural Deduction[END_REF]. Moreover, Krivine has developed a notion of Classical Realizability for Second-Order Peano's Arithmetic which relies on Girard's System F [START_REF] Krivine | Realizability in classical logic[END_REF] (see also [START_REF] Oliva | On Krivine's Realizability Interpretation of Classical Second-Order Arithmetic[END_REF][START_REF] Miquel | Existential witness extraction in classical realizability and via a negative translation[END_REF]).

In this paper, we investigate a version of Spector's Bar-Recursion in a classical realizability setting for PA ω , obtained by adapting Krivine's Realizability to a simply-typed extension of Parigot's λµ-calculus. Our main point concerns Bar-Recursion. Handling Bar-Recursion in realizability (typically to show that it realizes DNS) involves some reasoning on infinite non-constructive objects. This infinitary reasoning can be made directly at the level of a programming language extended with infinite terms, as in [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF]. Another possibility, as done in [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF], is to internalize realizability in the logic, and reason within the logic on finite terms under some axioms (typically bar-induction) which can only be validated in an infinitary model (typically a model of PCF). Similarly to [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF] and contrary to [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF], our notion of realizability is not internalized in the logic. For extraction of programs from proofs, our approach is similar to [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF]: we separate the programming language, which is kept finitary, from the infinitary model in which the realizability argument is made.

It is well-known that most non-degenerate models and operational semantics for the λµ-calculus rely on CPS translations. We work here with the call-by-name translation of Lafont-Reus-Streicher (see e.g. [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF][START_REF] Selinger | Control Categories ans Duality: on the Categorical Semantics of the Lambda-Mu Calculus[END_REF]). However, a difficulty arises with Bar-Recursion: the CPS translation makes its types seemingly too high to conclude with the usual argument [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF][START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF]. A solution is given by the innocent unbracketed Hyland-Ong game model of PCF [START_REF] Hyland | On Full Abstraction for PCF: I, II, and III[END_REF][START_REF] Laird | A Semantic analysis of control[END_REF]: the usual flat game arena of natural numbers can be built as a CPS translation in the coproduct completion of the model (this was observed, but not exploited, in [START_REF] Laird | A Semantic analysis of control[END_REF]).

We define a notion of classical realizability in this game model. Our main result is that the usual realizer of classical choice obtained by combining a realizer of IAC with Berger-Oliva's variant of Bar-Recursion [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF], is indeed a realizer of classical choice in our framework. We then obtain an extraction result for the λµ-terms by a logical relation argument (see e.g. [START_REF] Amadio | Domains and Lambda-Calculi[END_REF]), relating the operational semantics and the model.

The paper is organized as follows: We begin by presenting PA ω in Sect. 2. We then briefly discuss the usual computational interpretation of CAC by negative translation in Sect. 3. In Sect. 4, we present the bare minimum we need on Hyland-Ong games. Parigot's λµ-calculus, as well as its game interpretation and its operational semantics are discussed in Sect. 5. We then devise our notion of realizability in Sect. 6 and discuss the realization of CAC in Sect. [START_REF] Harmer | Games and Full Abstraction for Nondeterministic Languages[END_REF]. Detailed proofs are given in Appendices.

Peano's Arithmetic in All Finite Types

In this section, we briefly discuss the logical system on which we work in this paper, namely PA ω (Peano's Arithmetic in all finite types), as well as its extension with the axiom of choice. We build on usual versions of HA ω (see e.g. [START_REF] Troelstra | Metamathematical Investigation of Intuitionistic Arithmetic and Analysis[END_REF][START_REF] Kohlenbach | Applied Proof Theory: Proof Interpretations and their Use in Mathematics[END_REF]), with ideas of [START_REF] Parigot | Lambda-My-Calculus: An Algorithmic Interpretation of Classical Natural Deduction[END_REF][START_REF] Krivine | Realizability in classical logic[END_REF] for classical logic.

Language. The language of PA ω is multisorted, with one sort for each simple type. We use the following syntax of simple types, where ι is intended to be the base type of natural numbers:

σ, τ ∈ T ::= ι | σ → τ | σ × τ
We assume given, for each simple type τ , a countable set V τ = {x τ , y τ , . . . } of individual variables of type τ . Individuals are simply-typed terms

a, b ∈ I ::= x τ | ab | c
where (ab) τ provided a σ→τ , b σ for some σ, and c ranges over the constants 0 ι , S ι→ι , Rec τ →(ι→τ →τ )→ι→τ , Pair σ→τ →σ×τ , P τ1×τ2→τi i (i = 1, 2), k σ→τ →σ and s (ρ→σ→τ )→(ρ→σ)→ρ→τ . Let I 0 be the set of closed individuals and I τ 0 be the set of closed individuals of type τ .

Formulas are defined as follows:

A, B ∈ F ::= (a τ = τ b τ ) | ⊥ | A ⇒ B | A ∧ B | ∀x τ A
Note the atomic inequality ( = τ ). It is inspired from Krivine's work [START_REF] Krivine | Realizability in classical logic[END_REF] and will greatly eases our realizability interpretation (see Sect. 6). We use the following abbreviations:

¬A := A ⇒ ⊥ ∃x τ A := ¬∀x τ ¬A (a = τ b) := ¬(a = τ b) A ∨ B := ¬(¬A ∧ ¬B) (Γ ⊢ ∆, A) Γ ⊢ A | ∆
This system is chosen so as to have a direct extraction of realizers in Parigot's λµ-calculus (see Sect. 5 and 6). Note that the Ex Falso rule is restricted to atomic formulas. For each formula A one can easily derive Γ ⊢ A | ∆ from Γ ⊢ ⊥ | ∆. The introduction rules for existential quantification and disjunction are easy to derive:

Γ ⊢ A | ∆ Γ ⊢ A ∨ B | ∆ Γ ⊢ A[a τ /x] | ∆ Γ ⊢ ∃x τ A | ∆
Moreover, one can derive Peirce's Law and Double Negation Elimination:

Γ ⊢ ((A ⇒ B) ⇒ A) ⇒ A | ∆ Γ ⊢ ((A ⇒ ⊥) ⇒ ⊥) ⇒ A | ∆
as well as the elimination rules of disjunction and existential quantification:

Γ ⊢ C | ∆ provided Γ ⊢ A ∨ B | ∆, Γ, A ⊢ C | ∆ and Γ, B ⊢ C | ∆; and Γ ⊢ C | ∆ provided Γ ⊢ ∃x τ A | ∆ and Γ, A ⊢ C | ∆ with x not free in Γ, C, ∆.
Axioms for Equality and Arithmetic. The axioms of PA ω are the universal closures of the following formulas:

-Equality axioms are reflexivity ∀x τ (x = τ x) and Leibniz's scheme:

for all formula A, ∀x τ y τ (A[x/z] ⇒ ¬A[y/z] ⇒ x = τ y)
Note that the usual version of Leibniz's scheme is derivable:

∀x τ y τ (x = τ y ⇒ A[x/z] ⇒ A[y/z])
-Equational axioms (with variables of the appropriate types):

k x y = τ x s x y z = τ x z (y z) P i (Pair x 1 x 2 ) = τi x i (i = 1, 2) Rec x y 0 = τ x Rec x y (S z) = τ y z (Rec x y z)
-Arithmetic axioms are ∀x ι (S x = ι 0) and the Induction scheme:

for all formula A, A[0/x] ⇒ ∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A We write PA ω ⊢ A if ⊢ A| is derivable using the axioms of PA ω .
Axiom of Choice. Given τ ∈ T , we write CAC ι,τ for the following version of the axiom (scheme) of choice:

for all formula A, (∀x ι ∃y τ A) ⇒ ∃f ι→τ ∀x ι A[f x/y]
Note that this unfolds to

∀x ι (∀y τ (A ⇒ ⊥) ⇒ ⊥) ⇒ ∀f ι→τ (∀x ι A[f x/y] ⇒ ⊥) ⇒ ⊥
We write PA ω + CAC ι, for provability in PA ω using any CAC ι,τ for τ ∈ T .

Intuitionistic Modified Realizability and Bar-Recursion

In this section, we briefly and informally recall the realization of CAC via negative translation to HA ω + DNS, and discuss some aspects of our realization of CAC.

HA ω can be obtained from our presentation of PA ω by restricting deduction to intuitionistic sequents, i.e. sequents of the form Γ ⊢ A|. One also has to take a primitive notion of equality (instead of our primitive ( = τ )), and primitive existential quantification (disjunction can be coded). Gödel's negative translation can be adapted from PA ω to HA ω : let ( ) ¬ commute over the connectives of PA ω (remember that there is no ∨, ∃ in F), and put ¬¬ in front of atomic formulas, after having replaced (a = τ b) by ¬(a = τ b). It is equivalent to leave ⊥ unchanged and map (a = τ b) to ¬(a = τ b).

Let us briefly discuss Modified Realizability. To each closed formula A is associated a simple type A * of potential realizers of A. Actual realizers of A are closed terms of type A * satisfying a property, usually written t A, defined by induction on A. Typical clauses are:

t ι ⊥ := ⊥ t ι (a = τ b) := (a = τ b) t (A ⇒ B) := ∀u(u A ⇒ tu B) t ∀x τ A := ∀x τ (tx A) t (A ∧ B) := (P 1 t A ∧ P 2 t B) t ∃x τ A := (P 2 t A[P 1 t/x])
Note that this provides a realizer, written t IAC , of intuitionistic choice (IAC σ,τ ) 1 :

λz.Pair (λx.P 1 (zx)) (λx.P 2 (zx)) (∀x σ ∃y τ A) ⇒ ∃f σ→τ ∀x σ A[f x/y]
A proof in PA ω of a formula A can be mapped to a realizer of the negative translation A ¬ of A 2 . For CAC ι,τ , this leads (modulo the intuitionistic equivalence ¬∀¬ ←→ ¬¬∃) to find a realizer of

∀x ι ¬¬∃y τ A ¬ ⇒ ¬¬∃f ι→τ ∀x ι A ¬ [f x/y]
It is well-known (see e.g. [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF][START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF][START_REF] Kohlenbach | Applied Proof Theory: Proof Interpretations and their Use in Mathematics[END_REF]) that such a realizer can be obtained by combining a realizer of IAC ι,τ with a realizer of the Double Negation Shift

(∀x ι ¬¬B) ⇒ ¬¬∀x ι B (DNS)
for the instance B := ∃y τ A. Assuming Ψ realizes this instance of DNS, we get

λz.λk.Ψ z(λa.k(t IAC a)) ∀x ι ¬¬∃y τ A ¬ ⇒ ¬¬∃f ι→τ ∀x ι A ¬ [f x/y]
The reader can check that we obtain the following realizer of CAC:

t CAC := λz.λc.Ψ (t ¬¬∃ z)(λa.c(λx.P 1 (ax))(λx.P 2 (ax)) ∀x ι (∀y τ (A ⇒ ⊥) ⇒ ⊥) ⇒ ∀f ι→τ (∀x ι A[f x/y] ⇒ ⊥) ⇒ ⊥
1 We use the λ-notation for individual terms in I. 2 To get extraction for Π 0 2 -formulas, one can adapt Friedman's trick by defining (t ι ⊥) as ⊥ ⊥(t), where ⊥ ⊥ is a given predicate, see e.g. [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF] and also Sect. 6.

with t ¬¬∃ := λa.λx.λk.ax(λy.λz.k(Pair y z))

∀x ι ¬∀y τ ¬A ⇒ ∀x ι ¬¬∃y τ A Realizers Ψ of DNS can be obtained by adapting Spector's Bar-Recursion to realizability [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF][START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF].

In this paper, we show that (the interpretation in a suitable model of) t CAC realizes CAC ι,τ , for a notion of realizability defined for (the interpretation in a suitable model of) an extension of Parigot's λµ-calculus [START_REF] Parigot | Lambda-My-Calculus: An Algorithmic Interpretation of Classical Natural Deduction[END_REF]. We actually show that Berger and Oliva's version of Bar-Recursion [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF] realizes a version of CAC with partially relativized quantifiers (see Sect. 6 and 7). For PA ω , the realizers we obtain seem to translate to the same realizers as obtained by a negative translation from PA ω to HA ω followed by Friedman's translation and a realizability interpretation, as devised at the beginning of this section. However, a difficulty arises with Bar-Recursion: if we directly CPS-translate Bar-Recursion, we obtain a term of type

(ι ¬ → (τ → ι ¬ ) → ι ¬ ) → ((ι ¬ → τ ) → ι ¬ ) → ι ¬
where ι ¬ := (ι → ι) → ι. But the types seem too high to conclude using the usual argument [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF][START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF].

A solution is to perform a CPS translation such that ι ¬ is not too different from a type of natural numbers in a model of PCF. A natural candidate would be something like

ι ¬ := (ι → R) → R
Obvious choices for R (e.g. a one-point object) tend to give degenerated results: typically, in domains (and even predomains [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF]), taking R = {⊥} (R = ∅) gives a unique inhabitant in ι ¬ . We show that this can be solved by using the coproduct completion (given by the Fam construction, see e.g. [START_REF] Abramsky | Call-by-Value Games[END_REF]) of Hyland-Ong innocent unbracketed games for PCF. We rely on the fact (observed, but not exploited, in [START_REF] Laird | A Semantic analysis of control[END_REF]) that in the coproduct completion of these games, the basic type of natural numbers is of the form ( N → R) → R, for the one-move game R and the countable family of empty games N (see Sect. 4).

The Model of Hyland-Ong Games

In this section, we present the bare minimum we need on Hyland-Ong games. We use innocent unbracketed games, combined with the coproduct completion provided by the Fam construction. Details can be found in e.g. [START_REF] Hyland | On Full Abstraction for PCF: I, II, and III[END_REF][START_REF] Harmer | Games and Full Abstraction for Nondeterministic Languages[END_REF][START_REF] Laird | A Semantic analysis of control[END_REF][START_REF] Abramsky | Call-by-Value Games[END_REF].

Arenas and Strategies

Definition 4.1 (Arena). An arena is a countable forest of moves. Each move is given a polarity O (for Opponent) or P (for Player or Proponent):

-A root is of polarity O.
-A move which is not a root has the inverse polarity of that of his parent.

A root of an arena is also called an initial move. We will often identify an arena with its set of moves. Definition 4.2 (Justified sequence). Given an arena A, we define a justified sequence on A to be a finite word s on A together with a partial justifying function f : |s| ⇀ |s| such that:

-If f (i) is undefined, then s i is an initial move. -If f (i) is defined, then f (i) < i and s i is a child of s f (i) .
We denote the empty justified sequence by ǫ. Remark here that by definition of the polarity, if f (i) is undefined (s i is initial), then s i is of polarity O, and if f (i) is defined, then s i and s f (i) are of opposite polarities. Also, f (0) is never defined, and so s 0 is always an initial O-move. A justified sequence is represented for example as:

a b c

d e f g h i j

If A is an arena, X is a subset of A and s is a justified sequence on A, then s |X is the subsequence of s consisting of the moves of s which are in X.

Definition 4.3 (Play).

A play s on A is an even and alternating justified sequence of A, i.e., for any i, s 2i is a O-move and s 2i+1 is a P -move. We denote the set of plays of A by P A .

A play on an arena is the trace of an interaction between a program and a context, each one performing an action alternatively.

Definition 4.4 (Strategy).

A strategy σ on A is a non-empty even-prefixclosed set of finite plays on A such that:

-σ is deterministic -σ is innocent
The definitions of determinism and innocence are standard and can be found for example in [START_REF] Harmer | Games and Full Abstraction for Nondeterministic Languages[END_REF][START_REF] Hyland | On Full Abstraction for PCF: I, II, and III[END_REF].

Cartesian Closed Structure. The constructions we use will sometimes contain multiple copies of the same arena (for example A → A), so we distinguish the instances with superscripts (for example A (1) → A (2) ).

Let U be the empty arena and V be the arena with only one (opponent) move. If A and B are arenas consisting of the trees A 1 . . . A p and B 1 . . . B q , then the arenas A → B and A × B can be represented as follows:

A → B : A × B :

B 1 A (1) 1 • • • A (1) p • • • B q A (q) 1 • • • A (q) p A 1 • • • A p B 1 • • • B q
The constructions described here define a cartesian closed category whose objects are arenas and morphisms are innocent strategies. Details of the construction can be found in [START_REF] Harmer | Games and Full Abstraction for Nondeterministic Languages[END_REF][START_REF] Hyland | On Full Abstraction for PCF: I, II, and III[END_REF]. In the following this category will be denoted as G.

The Fam Construction

Our model is built as a continuation category [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF]. In order to make explicit the double negation translation of the base types, we base the model on the category of continuations R Fam (G) , where Fam(G) is a variant of the coproduct completion described in [START_REF] Abramsky | Call-by-Value Games[END_REF] applied to the category G defined in Sect. 4.1.

Definition 4.5 (Fam(G)). The objects of Fam(G) are families of objects of G indexed by at most countable sets, and a morphism from

{A i | i ∈ I} to {B j | j ∈ J} is a function f : I → J together with a family of morphisms of G from A i to B f (i) , for i ∈ I.
See [START_REF] Blot | Realizability for Peano Arithmetic with Winning Conditions in HO Games[END_REF] for details on the differences with [START_REF] Abramsky | Call-by-Value Games[END_REF]. Note that Fam(G) is a distributive category with finite products and coproducts, and has exponentials of all singleton families. The empty product and terminal object is the singleton family {U}, the empty sum and initial object is the empty family {}, and:

{A i | i ∈ I} × {B j | j ∈ J} := {A i × B j | (i, j) ∈ I × J} {A i | i ∈ I} + {B j | j ∈ J} := {C k | k ∈ I ⊎ J} where C k := A k if k ∈ I B k if k ∈ J {B 0 } {Ai | i∈I} := {Π i∈I B Ai 0 }
We fix once and for all: R := {V} which is an object of Fam(G) as a singleton family. R has all exponentials as stated above. Note that the canonical morphism δ

A : A → R (R A ) is a mono. The category of continuations R Fam(G)
is the full subcategory of Fam(G) consisting of the objects of the form R A . The objects of R Fam(G) are singleton families, and R Fam(G) is isomorphic to G. We will consider that objects and morphisms of R Fam(G) are arenas and strategies and we will use the vocabulary defined at the end of Sect. 4.1 on R Fam(G) also.

The Type Structure

We use the lambda notation in R Fam(G) , i.e. we build simply-typed λ-terms with constants in R Fam(G) . We write them using bold symbols (such as λ, , etc) in order make no confusion with the syntactic λµ-terms of Section 5.

Interpretation of Simple Types. Let N be the object {U n | n ∈ N} of Fam(G). We use the interpretation of simple types proposed in [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF] (see also [START_REF] Selinger | Control Categories ans Duality: on the Categorical Semantics of the Lambda-Mu Calculus[END_REF]). Given a simple type τ ∈ T , we associate two objects of R Fam(G) : the object [τ ] of programs of type τ , and the object τ of continuations of type τ . We let

ι := R N σ → τ := R σ × τ σ × τ := σ + τ [τ ] := R τ Note that σ → τ = [σ] × τ , and moreover [σ → τ ] = R [σ]× τ ≃ R τ R σ and [σ × τ ] ≃ R σ × R τ
Representation of Arithmetic Constants. In Fam(G) a morphism from the terminal object {U} to N = {U n | n ∈ N} is given by a function from the singleton set to N together with a strategy from U to U . Since there is only one such strategy, such a morphism is given by a natural number. We will call this morphism n. Similarly a morphism from N to N is given by a function from N to N. This leads to a morphism succ : N → N for the successor function on N . Moreover, given a : [τ ] (officially, a :

{U} → [τ ] in Fam(G)), and b : N → [τ ] → [τ ], we can define by induction on n ∈ N a morphism r a,b : N → [τ ] such that r a,b 0 = a and r a,b ( n + 1) = b n( r a,b ( n)). This leads to rec := λa.λb. r a,b in [τ ] → ( N → [τ ] → [τ ]) → N → [τ ].
We now discuss the object of R Fam(G) associated to the base type ι. We have:

[ι] := R R N = R R {Un | n∈N} ≃ R Π n∈N R ≃ {V Π n∈N V }
Note that this is the usual flat arena of natural numbers:

q m m m m m Q Q Q Q Q Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 0 • • • n • • •
It is easy to see that λk.k n corresponds to the strategy answering n to the initial opponent question q. Moreover, the only inhabitants of [ι] are the empty strategy ⊥ [ι] and the strategies λk.k n for n ∈ N.

The arithmetical constants of System T will be interpreted in R Fam(G) using succ :

[ι] → [ι] defined as succ := λn.λk.n(λx.k( succ x)) and rec : [τ ] → [ι → τ → τ ] → [ι] → [τ ]
with rec := λu.λv.λn.λk.n(λx. rec u(λy.v • (λk.ky))xk), where v • := λx.λy.λz.v x, y, z (see [START_REF] Blot | Realizability for Peano Arithmetic with Winning Conditions in HO Games[END_REF] for details).

It is convenient to use the notations ( )

• and ( ) • for resp. curryfication and uncurryfication. Note that as with v • above, the amount to which an expression is curryfied/uncurryfied depends on the context, and moreover that in G, ( )

• and ( )

• are the identity.

Lambda-Mu-Calculus

We present here an extension of Parigot's λµ-calculus [START_REF] Parigot | Lambda-My-Calculus: An Algorithmic Interpretation of Classical Natural Deduction[END_REF] that we will use as a programming language for our realizers. We begin by a basic language, which essentially adds pairs and products to the original calculus. We then present an extension with the arithmetic constants of Gödel's System T, which will be used for the realization of PA ω . Finally, we discuss the interpretation, along the lines of [START_REF] Selinger | Control Categories ans Duality: on the Categorical Semantics of the Lambda-Mu Calculus[END_REF], of the calculus in the model R Fam(G) , and present an operational semantics using an abstract machine adapted from [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF].

Syntax and Typing. We assume given two countable sets Var = {x, y, z, . . . } and CVar = {α, β, γ, . . . } of respectively term and continuation variables. The λµ-terms are defined as follows:

t, u ∈ Λ ::= x | λx.t | tu | µα.v | t, u | p 1 (t) | p 2 (t)
where v is a named term:

v ::= [α]t Γ ⊢ n : ι | ∆ Γ ⊢ succ : ι → ι | ∆ Γ ⊢ t : τ | ∆ Γ ⊢ u : ι → τ → τ | ∆ Γ ⊢ rec(t, u) : ι → τ | ∆ Interpretation in R Fam(G) . The interpretation of Λ T in R Fam(G) follows the lines of [15]. A term ⊢ t : τ | is interpreted by [t] ∈ [τ ].
To make the presentation simpler, we use λ-expressions in R Fam(G) build from the variables of Λ T with the following convention: a term variable x of type τ (resp. a continuation variable α of type σ) in Λ T becomes a variable x of type [τ ] (resp. a variable α of type σ ) in the λ-calculus of R Fam(G) :

[x] := x [n] := λk.k n [µα.[β]t] := λα.[t]β [λx.t] := λ x, k .[t]k [tu] := λk.[t] [u], k [succ] := λ n, k . succ n k [ t, u ] := λk.case k{[t], [u]} [p i (t)] := λk.[t](in i k) [rec(t, u)] := λ n, k .rec [t][u] n k
Operational Semantics. We now present an operational semantics for Λ T using an abstract machine. The machine is derived from the interpretation of Λ T in R Fam(G) , following the method of [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF]. Our machine is actually an adaptation of the machine of [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF] to a typed language with arithmetic constants.

The machine evaluates triples of the form (t, e, π), where t is a λµ-term, e is an environment and π is a stack. Environments map term variables to closures and continuation variables to stacks. Stacks, closures and environments are defined by mutual induction as usual:

Env.

e ∈ E :

:= ε | (x, c) :: e | (α, π) :: e Closures c ∈ C ::= (t, e) Stacks π ∈ Π ::= ⋆ | c, π | kp i (π) | ksucc(π) | krec(t, u, c, π)
We let e(x) := c if (x, c) is the first occurrence of the form (x, c ′ ) in e, and define e(α) similarly. Let dom(e) be the domain of the partial map e( ).

The evaluation rules are the following:

(x, e, π) ≻ (t, e ′ , π) if e(x) = (t, e ′ )
(tu, e, π) ≻ (t, e, (u, e), π ) (λx.t, e, c, π ) ≻ (t, (x, c) :: e, π)

(µα.[β]t, e, π) ≻ (t, (α, π) :: e, π ′ ) if ((α, π) :: e)(β) = π ′ (p i (t), e, π) ≻ (t, e, kp i (π)) i = 1, 2 ( t 1 , t 2 , e, kp i (π)) ≻ (t i , e, π) i = 1, 2 (succ, e, (t, e ′ ), π ) ≻ (t, e ′ , ksucc(π)) (n, e, ksucc(π)) ≻ (n + 1, e, π)
(rec(t, u), e, (v, e ′ ), π ) ≻ (v, e ′ , krec(t, u, e, π)) (0, e, krec(t, u, e ′ , π)) ≻ (t, e ′ , π) (n + 1, e, krec(t, u, e ′ , π)) ≻ (u, e ′ , (n, e), (rec(t, u)n, e ′ ), π )

The correctness of the machine (i.e. reduction preserves semantics) can be proved as usual 3 (see e.g. [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF]). For extraction, we actually only need the property stated in Prop. 7.3, to be discussed in presence of Bar-Recursion.

Classical Realizability

In this section, we present our notion of realizability. It is highly inspired from Krivine's Realizability [START_REF] Krivine | Realizability in classical logic[END_REF], but adapted to the simply-typed model R Fam (G) .

The main idea, adapting Krivine's ideas to the typed continuation category R Fam(G) , would be to fix a Pole ⊥ ⊥ ⊆ {[n] | n ∈ N}, and then associate to each formula A a type A * and a set A ⊆ A * defined by induction on A. Realizers would then be terms in A ⊥ ⊥ ⊆ [A * ], the Orthogonal of A.

We choose to have ⊥ ⊥ ⊆ [ι] to get extraction (see Prop. 7.4). This causes difficulties since [ι] = R ι is not a base type in R Fam (G) . Roughly speaking, our choice for ⊥ ⊥ leads to ⊥ * := ι, but there are not enough contexts in ι = {⊥ ι }, since applying ⊥ ι to a numeral [n] gives the empty strategy on R. A solution is to add some space in the interpretations, and have A ⊆ ι → A * and A ⊥ ⊥ ⊆ ι → [A * ] for a formula A. For instance, we can then have λk.k as a basic context "at type" ι (actually ι → ι ).

The definition of realizability involves two additional translations, that we present now. First, to each formula A, we associate the simple type A * :

(a τ = τ b τ ) * := ι ⊥ * := ι (∀x τ A) * := τ → A * (A ⇒ B) * := A * → B * (A ∧ B) * := A * × B *
Moreover, we map each individual term a ∈ I to a λµ-term a † ∈ Λ T :

x τ † := x (ab) † := a † b † s † := λxyz.xz(yz) k † := λxy.x 0 † := 0 S † := succ Rec † := λxy.rec(x, y) Pair † := λxy. x, y P i † := λx.p i (x)
The Realizability Construction. To a formula A, we will associate two sets

||A|| ⊆ ι → A * and |A| ⊆ ι → [A * ]
. These sets will only be defined for closed formulas. It is convenient (and necessary to deal with CAC in Sect. 7) to allow parameters in R Fam (G) . In order to realize the induction axiom, we must restrict to the total elements of R Fam(G) . For a simple type τ , the set τ t ⊆ [τ ] of its total elements is defined by induction on τ . Let ι t := {[n] | n ∈ N}, and using curryfied notation:

(σ → τ ) t := {a | ∀b ∈ σ t , ab ∈ τ t } (σ × τ ) t := {a | p 1 (a) ∈ σ t & p 2 (a) ∈ τ t } Lemma 6.1. For all a ∈ I τ 0 , [a † ] ∈ τ t .
We now only consider closed formulas with parameters of the appropriate type in

τ t (τ ∈ T ). Let ⊥ ⊥ ⊆ ι t . First, given A ⊆ ι → A * , we define A ⊥ ⊥ ⊆ ι → [A * ] as A ⊥ ⊥ := {a ∈ ι → [A * ] | ∀b ∈ A, λk.ak(bk) ∈ ⊥ ⊥} If moreover B ⊆ ι → B * , we let A ⊥ ⊥ • B := {λk. ak, bk ∈ ι → [A * ] × B * | a ∈ A ⊥ ⊥ & b ∈ B}
We now define the sets |A| ⊆ ι → [A * ] and ||A|| ⊆ ι → A * for a formula A.

We let |A| ⊆ ι → [A * ] be ||A|| ⊥ ⊥ , and define ||A|| ⊆ ι → A * by induction on A as follows:

||⊥|| := {λk.k} ||A ⇒ B|| := |A| • ||B|| ||a = τ b|| := ∅ if [a † ] = [b † ] {λk.k} otherwise ||A ∧ B|| := {λk.in 1 (ak) | a ∈ ||A||} ∪ {λk.in 2 (bk) | b ∈ ||B||} ||∀x τ A|| := a∈τ t {λk. a, bk | b ∈ ||A[a/x]||}
Realization of Equality and Arithmetic Axioms. We now discuss the realization of the axioms of PA ω . First, it is easy to see that all equational axioms (including reflexivity) are realized by the identity: Lemma 6.2. We have λk. where in each case, individuals a, b, c are in the appropriate τ t , σ t , ρ t .

The realization of our version of Leibniz's scheme is obtained by applying realizers of the first premise to realizers of the second premise.

Lemma 6.3. λk.[λx.λy.yx] ∈ |A[a τ /z τ ] ⇒ ¬A[b τ /z τ ] ⇒ a τ = τ b τ |.
For the Arithmetic axioms, it is easy to see that (Sa = ι 0) is realized by any natural number. As expected, the recursor rec( , ) realizes induction. Lemma 6.4. (i) For all n ∈ N and all a ∈ ι t , we have λk.

[n] ∈ |Sa = ι 0|. (ii) λk.[λx.λy.rec(x, y)] ∈ |A[0/x] ⇒ ∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A|.
Adequacy for Classical Proofs. Adequacy of the realizability interpretation is proved as usual (see App. A).

Theorem 6.5. Let Γ, A, ∆ with Γ = A 1 , . . . , A n , ∆ = B 1 , . . . , B m , and such that FV(Γ, A, ∆) ⊆ {x τ1 1 , . . . , x τ k k }. From a proof of Γ ⊢ A | ∆ in PA ω one can build a term x 1 : τ 1 , . . . , x k : τ k , y 1 : A 1 * , . . . , y n : A n * ⊢ t : A * | α 1 : B 1 * , . . . , α m : B m * such that for all c 1 ∈ τ 1 t , . . . , c k ∈ τ k t , all a 1 ∈ |A 1 [c/x]|, . . . , a n ∈ |A n [c/x]|, and all b 1 ∈ ||B 1 [c/x]||, . . . , b m ∈ ||B m [c/x]||, we have λk.[t][c/x][a 1 k/y 1 , . . . , a n k/y n , b 1 k/α 1 , . . . , b m k/α m ] ∈ |A[c/x]|
In particular, from a proof of ⊢ A| in PA ω with A closed, one can build a term ⊢ t : A * | such that λk.[t] ∈ |A|.

Extraction. Extraction of witnessing programs from realizable (and hence from provable) Π 0 2 statements is performed as usual. We come back on this point in Sect. 7 (Prop. 7.4) in presence of CAC and Bar-Recursion.

Realization of Classical Choice

In this section we discuss the realization of the classical axiom of choice CAC ι, . Our realizer is based on Berger & Oliva's variant of Spector's Bar-Recursion [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF].

Extension of the λµ-Calculus with Bar-Recursion. We extend the set Λ T with constants for bar-recursion: t, u ∈ Λ Ψ ::= . . . | Ψ τ (t, u) s 0 , . . . , s n , where n ∈ N and τ ∈ T .

These constants are typed as follows:

Γ ⊢ Ψ τ (t, u) s 0 , . . . , s n : ι | ∆ whenever Γ ⊢ t : ι → (τ → ι) → ι | ∆, Γ ⊢ u : (ι → τ ) → ι | ∆ and Γ ⊢ s i : τ | ∆ for all 0 ≤ i ≤ n.
The operational semantics uses some auxiliary terms. We define by induction on τ the terms ⊢ ex τ : ι → τ |. Let ex ι := λx.x, ex τ →σ := λx.λ .ex σ x and ex τ ×σ := λx. ex τ x, ex σ x . Moreover, given n ∈ N, s 0 , . . . , s n , t ∈ Λ Ψ , we let s 0 , . . . , s n @t be a term (written using rec) such that for all e, e ′ ∈ E, π ∈ Π and m ∈ N, ( s 0 , . . . , s n @t, e, (m, e ′ ), π ) ≻ (s m , e, π) if m ≤ n (t, e, (m -(n + 1), e ′ ), π ) otherwise

The operational semantics of Ψ τ (t, u) s 1 , . . . , s n is given by: (Ψ τ (t, u) s 0 , . . . , s n , e, π) ≻ (u, e, ( s 0 , . . . , s n @λ .ex τ (t n + 1 λx.Ψ τ (t, u) s 0 , . . . , s n , x ), e), π )

The Bar-Recursor in R Fam (G) . We now define the strategies interpreting Ψ τ in R Fam(G) . Fix τ ∈ T . First, given a 0 , . . . , a n ∈ [τ ], and b ∈ [ι → τ ], let a 0 , . . . , a n @b := [ x 0 , . . . , x n @y][a 0 /x 0 , . . . , a n /x n , b/y] For each m ∈ N, we will define by induction on m a family of strategies (

Ψ m n ) n∈N . Each Ψ m n will be in [τ ] n → τ Ψ , where [τ ] 0 := {U}, [τ ] n+1 := [τ ] × [τ ] n and τ Ψ := [ι → (τ → ι) → ι] → [(ι → τ ) → ι] → [ι]
We let Ψ 0 n := λ x 1 , . . . , x n .⊥ τ Ψ and

Ψ m+1 n := λ x 1 , . . . , x n .λb.λc.c • ( x 1 , . . . , x n @ λ .[ex τ ] • (b • [n + 1] (λx. Ψ m n x 1 , . . . , x n , x b c) • ))
Given a 0 , . . . , a n ∈ [τ ], we now define a strategy Ψ τ a0,...,an using the CPO structure on G (and hence on Fam(G)). Note that the family ( Ψ m n+1 a 0 , . . . , a n ) m∈N is directed. We let Ψ τ a0,...,an := m∈N Ψ m n+1 a 0 , . . . , a n and [Ψ τ (t, u) s 0 , . . . ,

s n ] := Ψ τ [s0],...,[sn] [t][u].
Realization of CAC ι, . We discuss here the realization of CAC ι,τ using (the interpretation in Λ Ψ ) of the term t CAC build in Sect. 

] ∈ |∀x ι (∀y τ (A ⇒ ⊥) ⇒ ⊥) ⇒ ∀f ι→τ (∀x ι A[f x/y] ⇒ ⊥) ⇒ ⊥|.
The proof of Prop. 7.1 is deferred to App. C. Contrary to e.g. [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF][START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF], we do not rely on the decomposition of CAC as IAC + DNS discussed in Sect. 3. Rather, we show directly that Bar-Recursion realizes a form of choice.

The main point is to decompose the notion of realizability proposed in Sect. 6 w.r.t. the relativization of quantifiers. We first extend the formulas:

A, B ::= . . . | ∀x τ A | (r τ (a τ ) × A) ⇒ B
Hence, in extended formulas, the construction (r τ (a) × A) is only allowed to appear to the left of an implication. Realizability is extended as follows:

|| ∀x τ A|| := a∈τ t ||A[a/x]|| ||(r τ (c) × A) ⇒ B|| := {λk. λk ′ .case k ′ {c, ak}, bk | a ∈ |A| & b ∈ ||B||}
Extended formulas and their realizability interpretation rely on ideas introduced in Krivine's Realizability [START_REF] Krivine | Realizability in classical logic[END_REF] (see also [START_REF] Miquel | Existential witness extraction in classical realizability and via a negative translation[END_REF]). We also extend the mapping ( ) * :

( ∀x τ A) * := A * ((r τ (a) × A) ⇒ B) * := τ × A * → B *
The following is the key for Prop. 7.1. It is shown as usual, see e.g. [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF][START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF].

Lemma 7.2. Let B such that (B ⇒ ⊥) is an extended formula. Assume b ∈ |∀x ι ( ∀y τ (B ⇒ ⊥) ⇒ ⊥)| and c ∈ | ∀f ι→τ (∀x ι B[f x/y] ⇒ ⊥)|. Then λk. Ψ B * (bk)(ck) ∈ |⊥|.
Computational Adequacy and Extraction. For extraction, we rely on the following property relating the evaluation of λµ-terms with their interpretation in R Fam(G) . The proof is deferred to App. B.

Proposition 7.3. (i) If ⊢ t : ι| in Λ Ψ , then for all n ∈ N we have (t, ε, ⋆) ≻ (n, e, ⋆) if [t] = [n]. (ii) Let ⊢ t : ι → ι in Λ Ψ . For all n, m ∈ N, if λk.[t] [n], k = [m] then (tn, ε, ⋆) ≻ (m, e, ⋆).
Extraction of witnessing programs from realizable (and hence from provable) Π 0 2 statements is performed as usual: Proposition 7.4. From a proof of PA ω + CAC ι, ⊢ ∀x ι ∃y ι (a = ι 0) (where FV(a) ⊆ {x, y}), we can extract a term ⊢ t : ι → ι| such that for all n ∈ N, there is m ∈ N such that (tn, ε, ⋆) ≻ (m, e, ⋆) and 

Conclusion

We presented a notion of classical realizability for PA ω + CAC based on Hyland-Ong innocent unbracketed games for a simply-typed extension of Parigot's λµcalculus. It is not clear whether in our approach decomposes CAC as IAC + DNS, because of the interaction of the CPS translation with Friedman's trick. Further works will concern this question, a comparison with [START_REF] Streicher | A Classical Realizability Model araising from a Stable Model of Untyped Lambda-Calculus[END_REF], where Bar-Recursion is used in an untyped Classical Realizablity model, as well as trying to extend the result to non-innocent games (along the lines of [START_REF] Blot | Realizability for Peano Arithmetic with Winning Conditions in HO Games[END_REF]), known to rise problems with Bar-Recursion [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF].

A Adequacy of the Realizability Interpretation

In this appendix, we give a proof of adequacy of our realizability interpretation (Thm. 6.5). 

Lemma A.1. If c ∈ ι → [τ → A * ], then: c ∈ |∀x τ A| ⇔ ∀e ∈ τ t ,
λk.(λk ′ .[p 1 (x)][ck ′ /x])k(ak) = λk.([p 1 (x)][ck/x])(ak) = λk.(λk ′ .x(in 1 k ′ ))[ck/x])(ak) = λk.(λk ′ .ck(in 1 k ′ ))(ak) = λk.ck(in 1 (ak))
and similarly, if b ∈ ||B|| then: where in each case, individuals e, f, g ∈ τ t have the appropriate types τ .

λk.(λk ′ .[p 2 (x)][ck ′ /x])k(bk) = λk.ck(in 2 (2k)) therefore: c ∈ |A ∧ B| ⇔ ∀a ∈ ||A||, λk.(λk ′ .[p 1 (x)][ck ′ /x])k(ak) ∈ ⊥ ⊥ and ∀B ∈ ||B||, λk.(λk ′ .[p 2 (x)][ck ′ /x])k(bk) ∈ ⊥ ⊥ that is: c ∈ |A ∧ B| ⇔ λk ′ .[p 1 (x)][ck ′ /x] ∈ |A|
Proof. First remark that if e, f ∈ τ t are such that e = f , then ||e

= τ f || = {λk.k} = ||⊥||, so |e = τ f | = |⊥|. Since |e = τ f | is |e = τ f ⇒ ⊥|, we have λk.[λx.x] ∈ |e = τ f | by lemma A.4.
All the results of the lemma are then instances of this, using the interpretation of the terms in the model and its adequacy. For example if e ∈ τ t and f ∈ σ t , then: Then we have: Proof. We first prove that for any g ∈ I σ with parameters and FV(g

λk.[λx.λy.yx] ∈ |A[e/z] ⇒ ¬A[f /z] ⇒ e = τ f | ⇔ ∀a ∈ |A[e/z]|, λk.[λy.yx][ak/x] ∈ |¬A[f /z] ⇒ e = τ f | ⇔ ∀a ∈ |A[e/z]|, ∀b ∈ |¬A[f /z]|, λk.[x ′ y ′ ][[λy.yx][ak/x]/x ′ , bk/y ′ ] ∈ |e = τ f | but: λk.[x ′ y ′ ][[λy.yx][ak/x]/x ′ ,
) = {x τ }, we have [g[e/x] † ] = [g[f /x] †
] by induction on the structure of the term g. Then the proof goes by induction on the structure of the formula A.

⊓ ⊔ Lemma A.9. (i) For all n ∈ N and all e ∈ ι t , we have λk.

[n] ∈ |Se = ι 0|. (ii) λk.[λx.λy.rec(x, y)] ∈ |A[0/x] ⇒ ∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A|.
Proof. (i) Since for any e ∈ ι t there is some m ∈ N such that e = [m], we have:

[S † x][e/x] = [S † x][[n]/x] = [S † n] = [succ n] = [n + 1] so [S † x][e/x] = [n + 1] = [0] = [0 † ]. Therefore ||Se = ι 0|| = ∅, so |Se = ι 0| = ι → [ι]
, and therefore for any n ∈ N we have λk.

[n] ∈ |Se = ι 0|. (ii) We have by lemmas A.3 and A.1:

λk.[λx.λy.rec(x, y)] ∈ |A[0/x] ⇒ ∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, λk.[xy][(λk ′ .[λx ′ .λy ′ .rec(x ′ , y ′ )])k/x, a 0 k/y] ∈ |∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, λk.[xy][[λx ′ .λy ′ .rec(x ′ , y ′ )]/x, a 0 k/y] ∈ |∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, λk.[(λx ′ .λy ′ .rec(x ′ , y ′ ))y][a 0 k/y] ∈ |∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, λk.[λy ′ .rec(y, y ′ )][a 0 k/y] ∈ |∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, λk.[λy.rec(x, y)][a 0 k/x] ∈ |∀x ι (A ⇒ A[Sx/x]) ⇒ ∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, λk.[xy][(λk ′ .[λy ′ .rec(x, y ′ )][a 0 k/x])k/x, a 1 k/y] ∈ |∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, λk.[xy][[λy ′ .rec(x, y ′ )][a 0 k/x]/x, a 1 k/y] ∈ |∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, λk.[(λy ′ .rec(x, y ′ ))y][a 0 k/x, a 1 k/y] ∈ |∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, λk.[rec(x, y)][a 0 k/x, a 1 k/y] ∈ |∀x ι A| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, ∀e ∈ ι t , λk.[xz][(λk ′ .[rec(x, y)][a 0 k ′ /x, a 1 k ′ /y])k/x, e/z] ∈ |A[e/x]| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, ∀e ∈ ι t , λk.[xz][[rec(x, y)][a 0 k/x, a 1 k/y]/x, e/z] ∈ |A[e/x]| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, ∀a ∈ ι t , λk.[rec(x, y)z][a 0 k/x, a 1 k/y, e/z] ∈ |A[e/x]| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, ∀n ∈ N, λk.[rec(x, y)z][a 0 k/x, a 1 k/y, [n]/z] ∈ |A[[n]/x]| ⇔ ∀a 0 ∈ |A[0/x]|, ∀a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|, ∀n ∈ N, λk.[rec(x, y)n][a 0 k/x, a 1 k/y] ∈ |A[[n]/x]|
Since for all e ∈ ι t there is some n ∈ N such that e = [n], and therefore

|A[e/x]| = |A[[n]/x]|. Let us fix a 0 ∈ |A[0/x]| and a 1 ∈ |∀x ι (A ⇒ A[Sx/x])|.
We have:

a 1 ∈ |∀x ι (A ⇒ A[Sx/x])| ⇔ ∀e ∈ ι t , λk.[xy][a 1 k/x, e/y] ∈ |A[e/x] ⇒ A[Se/x]| ⇔ ∀n ∈ N, λk.[xy][a 1 k/x, [n]/y] ∈ |A[[n]/x] ⇒ A[S[n]/x]| ⇔ ∀n ∈ N, λk.[xn][a 1 k/x] ∈ |A[[n]/x] ⇒ A[S[n]/x]| ⇔ ∀n ∈ N, ∀a 2 ∈ |A[[n]/x]|, λk.[xy][(λk ′ .[xn][a 1 k ′ /x])k/x, a 2 k/y] ∈ |A[S[n]/x]| ⇔ ∀n ∈ N, ∀a 2 ∈ |A[[n]/x]|, λk.[xy][[xn][a 1 k/x]/x, a 2 k/y] ∈ |A[S[n]/x]| ⇔ ∀n ∈ N, ∀a 2 ∈ |A[[n]/x]|, λk.[xny][a 1 k/x, a 2 k/y] ∈ |A[S[n]/x]| ⇔ ∀n ∈ N, ∀a 2 ∈ |A[[n]/x]|, λk.[xny][a 1 k/x, a 2 k/y] ∈ |A[[n + 1]/x]| by lemma A.8, since [(S[n]) † ] = [(Sx) † ][[n]/x] = [succ x][[n]/x] = [succ n] = [n + 1]
. We now prove by induction on n ∈ N that:

λk.[rec(x, y)n][a 0 k/x, a 1 k/y] ∈ |A[[n]/x]| -n = 0: λk.[rec(x, y)0][a 0 k/x, a 1 k/y] = λk.[x][a 0 k/x, a 1 k/y] = λk.x[a 0 k/x, a 1 k/y] = λk.a 0 k = a 0 ∈ |A[0/x]| = |A[[0 † ]/x]| = |A[[0]/x]|
n = m + 1: the induction hypothesis gives:

λk.[rec(x, y)m][a 0 k/x, a 1 k/y] ∈ |A[[m]/x]|
and a 1 is such that:

∀a 2 ∈ |A[[m]/x]|, λk.[xmy][a 1 k/x, a 2 k/y] ∈ |A[[m + 1]/x]| therefore: λk.[xmy][a 1 k/x, (λk ′ .[rec(x ′ , y ′ )m][a 0 k ′ /x ′ , a 1 k ′ /y ′ ])k/y] ∈ |A[[m + 1]/x]| but: λk.[xmy][a 1 k/x, (λk ′ .[rec(x ′ , y ′ )m][a 0 k ′ /x ′ , a 1 k ′ /y ′ ])k/y] = λk.[xmy][a 1 k/x, [rec(x ′ , y ′ )m][a 0 k/x ′ , a 1 k/y ′ ]/y] = λk.[xm(rec(x ′ , y ′ )m)][a 1 k/x, a 0 k/x ′ , a 1 k/y ′ ] = λk.[y ′ m(rec(x ′ , y ′ )m)][a 0 k/x ′ , a 1 k/y ′ ] = λk.[ym(rec(x, y)m)][a 0 k/x, a 1 k/y] = λk.[rec(x, y)m + 1)][a 0 k/x, a 1 k/y] so we conclude: λk.[rec(x, y)n)][a 0 k/x, a 1 k/y] ∈ |A[[n]/x]| ⊓ ⊔
We associate to each axiom A a closed typed λµ-term ξ A as follows:

ξ ∀x τ (x=τ x) = λxy.y : τ → ι → ι ξ ∀x τ ∀y τ (A[x]⇒¬A[y]⇒x =τ y) = λxyuv.vu : τ → τ → A * → (A * → ι) → ι ξ ∀x τ ∀y σ (kxy=τ x) = λxyu.u : τ → σ → ι → ι) → ι ξ ∀x τ ∀y σ ∀z ν (sxyz=ν xz(yz)) = λxyzu.u : τ → σ → ν → ι → ι ξ ∀x ι (Sx =ι0) = λx.0 : ι → ι ξ ∀x τ ∀y ι→τ →τ (Recxy0=τ x) = λxyu.u : τ → (ι → τ → τ ) → ι → ι ξ ∀x τ ∀y ι→τ →τ ∀z ι (RecxySz=τ yz(Recxyz)) = λxyzu.u : τ → (ι → τ → τ ) → ι → ι → ι ξ A[0]⇒∀y τ (A[y]⇒A[Sy])⇒∀x ι A[x] = λuv.rec(u, v) : A * → (ι → A * → A * ) → ι → A *
We extend the translation ( ) * to contexts in the obvious way:

(A 1 , . . . , A n ) * is translated to x 1 : A 1 * , . . . , x n : A n * .
We translate each derivation

ε Γ ⊢ A | ∆ to a typing derivation of x : τ , Γ * ⊢ ε * : A * | ∆ * and each derivation ε (Γ ⊢ ∆)
to a typing derivation of ε * : (x :

τ , Γ * ⊢ ∆ * ), where the free variables x τ of Γ, A, ∆ occur as x : τ in x : τ :

Γ, A ⊢ A | ∆ * = x : τ , Γ * , x : A * ⊢ x : A * | ∆ * where x = FV(Γ, A, ∆) Γ ⊢ A | ∆ (A axiom) * = . . . x : τ , Γ * ⊢ ξ A : A * | ∆ * where x = FV(Γ, ∆)    ε Γ ⊢ ⊥ | ∆ Γ ⊢ a τ = τ b τ | ∆    * = . . . x : τ , y : σ, Γ * ⊢ ε * : ι | ∆ * where y = FV(a τ , b τ )    ε Γ, A ⊢ B | ∆ Γ ⊢ A ⇒ B | ∆    * = . . . x : τ , Γ * , y : A * ⊢ ε * : B * | ∆ * x : τ , Γ * ⊢ λy.ε * : A * → B * | ∆ *     ε Γ ⊢ A ⇒ B | ∆ ζ Γ ⊢ A | ∆ Γ ⊢ B | ∆     * = . . . x : τ , Γ * ⊢ ε * : A * → B * | ∆ * . . . x : τ , Γ * ⊢ ζ * : A * | ∆ * x : τ , Γ * ⊢ ε * ζ * : B * | ∆ *     ε Γ ⊢ A | ∆ ζ Γ ⊢ B | ∆ Γ ⊢ A ∧ B | ∆     * = . . . x : τ , Γ * ⊢ ε * : A * | ∆ * . . . x : τ , Γ * ⊢ ζ * : B * | ∆ * x : τ , Γ * ⊢ ε * , ζ * : A * × B * | ∆ *    ε Γ ⊢ A 1 ∧ A 2 | ∆ Γ ⊢ A i | ∆ (i = 1, 2)    * = . . . x : τ , Γ * ⊢ ε * : A * × B * | ∆ * x : τ , Γ * ⊢ p i (ε * ) : A i * | ∆ *    ε Γ ⊢ A | ∆ Γ ⊢ ∀x τ A | ∆ (x / ∈ FV(Γ, ∆))    * = . . . x : τ , x : τ, Γ * ⊢ ε * : A * | ∆ * x : τ , Γ * ⊢ λx.ε * : τ → A * | ∆ *    ε Γ ⊢ ∀x τ A | ∆ Γ ⊢ A[a τ /x] | ∆    * = . . . x : τ , y : σ, Γ * ⊢ ε * : τ → A * | ∆ * x : τ , y : σ, Γ * ⊢ ε * a τ † : A * | ∆ * where y = FV(a τ )    ε Γ ⊢ A | ∆, A (Γ ⊢ ∆, A)    * = . . . x : τ , Γ * ⊢ ε * : A * | ∆ * , α : A * [α]ε * : (x : τ , Γ * ⊢ ∆ * , α : A * )    ε (Γ ⊢ ∆, A) Γ ⊢ A | ∆    * = . . . ε * : (x : τ , Γ * ⊢ ∆ * , α : A * ) x : τ , Γ * ⊢ µα.ε * : A * | ∆ * Theorem A.10. Let ε Γ ⊢ A | ∆ in PA ω , with FV(Γ, A, ∆) ⊆ {x τ1 1 , . . . , x τ k k }, Γ = A 1 , . . . , A n and ∆ = B 1 , . . . , B m .
Then 

x 1 : τ 1 , . . . , x k : τ k , y 1 : A 1 * , . . . , y n : A n * ⊢ ε * : A * | α 1 : B 1 * , . . . , α m : B m * is such that for all c 1 ∈ τ 1 t , . . . , c k ∈ τ k t ,
-ε = ε ′ Γ, A ⊢ B | ∆ Γ ⊢ A ⇒ B | ∆
: the induction hypothesis gives for any so we conclude using the induction hypothesis. 

c 1 ∈ τ 1 t , . . . , c k ∈ τ k t , a 1 ∈ |A 1 [c/x]|, . . . , a n ∈ |A n [c/x]|, b 1 ∈ ||B 1 [c/x
-ε = ε ′ Γ ⊢ A ⇒ B | ∆ ζ Γ ⊢ A | ∆ Γ ⊢ B | ∆ : let c 1 ∈ τ 1 t , . . . , c k ∈ τ k t , a 1 ∈ |A 1 [c/x]|, . . . , a n ∈ |A n [c/x]|, b 1 ∈ ||B 1 [c/x
-ε = ε ′ Γ ⊢ A | ∆ ζ Γ ⊢ B | ∆ Γ ⊢ A ∧ B | ∆
: by induction hypothesis we have: which is true by induction hypothesis. so we can conclude.

-ε = ε ′ Γ ⊢ A 1 ∧ A 2 | ∆ Γ ⊢ A i | ∆ (i =
-ε = ε ′ Γ ⊢ A | ∆ Γ ⊢ ∀x τ A | ∆ (x / ∈ FV(Γ, ∆))
: by induction hypothesis we have: 

∀c ∈ τ t , λk.[ε ′ * ][c/x, ak/y, bk/α] ∈ |A[c/x, c/x]| First, since x is not free in A 1 , . . . , A n , B 1 , . . . , B m we have |A i [c/x, c/x]| = |A i [c/x]| and ||B i [c/x, c/x]|| = ||B i [c/x]
-ε = ε ′ Γ ⊢ ∀x τ A | ∆ Γ ⊢ A[a τ /x]
[c/x, [a † ][c/x]/x]| = |A[a τ /x][c/x]| we obtain: λk.[ε ′ * a † ][c/x, ak/y, bk/α] ∈ |A[a τ /x][c/x]| -ε = ε ′ Γ ⊢ A | ∆, A (Γ ⊢ ∆, A)
: we prove here that for any 

c 1 ∈ τ 1 t , . . . , c k ∈ τ k t , a 1 ∈ |A 1 [c/x]|, . . . , a n ∈ |A n [c/x]|, b 1 ∈ ||B 1 [c/x]||, . . . , b m ∈ ||B m [c/x]
= λk.(λk ′ .[ε ′ * ][c/x, ak ′ /y, bk ′ /α, bk ′ /α])k(bk)
which is in ⊥ ⊥ using the induction hypothesis and the fact that b

∈ ||A[c/x]||. -ε = ε ′ (Γ ⊢ ∆, A) Γ ⊢ A | ∆
: the previous point gives us: 

∀b ∈ ||A[c/x]||, λk.[ε ′ * ][c/x,
τ relations R τ ⊆ Π × ( ι → τ ) and R ⊤ ⊤ τ ⊆ C × ( ι → τ ).
The main point, given by Lemma B.5, is that we can define R ι so that for all n ∈ N, we have ((n, e), λk.

[n]) ∈ R ⊤ ⊤ ι .
B. Recall from Section 4 that we use a simply-typed λ-calculus with constants in Fam(G).

To each simple type τ , we will associate two binary relations For the moment, we assume given some R ι ⊆ Π × ( ι → ι ), and define R τ by induction on τ as follows:

R τ ⊆ Π × ( ι → τ ) and R ⊤ ⊤ τ ⊆ C × ( ι → [τ ]) First, given any A ⊆ Π × ( ι → τ ), we let A ⊤ ⊤ ⊆ C × ( ι → [τ ]
R σ×τ := {(kp 1 (π), λk.in 1 (ak)) | (π, a) ∈ R σ } ∪ {(kp 2 (π), λk.in 2 (ak)) | (π, a) ∈ R τ } R σ→τ := (R ⊤ ⊤ σ • R τ )
This definition of R τ with R ι arbitrary is sufficient to deal with the λµcalculus with products. The actual definition on R ι will be given in App. B.2, when discussing arithmetic constants. 

(k) := [t][b 1 (k)/x 1 , . . . , b n (k)/x n , a 1 (k)/α 1 , . . . , a m (k)/α m ] In particular, if ⊢ t : τ |, then we have ((t, ε), λk.[t]) ∈ R ⊤ ⊤ τ .
Proof. By induction on typing judgments. In the following, we let Γ be the context x 1 : τ 1 , . . . , x n : τ n and ∆ be α 1 : σ 1 , . . . , α m : σ m . Unless stated otherwise, we will always assume given (u i , e i , b i ) 1≤i≤n and (π j , a j ) 1≤j≤m as in the statement of the theorem. We reason by cases on the last applied typing rule.

Γ, x 0 : τ ⊢ x 0 : τ | ∆ Let ((u 0 , e 0 ), b 0 ) ∈ R ⊤ ⊤ τ and (π, a) ∈ R τ . We have to show ((u 0 , e 0 ), b 0 ) ⊤ ⊤ λk.t(k)(ak)
We have (t, e, π) ≻ (u 0 , e 0 , π)

and λk.t(k) = λk.b 0 k = b 0
We are done since by assumption,

(u 0 , e 0 , π) ⊤ ⊤ λk.b 0 k(ak) Γ, x : τ ⊢ t : σ | ∆ Γ ⊢ λx.t : τ → σ | ∆ Let ((u 0 , e 0 ), b 0 ) ∈ R ⊤ ⊤ τ and (π, a) ∈ R σ . We have to show (λx.t, e, (u 0 , e 0 ), π ) ⊤ ⊤ λk.(λ x, k ′ .t(k)k ′ ) b 0 k, ak
We have (λx.t, e, (u 0 , e 0 ), π ) ≻ (t, ((x, (u 0 , e 0 )) :: e, π)

and λk.(λ x, k ′ .t(k)k ′ ) b 0 k, ak = λk.t(k)[b 0 k/x](ak)
We have (p i (t), e, π) ≻ (t, e, kp i (π))

and we are done since

(kp i (π), λk.in i (ak)) ∈ R τ1×τ2
and since by induction hypothesis

((t, e), λk.t(k)) ∈ R ⊤ ⊤ τ1×τ2 Γ ⊢ t : τ | ∆, α : τ [α]t : (Γ ⊢ ∆, α : τ ) t : (Γ ⊢ ∆, α : τ ) Γ ⊢ µα.t : τ | ∆
It is actually sufficent to consider the case of Proof. We show by induction on ordinals α ≤ λ that for all (π, a) ∈ R α ι , we have (n, e, π) ⊤ ⊤ λk.[n](ak) for all n ∈ N and all e ∈ E.

Γ ⊢ t : σ | ∆, β : σ . . . Γ ⊢ µα.[β]t : τ | (∆, β : σ) \ {α : τ } Let (π,
First, if α is a limit ordinal, then

R α ι = β<α R β ι .
Hence (π, a) ∈ R α ι iff (π, a) ∈ R β ι for some β < α and the result follows directly by induction hypothesis.

Otherwise, α is either ∅ or a limit ordinal β + 1. We reason by cases on (π, a) ∈ R α ι .

-Case of (⋆, λk.k). Given n ∈ N and e ∈ E, we have to show 

B.3 Adequacy for Bar-Recursion

We now discuss computational adequacy for the bar-recursor Ψ . We use the wellknown technique of fixpoint induction, as in the usual proofs of computational adequacy for PCF (see e.g. [START_REF] Amadio | Domains and Lambda-Calculi[END_REF]). We rely on the following remarks (for all type σ): For the induction step, first note that thanks to the results of App. B.1 and B.2, we have the adequacy for the construction . . . @ : (( s 0 , . . . , s n @c, e), λk. a 0 k, . . . , a n k @(ck)) ∈ R ⊤ ⊤ ι→τ (((v, e), c) ∈ R ⊤ ⊤ ι→τ )

  [λx.x] ∈ |a = τ a|. Moreover, λk.[λx.x] ∈ |k a b = τ a| λk.[λx.x] ∈ |s a b c = τ ac(bc)| λk.[λx.x] ∈ |Rec a b 0 = τ a| λk.[λx.x] ∈ |Rec a b (S c) = τ bc(Rec a b c)|

  [a † ][[n]/x, [m]/y] = [0]. Proof (sketch). By adequacy, we get u s.t. λk.[u] ∈ |∀x ι ¬∀y ι (a = ι 0)|. Let n ∈ N and fix ⊥ ⊥ := {[m] | [a † ][[n]/x, [m]/y] = [0]}. We thus have λk.[un(λx.x)] ∈ |⊥|. This implies [un(λx.x)] = [m] with [m] ∈ ⊥ ⊥. We conclude by Prop. 7.3.(ii). ⊓ ⊔

Lemma A. 6 .

 6 and λk ′ .[p 2 (x)][ck ′ /x] ∈ |B| ⊓ ⊔ We have λk.[λx.x] ∈ |e = τ e|. Moreover, λk.[λx.x] ∈ |k e f = τ e| λk.[λx.x] ∈ |s e f g = τ eg(f g)| λk.[λx.x] ∈ |Rec e f 0 = τ e| λk.[λx.x] ∈ |Rec e f (S g) = τ f g(Rec e f g)|

  [k † xy][e/x, f /y] = [(λxy.x)xy][e/x, f /y] = [x][e/x, f /y] = x[e/x, f /y] = e ⊓ ⊔ Lemma A.7. λk.[λx.λy.yx] ∈ |A[e/z] ⇒ ¬A[f /z] ⇒ e = τ f | for e, f ∈ τ t . Proof. From lemma A.3 we have: λk.[λx.λy.yx] ∈ |A[e/z] ⇒ ¬A[f /z] ⇒ e = τ f | ⇔ ∀a ∈ |A[e/z]|, λk.[x ′ y ′ ][[λx.λy.yx]/x ′ , ak/y ′ ] ∈ |¬A[f /z] ⇒ e = τ f | but: λk.[x ′ y ′ ][[λx.λy.yx]/x ′ , ak/y ′ ] = λk.[(λx.λy.yx)y ′ ][ak/y ′ ] = λk.[λy.yy ′ ][ak/y ′ ] = λk.[λy.yx][ak/x]

  bk/y ′ ] = λk.[(λy.yx)y ′ ][ak/x, bk/y ′ ] = λk.[y ′ x][ak/x, bk/y ′ ] = λk.[yx][ak/x, bk/y] = λk.[xy][bk/x, ak/y] therefore: λk.[λx.λy.yx] ∈ |A[e/z] ⇒ ¬A[f /z] ⇒ e = τ f | ⇔ ∀a ∈ |A[e/z]|, ∀b ∈ |¬A[f /z]|, λk.[xy][bk/x, ak/y] ∈ |e = τ f | If e = f , then |e = τ f | = ι → [ι] and we are done. If e = f , then |¬A[f /z]| = |¬A[e/z]| = |A[e/z] ⇒ ⊥|, so by lemma A.3, if a ∈ |A[e/z]| and b ∈ |¬A[f /z]|, then λk.[xy][bk/x, ak/y] ∈ |⊥| = |e = τ f | (since e = f ). ⊓ ⊔ Lemma A.8. If e, f ∈ I τ 0 are closed first order terms with parameters such that [e † ] = [f † ], then for any formula A with FV(A) = {x τ }, we have ||A[e/x]|| = ||A[f /x]||.

  all a 1 ∈ |A 1 [c/x]|, . . . , a n ∈ |A n [c/x]|, and all b 1 ∈ ||B 1 [c/x]||, . . . , b m ∈ ||B m [c/x]||, we have λk.[ε * ][c/x, ak/y, bk/α] ∈ |A[c/x]| Proof. By induction on the structure of the derivation: -ε = Γ, A ⊢ A | ∆ : λk.[ε * ][c/x, ak/y, ak/x, bk/α] = λk.[x][ak/x] = λk.ak = a ∈ |A[c/x]| -ε = Γ ⊢ A | ∆ (A axiom): then by lemmas A.6 A.7 A.9 we have λk.[ε* ] = λk.[ξ A ] ∈ |A| = |A[c/x]| since A is closed. Moreover, since ξ A is closed, λk.[ε * ][c/x, ak/y, bk/α] = λk.[ε * ] ∈ |A[c/x]| -ε = ε ′ Γ ⊢ ⊥ | ∆ Γ ⊢ a τ =τ b τ | ∆ : this comes from the fact that since ||a = τ b|| ⊆ {λk.k} = ||⊥ ⊥||, we have |⊥ ⊥| ⊆ |a = τ b|

  ]||, . . . , b m ∈ ||B m [c/x]||: ∀a ∈ |A[c/x]|, λk.[ε ′ * ][c/x, ak/y, ak/y, bk/α] ∈ |B[c/x]| using lemma A.3, in order to prove: λk.[λy.ε ′ * ][c/x, ak/y, bk/α] ∈ |A[c/x] ⇒ B[c/x]| it suffices to prove:∀a ∈ |A[c/x]|, λk.[xy][(λk ′ .[λy.ε ′ * ][c/x, ak ′ /y, bk ′ /α])k/x, ak/y] ∈ |B[c/x]| but if a ∈ |A[c/x]|, then: λk.[xy][(λk ′ .[λy.ε ′ * ][c/x, a(k ′ )/y, b(k ′ )/α])k/x, ak/y] = λk.[xy][[λy.ε ′ * ][c/x,ak/y, bk/α]/x, ak/y] = λk.[(λy.ε ′ * )y][c/x, ak/y, bk/α, ak/y] = λk.[(λy.ε * )y][c/x, ak/y, bk/α, ak/y] = λk.[ε ′ * ][c/x, ak/y, bk/α, ak/y]

  ]||, . . . , b m ∈ ||B m [c/x]||. By induction hypothesis we have:λk.[ε ′ * ][c/x, ak/y, bk/α] ∈ |A[c/x] ⇒ B[c/x]|so by lemma A.3 we get:∀a ∈ |A[c/x]|, λk.[xy][(λk ′ .[ε ′ * ][c/x, ak ′ /y, bk ′ /α])k/x, ak/y] ∈ |B[c/x]| but: λk.[xy][(λk ′ .[ε ′ * ][c/x, ak ′ /y, bk ′ /α])k/x,ak/y] = λk.[xy][[ε ′ * ][c/x, ak/y, bk/α]/x, ak/y] = λk.[ε ′ * y][c/x, ak/y, bk/α, ak/y] and since again by induction hypothesis we have: λk.[ζ * ][c/x, ak/y, bk/α] ∈ |A[c/x]| we get: λk.[ε ′ * y][c/x, ak/y, bk/α, (λk ′ .[ζ * ][c/x, ak ′ /y, bk ′ /α])k/y] ∈ |B[c/x]| so we can conclude since: λk.[ε ′ * y][c/x, ak/y, bk/α, (λk ′ .[ζ * ][c/x, ak ′ /y, bk ′ /α])k/y] = λk.[ε ′ * y][c/x, ak/y, bk/α, [ζ * ][c/x, ak/y, bk/α]/y] = λk.[ε ′ * ζ * ][c/x, ak/y, bk/α]

  λk.[ε ′ * ][c/x, ak/y, bk/α] ∈ |A[c/x]| and λk.[ζ * ][c/x, ak/y, bk/α] ∈ |B[c/x]| Using lemma A.5, we have:λk.[ ε ′ * , ζ * ][c/x, ak/y, bk/α] ∈ |A[c/x] ∧ B[c/x]| ⇔ λk.[p 1 (x)][(λk ′ .[ ε ′ * , ζ * ][c/x, ak ′ /y, bk ′ /α])k/x] ∈ A[c/x] * and λk.[p 2 (x)][(λk ′ .[ ε ′ * , ζ * ][c/x, ak ′ /y, bk ′ /α])k/x] ∈ B[c/x] * ⇔ λk.[p 1 (x)][[ ε ′ * , ζ * ][c/x, ak/y, bk/α]/x] ∈ A[c/x] * and λk.[p 2 (x)][[ ε ′ * , ζ * ][c/x, ak/y, bk/α]/x] ∈ B[c/x] * ⇔ λk.[p 1 ( ε ′ * , ζ * )][c/x,ak/y, bk/α] ∈ A[c/x] * and λk.[p 2 ( ε ′ * , ζ * )][c/x, ak/y, bk/α] ∈ B[c/x] * ⇔ λk.[ε ′ * ][c/x, ak/y, bk/α] ∈ A[c/x] * and λk.[ζ * ][c/x, ak/y, bk/α] ∈ B[c/x] *

  1, 2): let us take i = 1 (the other case is similar).The induction hypothesis gives us:λk.[ε ′ * ][c/x, ak/y, bk/α] ∈ |A 1 [c/x] ∧ A 2 [c/x]|so we get by lemma A.5:λk.[p 1 (x)][(λk ′ .[ε ′ * ][c/x, ak ′ /y, bk ′ /α])k/x] ∈ |A 1 [c/x]| but: λk.[p 1 (x)][(λk ′ .[ε ′ * ][c/x, ak ′ /y, bk ′ /α])k/x] = λk.[p 1 (x)][[ε ′ * ][c/x,ak/y, bk/α]/x] = λk.[p 1 (ε ′ * )][c/x, ak/y, bk/α]

  ) be {((t, e), a) | ∀(π, b) ∈ A, (t, e, π) ⊤ ⊤ λk.ak(bk)} If moreover B ⊆ Π × ( ι → σ ), we define (A ⊤ ⊤ • B) ⊆ Π × ( ι → τ → σ ) as {( c, π , λk. ak, bk ) | (c, a) ∈ A ⊤ ⊤ and (π, b) ∈ B}

Theorem B. 1 (n and all π 1 R

 11 Adequacy for the λµ-Calculus with Products). Ifx 1 : τ 1 , . . . , x n : τ n ⊢ t : τ | α 1 : σ 1 , . . . , α m : σ m then for all (u 1 , e 1 ) R ⊤ ⊤ τ1 b 1 , . . . , (u n , e n ) R ⊤ ⊤ τn b σ1 a 1 , . . . , π m R σma m we have (t, e) R ⊤ ⊤ τ λk.t(k) where e := (x 1 , (u 1 , e 1 )) :: • • • :: (x n , (u n , e n )) :: (α 1 , π 1 ) :: • • • :: (α m , π m ) :: ε and t

B. 2 Lemma B. 5 .

 25 a) ∈ R τ . Note that we can have either α = β (in which case τ = σ) or α = β. In both cases, by assumption we can assume given (π ′ , a ′ ) ∈ R σ . We have to show(µα.[β]t, e, π) ⊤ ⊤ λk.(λα.t(k)(a ′ k))(ak)We have (µα.[β]t, e, π) ≻ (t, (α, π) :: e, π ′ ) and we are done since by induction hypothesis ((t, (α, π) :: e), λk.t(k)[ak/α]) ∈ R ⊤ ⊤ σ ⊓ ⊔ Adequacy for Arithmetical Constants From now on, we let (t, e, π) ⊤ ⊤ a iff either a = ⊥ [ι] or a = [n] and (t, e, π) ≻ (n, e ′ , ⋆) for some n ∈ N and e ′ ∈ E.We now proceed to the definition of R ι . It will be defined as a least fixpoint in the complete latticeP(Π × ( ι → ι )). Given X ⊆ Π × ( ι → ι ), let F (X) ⊆ Π × ( ι → ι ) be {(⋆, λk.k)} ∪ {(ksucc(π), λk. ksucc (ak)) | (π, a) ∈ X} ∪ A⊆Π×( ι → τ ) {(krec(u, v, e, π), λk. krec (bk) (ck) (ak)) | ((u, e), b) ∈ A ⊤ ⊤ , ((v, e), c) ∈ (X ⊤ ⊤ • A ⊤ ⊤ • A) ⊤ ⊤ & (π, a) ∈ A } Lemma B.4. Let τ ∈ T , A ⊆ Π × ( ι → τ ), and α ≤ λ. For all u, v ∈ Λ, e ∈ E, b ∈ ι → [τ ], and c ∈ ι → [ι → τ → τ ] such that ((u, e), b) ∈ A ⊤ ⊤ and ((v, e), c) ∈ (R α ι ⊤ ⊤ • A ⊤ ⊤ • A) ⊤ ⊤ , we have ((rec(u, v), e), λk.λ n, y .rec (bk) (ck) n y) ∈ (R α ι ⊤ ⊤ • A) ⊤ ⊤In partcular, if A = R τ and α = λ, then we get((rec(u, v),e), λk.λ n, y .rec (bk) (ck) n y) ∈ R ⊤ ⊤ ι→τ Proof. We have to show (rec(u, v), e, (t, e ′ ), π ) ⊤ ⊤ λk.rec (bk) (ck) (ak) (dk) for all ((t, e ′ ), a) ∈ R α ι ⊤ ⊤ and all (π, d) ∈ A. We have (rec(u, v), e, (t, e ′ ), π ) ≻ (t, e ′ , krec(u, v, e, π)) On the other hand, λk.rec (bk) (ck) (ak) (dk) = λk.ak(λn. rec(bk)(λy.(ck) • (λk ′ .k ′ y))n(dk)) where (ck) • := λx.λy.λz.(ck) x, y, z = λk.ak( krec(bk)(ck)(dk))We are done as ((t, e ′ ), a) ∈ R ⊤ ⊤ ι and (krec(u, v, e, π), λk. krec(bk)(ck)(dk)) ∈ R ι . ⊓ ⊔ For all n ∈ N and all e ∈ E, we have ((n, e), λk.[n]) ∈ R ⊤ ⊤ ι .

  (n, e, ⋆) ⊤ ⊤ λk.[n]((λk ′ .k ′ )k) But we are done since λk.[n]((λk ′ .k ′ )k) = λk.[n]k = [n] -Case of (ksucc(π), λk. ksucc(ak)). In this case we have α = β +1 and (π, a) ∈ R β ι . Given n ∈ N and e ∈ E, we have to show (n, e, ksucc(π)) ⊤ ⊤ λk.[n]((λk ′ . ksucc(ak ′ ))k) First, we have (n, e, ksucc(π)) ≻ (n + 1, e, π)On the other handλk.[n]((λk ′ . ksucc(ak ′ ))k) = λk.[n]( ksucc(ak)) = λk.(λk ′ .k ′ n)( ksucc(ak)) = λk. ksucc(ak) n = λk.(λa.λn.a( succn))(ak) n = λk.ak( succ n) = λk.ak n + 1 = λk.(λk ′ .k ′ n + 1)(ak) = λk.[n + 1](ak)Now we are done since by induction hypothesis, we have(n + 1, e, π) ⊤ ⊤ λk.[n + 1](ak)-Case of (krec(u, v, e, π), λk. krec(bk)(ck)(ak)). In this case we have α = β +1 and ((u, e), b) ∈ A ⊤ ⊤ , ((v, e), c)∈ (R β ι ⊤ ⊤ • A ⊤ ⊤ • A) ⊤ ⊤, and (π, a) ∈ A for someA ⊆ Π × ( ι → τ ).We have to show that for all n ∈ N and all e ′ ∈ E, we have (n, e ′ , krec(u, v, e, π)) ⊤ ⊤ λk.[n]( krec(bk)(ck)(ak))We reason by cases on n ∈ N.• If n = 0, then we have (0, e ′ , krec(u, v, e, π)) ≻ (u, e, π)On the other hand, λk.[0]( krec(bk)(ck)(ak)) = λk. rec(bk)(λm.(ck)• (λk ′ .k ′ m)) 0(ak) where (ck)• := λx.λy.λz.ck x, y, z = λk.bk(ak)We are done since ((u, e), b) ∈ A ⊤ ⊤ and (π, a) ∈ A by assumption.• Otherwise, n = m + 1. We have (m + 1, e ′ , krec(u, v, e, π)) ≻ (v, e, (m, e ′ ), (rec(u, v)m, e), π )

1 .

 1 For all (t, e) we have ((t, e), ⊥ ι →[σ] ) ∈ R ⊤ ⊤ σ .Proof. Given (π, a) ∈ R σ , we have((t, e), π) ⊤ ⊤ λk.⊥ ι →[σ] k(ak) since λk.⊥ ι →[σ] k(ak) = ⊥ [ι] . ⊓ ⊔ 2. Let (t, e) and let (b m ) m∈N ∈ ι → [σ] be a directed family such that ((t, e), b m ) ∈ R ⊤ ⊤ σ for all m ∈ N. Then ((t, e), m∈N b m ) ∈ R ⊤ ⊤ σ .Proof. Given (π, a) ∈ R σ , we have to show(t, e, π) ⊤ ⊤ λk.( m∈N b m )k(ak)We have λk. m∈N (b m k(ak)) If λk.b m k(ak) = ⊥ [ι] for all m, then λk. m∈N (b m k(ak)) = ⊥ [ι] and we are done. Otherwise, there is some m ∈ N such that λk.b m k(ak) = [n] for some n ∈ N, and we have λk. m∈N (b m k(ak)) = [n]. But we are done since by assumption, λk.b m k(ak) = [n] implies (t, e, π) ≻ (n, e ′ , ⋆). ⊓ ⊔ We now fix τ ∈ T , e ∈ E, ((t, e), a) ∈ R ⊤ ⊤ ι→(τ →ι)→τ and ((u, e), b) ∈ R ⊤ ⊤ (ι→τ )→τ . Given c 0 , . . . , c n ∈ [τ ], we let Ψ m c0,...,cn := Ψ m n+1 c 0 , . . . , c n We show that for all m ∈ N, we have ((Ψ τ (t, u) s 0 , . . . , s n , e), λk. Ψ m a0k,...,ank (ak)(bk)) ∈ R ⊤ ⊤ ι for all n ∈ N and all ((s 0 , e), b 0 ), . . . , ((s n , e), b n ) ∈ R ⊤ ⊤ τ . We reason by induction on m ∈ N. The base case m = 0 follows from Rem (1) above.

  [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF], where we take suitable instances of Ψ τ ( , ) . . . for Bar-Recursion. We let

	t τ,A

CAC := λz.λc.Ψ τ ×A * (t ¬¬∃ z, λa.c(λx.p 1 (ax))(λx.p 2 (ax))) where t ¬¬∃ := λa.λx.λk.ax(λy.λz.k y, z ) Proposition 7.1. λk.[t τ,A CAC

  λk.[xy][ck/x, e/y] ∈ |A[e/x]| Proof. One one hand: c ∈ |∀x τ A| ⇔ ∀d ∈ ||∀x τ A||, λk.ck(dk) ∈ ⊥ ⊥ ⇔ ∀e ∈ τ t , ∀b ∈ ||A[e/x]||, λk.ck((λk ′ . e, bk ′ )k) ∈ ⊥ ⊥ ⇔ ∀e ∈ τ t , ∀b ∈ ||A[e/x]||, λk.ck e, bk ∈ ⊥ ⊥ B| ⇔ ∀d ∈ ||A ∧ B||, λk.ck(dk) ∈ ⊥ ⊥ ⇔ ∀a ∈ ||A||, λk.ck((λk ′ .in 1 (ak ′ ))k) ∈ ⊥ ⊥ and ∀b ∈ ||B||, λk.ck((λk ′ .in 2 (bk ′ ))k) ∈ ⊥ ⊥ ⇔ ∀a ∈ ||A||, λk.ck(in 1 (ak)) ∈ ⊥ ⊥ and ∀b ∈ ||B||, λk.ck(in 2 (bk)) ∈ ⊥ ⊥ and on the other hand if a ∈ ||A|| then:

	Proof. One one hand: Lemma A.3. If c ∈ ι → [A c ∈ |A ⇒ B| ⇔ ∀a ∈ |A|, λk.[xy][ck/x, ak/y] ∈ |B| c ∈ |A ∧
	Proof. One one hand:		
	c ∈ |A ⇒ B| ⇔ ∀d ∈ ||A ⇒ B||, λk.ck(dk) ∈ ⊥ ⊥	
	⇔ ∀a ∈ |A|, ∀b ∈ ||B||, λk.ck((λk ′ . ak ′ , bk ′ )k) ∈ ⊥ ⊥
	⇔ ∀a ∈ |A|, ∀b ∈ ||B||, λk.ck ak, bk ∈ ⊥ ⊥
	and on the other hand if a ∈ |A| and b ∈ ||B|| then:	
	λk.(λk ′ .[xy][ck ′ /x, ak ′ /y])k(bk) = λk.([xy][ck/x, ak/y])(bk)
	= λk.((λk ′ .x y, k ′ )[ck/x, ak/y])(bk)
	= λk.(λk = λk.y[ak/y]	
		= λk.ak	
		= a	
	We have:		
	λk.[λx.x] ∈ |A ⇒ B| ⇔ ∀a ∈ |A|, a ∈ |B|	′ ]
	from which we conclude using |A| ⊆ |B|.	= λk.bk = b		⊓ ⊔
	We have: Lemma A.5. If c ∈ ι → [A c ∈ |A ∧ B| ⇔ ∀a ∈ |A|, λk.[p 1 (x)][ck/x] ∈ |A| λk.[λx.y][bk/y] ∈ |∀x τ A| ⇔ ∀e ∈ τ t , b ∈ |A[e/x]|
	from which we conclude since b ∈ |A[e/x]|. and ∀b ∈ |B|, λk.[p 2 (x)][ck/x] ∈ |B|	⊓ ⊔

and on the other hand if e ∈ τ t and b ∈ ||A[e/x]|| then: λk.(λk ′ .[xy][ck ′ /x, e/y])k(bk) = λk.([xy][ck/x, e/y])(bk) = λk.((λk ′ .x y, k ′ )[ck/x, e/y])(bk) = λk.(λk ′ .ck e, k ′ )(bk) = λk.ck e, bk therefore: c ∈ |A ⇒ B| ⇔ ∀e ∈ τ t , ∀b ∈ ||A[e/x]||, λk.(λk ′ .[xy][ck ′ /x, e/y])k(bk) ∈ ⊥ ⊥ that is: c ∈ |A ⇒ B| ⇔ ∀e ∈ τ t , λk ′ .[xy][ck ′ /x, e/y] ∈ |A[e/x]| ⊓ ⊔ Lemma A.2. If A is such that FV(A) = {x τ } and if for all e ∈ τ t , b ∈ |A[e/x]|, then λk.[λx.y][bk/y] ∈ |∀x τ A|. Proof. From lemma A.1 we have: λk.[λx.y][bk/y] ∈ |∀x τ A| ⇔ ∀e ∈ τ t , λk.[xy ′ ][(λk ′ .[λx.y][bk ′ /y])k/x, e/y ′ ] ∈ |A[e/x]| but since: λk.[xy ′ ][(λk ′ .[λx.y][bk ′ /y])k/x, e/y ′ ] = λk.[xy ′ ][[λx.y][bk/y]/x, e/y ′ ] = λk.[(λx.y)y ′ ][bk/y, e/y ′ ] = λk.[y][bk/y, e/y ′ ] = λk.y[bk/y, e/y * → B * ], then: ′ .ck ak, k ′ )(bk) = λk.ck ak, bk therefore:

c ∈ |A ⇒ B| ⇔ ∀a ∈ |A|, ∀b ∈ ||B||, λk.(λk ′ .[xy][ck ′ /x, ak ′ /y])k(bk) ∈ ⊥ ⊥ that is: c ∈ |A ⇒ B| ⇔ ∀a ∈ |A|, λk ′ .[xy][ck ′ /x, ak ′ /y] ∈ |B| ⊓ ⊔ Lemma A.

4. If |A| ⊆ |B|, then λk.[λx.x] ∈ |A ⇒ B| Proof. From lemma A.3 we have: λk.[λx.x] ∈ |A ⇒ B| ⇔ ∀a ∈ |A|, λk.[xy][(λk ′ .[λx.x])k/x, ak/y] ∈ |B| but since: λk.[xy][(λk ′ .[λx.x])k/x, ak/y] = λk.[xy][[λx.x]/x, ak/y] = λk.[(λx.x)y][ak/y] = λk.[y][ak/y] * × B * ], then:

  ||, so we still have a i ∈ |A i [c/x]| and b i ∈ ||B i [c/x]||. Using lemma A.1, we have:

	λk.[λx.ε ′ * ][c/x, ak/y, bk/α] ∈ |∀x τ A[c/x]| ⇔ ∀c ∈ τ t , λk.[zx][(λk ′ .[λx.ε ′ * ][c/x, ak ′ /y, bk ′ /α])k/z, c/x] ∈ |A[c/x, c/x]| ⇔ ∀c ∈ τ t , λk.[zx][[λx.ε ′ * ][c/x, ak/y, bk/α]/z, c/x] ∈ |A[c/x, c/x]| ⇔ ∀c ∈ τ t , λk.[(λx.ε ′ * )x][c/x, ak/y, bk/α, c/x] ∈ |A[c/x, c/x]|
	and we conclude by induction hypothesis.

  ∀e ∈ τ t , λk.[zx][(λk ′ .[ε ′ * ][c/x, ak ′ /y, bk ′ /α])k/z, e/x] ∈ |A[c/x, e/x]| so by taking e = [a † ][c/x] we have: λk.[zx][(λk ′ .[ε ′ * ][c/x, ak ′ /y, bk ′ /α])k/z, e/x] = λk.[zx][[ε ′ * ][c/x, ak/y, bk/α]/z, [a † ][c/x]/x] = λk.[ε ′ * x][c/x,ak/y, bk/α, [a

	| ∆	: by induction hypothesis we have:
	λk.[ε ′ * ][c/x, ak/y, bk/α] ∈ |∀x τ A[c/x]|
	Using lemma A.1, we have:

† ][c/x]/x] = λk.[ε ′ * a † ][c/x, ak/y, bk/α]

since on the other hand we have |A

  on R (which is the only possible one since R is the arena with just one (initial) oponent move).Hence, we preceed similarly as for realizability, and consider for each simple type

	ak/y, bk/α, bk/α] ∈ ⊥ ⊥
	so if we define [µα.t] = λα.[t] (so we still have [µα.[β]t] = λα[t]β), we prove:
	λk.[µα.ε ′ * ][c/x, ak/y, bk/α] ∈ |A[c/x]|

  [START_REF] Abramsky | Call-by-Value Games[END_REF] The Logical Relation Let ⊤ ⊤ be a binary relation between (Λ Ψ × E × Π) and (strategies on)[ι]. We assume that ⊤ ⊤ is closed under anti-evaluation, i.e.(t, e, π) ⊤ ⊤ a =⇒ (t ′ , e ′ , π ′ ) ≻ (t, e, π) =⇒ (t ′ , e ′ , π

′ ) ⊤ ⊤ a

and that for all (t, e, π) we have

(t, e, π) ⊤ ⊤ ⊥ [ι]

Deduction. We consider the following deduction system, parametrized by a set Ax of axioms (containing only closed formulas).Γ, A ⊢ A | ∆ Γ ⊢ A | ∆ (A ∈ Ax) Γ ⊢ ⊥ | ∆ Γ ⊢ a τ = τ b τ | ∆ Γ, A ⊢ B | ∆ Γ ⊢ A ⇒ B | ∆ Γ ⊢ A ⇒ B | ∆ Γ ⊢ A | ∆ Γ ⊢ B | ∆ Γ ⊢ A | ∆ Γ ⊢ B | ∆ Γ ⊢ A ∧ B | ∆ Γ ⊢ A 1 ∧ A 2 | ∆ Γ ⊢ A i | ∆ (i = 1, 2) Γ ⊢ A | ∆ Γ ⊢ ∀x τ A | ∆ (x / ∈ FV(Γ, ∆)) Γ ⊢ ∀x τ A | ∆ Γ ⊢ A[a τ /x] | ∆ Γ ⊢ A | ∆, A (Γ ⊢ ∆, A)

They are typed by extending Parigot's system[START_REF] Parigot | Lambda-My-Calculus: An Algorithmic Interpretation of Classical Natural Deduction[END_REF] with rules for product types:Γ, x : τ ⊢ x : τ | ∆ Γ ⊢ t : τ | ∆, α : τ [α]t : (Γ ⊢ ∆, α : τ ) v : (Γ ⊢ ∆, α : τ ) Γ ⊢ µα.v : τ | ∆ Γ, x : τ ⊢ t : σ | ∆ Γ ⊢ λx.t : τ → σ | ∆ Γ ⊢ t : σ → τ | ∆ Γ ⊢ u : σ | ∆ Γ ⊢ tu : τ | ∆ Γ ⊢ t : τ | ∆ Γ ⊢ u : σ | ∆ Γ ⊢ t, u : τ × σ | ∆ Γ ⊢ t : τ 1 × τ 2 | ∆ Γ ⊢ p i (t) : τ i | ∆ (i = 1, 2)Extension with Arithmetic Constants. We write Λ T for the set of λµ-terms obtained by extending the grammar of Λ with the following productions:t, u ::= . . . | n | succ | rec(t, u)where n ∈ N. We extend the typing rules of Λ with the following ones:

Since the model R Fam(G) is typed, this would involve typing rules for environments and stacks.

In order to do that we choose b ∈ ||A[c/x]|| and we prove: 

B Computational Adequacy

The correctness of the machine of Sect. 5 (i.e. reduction preserves semantics) can be proved as usual (see e.g. [START_REF] Streicher | Classical Logic, Continuation Semantics and Abstract Machines[END_REF]). Note that since the model Fam(G) is typed, this would involve typing rules for environments and stacks.

For extraction, we acutally only need to show Proposition 7.3: We prove this property here. We use the usual technique of logical relations, and deal with Bar-Recursion using the usual technique for the PCF fixpoint operator (see e.g. [START_REF] Amadio | Domains and Lambda-Calculi[END_REF]). As suggested by the interpretation of the calculus in R Fam (G) , and similarly to what we have done for realizability (see Sect. 6 and App A), our logical relations will be build by orthogonality.

Idealy, we would process as follows: We would fix a binary relation ⊤ ⊤ between (Λ Ψ × E × Π) and (strategies on) [ι], and as usual assume that ⊤ ⊤ is closed under anti-evaluation, i.e.

and that for all (t, e, π) we have

We would then devise a relation R τ ⊆ Π × τ for each simple type τ , and obtain by orthogonality a relation

. However, we face a similar problem as with realizability in Sect. 6: we want to observe termination at [ι] = R ι , which is not a basic type. Moreover, the only strategy on ι is the empty strategy; and applying it to (the interpretation of) a numeral [n] gives the empty strategy and we are donce since by induction hypothesis (t, (x, (u 0 , e 0 )) :: e, π) 

We have ( t 1 , t 2 , e, kp i (π)) ≻ (t i , e, π)

and we are donce since by induction hypothesis

Let (π, a) ∈ R τi . We have have to show

where ksucc := λa.λn.a( succ n) krec := λb.λc.λa.λn. rec b (λm.c • (λk.km)) n a where c • := λx.λy.λz.c x, y, z

Proof. Let (π, a) ∈ F (X). We show (c, a) ∈ F (Y ) by cases on the form of π. If π is of the form ⋆ or ksucc(π ′ ) then the result is trivial. The remaining case follows from the following (usual) observation: since

for some ordinal λ. For ordinals α ≤ λ, let 

On the other hand, λk. succ (ak) (bk) = λk.ak(λn.bk( succ n))

= λk.(ak)( ksucc (bk))

and we are done since ((t, e ′ ), a) ∈ R ⊤ ⊤ ι and (ksucc(π), λk. ksucc (bk)) ∈ R ι .

⊓ ⊔

On the other hand,

where (ck)

• := λx.λy.λz.ck x, y, z ((rec(u, v), e), λk.λ x, y .rec

It is now easy to extend computational adequacy (Thm. B.1) to the type system of the λµ-calculus with products extended with the typing rules for arithmetical constants of Section 5. We only detail the case of the recursor:

Assuming the conventions used in the proof of Thm. B.1, we have to show 

and we are done by definition of ⊤ ⊤ since λk.

[n]((λk

(note that the later holds even without using the η-rule, since [n] = λk.k n). (ii) Follows from (i) since for all n ∈ N, we have ((n, ε), λk.

⊓ ⊔

C Realization of Classical Choice Using Bar-Recursion

In this Appendix, we prove Proposition 7.1. We recall its statement:

where t ¬¬∃ = λa.λx.λk.ax(λy.λz.k y, z )

The main point is to decompose the notion of realizability proposed in Sect. 6 w.r.t. the relativization of quantifications. It is convenient to extend the formulas defined in Sect. 2:

Hence, in extended formulas, the construction (r τ (a) × A) is only allowed to appear to the left of an implication. The definition of realizability is extended as follows:

Extended formulas and their realizability interpretation are inspired from ideas used in Krivine's Realizability [START_REF] Krivine | Realizability in classical logic[END_REF]. We also extend the mapping ( ) * of Section 6, mapping extended formulas to simple types:

The following is the key for Proposition C.1. The argument is the usual one for bar-recursion, see e.g. [START_REF] Berardi | On the Computational Content of the Axiom of Choice[END_REF][START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF].

Recall that we use notations ( )

• and ( ) • for resp. currfication and uncurryfication. Recall also that the amount to which an expression is curryfied/uncurryfied depends on the context, and moreover that in G, ( )

• and ( )

• are the identity.

Proof. First, note that for all extended formula A, we have ex

This can be easily proved by induction on A.

Recall that for all a 0 , . . . , a n ∈ [B * ], we have • ((bk)

By assumption on b, this implies that 

By assumption on c, we have λk.λk ′ .ck hk, k ′ ∈ |⊥|. By continuity of c, this implies that there is n ∈ N such that λk.(ck)

• ( e 0 k, . . . , e n k @ λ .

We can now prove Proposition C.1.

Proof (of Prop. C.1).

Let A be a formula. We have to show that λk.[t τ,A CAC ] realizes the formula

We apply Lemma C.2 with B := (r τ (y)×A), and obtain that λk.