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A high-order cell-centered finite volume scheme for sim-

ulating three dimensional anisotropic diffusion equations
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Abstract. We present a finite volume based cell-centered method for solving diffusion equa-
tions on three-dimensional unstructured grids with general tensor conduction. Our main
motivation concerns the numerical simulation of the coupling between fluid flows and heat
transfers. The corresponding numerical scheme is characterized by cell-centered unknowns
and a local stencil. Namely, the scheme results in a global sparse diffusion matrix, which
couples only the cell-centered unknowns. The space discretization relies on the partition of
polyhedral cells into sub-cells and on the partition of cell faces into sub-faces. It is charac-
terized by the introduction of sub-face normal fluxes and sub-face temperatures, which are
auxiliary unknowns. A sub-cell-based variational formulation of the constitutive Fourier
law allows to construct an explicit approximation of the sub-face normal heat fluxes in terms
of the cell-centered temperature and the adjacent sub-face temperatures. The elimination
of the sub-face temperatures with respect to the cell-centered temperatures is achieved lo-
cally at each node by solving a small and sparse linear system. This system is obtained
by enforcing the continuity condition of the normal heat flux accross each sub-cell interface
impinging at the node under consideration. The parallel implementation of the numerical
algorithm and its efficiency are described and analyzed. The accuracy and the robustness of
the proposed finite volume method are assessed by means of various numerical test cases.

AMS subject classifications: 65M08, 65F10, 68W10, 76R50
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1 Introduction

In this paper, we describe a finite volume scheme to solve anisotropic diffusion equations
on unstructured grids. This three-dimensional scheme is the natural extension of the two-
dimensional scheme CCLAD (Cell-Centered LAgrangian Diffusion) initially presented in [27].
We aim at developing a robust and flexible method for diffusion operators devoted to the
numerical modeling of the coupling between heat transfers and fluid flows. More precisely,
we are concerned by the numerical simulation of heat transfers in the domain of hypersonic
ablation of thermal protection systems [11]. In this context, one has to solve not only the com-
pressible Navier-Stokes equations for the fluid flow but also the anisotropic heat equation for
the solid materials which compose the thermal protection. These two models, i.e., the Navier-
Stokes equations and the heat equation, are strongly coupled by means of a surface ablation
model which describes the removal of surface materials resulting from complex thermochem-
ical reactions such as sublimation. We point out that in our case, the Navier-Stokes equations
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are solved employing a cell-centered finite volume method and the thermal protection system
consists of several distinct materials with discontinuous conductivity tensors. This leads to the
following requirements related to the diffusion scheme under consideration:

• It should be a finite volume scheme wherein the primary unknown, i.e., the temperature
is located at the cell center.

• It should be a sufficiently accurate and robust scheme to cope with unstructured three-
dimensional grids composed of tetrahedral and/or hexahedral cells.

Before describing the main features of our finite volume scheme, let us briefly give an overview
of the existing cell-centered diffusion scheme on three-dimensional grids. The simpler cell-
centered finite volume is the so-called two-point flux approximation wherein the normal com-
ponent of the heat flux at a cell interface is computed using the finite difference of the ad-
jacent temperatures. It is well known that this method is consistent if and only if the com-
putational grid is orthogonal with respect to the metrics induced by the symmetric positive
definite conductivity tensor. This flaw renders this method inoperative for solving anisotropic
diffusion problems on three-dimensional unstructured grids. It has motivated the work of
Aavatsmark and his co-authors to develop a class of finite volume schemes based on multi-
point flux approximations (MPFA) for solving the elliptic flow equation encountered in the
context of reservoir simulation, refer to [2, 3]. In this method, the flux is approximated by a
multi-point expression based on transmissibility coefficients. These coefficients are computed
using the pointwise continuity of the normal flux and the temperature across cell interfaces.
The link between lowest-order mixed finite element and multi-point finite volume methods on
simplicial meshes is investigated in [36]. The class of MPFA methods is characterized by cell-
centered unknowns and a local stencil. The global diffusion matrix corresponding to this type
of schemes on general 3D unstructured grids is in general non-symmetric. There are many
variants of the MPFA methods which differ in the choices of geometrical points and control
volumes employed to derive the multi-point flux approximation. For more details about this
method and its properties, the interested reader might refer to [4, 5, 17, 30] and the references
therein.
The mimetic finite difference (MFD) methodology is an interesting alternative approach for
solving anisotropic diffusion equations on general unstructured grids. This method mimics the
essential underlying properties of the original continuum differential operators such as conser-
vation laws, solution symmetries and the fundamental identities of vector and tensor calculus,
refer to [22–24, 32, 33]. More precisely, the discrete flux operator is the negative adjoint of the
discrete divergence in an inner scalar product weighted by the inverse of the conductivity ten-
sor. The classical MFD methods employ one degree of freedom per element to approximate
the temperature and one degree of freedom per mesh face to approximate the normal compo-
nent of the heat flux. The continuity of temperature and of the normal component of the heat
flux across cell interfaces allows to assemble a global linear system satisfied by face-based tem-
peratures unknowns. The corresponding matrix is symmetric positive definite. This type of
discretization is usually second-order accurate for the temperature unknown on unstructured
polyhedral grids having degenerate and non convex polyhedra with flat faces [25]. In the case
of grids with strongly curved faces the introduction of more than one flux per curved face is
required to get the optimal convergence rate [13].
Another class of finite volume schemes for solving diffusion equations, with full tensor co-
efficients, on general grids has been initially proposed in [18] and generalized in [19]. This
approach has been termed discrete duality finite volume (DDVF) [15] since it arises from the
construction of discrete analogs of the divergence and flux operators which fulfill the discrete
counterpart of vector calculus identities. The DDFV method requires to solve the diffusion
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equation not only over the primal grid but also over a dual grid. Namely, there are both cell-
centered and vertex-centered unknowns. In addition, the construction of the dual grid in the
case of a three-dimensional geometry is not unique. There are at least three different choices
which lead to different variants of the three-dimensional DDFV schemes, see [20] and the ref-
erences therein. The DDFV method described in [20] is characterized by a symmetric definite
positive matrix and exhibits a numerical second-order accuracy for the temperature. Com-
pared to a classical cell-centered finite volume scheme, this DDFV discretization necessitates
twice as much degrees of freedom over hexahedral grids [21]. Let us point out that the use of
such a method might be difficult in the perspective of solving coupled problems such as heat
transfer and fluid flow.

The main feature of our finite volume scheme relies on the partition of each polyhedral cell of
the computational domain into sub-cells and on the partition of each cell face into sub-faces,
which are composed of triangular faces. There is one degree of freedom per element to ap-
proximate the temperature unknown and one degree of freedom per sub-face to approximate
the normal component of the heat flux across cell interfaces. For each cell, the sub-face normal
fluxes impinging at a vertex are expressed with respect to the difference between sub-face tem-
peratures and the cell-centered temperature. This approximation of the sub-face fluxes results
from a local variational formulation written over each sub-cell. The sub-face temperatures,
which are auxiliary unknowns, are locally eliminated by invoking the continuity of the tem-
perature and the normal component of the heat flux across each cell interface. This elimination
procedure of the sub-face temperatures in terms of the cell-centered temperatures surrounding
a vertex is achieved by solving a linear system of reasonable size at each vertex. Gathering the
contribution of each vertex allows to construct easily the global sparse diffusion matrix. The
node-based construction of our scheme provides a natural treatment of the boundary condi-
tions. The scheme stencil is local and for a given cell consists of the cell itself and its neighbors
in the sense of nodes. Since the constitutive law of the heat flux has been approximated by
means of a local variational formulation, the corresponding discrete diffusion operator inher-
its the positive definiteness property of the conductivity tensor. In addition, the semi-discrete
version of the scheme is stable with respect to the discrete L2 norm. For tetrahedral grids, the
scheme preserves linear solutions with respect to the space variable and is characterized by a
numerical second-order convergence rate for the temperature. For smooth distorted hexahe-
dral grids its exhibits an accuracy which is almost of second-order. Let us point out that our
formulation is similar to the local MFD discretization developed in [26] for simplicial grids.

The remainder of this paper is organized as follows. In Section 2, we first give the problem
statement introducing the governing equations, the notation and assumptions for deriving our
finite volume scheme. This is followed by Section 3, which is devoted to the space discretiza-
tion of the scheme. In this section, we derive the sub-face fluxes approximation by means
of a sub-cell-based variational formulation. We also describe the elimination of the sub-face
temperatures in terms of the cell-centered unknowns to achieve the construction of the global
discrete diffusion operator. Section 4 is devoted to the presentation of the main properties of
the semi-discrete scheme and the boundary conditions implementation. The time discretiza-
tion is briefly developed in Section 5. We describe the parallel implementation of the scheme
and its efficiency in Section 6. Finally, the robustness and the accuracy of the scheme are as-
sessed using various representative test cases in Section 7.
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2 Problem statement

2.1 Governing equations

Our motivation is to describe a finite volume scheme that solves the anisotropic heat conduc-
tion equation on three-dimensional unstructured grids. This computational method is the nat-
ural extension to three-dimensions of the finite volume scheme that has been initially derived
in [27]. Let us introduce the governing equations, notations and the assumptions required for
the present work. Let D be an open set of the three-dimensional space R3. Let x denotes the
position vector of an arbitrary point inside the domain D and t> 0 the time. We aim at con-
structing a numerical scheme to solve the following initial-boundary-value problem for the
temperature T=T(x,t)

ρCv
∂T

∂t
+∇·q=ρr, (x,t)∈D×[0,T ] (2.1a)

T(x,0)=T0(x), x∈D (2.1b)

T(x,t)=T∗(x,t), x∈∂DD (2.1c)

q(x,t)·n=q∗N(x,t), x∈∂DN (2.1d)

αT(x,t)+βq(x,t)·n=q∗R(x,t). x∈∂DR (2.1e)

Here, T > 0 denotes the final time, ρ is a positive real valued function, which stands for the
mass density of the material. The source term, r, corresponds to the specific heat supplied to
the material and Cv denotes the heat capacity at constant volume. We assume that ρ, Cv, and r
are known functions. The initial condition is characterized by the initial temperature field T0.
Three types of boundary conditions are considered: Dirichlet, Neumann and Robin boundary
conditions. They consist in specifying respectively the temperature, the flux and a combination
of them. We introduce the partition ∂D=∂DD∪∂DN∪∂DR of the boundary domain. Here, T∗

and q∗N denote respectively the prescribed temperature and flux for the Dirichlet and Neumann
boundary conditions. α, β and q∗R are the parameters of the Robin boundary condition. The
vector q denotes the heat flux and n is the outward unit normal to the boundary of the domain
D.

Eq. (2.1a) is a partial differential parabolic equation of second order for the temperature T,
wherein the conductive flux, q, is defined according to the Fourier law

q=−K∇T, (2.2)

where the second-order tensor, K, is the conductivity tensor which is an intrinsic property of
the material under consideration. We suppose that K is positive definite to ensure the model
consistency with the Second Law of thermodynamics. Namely, this property ensures that heat
flux direction is opposite to temperature gradient. Let us point out that in the problems we are
considering the conductivity tensor is always symmetric positive definite, i.e., K=Kt, where
the superscript t denotes transpose.

Comment 1. The normal component of the heat flux at the interface between two distinct
materials, labelled by 1 and 2, is continuous, that is

(K∇T)1 ·n12=(K∇T)2 ·n12,

where n12 is the unit normal to the interface. The temperature itself is also continuous.
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Figure 1: Definition of the iota cell I p f e and the outward normal vector I p f ec related to point
p, face f and edge e in the hexahedral cell c.

2.2 Notations and assumptions

Let us introduce some notations that will be useful to develop the space discretization of prob-
lem (2.1). The domain D is paved with non overlapping polyhedral cells, i.e., D=∪cωc, where
ωc denotes a generic polyhedral cell. In what follows, the letter c will be used to denote quanti-
ties referring to the cell ωc. The list of vertices (points) of cell c is denoted by P(c). Further, if p
is a generic point, its position vector is denoted by xp and C(p) is the set of the cells surround-
ing it. In two-dimensional geometry the list of the counterclockwise ordered vertices belonging
to a cell is sufficient to fully describe a cell. Unfortunately this is not the case anymore in three-
dimensional geometry. To complete the cell geometry description, we introduce the set F (c)
as being the list of faces of cell c and the set F (p,c), which is the list of faces of cell c impinging
at point p. We observe that the former set is linked to the latter by F (c)=∪p∈P(c)F (p,c). A

generic face is denoted either by the index f or by ∂ω
f
c .

Here, we consider a mesh composed of polyhedral cells. Namely, the term polyhedral cell
stands for a volume enclosed by an arbitrary number of faces, each determined by an arbitrary
number (3 or more) of vertices. If a face has four or more vertices, they can be non-coplanar,
thus the face is not a plane and it is difficult to define its unit outward normal. To overcome
this problem, we shall employ the decomposition of a polyhedral cell into elementary tetra-
hedra, initially introduced by Burton in [14] to discretize the conservation laws of Lagrangian
hydrodynamics onto polyhedral grids. According to Burton’s terminology, these elementary
tetrahedra are called iotas, since ι is the smallest letter in the Greek alphabet. Being given the
polyhedral cell c, we consider the vertex p∈P(c) which belongs to the face f ∈F (c) and the
edge e, refer to Figure 1. The iota tetrahedron, I p f e, related to point p, face f and edge e, is con-
structed by connecting point p, the centroid of cell c, the centroid of face f and the midpoint of

edge e as displayed in Figure 1. Further, we denote by I
p f ec, the outward normal vector to the

triangular face obtained by connecting the point p to the midpoint of edge e and the centroid

of face f . Let us point out that |I p f ec | is the area of the aforementioned triangular face.
Bearing this in mind, we can define the decomposition of the polyhedral cell, ωc, into sub-cells.
The sub-cell, ωpc, related to point p is obtained by gathering the iotas attached to point p as
follows

ωpc =
⋃

f∈F (p,c)

⋃

e∈E(p, f )

I p f e,

where E(p, f ) is the set of edges of face f impinging at point p. For the hexahedral cell dis-
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Figure 2: Generic quadrilateral face, f , related to the hexahedral cell ωc. The sub-face, ∂ω
f
pc,

related to point p and face f is obtained by gathering the triangular faces corresponding to the
iotas I p f e1 and I p f e2 .

played in Figure 1, the sub-cell ωpc is made of 6 iotas since there are 3 faces impinging at point
p and knowing that for each face there are two edges connected to point p. The volume of the
sub-cell ωpc is given by

|ωpc |= ∑
f∈F (p,c)

∑
e∈E(p, f )

| I p f e | .

It is worth mentioning that the set of sub-cells, {ωpc, p∈P(c)}, is a partition of the polyhedral
cell c and thus the cell volume is defined by

|ωc |= ∑
p∈P(c)

|ωpc | .

The sub-face related to point p and face f is denoted by ∂ω
f
pc and defined as ∂ω

f
pc =ωpc∩∂ω

f
c .

It consists of the union of the two outer triangular faces attached to the two iotas related to
point p and face f , refer to Figure 2. The area and the unit outward normal corresponding to

the sub-face ∂ω
f
pc are given by

A
f
pc =| ∑

e∈E(p, f )

I
p f ec |, n

f
pc =

1

A
f
pc

∑
e∈E(p, f )

I
p f ec.

Let us point out that the set of sub-faces, {∂ω
f
pc, p∈P(c, f )}, where, P(c, f ) is the set of points

of cell c lying on face f , is a partition of the generic face f .

Now, we are in position to construct the space discretization of our diffusion problem. Inte-
grating (2.1a) over cell ωc and applying the divergence formula yields

d

dt

∫

ωc

ρCvT(x,t)dv+
∫

∂ωc

q·nds=
∫

ωc

ρr(x,t)dv. (2.3)
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Here, n is the unit outward normal to ∂ωc. The physical quantities ρ,Cv and r are supposed
to be known functions with respect to space and time variables. We represent them with a
piecewise constant approximation over each cell ωc. This approximation will be denoted with
the subscript c. The conductivity tensor K is also considered to be constant over each cell and
its approximation over ωc is denoted by Kc. Regarding the unknown temperature field, T, we
are going to describe it using a piecewise constant approximation over each cell. Using these
assumptions, (2.3) rewrites

mcCvc
d

dt
Tc+

∫

∂ωc

q·nds=mcrc,

where mc is the mass of cell ωc, i.e., mc =ρc|ωc|, and Tc =Tc(t) is the cell-averaged value of the
temperature

Tc(t)=
1

|ωc |

∫

ωc

T(x,t)dv.

Finally, to achieve the first step of the space discretization of (2.3), it remains to discretize the
surface integral of the heat flux employing the partition of faces into sub-faces. Knowing that

∂ωc =∪ f∈F (c)∂ω
f
c the surface integral of the heat flux reads

∫

∂ωc

q·nds= ∑
f∈F (c)

∫

∂ω
f
c

q·nds.

Now, recalling the partition of face f into sub-cells, i.e., ∂ω
f
c =∪p∈P(c, f )ω

f
pc, leads to write the

above surface integral as
∫

∂ωc

q·nds= ∑
f∈F (c)

∑
p∈P(c, f )

∫

ω
f
pc

q·nds

= ∑
p∈P(c)

∑
f∈F (p,c)

∫

ω
f
pc

q·nds.

Here, we have interchanged the order of the double summation to finally get a global summa-
tion over the points of cell c and a local summation over the faces impinging at point p. Let us

denote by q
f
pc the piecewise constant representation of the normal component of the heat flux

over sub-face ∂ω
f
pc

q
f
pc =

1

A
f
pc

∫

∂ω
f
pc

q·nds. (2.4)

Gathering the above results, Eq. (2.3) turns into

mcCvc
d

dt
Tc+ ∑

p∈P(c)
∑

f∈F (p,c)

A
f
pcq

f
pc =mcrc. (2.5)

To conclude this paragraph we introduce the sub-face temperature, which will be useful in the
description of our scheme as auxiliary unknown

T
f
pc =

1

A
f
pc

∫

∂ω
f
pc

T(x,t)ds. (2.6)

In writing this equation, we also assumed a piecewise constant approximation of the temper-
ature field over each sub-face.
Let us write down the continuity conditions exposed at the end of the last section, in terms
of sub-face fluxes and sub-face temperatures. To this end, we consider two neighboring cells
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p ≡ r

ωrd

ωd

∂ωf
pc ≡ ∂ω

g
rd

f ≡ g

ωpc

ωc T f
pc = T

g
rd

n
g
rd n

f
pc

qfpc + q
g
rd = 0

Figure 3: Continuity conditions for the sub-face fluxes and temperature on a sub-face shared
by two sub-cells attached to the same point. Fragment of a polyhedral grid: quadrilateral face
shared by hexahedral cells c and d. Labels p and r denote the indices of the same point rela-
tively to the local numbering of points in cell c and d. The neighboring sub-cells are denoted

by ωpc and ωrd. They share the sub-face ∂ω
f
pc≡∂ω

g
rd, which has been colored in blue.

denoted by c and d sharing a face and a point. The face is denoted by f in the local list of faces
of cell c and g in the local list of faces in cell d. Regarding the common point, it is denoted by
p in the local numbering of cell c and r in the local numbering of cell d. In what follows, we

shall consider the sub-cells ωpc and ωrd sharing the sub-face ∂ω
f
pc≡ ∂ω

g
rd, which is displayed

in Figure 3. For sake of simplicity, we have only plotted the common sub-face shared by the
two sub-cells ωpc and ωrd. When viewed from sub-cell ωpc the sub-face temperature and the

sub-face flux are denoted by T
f
pc and q

f
pc, whereas viewed from sub-cell ωrd they are denoted

respectively by T
g
rd and q

g
rd. Using the above notations and recalling that the unit outward

normals satisfy n
f
pc =−n

g
rd leads to write the continuity conditions for the temperatures and

the heat flux as

A
f
pcq

f
pc+A

g
rdq

g
rd =0, (2.7a)

T
f
pc =T

g
rd. (2.7b)

To achieve the space discretization of (2.5), it remains to construct an approximation of the

sub-face normal flux, that is, to define a numeric sub-face flux function h
f
pc such that:

q
f
pc =h

f
pc(T

1
pc−Tc,. . .,T

k
pc−Tc,. . .,T

Fpc
pc −Tc), ∀ f ∈F (p,c), (2.8)

where Fpc denotes the number of faces of cell c impinging at point p, that is Fpc = |F (p,c)|.
To write our scheme we are going to define an approximation of the sub-face numerical fluxes
in terms of sub-face temperatures and cell-centered temperatures. We shall then eliminate the
sub-face temperatures using the continuity conditions (2.7) across the sub-faces interfaces. This
is the topic of the next section.
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3 Space discretization

We present the space discretization associated to our finite volume scheme, wherein the sub-
face fluxes approximation results from a sub-cell-based variational formulation. Before pro-
ceeding any further, we start by giving a useful and classical result concerning the representa-
tion of a vector in terms of its normal components. This result leads to the expression of the
standard inner product of two vectors, which will be one of the tools utilized to derive the
sub-cell-based variational formulation.

3.1 Vector expression in terms of its normal components

Here, we describe the methodology to recover a three-dimensional vector at each vertex of a
polyhedron from the normal components related to the sub-faces impinging at each vertex.
Let φ be an arbitrary vector of the three-dimensional space R3 and φpc its piecewise constant

approximation over the sub-cell ωpc. Let φ
f
pc be the sub-face normal components of φpc defined

by

φpc ·n
f
pc =φ

f
pc, ∀ f ∈F (p,c),

where F (p,c) is the set of sub-faces belonging to cell c and impinging at point p. The above
linear system is characterized by 3 unknowns, i.e., the Cartesian components of the vector φpc

and Fpc =|F (p,c) | equations. This system is properly defined provided that Fpc =3. Namely,
the number of faces of cell c, impinging at point p must be strictly equal to 3. In what follows,
we assume that the polyhedral cells we are working with are characterized by Fpc =3. Let us
remark that this restriction allows us to cope with tetrahedron, hexahedron and prism. The
extension to the case Fpc>3 will be investigated in Appendix A by studying the particular case
of pyramids for which Fpc =4 at one vertex.
Bearing this assumption in mind, let us introduce the corner matrix Jpc=[n1

pc,n
2
pc,n

3
pc] to rewrite

the above 3×3 linear system as

Jt
pcφpc =




φ1
pc

φ2
pc

φ3
pc


,

where the superscript t denotes the transpose matrix. Granted that the vectors n
f
pc, for f =1...3,

are not co-linear, the above linear system has always a unique solution, which reads

φpc =J−t
pc




φ1
pc

φ2
pc

φ3
pc


. (3.1)

This equation allows to express any vector in terms of its normal components on the local
basis {n1

pc,n
2
pc,n

3
pc}. This representation provides the computation of the inner product of two

vectors φpc and ψpc as follows

φpc ·ψpc =
(

Jt
pcJpc

)−1




ψ1
pc

ψ2
pc

ψ3
pc


·




φ1
pc

φ2
pc

φ3
pc


. (3.2)

A straightforward computation shows that the 3×3 matrix Hpc = Jt
pcJpc is expressed in terms

of the dot products of the basis vectors

(
Hpc

)
ij
=n

j
pc ·n

i
pc.
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This matrix is symmetric positive definite and represents the local metric tensor associated to
the sub-cell ωpc.

Comment 2. Let us remark that the problem of finding the expression of a vector in terms of
its normal components always admits a unique solution in the two-dimensional case since the
number of faces of cell c impinging at point p is always equal to two.

3.2 Sub-cell-based variational formulation

We construct an approximation of the sub-face fluxes by means of a local variational formula-
tion written over the sub-cell ωpc. Contrary to the classical cell-based variational formulation
used in the context of Mimetic Finite Difference Method [22, 25, 28], the present sub-cell-based
variational formulation leads to a local explicit expression of the sub-face fluxes in terms of
the sub-face temperatures and the mean cell temperature. The local and explicit feature of
the sub-face fluxes expression is of great importance, since it allows to construct a numerical
scheme with only one unknown per cell. We also want to mention that this method is the
three-dimensional extension of the procedure initially developed in [27].
Our starting point to derive the sub-cell based variational formulation consists in writing the
partial differential equation satisfied by the heat flux. From the heat flux definition (2.2), it
follows that q satisfies

K−1q+∇T=0. (3.3)

Let us point out that the present approach is strongly linked to the mixed formulation uti-
lized in the context of mixed finite element discretization [6,26,34]. Dot-multiplying the above
equation by an arbitrary vector φ∈D and integrating over the cell ωpc yields

∫

ωpc

φ·K−1qdv=−
∫

ωpc

φ·∇Tdv, ∀φ∈D. (3.4)

Integrating by part the right-hand side and applying the divergence formula lead to the fol-
lowing variational formulation

∫

ωpc

φ·K−1qdv=
∫

ωpc

T∇·φdv−
∫

∂ωpc

Tφ·nds, ∀φ∈D. (3.5)

This sub-cell-based variational formulation is the cornerstone to construct a local and explicit
expression of the sub-face fluxes. Replacing T by its piecewise constant approximation, Tc, in
the first integral of the right-hand side and applying the divergence formula to the remaining
volume integral leads to

∫

ωpc

φ·K−1qdv=Tc

∫

∂ωpc

φ·nds−
∫

∂ωpc

Tφ·nds, ∀φ∈D. (3.6)

Observing that the sub-cell boundary, ∂ωpc, decomposes into the inner part ∂ωpc = ∂ωpc∩ωc

and the outer part ∂ωpc =∂ωpc∩∂ωc allows to split the surface integrals of the right-hand side
of (3.6) as follows

∫

ωpc

φ·K−1qdv=Tc

∫

∂ωpc

φ·nds+Tc

∫

∂ωpc

φ·nds−
∫

∂ωpc

Tφ·nds−
∫

∂ωpc

Tφ·nds. (3.7)

We replace T by its piecewise constant approximation, Tc, in the fourth surface integral of the
right-hand side, then noticing that the second integral is equal to the fourth one transforms
Eq. (3.7) into ∫

ωpc

φ·K−1qdv=Tc

∫

∂ωpc

φ·nds−
∫

∂ωpc

Tφ·nds. (3.8)
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Comment 3. A this point it is interesting to remark that the above sub-cell-based formulation
is a sufficient condition to recover the classical cell-based variational formulation. This is due
to the fact that the set of sub-cells is a partition of the cell, i.e.,

ωc =
⋃

pP(c)

ωpc, and ∂ωc =
⋃

pP(c)

∂ωpc.

Thus, summing (3.8) over all the sub-cells of ωc leads to

∫

ωc

φ·K−1qdv=Tc

∫

∂ωc

φ·nds−
∫

∂ωc

Tφ·nds.

This last equation corresponds to the cell-based variational formulation of the partial differen-
tial equation (3.3). This form is used in the context of Mimetic Finite Difference Method [22] to
obtain a discretization of the heat flux. More precisely, it leads to a linear system satisfied by
the sub-face fluxes. This results in a non explicit expression of the sub-face flux with respect to
the sub-face temperatures and the cell-centered temperature [25], which leads to a finite vol-
ume discretization characterized by face-based and cell-based unknowns. In contrast to this
approach, the sub-cell-based variational formulation yields a finite volume discretization with
one unknown per cell.

We pursue the study of the sub-cell-based variational formulation discretizing the right-hand
side of (3.8). First, we recall that the outer boundary of sub-cell ωpc decomposes into sub-faces
as

∂ωpc =
⋃

f∈F (p,c)

∂ω
f
pc,

where ∂ω
f
pc is the sub-face associated to point p and face f in cell c, andF (p,c) is the set of faces

of cell c impinging at point p. Utilizing the above partition allows to rewrite the right-hand
side of (3.8) as

∫

ωpc

φ·K−1qdv=Tc ∑
f∈F (p,c)

∫

∂ω
f
pc

φ·nds− ∑
f∈F (p,c)

∫

∂ω
f
pc

Tφ·nds. (3.9)

Introducing the sub-face temperature, T
f
pc, given by (2.6) and the sub-face approximation of

vector φ defined by φ
f
pc=

1

A
f
pc

∫
∂ω

f
pc

φ·nds, where A
f
pc is the area of the sub-face, leads to rewrite

the above equation as follows

∫

ωpc

φ·K−1qdv=− ∑
f∈F (p,c)

A
f
pc(T

f
pc−Tc)φ

f
pc. (3.10)

Finally, assuming a piecewise constant representation of the test function φ allows to compute
the volume integral in the left-hand side thanks to the quadrature rule

∫

ωpc

φ·K−1qdv=wpcφpc ·K
−1
c qpc. (3.11)

Here, Kc is the piecewise constant approximation of the conductivity tensor, φpc and qpc are
the piecewise constant approximation of the vectors φ and q. In addition, wpc denotes some
positive corner volume related to sub-cell ωpc, which will be determined later.
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Comment 4. Let us note that the quadrature weight, wpc, must satisfy the consistency condi-
tion

∑
p∈P(c)

wpc = |ωc|. (3.12)

Namely, the corner volumes of a cell sum to the volume of the cell. This requirement ensures
that constant functions are exactly integrated using the above quadrature rule.

Expressing the vectors qpc and φpc in terms of their normal components by means of (3.1)
allows to write the right-hand side of (3.11) as

wpcφpc ·K
−1
c qpc =wpc

(
Jt

pcKcJpc

)−1




q1
pc

q2
pc

q3
pc


·




φ1
pc

φ2
pc

φ3
pc


, (3.13)

where Jpc is the corner matrix defined by Jpc = [n1
pc,n

2
pc,n

3
pc]. Recalling that |F (p,c)|= 3 leads

to rewrite the right-hand side of (3.10)

− ∑
f∈F (p,c)

A
f
pc(T

f
pc−Tc)φ

f
pc =−




A1
pc(T

1
pc−Tc)

A2
pc(T

2
pc−Tc)

A3
pc(T

3
pc−Tc)


·




φ1
pc

φ2
pc

φ3
pc


. (3.14)

Finally, combining (3.13) and (3.14), the sub-cell variational formulation becomes

wpc

(
Jt

pcKcJpc

)−1




q1
pc

q2
pc

q3
pc


·




φ1
pc

φ2
pc

φ3
pc


=−




A1
pc(T

1
pc−Tc)

A2
pc(T

2
pc−Tc)

A3
pc(T

3
pc−Tc)


·




φ1
pc

φ2
pc

φ3
pc


. (3.15)

Knowing that this equation must hold for any vector φpc, we obtain




q1
pc

q2
pc

q3
pc


=−

1

wpc
(Jt

pcKcJpc)




A1
pc(T

1
pc−Tc)

A2
pc(T

2
pc−Tc)

A3
pc(T

3
pc−Tc)


. (3.16)

This equation constitutes the approximation of the sub-face normal fluxes. This local approx-
imation is compatible with the expression of the constitutive law (2.2) in the sense that the
discrete approximation of the heat flux is equal to a tensor times the approximation of the tem-
perature gradient. This tensor can be viewed as an effective conductivity tensor associated to
the sub-cell ωpc. Thus, it is natural to set

Kpc =Jt
pcKcJpc.

Let us emphasize that this corner tensor inherits all the properties of the conductivity tensor
Kc. Namely, Kc being symmetric positive definite, Kpc is also symmetric positive definite.
Recalling that Jpc = [n1

pc,n
2
pc,n

3
pc], we readily obtain the expression of the entries of the corner

tensor, Kpc, in terms of the unit normals n
f
pc for f =1...3 and the cell conductivity Kc

(
Kpc

)
f g
=(Kcn

f
pc)·n

g
pc.

Finally, the sub-face flux approximation for the sub-face f is written under the compact form

q
f
pc =−αpc

3

∑
g=1

(
Kpc

)
f g

A
g
pc(T

g
pc−Tc), (3.17)

where αpc =
1

wpc
.
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Comment 5. We have followed exactly the construction of the sub-cell variational formulation
described in [27]. The notations are a bit different to take into account the three-dimensional
specificities, but the conclusions we have drawn so far are the same.

3.3 Inequality satisfied by the discrete sub-face normal flux approximation

In this paragraph we demonstrate that the discrete approximation of the sub-face normal
fluxes (3.17) satisfies a discrete version of the fundamental inequality which follows from the
Second Law of thermodynamics: q·∇T≤ 0. The discrete counterpart of the fundamental in-
equality states that for the sub-faces fluxes defined according to (3.17) the following inequality
holds

∑
c∈C(p)


 ∑

f∈F (p,c)

A
f
pcq

f
pc


Tc≥0. (3.18)

To demonstrate this result, let us introduce, Ip, the nodal quantity defined by

Ip = ∑
c∈C(p)


 ∑

f∈F (p,c)

A
f
pcq

f
pc


Tc. (3.19)

We prove that Ip is always positive using the sub-cell variational formulation. Imposing φ=q

in (3.15) yields

wpcK
−1
pc




q1
pc

q2
pc

q3
pc


·




q1
pc

q2
pc

q3
pc


=−




A1
pc(T

1
pc−Tc)

A2
pc(T

2
pc−Tc)

A3
pc(T

3
pc−Tc)


·




q1
pc

q2
pc

q3
pc


. (3.20)

Now, rearranging the right-hand side leads to

wpcK
−1
pc




q1
pc

q2
pc

q3
pc


·




q1
pc

q2
pc

q3
pc


=

(
3

∑
i=1

Ai
pcqi

pc

)
Tc−

3

∑
i=1

Ai
pcqi

pcTi
pc. (3.21)

We notice that the left hand-side of (3.21) is always non-negative since Kpc is positive definite.
Summing the equation (3.21) over all cells surrounding p yields

∑
c∈C(p)

wpcK
−1
pc




q1
pc

q2
pc

q3
pc


·




q1
pc

q2
pc

q3
pc


= ∑

c∈C(p)

(
3

∑
i=1

Ai
pcqi

pc

)
Tc− ∑

c∈C(p)

(
3

∑
i=1

Ai
pcqi

pcTi
pc

)
. (3.22)

Due to the continuity condition of the sub-face temperatures, the second term of the right-hand
side is equal to zero. Finally, Eq. (3.22) becomes

Ip = ∑
c∈C(p)

wpcK
−1
pc




q1
pc

q2
pc

q3
pc


·




q1
pc

q2
pc

q3
pc


≥0, (3.23)

which ends the proof.

Comment 6. Inequality (3.23) is not only the discrete counterpart of the Second Law of ther-
modynamics but also the cornerstone to demonstrate the L2-stability of the semi-discrete for-
mulation of our finite volume scheme as we shall see in Paragraph 4.2.
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xr

xp

n
(p,r,r+1)
c

xr+2

xr+1

xc

Figure 4: Generic tetrahedron with vertices (xp,xr,xr+1,xr+4) and centroid xc=
1
4 (xp+xr+xr+1+

xr+2).

3.4 Computation of the corner volume wpc

We show that the sub-face normal fluxes approximation given by (3.16) preserves linear tem-
perature fields over tetrahedral cells provided that the corner volume wpc is defined by wpc =
1
4 |ωc |. To demonstrate this result, let us consider a generic tetrahedron, ωc, over which the
temperature field, T=T(x), is linear with respect to the space variable x. The vertices of this
tetrahedron are denoted respectively by p, r, r+1 and r+2, refer to Figure 4. The temperatures
at these vertices are Tp, Tr, Tr+1 and Tr+2. They coincide with the pointwise values of the linear
temperature field. The constant value of the conductivity tensor over ωc is Kc. The heat flux is
the constant vector qc =−Kc∇T, which satisfies the identity

qc =−
1

|ωc |

∫

ωc

Kc∇Tdv.

Utilizing the divergence formula in the above equation turns it into

qc =−
1

|ωc |

∫

∂ωc

KcTnds.

Now, expanding the surface integral over the triangular faces of the tetrahedral cell yields

qc =−
1

|ωc |
∑

f∈F (c)

Kc A
f
c n

f
c T̃

f
c ,

where A
f
c is the area of face f , n

f
c is the unit outward normal to face f and T̃

f
c is the face-

averaged value of the temperature. This face-averaged temperature is computed by means
of

T̃
f

c =
1

3 ∑
s∈P(c, f )

Ts, (3.24)

where P(c, f ) is the set of points of cell c belonging to face f . Before proceeding any further, we
explicit our notations to highlight the role played by point p. Each triangular face is character-
ized by the set of its three vertices. The three faces impinging at point p are (p,r+k,r+k+1) for

14



k=1...3 and assuming a cyclic indexing. Their area, unit outward normal and face-averaged
temperature are denoted respectively by Ak

c , nk
c and T̃k

c . The remaining face, which is oppo-
site to point p, is (r,r+1,r+2). Its area, unit outward normal and face-averaged temperature
are denoted respectively by Ar

c, nr
c and T̃r

c . With the above notations, the heat flux expression
becomes

qc =−
1

|ωc |

(
3

∑
k=1

Kc Ak
cnk

c T̃k
c +Kc Ar

cnr
cT̃r

c

)
.

Knowing that Ar
cnr

c =−∑
3
k=1 Ak

cnk
c leads to rewrite the above flux expression as

qc =−
1

|ωc |

3

∑
k=1

Kc Ak
cnk

c

(
T̃k

c − T̃r
c

)
.

Substituting the expression of the face-averaged temperatures (3.24) in terms of the point tem-
peratures yields

qc =−
1

3 |ωc |

3

∑
k=1

Kc Ak
cnk

c

(
Tp−Tr+k+2

)
.

Finally, to eliminate the point temperatures in the above expression, we introduce the cell-
averaged temperature

Tc =
1

4
(Tp+Tr+k+Tr+k+1+Tr+k+2).

Due to the cyclic numbering, this expression is valid for k=1...3. Expressing Tr+k+2 in terms
of the cell-averaged temperature and the remaining point temperatures leads to write

Tp−Tr+k+2=4
(

T̄
(p,r+k,r+k+1)
c −Tc

)
,

where T̄
(p,r+k,r+k+1)
c is the sub-face temperature given by

T̄
(p,r+k,r+k+1)
c =

1

4
(2Tp+Tr+k+Tr+k+1).

Since the temperature field is linear with respect to the space variable, we point out that the

above expression is the exact value of the temperature field taken at the point x̄
(p,r+k,r+k+1)
c

located on the triangular face (p,r+k,r+k+1), refer to Figure 5, and defined by

x̄
(p,r+k,r+k+1)
c =

1

4
(2xp+xr+k+xr+k+1).

Observing the triangular face displayed in Figure 5, we note that this point is the midpoint of
the median segment coming from vertex p.

Gathering the above results allows to rewrite the expression of the heat flux as

qc =−
4

3 |ωc |

3

∑
k=1

Kc Ak
cnk

c

(
T̄
(p,r+k,r+k+1)
c −Tc

)
.

It remains to simplify the above expression of the heat flux by employing notations related to
the sub-face associated to point p and face k, displayed in blue color in Figure 5. It is clear that
the area of the sub-face, Ak

pc, is equal to one-third of the face area, Ak
c , and thus Ak

c =3Ak
pc. In

addition, the unit outward normal to the sub-face, nk
pc, coincides with the unit outward normal
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xp

xr+k+1

xr+k

x̄
(p,r+k,r+k+1)
c

Figure 5: Triangular face (p,r+k,r+k+1) related to the tetrahedron displayed in Figure 4. The
sub-face related to point p has been colored in blue. The three degrees of freedom related to
the sub-face temperatures are plotted by means of blue squares.

to the face, nk
c . Finally, defining the sub-face temperature Tk

pc≡ T̄
(p,r+k,r+k+1)
c leads to write the

heat flux

qc =−
4

|ωc |

3

∑
k=1

Kc Ak
pcnk

pc

(
Tk

pc−Tc

)
.

We dot-multiply the heat flux by the unit normal nl
pc to obtain the normal component of the

heat flux related to the sub-face l

ql
pc =−

4

|ωc |

3

∑
k=1

(
Kcnk

pc

)
·nl

pc Ak
pc

(
Tk

pc−Tc

)
.

This formula coincides with the one derived from the variational formulation, refer to Eq. (3.17),
provided that the volume weight satisfies wpc =

1
4 |ωc |, which ends the proof.

This shows that the flux approximation (3.17) is exact for linear temperature fields with respect
to the space variable. In addition, the sub-face temperatures coincide with the pointwise values
taken by the linear temperature field at the midpoint of the median segment coming from each
vertex of a triangular face. It is worth pointing out that this results has been already obtained
in [26] using a more theoretical framework.
Finally, for general polyhedral cells, the corner volume weight related to sub-cell ωpc is defined
by

wpc =
1

Pc
|ωc |, (3.25)

where Pc =|P(c) | is the number of vertices of cell ωc.

3.5 Elimination of the sub-face temperatures

Having defined the flux approximation in terms of the difference between the cell and the sub-
face temperatures, we shall express the sub-face temperatures in terms of the cell temperatures
of the cells c surrounding a specific point p, using the continuity conditions of the normal heat
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flux at cell interfaces. In order to have a simpler expression of the equations we are going to
introduce some new local notations. First of all, in this paragraph we are dealing with quanti-
ties located around a point p, so in all the notations we will omit to specify the subscript p. For
each face f in the list F (p) of the faces impinging at the node p we associate two tuples (c,i)
and (d, j) which identify the neighboring cells c and d of the face f and their local numbering
i (resp. j) in the subset F (p,c) (resp. F (p,d)) of F (p). With this notation a sub-face temper-
ature Ti

pc is denoted by T̄i
c and using the continuity condition on the temperature is equal to

T
j
pd which is denoted T̄

j
d and can also be simply denoted by T̄ f . The bar notation help us to

make the difference between the cell centered unknown and the sub-face unknown. Similarly

the area of the sub-face f can be indifferently noted Ai
c, A

j
d or A f . The local conductivity tensor

Kpc will now be denoted by Kc so its components
(
Kpc

)
ij

can be written Kc
ij.

Using this notation Eq. (3.17), which defines the heat flux approximation, rewrites

qi
c =−αc

3

∑
k=1

Kc
ik Ak

c(T̄
k
c −Tc), (3.26)

where αc is the inverse of the volume weight. The continuity condition of the sub-face fluxes
across the face f ≡ (c,i)≡ (d, j) reads

Ai
cqi

c+A
j
dq

j
d =0.

Replacing the sub-face fluxes by their approximation (3.26) into the above equation yields

−αc Ai
c

3

∑
k=1

Kc
ik Ak

c(T̄
k
c −Tc)−αd A

j
d

3

∑
k=1

Kd
jk Ak

d(T̄
k
d−Td)=0.

Let us point out that this equation holds for all the faces f impinging at node p, i.e. for all
f ∈F (p). Denoting Fp = |F (p)| the number of faces impinging at node p, the set of all the
above equations forms a Fp×Fp linear system, which writes under the compact form

NT̄ =ST . (3.27)

Here, the matrix N is a Fp×Fp square matrix and T̄ ∈RFp is the vector of sub-face tempera-
tures. Denoting Cp = |C(p)| the number of cells surrounding node p, the matrix S is a Fp×Cp

rectangular matrix and vector T∈RCp is the vector of cell temperatures. The matrix N has five
non-zero terms on each lines, its diagonal part writes

N f f =αc Ai
cK

c
ii A

i
c+αd A

j
dKd

jj A
j
d.

Regarding its extra-diagonal parts, two terms comes from the contribution of the sub-cell ωpc.
Let g be a generic face of cell c impinging at point p characterized by the index k in the local
numbering , i.e., g≡(c,k), then the extra-diagonal entries related to cell c and faces i and k write

N f g =αc Ai
cK

c
ik Ak

c , for k∈ [1,3] and k 6= i.

The two remaining terms come from the sub-cell ωpd. Let g be a generic face of cell d impinging
at point p characterized by the index k in the local numbering , i.e., g≡ (d,k), then the extra-
diagonal entries related to cell d and faces j and k write

N f g =αd A
j
dKd

jk Ak
d, for k∈ [1,3] and k 6= j
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Let us remark that the matrix N has a symmetric structure, for g≡ (c,k), f ≡ (c,i) we have

Ng f =αc Ak
cKc

ki A
i
c and for g≡(d,k), f ≡(d, j) we have Ng f =αd Ak

dKd
kj A

j
d. We also note that N is

symmetric if and only if Kc (resp. Kd) is symmetric.
Finally, the matrix S has two non-zero terms on each row, one term for each neighboring cell c
and d of the face f

S f c =αc

3

∑
k=1

Ai
cK

c
ik Ak

c ,

S f d =αd

3

∑
k=1

A
j
dKd

jk Ak
d.

It remains to investigate the properties of the matrices N and S, this is the topic of the next
section.

3.6 Properties of the matrices N and S

The main motivation of this paragraph is to demonstrate the invertibility of the matrix N to
ensure that the linear system (3.27) that solves the sub-face temperatures in terms of the cell
temperatures admits always a unique solution. To this end, let us show that N is a positive-
definite matrix. First, we introduce the matrix Lc of size 3×Fp defined by

Lc
ij =

{
1 if j≡ (c,i),

0 elsewhere.

Here, Lc is the rectangular matrix which associates the sub-face of cell c in its local numbering
to its numbering around point p. Let us define the diagonal matrix A of size Fp×Fp, which
contains the area of the sub-faces, namely A f f =Ac

i for the face f≡(c,i). Let us define Ac=LcA,
the matrix which relates the area of sub-face of cell c in its local numbering to its numbering
around the point p. Employing this notation, it is straightforward to show that matrix N writes

N= ∑
c∈C(p)

αc (A
c)t

KcAc.

We are going to show that NT̄ · T̄ > 0, for all T̄ ∈R
Fp . To this end, let us compute NT̄ · T̄

employing the above decomposition of N

NT̄ · T̄ = ∑
c∈C(p)

αc (A
c)t

KcAcT̄ · T̄

= ∑
c∈C(p)

αcK
c(AcT̄)·(AcT̄).

Recalling that αc is non-negative and Kc is positive definite ensures that the right-hand side of
the above equation is always non-negative, which ends the proof. Thus, matrix N is invertible
and the sub-face temperatures are expressed in terms of the cell temperatures by means of the
relation

T̄ =
(

N−1S
)

T . (3.28)

Further, if the cell temperature field is uniform, then the sub-face temperatures are also uni-
form and share the same constant value. This property follows from the relation satisfies by
the matrices N and S (

N−1S
)

1Cp =1Fp , (3.29)

18



Here, 1n, where n is an integer, is the vector of size n, whose entries are equal to 1. To demon-
strate the above relation, let us show that S1Cp =N1Fp by developing respectively the left and
the right-hand side of this equality. Substituting the non-zero entries of matrix S leads to write
the left-hand side

(
S1Cp

)
f
=S f c+S f d

=αc

3

∑
k=1

Ai
cK

c
ik Ak

c+αd

3

∑
k=1

A
j
dKd

jk Ak
d. (3.30)

Replacing the non-zero entries of matrix N allows to express the right-hand side as

(
N1Fp

)
f
=αc Ai

cK
c
ii A

i
c+αd A

j
dKd

jj A
j
d+

3

∑
k=1,k 6=i

αc Ai
cK

c
ik Ak

c+
3

∑
k=1,k 6=j

αd A
j
dKd

jk Ak
d.

Gathering the common terms in the above equation yields

(
N1Fp

)
f
=αc

3

∑
k=1

Ai
cK

c
ik Ak

c+αd

3

∑
k=1

A
j
dKd

jk Ak
d. (3.31)

The comparison between (3.30) and (3.31) shows that for all f ∈F (p),
(
N−1S

)
1Cp =1Fp , which

ends the proof.

3.7 Local diffusion matrix at a generic point

In this paragraph, we achieve the space discretization of the diffusion equation gathering the
results obtained in the previous sections. We start by recalling the semi-discrete version of the
diffusion equation (2.5)

mcCvc
d

dt
Tc+ ∑

p∈P(c)
∑

f∈F (p,c)

A
f
pcq

f
pc =mcrc.

We define the contribution of the sub-cell ωpc to the diffusion flux as

Qpc = ∑
f∈F (p,c)

A
f
pcq

f
pc.

Using the local numbering of the sub-faces surrounding point p yields to rewrite the above
expression as

Qpc =
3

∑
k=1

Ak
cqk

c .

Now, we replace the normal flux by its corresponding expression (3.26) to get

Qpc =−
3

∑
k=1

Ak
c

[
αc

3

∑
i=1

Kc
ki A

i
c(T̄

i
c−Tc)

]
.

Interchanging the order of the summations in the right-hand side yields

Qpc =−
3

∑
i=1

[
αc

3

∑
k=1

(Ai
cK

c
ki A

k
c)

]
(T̄i

c−Tc).
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To obtain a more compact form of Qpc, we define the matrix S̃ whose entries write S̃ f c =

αc ∑
3
k=1(Ai

cK
c
ki A

k
c), where f ≡ (c,i). Employing this notation, the sub-cell contribution to the

diffusion flux reads
Qpc =− ∑

f∈F (p)

S̃t
c f (T̄

f−Tc).

Eliminating the sub-face temperatures by means of (3.28) and using the property (3.29) leads
to

Qpc =− ∑
d∈C(p)

G
p
cd(Td−Tc), (3.32)

where Gp is a Cp×Cp matrix defined at point p by

Gp = S̃tN−1S. (3.33)

Let us point out that the entries of Gp have the physical dimension of a conductivity. Thus, it
can be viewed as the effective conductivity tensor at point p. More precisely, it follows from
(3.32) that the entry G

p
cd stands for the effective conductivity between cells c and d through the

point p. This node-base effective conductivity tensor will be the cornerstone to assemble the
global diffusion matrix over the computational grid.

Comment 7. If the conductivity tensor K is symmetric, it is straightforward to show that S̃=
S. Bearing this in mind, we claim that Gp is symmetric positive definite provided that the
conductivity tensor K is itself symmetric positive definite. To prove this result, it is sufficient
to observe that

GpT ·T =(S̃tN−1S)T ·T

=N−1(ST)·(S̃T),

where T∈RCp is the vector of cell temperatures. Since K is symmetric, one deduces that S̃=S,
in addition N is symmetric positive definite, which ends the proof.

3.8 Assembling of the global diffusion matrix

Taking into account the previous results, the semi-discrete scheme over cell c reads

mcCvc
d

dt
Tc− ∑

p∈P(c)
∑

d∈C(p)

G
p
cd(Td−Tc)=mcrc, (3.34)

where P(c) is the set of points of cell c and C(c) is the set of cells surrounding the point p. This
equation allows to construct the generic entries of the global diffusion matrix, D, as follows

Dcc = ∑
p∈P(c)

∑
d∈C(p)

G
p
cd, (3.35a)

Dcd =− ∑
p∈P(c)

G
p
cd,c 6=d. (3.35b)

If CD denotes the total number of cells composing the computational grid, then matrix D is a
CD×CD square matrix. The vector of cell-centered temperatures, T ∈RCD , is the solution of
the system of differential equations

MCv
d

dt
T +DT =MR. (3.36)

Here, R∈RCD is the source term vector, M and Cv are the diagonal matrices whose entries are
respectively the cell mass mc and the cell heat capacity Cvc.
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4 Properties of the semi-discrete scheme and practical issues

In this section, we describe briefly some interesting properties that characterize our finite vol-
ume semi-discrete scheme. Firstly, we show that the scheme is characterized by a positive
semi-definite global diffusion matrix. Secondly, we demonstrate the L2-stability of the space
discretization. Finally, in the last paragraph of this section, we present the boundary conditions
implementation.

4.1 Positive semi-definiteness of the global diffusion matrix

We demonstrate that the global diffusion matrix, D, is positive semi-definite, that is for all
T ∈RCD

DT ·T ≥0. (4.1)

To prove this results, let us write the cth entry of vector DT

(DT )c = ∑
p∈P(c)

Qpc

= ∑
p∈P(c)

∑
f∈F (p,c)

A
f
pcq

f
pc.

Employing the above expression, the left-hand side of (4.1) reads

DT ·T =
CD

∑
c=1

∑
p∈P(c)

∑
f∈F (p,c)

A
f
pcq

f
pcTc.

Interchanging the order of summation lead to

DT ·T =
PD

∑
p=1

∑
c∈C(p)

∑
f∈F (p,c)

A
f
pcq

f
pcTc

=
PD

∑
p=1

Ip.

Here, PD is the total number of nodes of the computational grid and Ip=∑c∈C(p)∑ f∈F (p,c) A
f
pcq

f
pcTc

has been already defined by Eq. (3.19). Due to the fundamental inequality satisfied by the dis-
crete sub-face normal flux approximation, refer to Paragraph 3.3, Ip is always positive, which
ends the proof.

4.2 L2-stability of the semi-discrete scheme

In this paragraph, we prove the stability of our semi-discrete scheme in the absence of source
term (r=0) with respect to the discrete L2 weighted norm defined by

‖T ‖2
w2=

CD

∑
c=1

mcCcvT2
c , (4.2)

where CD is the total number of cells of the computational domain D. In the absence of the
source term, the semi-discrete scheme reads

MCv
dT

dt
+DT =0,
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Dot-multiplying the above equation by T ∈RCD yields

MCv
dT

dt
·T +DT ·T =0.

Assuming that the mass density and the heat capacity do not depend on time, the above equa-
tion turns into

d

dt
(

1

2
MCvT ·T )=−DT ·T .

Recalling that the global diffusion matrix, D, is positive semi-definite and employing the defi-
nition of the discrete L2 norm (4.2) leads to the inequality

d

dt

(
‖T ‖2

w2

)
≤0. (4.3)

Here, we have ignored the contributions of the boundary terms assuming for instance periodic
or homogeneous Neumann boundary conditions. This inequality shows that the L2 norm of
the semi-discrete solution remains bounded by the L2 norm of the initial data. This implies the
L2-stability of our semi-discrete finite volume scheme.

4.3 Boundary conditions

In this paragraph, we present a generic methodology to implement the boundary conditions,
which is crucial when dealing with real-word applications. It is worth mentioning that the
boundary terms discretization is derived in a consistent manner with the scheme construction.
To take into account the boundary terms, let us write the linear system linking the sub-face
temperatures with the cell temperature under the form

NT̄ =ST+B, (4.4)

where the extra term B is the vector containing the boundary conditions contribution, which
shall be defined in the next paragraphs.
Let us consider a sub-face f located on the boundary of the domain, in the next paragraphs,
we describe the modifications to bring to the matrices and boundary vector, depending on the
boundary conditions types under consideration.

4.3.1 Dirichlet boundary condition

On the boundary sub-face f ≡ (c,i), the temperature T̄∗ is imposed, we have T̄i
c = T̄ f = T̄∗. We

multiply this equation by Ai
c, thus Ai

cT̄ f = Ai
cT̄∗. Let us write this equation under the system

form (4.4). The diagonal term of the f th line of the system writes

N f f =Ai
c.

The corresponding extra-diagonal term is given by

N f g =0, ∀g 6= f .

Regarding the matrix S, we obtain
S f g =0, ∀g.

Finally, the f th component of the vector B reads

B f =Ai
cT̄∗.
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4.3.2 Neumann boundary condition

On the boundary sub-face f ≡ (c,i) the normal flux q∗ is prescribed, hence the continuity con-
dition rewrites

qi
c =q∗. (4.5)

Multiplying this equation by Ai
c and replacing qi

c by its expression (3.26) yields

−αc Ai
c

3

∑
k=1

Kc
ik Ak

c(T̄
k
c −Tc)=Ai

cq∗. (4.6)

The diagonal term of the f th line of matrix N reads

N f f =αc Ai
cKc

ii A
i
c.

There are two non-zero extra-diagonal terms that come from the contribution of the sub-cell c.
If we note g≡ (c,k), for k 6= i, these two terms write under the form

N f g =αc Ai
cKc

ik Ak
c .

The matrix S has only one non-zero term its f th line

S f c =αc

3

∑
k=1

Ai
cKc

ik Ak
c .

Finally, the f th component of vector B is B f =−Ai
cq∗.

4.3.3 Robin boundary condition

On the boundary sub-face f ≡ (c,i), the condition αT̄i
c+βqi

c = q∗R is prescribed. Let us multiply
this equation by Ai

c and replace qi
c by its expression (3.26) to obtain

αAi
cT̄i

c−βαc Ai
c

3

∑
k=1

Kc
ik Ak

c(T̄
k
c −Tc)=Ai

cq∗R (4.7)

The diagonal term of matrix N reads

N f f =βαc Ai
cKc

ii A
i
c−αAi

c.

This matrix has once again two non-zero extra-diagonal terms coming from the contribution
of the sub-cell c. Denoting g≡ (c,k), for k 6= i, these two non-zero terms write

N f g =βαc Ai
cKc

ik Ak
c .

The non-zero term of the f th line of matrix S is given by

S f c =βαc

3

∑
k=1

Ai
cKc

ik Ak
c .

Finally, the f th component of vector B is B f =−Ai
cq∗R.

Let us remark that the Dirichlet boundary condition is recovered for α= 1, β= 0 and q∗R = T∗

whereas, the Neumann boundary condition corresponds to the case α=0, β=1 and q∗R =q∗.
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4.3.4 Contribution to the global diffusion matrix

We achieve the discretization of the boundary conditions by listing the modifications that we
have to take into account in the assembling of the global diffusion matrix. Solving the local
system (4.4), which relates the sub-face temperatures and the cell temperatures, yields the
following expression of the sub-face temperature vector

T̄ =N−1ST+N−1B, (4.8)

where the modifications inherent to matrices N, S and vector B have been detailed in the
previous paragraphs. The above expression of the sub-face temperature vector, T̄ , turns the
contribution of the sub-cell ωpc to the diffusion flux, Qpc, into

Qpc =− ∑
d∈C(p)

G
p
cd(Td−Tc)−

(
S̃tN−1B

)
c
, (4.9)

where the effective conductivity tensor, Gp, is defined by (3.33). Finally, the global linear sys-
tem corresponding to our finite volume scheme becomes

MCv
dT

dt
+DT =MR+Σ, (4.10)

where Σ is the vector containing the boundary condition contributions, whose the cth entry is

given by Σc=
(

S̃tN−1B
)

c
. The definition of the other matrices and vectors of the above system

remain unchanged.

5 Time discretization

In this section, we briefly describe the time discretization of the system (4.10). We restrict
the presentation to the case of a linear heat equation knowing that in the non linear case the
interested reader might refer to [27]. First, let us prescribe the initial condition T (0) = T

0,
where T 0 is the vector of the cell-averaged initial condition. We solve the system over the time
interval [0,T] using the subdivision

0= t0
< t1

< ···< tn
< tn+1

< ···< tN =T.

The time step is denoted by ∆tn = tn+1−tn . The time approximation of a quantity at time tn is
denoted using the superscript n, for instance T

n =T (tn). Knowing that an explicit time dis-
cretization of the diffusion operator necessitates a stability constraint on the time step which
is quadratic with respect to the smallest cell size, we prefer to use an implicit time discretiza-
tion. Further, we assume that the heat capacity and the conductivity tensor do not depend
on temperature. Integrating (4.10) over [tn,tn+1] yields the first-order in time implicit discrete
scheme

MCv
T n+1−T n

∆tn
+DT

n+1=MR
n+Σ

n. (5.1)

The updated cell-centered temperatures are obtained by solving the following linear system

(
MCv

∆tn
+D

)
T

n+1=
MCv

∆tn
T

n+MR
n+Σ

n. (5.2)

Let us recall that D is positive semi-definite. Knowing that MCv is a positive diagonal matrix,
we deduce that the matrix MCv

∆tn +D is positive definite. Thus, the linear system (5.2) always
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admits a unique solution. Finally, in the absence of source term and assuming periodic or
homogeneous boundary conditions, we observe that the above implicit time discretization is
stable with respect to the discrete weighted L2 norm defined by

‖T ‖2
w2=(MCT ·T ),

where T is a vector of size CD. To prove this result, we dot-multiply (5.2) by T
n+1 and obtain

MCvT
n+1 ·T n+1−MCvT

n ·T n+1=−∆tnDT
n+1 ·T n+1.

Due to the positive definiteness of matrix D the right-hand side of the above equation is neg-
ative, hence

MCvT
n+1 ·T n+1≤MCvT

n ·T n+1.

Employing Cauchy-Schawrz inequality in the right-hand side of the above inequality yields

MCvT
n ·T n+1≤‖T n‖w2‖T

n+1‖w2.

Gathering the above results leads to

‖T n+1‖w2≤‖T
n‖w2,

which ends the proof.

Comment 8. The computation of the numerical solution requires to solve the sparse linear
system (5.2). This is achivied by employing the localized ILU(0) Preconditioned BiCGStab al-
gorithm, refer to [29, 35]. The parallel implementation of this algorithm and its efficiency are
discussed in Section 6. Knowing that the matrices encountered in this work are all symmetric,
we could have employed a classical conjugate gradient method to solve the corresponding lin-
ear system. However, our numerical scheme being able to cope with non-symmetric diffusion
equations, refer to [27], we have chosen to implement a more general solver to handle these
problems.

6 Parallelization

When dealing with three-dimensional grids, the computational power needed to solve the
problems grows quickly. In fact two problems occur, the memory consumption becomes higher
and the computational time becomes longer. These two problems can be overcome with the
parallelization of the scheme. The goal is to split the global problem into smaller problems
that will run concurrently on different processors. In the distributed memory case, the more
processors we add, the more memory we get. On the other hand communications are then
needed between the processors to solve the global problem.
First, we have a look at the implementation of the sequential algorithm and identify the parts
we need to parallelize in priority. Then, we describe the partitioning step and the commu-
nication process. Finally, we present an experimental study to assess the efficiency of our
parallelization scheme.

6.1 Analysis of the problem

The sequential algorithm can be divided in two steps: assembling the matrix and solving the
system.
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To build the global matrix we have to solve a local linear system at each vertex of the mesh.
This is a vertex-centered approach. The solving step is performed through the use of iterative
Krylov methods such as BiCGStab [35]. These methods need to perform matrix-vector multi-
plications and dot products. Here, the matrix involved associates a cell with its neighboring
cells; hence the solving step is a cell-centered approach.
In a parallel computation we would like to split the problem into equally balanced sub-problems,
this is called partitioning. The problem we have to face with our algorithm is that the optimal
partition for the vertex-centered approach is different from the optimal partition for the cell-
centered one. We thus have to make a choice, optimizing one step while sacrificing the other.
If we have a look at the sequential timings we can see that the construction process takes ap-
proximately 10% of the overall time and the solving step takes 90% of the time. The Amdahl’s
law [7] tells us that we have more to gain by optimizing the more time consuming step, in our
case the solving step, so we will focus on a cell-centered partitioning.

6.2 Partitioning and communications

The main kernel of iterative Krylov methods is a matrix-vector multiplication. This is why we
have to efficiently parallelize the matrix-vector product Y =AX. We assume that we have a
partitioning of our problem, it means that every processor owns a specific subset of the global
problem. If I is a processor it will only know the subset X I of the vector X and the subset Y I

of the vector Y . This results in the following decomposition for the vectors X and Y :

Y =




Y1
...

Y I
...

Y N




, X =




X1
...

X I
...

XN




.

Similarly, we decompose the matrix A and express it in terms of a block matrix with AI J

elements:

A=




A11 ··· A1N

. . .
... AI J

...
. . .

AN1 ··· ANN




.

With these notations the matrix-vector multiplication Y =AX may be expressed as:

Y I = ∑
J=1..N

AI JX J , ∀I∈{1,.. .,N}.

To compute subvector Y I processor I needs to access the bloc matrices AI J where J = 1..N.
More precisely, processor I needs to access all the rows associated to its partition. We say that
the matrix is partitioned row-wise. Processor I also potentially needs to know the vectors X J

where J=1..N, which is the whole X vector. As we mentioned before, it only owns X I vector.
To perform the global operation, we thus need to receive the subvectors X J from the processors
J (J 6= I). As matrix A is sparse, a block X J is effectively needed if and only if AI J has non zero
entries. Furthermore, AI J may also be sparse. Thus, only part of the elements of subvector

X J may be needed on processor I. We note X̂ I
J the corresponding pruned subvector (so-called

“overlap”) and Y I←AI JX J may be compacted into Y I←ÂI JX̂
I
J .
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(a) Matrix decomposition. (b) Mesh decomposition.

Figure 6: Example of matrix and mesh decomposition on two processors with overlaps con-
struction.

The algorithm for the parallel matrix-vector on processor I can then be written as follows:

• For each processor J, send
ˆ

X
J
I to processor J,

• Compute Y I←AI I X I ,

• For each processor J, receive X̂ I
J from processor J and compute Y I←Y I+ÂI JX̂

I
J .

In order to hide the communication process, we consider non-blocking communications, which
occur while we compute the local matrix-vector multiplication Y I←AI I X I . If the amount of

computation for this operation is big enough the distant subvector X̂ I
J may be transferred with-

out impact on the elapsed time.
A simple example of this decomposition is displayed in Figure 6(a). In this example, the first
processor in blue owns the first four rows of the matrix and the first six elements of the vector,
while the second processor in red owns the last four rows and the last six elements of the vector.
On the first processor the overlaps are the element 5 and 6 of the vector, while the overlaps of
the second processor consist of the elements 3 and 4. These elements are not computed on
the local processor but are received from the other processor. The associated mesh and the
corresponding sub-meshes obtained after the decomposition are shown in Figure 6(b), the grey
cells represent the overlaps. The other parallel operation to perform in our iterative solver is
the inner product p= X ·Y =∑k XkYk. With our decomposition it writes p=∑J=1..N pJ where

pJ = ∑k Xk
JY

k
J is the local inner product corresponding to the sub-problem J. This is a global

operation, every processor has to compute its local inner product and exchange it with all the
other processors. This communication cannot be overlapped by computation, this could be a
bottleneck in our algorithms.
How should we distribute the rows of the matrix? As we said before we want the load to be
balanced between the processors, in our case it is the number of operations in the matrix-vector
operation or the number of non-zero elements in the matrix. We also want to overlap the com-
munications with computations, and the communication time depends on the amount of data
to exchange. This amounts to reduce the volume of communication between processors. This
problem is really complicated, that is why to achieve these goals we use a graph partitioner
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called Scotch [31]. We process the graph associated to the global matrix with this library which
retrieves for each row the partition it belongs to. With these informations we can set up the
communication scheme explained earlier.
What are the changes needed by the scheme in parallel? When we add an element in the
overlap vector we add the corresponding cell in the local sub-mesh. So in every sub-mesh
an internal cell is surrounded by all its neighbors, we have all the information to build the
row corresponding to this cell in the matrix, so nothing has to be changed in the scheme. The
parallelism is only seen in the solving step.
We have implemented these methods in our development code but we can also use the PetSC
library [8–10]. This library implements scalable algorithms to solve scientific applications mod-
eled by partial differential equations. In this library the solving step and the communication
process are hidden to the user. The problem we faced is that with the libraries available on
our experimental platform we could not use some preconditioners in parallel like ILU(0). Due
to that, the iterative method does not converge very well in parallel. This explains why the
experiments we ran with PetSC were not very conclusive.

6.3 Experiments

In order to quantify the quality of the parallelization we define two metrics: the speedup and
the efficiency. If Tp denotes the time needed to solve the problem on p processors the speedup
is defined by

S(p)=
T1

Tp
.

This quantity represents how much faster the algorithm is on p processors than in sequential.
Ideally on p processors we would like to be p times faster than in sequential, thus the ideal
speedup is defined by

Sideal(p)= p.

An other interesting metric is the efficiency. It is given by

E(p)=
T1

pTp
.

It assesses how efficiently the processors are used with respect to the ideal case (E(p)=1).
We ran the experiments on the PLAFRIM (IMB/LABRI/INRIA) [1] platform. On each node of this ma-
chine we have 2 Quad-core Nehalem Intel Xeon X5550 (8 CPU cores total per node) running at
2,66 GHz. The nodes have 24Gb of RAM (DDR3 1333MHz) and are connected with Infiniband
QDR at 40Gb/s. To test the scalability of our method we ran the tests on 1 to 64 CPU cores
(using 1 to 8 nodes). We run the speedup tests on two kinds of grids:

• A Cartesian hexahedral grid made of 512 000 cells, 531 441 nodes and with 13 481 272
non-zeros entries in the associated matrix,

• A unstructured tetrahadral grid made of 396 601 cells, 98 218 nodes and with 28 946 047
non-zeros entries in the associated matrix.

We specifically chose these meshes to illustrate the load balancing problem occurring between
the matrix construction and the solving step. On the first kind of mesh we have a perfect load
balancing while on the second one the load balancing of the construction step can be bad, due
to the unstructured feature of the grid. The partitioning of the coarsest versions of these grids
are displayed in Figure 7(a) for the structured grid and in Figure 7(b) for the unstructured grid.
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(a) Structured hexahedral grid. (b) Unstructured tetrahedral grid.

Figure 7: Partitioning computed with the Scotch library (INRIA) [31] for 8 processors. One
distinct color is attributed to each processor.

Figure 8: Speedup curve for 1 to 64 processors on structured and unstructured 3D meshes.
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Figure 9: Efficiency curve for 1 to 64 processors on structured and unstructured three-
dimensional meshes.

On the speedup curve displayed in Figure 8 we can see that the more processors we add, the
further away from the ideal speedup we get. This highlights two different phenomena. First,
in the conjugate gradient method we need to compute some scalar products and vector norms
which need collective communications. This kind of communications does not scale very well
so the more processors we add the worse it gets. The other phenomenon is that by adding
more processors, the local matrices get smaller and we need to communicate more at the same
time. So at some point the computation can not overlap the communications anymore and the
speedup gets worse.

On the efficiency curve displayed in Figure 9 we can see that from 1 to 8 CPU cores the effi-
ciency quickly drops from 1 to 0.85, then between 8 to 64 CPU cores it decreases more slowly.
This reflect the topology of the platform we used for the tests. From 1 to 8 CPU cores we are
only using one node. On a single node the communication cost is negligible, so we would
expect the efficiency to stay close to 1. The quick drop shows the existence of a bottleneck in
the memory usage. This may come from the usage of unstructured methods which uses a lots
of memory indirection, some optimization around the matrix numbering should reduce this
effect. The decrease in efficiency observed with more than 8 CPU cores is due to the commu-
nications between the nodes.

Finally, we can comment the difference between the efficiency obtained on structured and
unstructured meshes. We observe the same phenomenon on the two kinds of meshes. We
observe that the efficiency is a bit better for the structured meshes. The difference is due to the
imbalance in the construction step. This imbalance could be lowered by adding information
about the cost of the matrix construction into the graph sent to the partitioner.

To conclude this paragraph we can claim that we developed a parallel implementation of the
classical BiCGStab method. This method has some blocking points, the inner products that can
not be overlapped by computations, so it is not fully scalable. In [37] the authors present the
IBiCGStab method, a modified BiCGStab algorithm with an equivalent numerical stability, in
which these blocking points are cured. Only one global synchronization point is needed per
iteration instead of four in the original algorithm. This is a more scalable method. In a future
work we plan to investigate this modification to improve the efficiency of our implementation.
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7 Numerical results

The aim of this section is to assess the robustness and the accuracy of our finite volume scheme
against analytical test cases using various types of unstructured three-dimensional grids. The
tests cases have been chosen to highlight the different features of the scheme. First, we describe
the methodology employed for the convergence analysis defining the related metrics. Then,
we present the three-dimensional structured and unstructured grids employed. Finally, we
describe the set up of each test case, display the numerical results obtained and discuss the
quality of the corresponding convergence analysis.
In this section, the numerical solutions are obtained solving linear systems by means of the
localized ILU(0) Preconditioned BiCGStab algorithm [29, 35]. The relative error tolerance to
achieve the convergence is equal to 10−16.

7.1 Methodology

Let us recall that we are solving the generic diffusion equation

ρCv
∂T

∂t
−∇·(K∇T)=ρr, (x,t)∈D×[0,T ], (7.1a)

T(x,0)=T0(x), x∈D, (7.1b)

where r = r(x) is a source term. The analytical solutions of all the tests are stationary. Thus,
we are going to compute them starting with the initial condition T0(x) = 0 and we run the
simulation until the steady state is reached. The density and the specific heat capacity are
specified such that ρ= 1 and Cv = 1. The boundary conditions, the source term and the heat
conductivity tensor K will be specified for each test case.
Bearing this in mind, we describe the procedure employed to perform the convergence analy-
sis. First, we define the mesh resolution

h=

(
|D|

CD

) 1
d

,

where CD denotes the number of cells that paved the computational domain and d= 3 is the
dimension of the space. Let T= T̂(x) be the steady analytical solution of the diffusion equation
(7.1a). Being given a computational grid characterized by h, we denote by T̂h

c the value of the
analytical solution evaluated at the centroid of the cell ωc, i.e., T̂h

c = T̂(xc), where xc is the cell
centroid. If Th

c denotes the cell averaged temperature computed by the numerical scheme, we
define the asymptotic numerical errors based on the discrete L2 and L∞ norms

Eh
2 =

√√√√
CD

∑
c=1

(Th
c − T̂h

c )
2 |ωc |,

Eh
∞ = max

c=1...CD
|Th

c − T̂h
c | .

The asymptotic error for both norms is estimated by

Eh
α =Cαhqα +O(hqα+1) for α=2, ∞. (7.2)

Here, qα denotes the order of the truncation error and Cα is the convergence rate-constant
which is independent of h. Having computed the asymptotic errors corresponding to two
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different grids characterized by mesh resolutions h1 and h2 < h1, we deduce an estimation of
the order of truncation error as

qα =
logEh2

α −logEh1
α

logh2−logh1
. (7.3)

7.2 Computational grids

Here, we present the three-dimensional computational grids employed to run the test cases.
There are various types of grids: tetrahedral grids, hexahedral grids and hybrid grids which
are composed of tetrahedra, hexahedra and pyramids. The detailed description of these grids
is summarized in the list below:

• Tetrahedral grids, displayed in Figure 10(a) and Figure 10(f), have been constructed using
Gmsh, which is a three-dimensional finite element mesh generator [16];

• Hexahedral Cartesian grid displayed in Figure 10(b);

• Kershaw-type grid displayed in Figure 10(c);

• Smoothly deformed hexahedral grid resulting from the mapping defined on the unit
cube [0,1]3 by

x(ξ,η,θ)=ξ+a0sin(2πξ)sin(2πη)sin(2πθ),

y(ξ,η,θ)=η+a0sin(2πξ)sin(2πη)sin(2πθ),

z(ξ,η,θ)=θ+a0sin(2πξ)sin(2πη)sin(2πθ),

where the amplitude of the deformation is a0 = 0.1. Observing that the deformation
cancels on the boundary surfaces of the unit cube, this grid has not been displayed since
it looks like the Cartesian grid;

• Randomly deformed hexahedral grid, displayed in Figure 10(d), resulting from the map-
ping defined on the unit cube [0,1]3 by:

x(ξ,η,θ)= ξ+a0hr1,

y(ξ,η,θ)=η+a0hr2,

z(ξ,η,θ)= θ+a0hr3,

where {ri}i=1...3 are random numbers in [−1,1], h is the characteristic mesh size and
a0=0.2 the amplitude of the deformation;

• Hybrid grid, displayed in Figure 10(e), made of hexahedral cells, pyramidal cells and
tetrahedra.

Comment 9. We have introduced the hybrid grid because of its usefulness regarding real-
world applications. Let us point out that it is a convenient way to mesh a domain using both
hexahedral and tetrahedra cells with the constraint of keeping a conformal grid. In this case, a
layer of pyramids ensures the transition between hexahedra and tetrahedra. This kind of grid
can be used in the context of the computation of a viscous flow in the presence of a solid wall.
Indeed, the pyramid cells allows to match the boundary layer in the vicinity of the wall, paved
by means of hexahedra, with the rest of the domain paved using tetrahedra.

Comment 10. The tetrahedral grid displayed in Figure 10(f) corresponds to a truncated sphere
with an internal radius Ri and an external radius Re. This grid is also characterized by an
interface located at Rm, which allows to separate two distinct materials.
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(a) Tetrahedral grid made of 8222 cells. (b) Cartesian hexahedral grid made of 1000
cells.

(c) Kershaw-type grid made of 1000 cells. (d) Randomly perturbed grid made of 1000
cells.

(e) Hybrid grid made of 3432 tetrahedra, 100
pyramids and 500 hexahedra.

(f) Tetrahedral grid of a truncated sphere
made of 6623 cells.

Figure 10: Three-dimensional grids used for the test cases.
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Table 1: Isotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corre-
sponding truncation errors for hexahedral grids.

(a) Smooth grids.

h Eh
∞ qh

∞ Eh
2 q2

2

1.00D-01 5.65D-03 1.60 2.18D-03 1.69

5.00D-02 1.87D-03 1.80 6.75D-04 1.90

2.50D-02 5.35D-04 1.92 1.81D-04 1.97

1.25D-02 1.41D-04 - 4.63D-05 -

(b) Kershaw grids.

h Eh
∞ qh

∞ Eh
2 q2

2

1.00D-01 3.22D-02 1.94 8.23D-03 2.04

5.00D-02 8.39D-03 1.39 2.00D-03 1.69

2.50D-02 3.20D-03 2.09 6.20D-04 2.06

1.25D-02 7.53D-04 - 1.49D-04 -

(c) Random grids.

h Eh
∞ qh

∞ Eh
2 q2

2

1.00D-01 2.09D-03 0.75 6.62D-04 1.00

5.00D-02 1.24D-03 0.81 3.31D-04 1.00

2.50D-02 7.07D-04 0.93 1.66D-04 1.00

1.25D-02 3.72D-04 - 8.29D-05 -

7.3 Isotropic diffusion problem

This problem consists in finding the steady solution of (7.1) with r=0 and an isotropic conduc-
tivity tensor defined by K=κI, where I is the unit tensor of R3 and the scalar conductivity is
given by κ = 1. The computation domain is D= [0,1]3 and we apply the following boundary
conditions on the boundaries of D

• Dirichlet boundary condition

T(x)=0, for x=0,

T(x)=1, for x=1.

• Neumann boundary condition

q(x)·n=0, for y=0, y=1, z=0 and z=1.

The steady analytical solution is T̂(x)=x. The aim of this simple test case is to assess the ability
of our scheme to preserve linear fields.
First, we compute the steady numerical solution using a tetrahedral grid made of 8222 cells,
refer to Figure 10(a). The corresponding asymptotic errors are equal to zero up to machine
precision. As expected, our finite volume scheme preserves linear solutions on tetrahedral
grids. We observe a similar behavior when computing the numerical solution on the Cartesian
hexahedral grid displayed in Figure 10(b). Let us point that this result confirms the conclu-
sion already drawn for this type of numerical methods, in the context of two-dimensional
geometry, refer to [12, 27]. The convergence analysis for smooth grids, Kershaw grids (refer to
Figure 10(c)) and random grids (refer to Figure 10(d)) are performed computing the asymp-
totic errors and the corresponding orders of truncation error using formulas (7.2) and (7.3).
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h Eh
∞ qh

∞ Eh
2 q2

2

6.28D-02 2.06D-03 0.99 2.66D-04 1.49

3.12D-02 1.04D-03 1.00 9.39D-05 1.50

1.56D-02 5.19D-04 1.74 3.32D-05 2.59

1.04D-02 2.58D-04 - 1.17D-05 -

Table 2: Isotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corre-
sponding truncation errors for hybrid grids.

The results displayed in Table 1(a) show that the convergence rate is almost of second-order in
the L2 norm and a little bit less in the L∞ norm. In Table 1(b), we observe a similar behavior
for the convergence analysis corresponding to the Kershaw grids. Proceeding with the con-
vergence analysis for random grids as before, we have displayed the corresponding results in
Table 1(c). The convergence rate is of first-order for the L2 norm and almost of first-order for
the L∞ norm. Finally, the convergence analysis for the hybrid grids, refer to Figure 10(e), is
displayed in Table 2. The corresponding data demonstrate that our numerical scheme exhibits
a rate of convergence located between first and second-order. Let us point out that the maxi-
mal error is always located in the layer of pyramids which allows to link the tetrahedral and
the hexahedral regions of the grid. This clearly shows that the loss of accuracy is the conse-
quence of the particular treatment applied to pyramids to derive the flux approximation, refer
to Appendix A.

7.4 Isotropic diffusion problem with a discontinuous conductivity

Here, the computational domain, D, is the truncated sphere, centered at the origin and char-
acterized by the inner radius Ri =0.1 and the outer radius Re =1. An interface, located at the
radius Rm =0.5, splits the computational domain into two regions filled with two distinct ma-
terials. The conductivity tensor is isotropic and piecewise constant, i.e, K= κI where κ= κ(r)
with r=

√
x2+y2+z2. The scalar conductivity is given by

κ(r)=

{
κ1 ifr∈ [Ri,Rm[,

κ2 ifr∈]Rm,Re].

For numerical applications, we choose κ1 = 10 and κ2 = 1. Dirichlet boundary conditions are
prescribed at the inner and the outer boundary of the computational domain, i.e., T(Ri)=Ti=0
and T(Re) = Te = 1. Due the radial symmetry of the problem, we consider a computational
domain restricted to 1

8 of the truncated sphere. The corresponding coarsest tetrahedral grid is
displayed in Figure 10(f). Homogeneous Neumann boundary conditions are prescribed at the
remaining boundaries of the computational domain to handle the symmetry of the problem.
The steady analytical temperature, T̂(r), field is obtained by solving the following problem

1

r2

d

dr
(r2 dT

dr
)=0, r∈]Ri,Re[

T(Ri)=Ti,

T(R−m)=T(R+
m), κ1

dT

dr
(R−m)=−κ2

dT

dr
(R+

m),

T(Re)=Te.

Let us remark that the second equation in the above system expresses the continuity conditions
of the temperature and the heat flux across the interface located at Rm. Employing the previous
numerical values, the analytical solution reads
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Figure 11: Isotropic diffusion problem with a discontinuous conductivity: Temperatures in all
the cells with respect to the radii of the cell centroid for a tetrahedral grid composed of 13549
tetrahedra; comparison with the analytical solution.

h Eh
∞ qh

∞ Eh
2 q2

2

1.20D-01 1.23D-01 3.19 2.16D-02 2.49

5.80D-02 1.22D-02 1.65 3.57D-03 2.25

4.54D-02 8.14D-03 1.90 2.05D-03 2.08

3.17D-02 4.12D-03 - 9.73D-04 -

Table 3: Isotropic diffusion problem with a discontinuous conductivity, asymptotic errors in
both L∞ and L2 norms and corresponding truncation errors for tetrahedral grids.

T̂(r)=

{
− 1

18r +
5
9 ifr∈ [Ri,Rm],

− 5
9r +

14
9 ifr∈ [Rm,Re].

The steady analytical and numerical solutions are displayed in Figure 11. We have plotted
the averaged temperature of all the cells versus the cell centroid radius. We observe that the
numerical solution is almost superimposed to the analytical solution. This clearly shows the

ability of the scheme to preserve the radial symmetry on a highly anisotropic unstructured

grid, which is not aligned with the symmetry of the problem. We investigate the conver-
gence analysis for this problem using a sequence of four tetrahedral grids made of 902, 6623,
13549 and 37648 cells. The resulting asymptotic errors and rate of convergence in both L∞

and L2 norms are presented in Table 3. We observe that a second-order rate of convergence is
asymptotically reached in L2 norm . It is interesting to note the big gap in the maximum errors
between the coarsest grid and the second grid. This might be due to the discretization of the
spherical boundaries. On the coarsest grid, the mesh resolution is too poor to properly capture
the curvilinear inner and outer boundaries. When the grid is refined, the curvilinear feature of
the boundaries is better captured due to the increased mesh resolution.
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h Eh
∞ qh

∞ Eh
2 q2

2

1.12D-01 3.01D-01 2.43 7.98D-02 2.55

4.95D-02 4.18D-02 1.94 1.01D-02 2.14

2.47D-02 1.08D-02 1.64 2.26D-03 1.99

1.23D-02 3.45D-03 - 5.70D-04 -

Table 4: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corre-
sponding truncation errors for tetrahedral grids.

7.5 Anisotropic diffusion problem with a highly heterogeneous conductivity ten-
sor

This paragraph consists in assessing our finite volume scheme against a test case which is
representative of anisotropic diffusion characterized by a highly heterogeneous conductivity
tensor. This test case and its manufactured analytical solution are taken from [20]. Here, we
solve the problem (7.1) over the computational domain D=[0,1]3. The conductivity tensor is
defined by

K=Q




1 0 0
0 ε 0
0 0 η(1+x+y+z)


Qt.

where, Q=Q(x) is the rotation given by

Q=




cos(πx) −sin(πx) 0
sin(πx) cos(πx) 0

0 0 1


.

Here, ε and η are parameters which measure the degree of anisotropy of the conductivity
tensor. Indeed, the eigenvalues of the conductivity tensor are: 1, ε and η(1+x+y+z). For
numerical applications, we shall take ε=0.1 and η=10. The source term, r=r(x), is computed
such that the analytical steady solution of (7.1) is given by

T̂(x,y,z)=sin(πx)sin(πy)sin(πz).

We apply a homogeneous Dirichlet boundary condition on the boundaries of the computa-
tional domain, i.e., T(x,t) = 0, ∀ x ∈ ∂D. First, we compute the numerical solution using
a sequence of four tetrahedral grids. The coarsest grid has been displayed in Figure 10(a).
The asymptotic errors in both L∞ and L2 norms and the corresponding truncation errors are
summarized in Table 4. They show that the convergence rate in L2 norm is of second-order.
Regarding the convergence analysis on hexahedral grids, we have also used a sequence of four
grids for the following types of grids: Cartesian, Kershaw, smooth and random. These grids
are showed respectively in Figure 10(b), Figure 10(c) and Figure 10(d). Let us recall that the
smooth grid has not been displayed since the deformation cancels on the boundaries of the
computational domain. We start by giving in Table 5(a) the convergence analysis data for a
sequence of four Cartesian grids. These data demonstrate that our scheme exhibits an almost
second-order rate of convergence on Cartesian grids. The same conclusion holds for the con-
vergence analysis performed on smooth grids, refer to Table 5(c). We observe that the rate of
convergence in L2 norm are better than those obtained for the rectangular grids, however the
asymptotic errors on smooth grids are approximately three times bigger than the ones corre-
sponding to the Cartesian grids. Next, we pursue our investigation using a sequence of four
Kershaw grids. The related convergence analysis is summarized in Table 5(b). This time, the
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Table 5: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corre-
sponding truncation errors for hexahedral grids.

(a) Cartesian grids.

h Eh
∞ qh

∞ Eh
2 q2

2

1.00e-01 1.32D-02 1.68 4.86D-03 1.91

5.00D-02 4.13D-03 1.62 1.30D-03 1.95

2.50D-02 1.34D-03 1.69 3.35D-04 1.98

1.25D-02 4.15D-04 - 8.50D-05 -

(b) Kershaw grids.

h Eh
∞ qh

∞ Eh
2 q2

2

1.00D-01 3.01D-02 1.15 7.80D-03 1.72

5.00D-02 1.36D-02 1.25 2.38D-03 1.55

2.50D-02 5.72D-03 1.65 8.13D-04 1.99

1.25D-02 1.82D-03 - 2.05D-04 -

(c) Smooth grids.

h Eh
∞ qh

∞ Eh
2 q2

2

1.00D-01 6.03D-02 2.09 1.60D-02 2.12

5.00D-02 1.41D-02 1.68 3.69D-03 2.03

2.50D-02 4.41D-03 1.89 9.03D-04 2.00

1.25D-02 1.19D-03 - 2.26D-04 -

(d) Random grids.

h Eh
∞ qh

∞ Eh
2 q2

2

1.00D-01 2.44D-02 1.41 7.35D-03 1.86

5.00D-02 9.17D-03 1.09 2.02D-03 1.56

2.50D-02 4.31D-03 0.86 6.85D-04 0.72

1.25D-02 2.37D-03 - 4.16D-04 -
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h Eh
∞ qh

∞ Eh
2 q2

2

6.28D-02 4.67D-02 1.63 9.58D-03 2.01

3.12D-02 1.49D-02 1.47 2.34D-03 1.93

1.56D-02 5.38D-03 1.31 6.14D-04 1.83

1.04D-02 3.18D-03 - 2.95D-04 -

Table 6: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corre-
sponding truncation errors for hybrid grids.

rate of convergence in both L∞ and L2 norms is lying between first and second-order. Finally,
we compute the numerical solution on a sequence of four random grids. The results of the
convergence analysis corresponding to this sequence of grids are given in Table 5(d). In com-
parison to the above results, these ones are representative of an erratic behavior, which clearly
does not correspond to a second-order rate of convergence.
We achieve the convergence analysis of the present problem by studying the numerical solu-
tions obtained employing a sequence of four hybrid grids, refer to Figure 10(e). The asymptotic
errors and the convergence rates in both L∞ and L2 norms are displayed in Table 6. The results
demonstrate that the scheme is characterized by a rate of convergence located between first
and second-order. Once more, the maximal error is located in the layer of pyramids which
allows to link the tetrahedral and the hexahedral regions of the grid. Let us repeat that this
loss of accuracy is the consequence of the particular treatment applied to pyramids to derive
the flux approximation, refer to Appendix A.

8 Conclusion

In this paper, we have described a cell-centered finite volume scheme, which aims at solv-
ing anisotropic diffusion problems on three-dimensional unstructured grids. This scheme is
characterized by cell-centered unknowns, a local stencil and a symmetric positive definite ma-
trix. The partition of grid cells (resp. faces) into sub-cells (resp. -faces) allows to construct
a sub-face fluxes approximation by means of a sub-cell-based variational formulation. The
sub-face fluxes are locally expressed at each node in terms of the surrounding cell-centered
temperatures invoking continuity conditions of temperature and normal heat flux at each cell
interface. Regarding its accuracy, the scheme preserves linear fields with respect to the space
variable over tetrahedral grids and exhibits an almost second-order rate of convergence on
smooth distorted hexahedral grids. The parallel implementation of the scheme is discussed
and its evaluation shows a satisfying efficiency.
In future, we plan to develop an arbitrary Lagrangian Eulerian (ALE) formulation of the
present scheme to solve Stefan-like problems, i.e., phase change problems, over a moving grid.
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p

ωc

Figure 12: Sketch of a pyramid cell.

A Modifications to take into account pyramid cells

Pyramid cells are required to construct a conformal partition of a computational domain made
of tetrahedral and hexahedral cells. Indeed, the pyramid cells allow to make the transition be-
tween the tetrahedral zones and the hexahedral zones. In this case, we have to slightly modify
our finite volume scheme to take into account the fact that pyramids are cells for which the
number of faces incident to one vertex is strictly greater than 3. We describe the needed modi-
fications by considering a generic pyramid ωc and we denote by p the vertex characterized by
Fpc=4, where Fpc denotes the number of faces of cell c impinging at point p, refer to Figure 12.
Knowing that Fpc =4 faces are incident to the vertex p, the decomposition of a vector in terms
of its normal components within sub-cell ωpc, refer to Paragraph 3.1, is not possible. Indeed,
the number of equations, i.e., Fpc = 4, being greater than the number of unknowns, i.e., the 3
Cartesian components of the vector under consideration, we end up with an overdetermined
system.
To overcome this difficulty, we subdivide the sub-cell ωpc into the Fpc =4 fictive sub-cells ωpc f

defined by

ωpc f =
⋃

e∈E(p, f )

I p f e, for f ∈F (p,c).

Here, E(p, f ) is the set of edges of face f impinging at point p. Namely, being given a face f
incident to the vertex p, the sub-cell ωpc f is constructed by gathering the two iota tetrahedra
attached to the two edges of face f incident to point p. We observe that there is one fictive
sub-cell, ωpc f , per face impinging at vertex p. Each fictive sub-cell ωpc f has 3 faces impinging

at node p: the outer sub-face ∂ω
f
pc and two inner sub-faces which result from the subdivision.

Bearing this in mind, we can employ (3.26) to write the flux approximation within each fictive
sub-cell ωpc f . Having added the supplementary fictive sub-cells, the number of sub-cells sur-
rounding point p, which was equal to Cp, becomes equal to C

△

p =Cp+Fpc−1. Here, without loss
of generality, we suppose that there is only one pyramid in the set of cells surrounding vertex
p. Regarding the number of faces incident to vertex p, it was equal to Fp and becomes equal to

F
△

p =Fp+Fpc. Therefore, at the vertex p, the vector of sub-face temperatures, T̄
△

, is of size F
△

and the vector of cell-centered temperatures, T△, is of size C△

p . Utilizing the flux approximation
(3.26) and enforcing the normal flux continuity across the cell interfaces surrounding vertex p
in the same manner than in Paragraph 3.5 leads to the linear system satisfied by the sub-face
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temperatures

N△T̄
△=S△T△.

Here, N△ and S△ are respectively matrices of size F
△

p ×F
△

p and F
△

p ×C
△

p which are constructed
in the same way than in Paragraph 3.5. The matrix N△ is invertible, refer to Paragraph 3.6,
and the solution of the above linear system writes

T̄
△=

(
N△

)−1
S△T△.

This formula allows to express the sub-face temperatures p in terms of the cell-centered tem-
peratures surrounding vertex p. Finally, using the same procedure than in Paragraph 3.7, the
contribution of cell c to the diffusion flux at vertex p writes

Qpc =− ∑
d∈C△(p)

G
p,△
cd (T△

d −T△

c ), (A.1)

where C△(p) is the set of cells surrounding vertex p including the fictive sub-cells. The C
△

p ×

C
△

p matrix Gp,△ is given by Gp,△ =
(

S̃△

)t
(N△)−1

S△, refer to Paragraph 3.7 for the definition

of S̃. We point out that the cell index, d, employed in (A.1), can refer to a fictive sub-cell.
More precisely, Qpc contains contributions coming from temperatures attached to the fictive
sub-cells. These supplementary degrees of freedom are eliminated equating them to the cell
temperature Tc. This amounts to express the vector of the cell-centered temperatures including

the temperatures of the fictive sub-cells, T△ ∈R
C
△

p , in terms of the initial vector of the cell-
centered temperatures T∈RCp as follows

T△=PT . (A.2)

Here, P is a rectangular matrix of size C
△

p ×Cp. Let i (resp. j) be the generic index of a cell
in the local numbering of the cells belonging to C△(p) (resp. C(p)), then according to (A.2),
temperature T

△

i writes

T
△

i =
Cp

∑
j=1

PijTj.

For i=1...C△

p and j=1...Cp, the generic entry of P writes

Pij =





1 if i corresponds to a fictive sub-cell of cand jcorresponds to cell c,

1 if i corresponds to cell cand jcorresponds to cell c,

0 elsewhere.

Finally, substituting (A.2) into (A.1) leads to the expression of Qpc in terms of cell-centered
temperatures

Qpc =− ∑
d∈C(p)

G
p
cd(Td−Tc), (A.3)

where G
p
cd=PtGp,△P. It is worth pointing out that the definition of the global diffusion matrix

remains unchanged.

We have described the above modification in the particular case of a pyramid but there is
nothing to prevent us from applying it to general polyhedral cells.
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