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Charging Games in Networks of Electrical Vehicles
Olivier Beaude, Samson Lasaulce, and Martin Hennebel

Abstract—In this paper, a static non-cooperative game for-
mulation of the problem of distributed charging in electrical
vehicle (EV) networks is proposed. This formulation allows one
to model the interaction between several EV which are connected
to a common residential distribution transformer. Each EV aims
at choosing the time at which it starts charging its battery in
order to minimize an individual cost which is mainly related to
the total power delivered by the transformer, the location of the
time interval over which the charging operation is performed, and
the charging duration needed for the considered EV to have its
battery fully recharged. As individual cost functions are assumed
to be memoryless, it is possible to show that the game of interest is
always an ordinal potential game. More precisely, both an atomic
and nonatomic versions of the charging game are considered.
In both cases, equilibrium analysis is conducted. In particular,
important issues such as equilibrium uniqueness and efficiency
are tackled. Interestingly, both analytical and numerical results
show that the efficiency loss due to decentralization (e.g., when
cost functions such as distribution network Joule losses or life
of residential distribution transformers when no thermal inertia
is assumed) induced by charging is small and the corresponding
”efficiency”, a notion close to the Price of Anarchy, tends to one
when the number of EV increases.

Keywords: Charging games, electrical vehicle, distribution net-
works, potential games, Nash equilibrium, price of anarchy.

I. INTRODUCTION

For various reasons which include the decrease of fossil
fuel production, the design of electric vehicles (EV) and plug-
in hybrid electric vehicles (PHEV) becomes a more and more
important issue. An intrinsic feature of EV is that they need
their battery to be recharged regularly. A critical issue is that
the charging power is comparable to the maximum power
corresponding to a typical consumer’s subscription. In France,
for instance, the former is typically about 3 kW at home while
the latter is about 6 kW (or kVA to be more precise). This
shows the importance of scheduling in an appropriate manner
the charging period [1]. This is precisely what this paper is
about. As the decision to plug the EV to the network and
to start charging belongs to the vehicle owner, the problem
is naturally distributed. This is one of the reasons why a
reasonable mathematical model to analyze such a problem
is given by non-cooperative games. It is quite recent that
game-theoretic tools have been applied to smart grids (see
e.g., [2] for a recent survey). Interesting contributions include
[3; 4; 5; 6; 7]. As far as the problem of charging is concerned,
the authors of [4] show the usefulness of a well-chosen pricing
policy to incite users to charge their vehicle in order to regulate
frequency of the distribution network. References [5][6] used
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a similar method to study the more general problem of load
balancing.

Compared to the application-oriented works where game
theory is used to optimize energy consumption at the user side
(at home, by the EV, etc), the present work has the following
features. First, contrary to the vast majority of game-theoretical
studies in this area which apply to generic energy consumption
problems, specific features of the distributed charging problem
are accounted for : to avoid premature aging of the EV battery
and make the EV available, the EV battery has to be charged
without interruption (the charging profile is imposed to be
a rectangular function) and within a given time windows.
Second, to the best of our knowledge, there seems to be
no work available in the literature where distributed charging
policies are optimized in terms of the considered distribution
network physical costs with the use of non-cooperative games.
These costs are assumed to be memoryless in the sense that
at a given time they do not depend on the past sequence
of distribution network load levels. These costs include the
life of the distribution transformer to which the vehicles are
(indirectly) connected and Joule losses in the transformer
and in the distribution lines between the transformer and the
charging points.

Mathematically, the game under investigation has a structure
which is close to a congestion game [8]. Indeed, time instances
at which an EV can charge its battery can be seen as a set of
available facilities ”simultaneously”. However, since several
facilities can be exploited, it is not a congestion game in the
sense of Rosenthal [8]. The closest model is rather given by
[9]. The latter is concerned with the more general scenario in
which each user can split its demand between several facilities
(called ”parallel links” in [9]). The main technical differences
between the game under investigation and the latter is that
the set of facilities has to be contiguous and less symmetry
is available which makes both the cost/utility functions and
constraints different. One of the consequences of this is that
a notion of ”efficiency” close to the price of anarchy [10] of
the game considered in this paper cannot be upper bounded
by using classical results such as [11].

In this paper, two versions of the considered charging game
will be studied, namely : an atomic version which assumes a
finite number of EV ; a nonatomic version where only fractions
of users (those number is therefore implicitly assumed to be
large) appear. The nonatomic version is both useful to analyze
dense residential networks but also to obtain insights onto the
finite game e.g., on how the price of anarchy behaves. Sec. II
and Sec. III correspond to the case of a finite number of EV
while Sec. IV is dedicated to the limiting case of the nonatomic
scenario.

Notations : bold symbols X,x will stand for vectors while
the notation xt will refer to the t−th component of x.
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II. PROPOSED SYSTEM MODEL

Consider a residential distribution transformer which has to
deliver electrical power to a set of households and EV. The
current or power delivered by the transformer is assumed to
have two components : on component due to the set of EV and
another one which is due to the other electrical equipments.
The latter will be referred to as an exogenous component
because it is independent of the EV charging policies. Time
is assumed to be slotted (a time-slot duration is typically 30
min). The time index is denoted by t and belongs to

T = {1, 2, ..., T} . (1)

For example, if the time windows under consideration is from
5 pm (day number j) to 8 am (day number j + 1), there are
T = 31 time instances or 30 min time-slots at which an EV
may be active or not.

In the atomic formulation of the charging problem the set
of EV will be denoted by

IA = {1, 2, ..., I} . (2)

The arrival and departure time of EV i ∈ IA will be denoted
by ai ∈ T and di ∈ T respectively. As it is assumed that an
EV has to charge its battery within the total time windows,
EV i chooses the time instance at which it starts charging in
the following action set :

si ∈ Si = {ai, ai + 1, ...di − Ci} (3)

where Ci represents the number of time instances or time-
slots required to have the battery charged or reach a required
state of charge (SoC) for the next trip of EV i. A special case
is when all users have the same charging constraint, that is
∀i, ai = a, di = d,Ci = C. This case will be said to be
symmetric. In this case, it will be assumed, without loss of
generality, that a = 1 and d = T .

For simplicity, the charging power is assumed to have two
possible levels namely 0 or P . As already mentioned, charging
profiles are assumed to be rectangular. One technological
reason for this is to manage the EV battery life which
is accelerated when time-varying charging power levels are
allowed. Summing up, a user decides when to plug his vehicle
by choosing (ai, di) ∈ T 2 and this defines the action or
strategy set for the EV i. The action or strategy profile is
denoted by

s = (s1, s2, ..., sI) (4)

which lies in

S =

I∏
i=1

Si. (5)

The standard notation s−i = (s1, s2, ..., si−1, si+1, .., sI) for
referring to the action profile in which user i’s action is
removed will be used.

Given EV charging decisions, let respectively ñt, nt denote
the numbers of EV starting to charge and charging at time t.
In the atomic case, these quantities are related to si by

ñt(s) =

I∑
i=1

1si=t , (6)

and

nt(s) =

I∑
i=1

Ci∑
t′=1

1si=t−Ci+t′ (7)

where 1si=t is the indicator function.
To evaluate the impact of the charging policies on the

distribution network, the key quantity is the total transformer
load or consumed power. The T−dimensional sequence of
load levels L(s) = (L1(s), L2(s), ..., LT (s)) corresponding
to the period of time under consideration expresses as

L(s) = Lexo + Pn(s) (8)

where Lexo is the sequence of exogenous loads which are not
due to the presence of the EV and n(s) is the sequence of
the numbers of active or charging vehicles. It is implicitly
assumed that the location of the exogenous loads and EV do
not need to be accounted for according to the above model,
which is realistic e.g., when the considered network cost is
given by Joule losses in networks with a symmetric topology
or if the main physical cost is due to transformer losses (such
as copper losses, iron losses, or transformer life). Under this
assumption, the total impact on the grid on the considered
period is then

TCGrid(s) =
∑
t∈T

fGrid(Lt(s)). (9)

III. ATOMIC CHARGING GAME : PROPOSED FORMULATION
AND MAIN RESULTS

A. Game description
The problem described in the preceding section is modeled

by a static non-cooperative game under strategic form (see e.g.,
[12][13]). The game can therefore be described mathematically
by a triplet GA = (I, {Si}i∈I , {ui}i∈I) whose components
are defined as follows :
• the set of players is given by the set of electrical vehicles
I ;

• the action/strategy set for player i ∈ I is defined by (3) ;
• the utility function for player i ∈ I is defined by

ui(si, s−i) = −gi

(
si+Ci−1∑

t=si

fGrid(Lt(s))

)
(10)

where fGrid translates the vehicle needs in terms of load or
consumed power into a physical cost for the grid and more
precisely for the residential distribution network. For typical
physical costs such as losses in the distribution transformer and
over the distribution lines or the transformer life, the following
assumptions are valid.

Assumption 1: fGrid is continuous and strictly increasing.

Assumption 2: fGrid is continuously differentiable and
strictly convex.

As for the function gi, it corresponds to a perceived cost
from the user standpoint : it may be a monetary conversion
or pricing function. It is assumed to be strictly increasing. As
a last comment, note that the proposed utility function means
that the user is charged with a cost which is directly related
to the time period he chooses to charge the battery of his EV,
and do not depend on the total load during other time periods.
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B. Equilibrium analysis

The purpose of this section is to analyze important issues
such as existence, uniqueness, and efficiency of Nash equi-
librium (the reader could refer to [13] for a reminder of this
concept). Remarkably, although the game under investigation
is not a congestion game, it is always an ordinal potential game
[14] and can also be an exact potential game in some special
cases. It thus inherit many favorable properties described in
the seminal work of [14]. Let us state the first Proposition.

Proposition 1: The charging game GA is an ordinal poten-
tial game for which a possible potential function is given by

ΦA (s) = −
∑
t∈T

nt(s)∑
vt=0

fGrid (Lexo
t + Pvt) , (11)

To prove this result, the fact that gi is a strictly increasing
function is exploited. It can be effectively verified that a
deviation of user i’s charging strategy si → s′i translates into
a variation

ui(si, s−i)− ui(s′i, s−i), (12)

whose sign is identical to

ΦA(si, s−i)− ΦA(s′i, s−i). (13)

Note that if the pricing function gi is assumed to be the
identity function then GA is also an exact potential game. Since
the atomic charging game is always an ordinal potential game,
the existence of a pure Nash equilibrium is guaranteed. Indeed,
from [14] the next proposition follows.

Proposition 2: The charging game GA has always a pure
Nash Equilibrium.

The set of Nash equilibria of this game will be denoted by
SE. An important issue, especially when converging iterative
charging algorithms have to be designed, is to know whether
this set is a singleton. Note that in the following and similarly
to the notion of uniqueness used in routing games for example,
when we will refer to uniqueness it will be for the resulting
charging configuration n and not for the strategic profile s1.
With this definition, it turns out that uniqueness does not hold
in general, especially when the number of EV is small. Here
is a simple counter-example which sustains this assertion.

Counter-example for uniqueness. Consider the case where
fGrid has to account for Joule losses :

fGrid(Lt) = RL2
t . (14)

Assume that T = 6, Lexo = (1, 2, 3, 2, 1, 3), I = 3, ∀i,
Ci = 2, ai = 0, di = 6, and P = 1. With these parameters,
the following two sequences of number of active EV

n1 = (3; 4; 3; 3; 2; 0) and n2 = (2; 3; 3; 4; 3; 0) (15)

can be checked to correspond to Nash Equilibria.

1Uniqueness in terms of the strategy profile s is stronger and implies
uniqueness in terms of charging configuration n. Because of the symmetry
between players, it may indeed exist various strategy profiles s providing a
same configuration n and this would avoid obtaining uniqueness results when
considering the notion related to s.

Since uniqueness is not guaranteed in general, studying
the number of Nash equilibria and their efficiency -through
a notion close to the price of anarchy- is a relevant issue.
However, this type of analysis is not trivial. Therefore, to
obtain some insights into the problem under investigation
we will analyze the limiting case where the number of EV
becomes large. Additionally, a detailed numerical study will be
provided to better understand both the atomic and nonatomic
cases.

IV. THE NONATOMIC CHARGING GAME

As explained in the preceding sections, our motivations for
studying the case where the number of EV is large is twofold.
First, it may correspond to real scenarios where the distribution
network is dense. Second, the nonatomic case provides more
insights on the atomic case.

A. Description of the nonatomic charging game

To define this new game, let us introduce the following
quantities.

In the nonatomic formulation, a continuum of EV is con-
sidered and will be denoted by

INA = [0; 1] , (16)

with a set K of classes of users with respective demands
wk. These demands sum to 1 given that INA = [0; 1]. The
arrival and departure time ak and dk, as well as the charging
requirement Ck will now be related to a class of user k, while
it was related to a single user in the atomic framework.

The action set of each class Sk is defined as in (3). Let
xkt define the proportion of EV of class k choosing time t to
begin charging. xk = (xkt)t∈T verifies

∀k ∈ K, xk ∈ [0; 1]
T with


∀t /∈ Sk, xkt = 0
dk−Ck∑
t=ak

xkt = 1
, (17)

which means that xk belongs to the (dk − Ck − ak + 1)-
dimensional simplex.

The proportion of EV starting to charge and charging at
time t, denoted respectively by x̃t(s) and xt(s), follow then
directly with

x̃t(s) =
∑
k∈K

wkskt , (18)

and

xt(s) =
∑
k∈K

wk

Ck∑
t′=1

sk(t−Ck+t′) (19)

Note that when the symmetric case is considered, x̃ =
(x̃t)t∈T lies in the (T −C)-dimensional simplex, denoted by
∆T−C

2.

The total transformer load is then expressed as

L(x) = Lexo + Px (20)

2This is not the case for x because its first and last C components are
ordered given the charging constraint.
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and the utility function for an EV i of class k when choosing
to start charging at t = si is

uk(si,x) = −gi

(
si+Ck−1∑

t=si

fGrid(Lt(x))

)
(21)

Note that here, notation s−i has no more sense : because
action of EV i has a negligible effect on the total load, s−i is
in fact the whole charging decision vector s.

In this setting, a Nash equilibrium is a configuration xNE

for which each strategy t played with a positive weight, that
is
∑
k∈K

xNE
kt > 0, has a minimum cost :

∀t, ∀k ∈ K : xNE
kt > 0, t ∈ arg min

t′∈Sk
uk(t′,xNE) (22)

B. Equilibrium analysis of the nonatomic charging game

The main properties of the nonatomic charging game are
now presented.

Proposition 3: (Potential property of the nonatomic charg-
ing game) The nonatomic charging game is also an ordinal
potential game for which a possible potential function is

ΦNA (s) = −
∑
t∈T

∫ xt(s)

vt=0

fGrid (Lexo
t + Pvt) dvt. (23)

Similarly to the atomic case, the potential property ensures
then that the nonatomic charging game has a pure Nash
equilibrium.

Proposition 4: (Existence of a pure nonatomic Nash Equi-
librium) The nonatomic charging game has a pure Nash
Equilibrium.

Moreover, and on the contrary to the atomic setting, unique-
ness is also valid under the weak Ass.1.

Proposition 5: (Uniqueness of nonatomic Nash Equilib-
rium) When fGrid verifies Ass.1, the nonatomic charging
game has a unique Nash Equilibrium.

Proof: Given that x belongs to a convex set and that
ΦNA is strictly concave under Ass.1, ΦNA admits a unique
maximum. The uniqueness of the Nash equilibrium comes then
straightforward because Nash equilibria of the game are in the
set of local maxima of Φ, due to the potential property (3).

In fact, when considering a symmetric continuum of players,
that is parameters C, α, β are the same for all classes of EV,
uniqueness even holds in the class of functions satisfying Ass.1
: whatever the function in this class, the unique nonatomic
Nash equilibrium of the charging game will be the same. This
nevertheless needs to introduce an additional hypothesis on
the exogeneous load. To this end, the Euclidean division of
T − C + 1 by C is now defined by

T − C + 1 = qT,CC + rT,C with rT,C < C, (24)

Proposition 6: (Uniqueness of nonatomic Nash Equilibrium
in the class of functions (1)) In the symmetric nonatomic case,
suppose that the following conditions are valid
• Lexo is convex and increasing,
• Lexo is such that

1 > qT,CL
exo
T−1 −

qT,C∑
k=1

Lexo
T−1−kC . (25)

then the Nash equilibrium is the same for all functions
verifying Ass.1.

The proof is given in AppendixA.

Observe that this result applies for example in the case of a
constant Lexo, Equation(25) becoming 1 > 0. Naturally, this
is no more true for more general profiles of Lexo, as presented
in the following example with T = 11, C = 5

Lexo = (0.1, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2, 0.3, 0.2, 0.1, 0.2).
(26)

Consider

fGrid
1 (Lt) =

√
Lt, f

Grid
2 = (Lt)

8, (27)

both verifying Ass.1, but leading to the two different
nonatomic Nash equilibria

x̃NE
1 = (0.45, 0, 0, 0, 0, 0.55, 0, 0, 0, 0, 0) and (28)

x̃NE
2 = (0.42, 0, 0, 0, 0, 0.58, 0, 0, 0, 0, 0) (29)

C. ”Efficiency” equals one in the symmetric nonatomic charg-
ing game

The Price of Anarchy (PoA) [10] measures how the effi-
ciency of a system degrades due to selfish behavior of its
agents. This is very important to decide whether a decentral-
ized mechanism can be applied, regarding the loss of efficiency
in comparison with the performance that would be obtained
with a central authority. In the problem considered here, this
notion will be slightly different and defined as the ”efficiency”
of the game

Efficiency =
mins∈S TCGrid(s)

maxs∈SE TCGrid(s)
, (30)

with TCGrid given by (9).

With this metric, we search for a bound on the efficiency.
Observe that contrary to the standard literature in this field,
variational inequalities methods do not apply directly, because
the social objective is not weighted by the load on respective
time slots Lt. The following result shows that if fGrid is in the
class of functions verifying Ass.1-2, the symmetric nonatomic
efficiency is one.

Proposition 7: (Symmetric nonatomic efficiency equals
one) In the nonatomic symmetric case, with fGrid verifying
Ass.1-2 and Lexo verifying the same conditions than in
Prop.6, the efficiency of the charging game is one.
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Proof: Due to the potential property, the Nash equilibrium
of the game G = (I,S, (fGrid)′) is the social optimum when
considering costs fGrid. Because fGrid and (fGrid)′ both
verify Ass.1 when Ass.1-2 hold for fGrid, Prop.6 applies and
their Nash equilibrium concide which concludes the proof.

Tight bounds have been determined for the standard notion
of Price of Anarchy in congestion games[15], with the standard
definition based on total cost weighted by the number of
users choosing each alternative. For example, in the case
of quadratic cost functions with nonnegative coefficients, the
provided value is 3

√
3

3
√

3−2
≈ 1.626 and this bound increases

with the maximal power of the polynomial costs. In this
setting, the condition imposing that a charging vector must
not be fractioned, which consists in choosing C contiguous
alternatives, provides this better bound of one.

V. NUMERICAL ANALYSIS

To investigate in more details the properties of the atomic
charging game, for which an analytical value of the efficiency
has not been proven to exist, a numerical analysis has been
conducted. To easily compare the results obtained in these
simulations with the analytical ones of the nonatomic case,
Lexo = 0 on T = {1, 2, 3, ..., 10} and symmetric EV users are
considered. As for the physical objective, and unless otherwise
specified, simulations will be done considering Joule losses,
that is fGrid(Lt) = L2

t .

To begin with, we highlight that the proportion of Nash
equilibrium is highly increasing with I and also strongly de-
pends on combinatorial effects between the charging duration
C and T (see Fig.1).
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Fig. 1. The proportion of Nash equilibria is combinatorial and globally
decreasing with the number of EV.

Simulations also provide a justification of the nonatomic
charging game as the limiting case of the atomic formulation.
On Fig.2 it can be observed that, in spite of the cycles resulting
from combinatorial effects between T and C, the atomic

efficiency is interestingly globally decreasing with the number
of EV, approaching the nonatomic bound of one for the bigger
values of I . Fig.3 is the counterpart of the preceding showing
how the atomic PoA approaches the limiting value of one when
the number of EV is fixed, but the charging duration increases
which implies that the global charging need also increases.
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Fig. 2. Efficiency of the atomic charging game for C = 3−5 and a number
of EV varying from I = 1 to 20
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Fig. 3. Efficiency of the atomic charging game for I = 8−12 and a charging
duration from C = 1 to C = 10

Finally, Fig.4 presents the dependancy of the efficiency
for monomial cost functions of the form fGrid(Lt) = Lk

t ,
showing, interestingly and contrary to standard results in
the class of congestion games, that its value is not always
increasing with the power k.
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VI. CONCLUSION

In this paper, an EV charging problem has been intro-
duced and analyzed from a game theoretical standpoint to
demonstrate some of its fundamental properties. Both atomic
and nonatomic settings have been considered because of the
different EV networks where this model may apply but also
to investigate in more details the stronger properties of the
nonatomic case as a limiting framework of the atomic problem.

Proving that the proposed game belongs to the class of
potential games, existence of a Nash equilibrium is obtained
both when considering atomic or nonatomic users, while
uniqueness is only valid in the nonatomic case. Showing
that the unique Nash equilibrium coincides with the optimum
on the electrical network side in the nonatomic case, this
ensures that the ”efficiency”, a notion close to the standard
Price of Anarchy, is one. In the atomic case, the problem
is combinatorial and finding a tight bound is still an open
problem. Simulations highlight some trends according to the
values of parameters. In particular, the atomic ”efficiency” get
close to the nonatomic bound of one when the number of EV
increases.

An analytical proof of this convergence may constitute an
extension of this work. The physical modeling could also be
enhanced introducing cost functions depending on the whole
past of total load or allowing fractioned charging profiles using
a battery aging model. Benefits on the network-side will indeed
be a priori greater because the charging profiles will belong to
a bigger set. Nonetheless, a coherent analysis will be needed
to quantify the potential loss in terms of battery life.

APPENDIX A
PROOF OF THE UNIQUENESS OF THE NASH EQUILIBRIUM

IN THE FIRST CLASS OF GRID FUNCTIONS

Proof: Take fGrid verifying Ass.1. Because fGrid is
strictly increasing, the potential of the game ΦNA is strictly

concave. This ensures that ΦNA has a unique maximum over
∆T−C , denoted by x̃?. To show that x̃? is independent of
fGrid, we will demonstrate that, whatever fGrid, the first order
condition system of

max
x̃∈∆T−C+1

ΦNA(x̃), (31)

has a unique positive solution, which will be x̃? because of
the potential property of the charging game.

Consider the first order conditions

∀t, 1 ≤ t ≤ T − C, ∂Φ

∂x̃?t
= 0. (32)

Particularizing x̃T−C , given that
T−C∑
t=1

x̃t = 1, (33)

we have for t < C

∂Φ

∂x̃t
(x̃?) =

C∑
l=t

fGrid(

l∑
u=1

x̃?u) +

t−1∑
l′=1

fGrid(

C∑
c=1

x̃?l′+c)

− ∂Φ

∂x̃T−C
(x̃?) (34)

= 0

then for C ≤ t ≤ T − 2C + 1

∂Φ

∂x̃t
(x̃?) =

C∑
l=1

fGrid(

C∑
c=1

x̃?t+l−c)

− ∂Φ

∂x̃T−C
(x̃?) (35)

= 0

and finally for T − 2C + 1 < t < T − C

∂Φ

∂x̃t
(x̃?) =

T−C+1−t∑
l=1

fGrid(

C∑
c=1

x̃?t+l−c)

+

t−T+2C−1∑
l′=1

fGrid(

l′+1∑
u=1

x̃?T−C+1−u)− ∂Φ

∂x̃T−C
(x̃?)

= 0 (36)

This three different formulations correspond respectively
to the first time intervals where the number of argument of
fGrid is increasing, the central intervals where all arguments
are sums of C elements and the last where the sum’s sizes
decrease.

Substracting the second equation to the first and using the
strict monotony of fGrid, we have

x̃?1 =

C+1∑
t=2

x̃?t (37)

the third to the second

x̃?1 + x̃?2 =

C+2∑
t=3

x̃?t (38)
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and so on up to the substraction of the last equation (t =
T −C − 1) to the last but one (t = T −C − 2). Keeping the
last equation, which is

fGrid(

C∑
c=1

x̃?T−C−c)− fGrid(x̃?T−C) = 0 (39)

⇔
C∑

c=1

x̃?T−C−c = x̃?T−C

and given that x̃? sums to one, this gives a linear system
of T −C equations, independent of fGrid. The matrix of this
system, written here for C = 3, is



1 −1 −1 −1 0 ... 0 0 0
1 1 −1 −1 −1 0 0 0 0
1 1 1 −1 −1 −1 0 0 0
0 1 1 1 −1 −1 −1 ... 0
0 0 1 1 1 −1 −1 −1 ...
... ... ... ... ... ... ... ... ...
... ... 0 1 1 1 −1 −1 −1
... ... ... ... 1 1 1 −1 −1
... ... ... ... ... 1 1 1 −1
1 1 1 1 1 1 1 1 1


(40)

This system is now demonstrated to have a unique and
positive solution. Substracting the first line to the C − 1
following lines with a 1 on the first column, then repeating
this transformation with the second and all the following lines
to the last but one yields a matrix of the form



m1 −1 −1 −1 0 ... 0
0 m2 u2,3 u2,4 u2,5 ... u2,T−C+1

0 0 m3 u3,4 u3,5 ... u3,T−C+1

0 0 0 m4 u4,5 ... u4,T−C+1

0 0 0 0 m5 u5,6 ...
... ... ... ... ... mT−C uT−C,T−C+1

... ... 0 0 0 0 mT−C+1


(41)

with all mt strictly positive because resulting of multiple
substractions of −1 or 0 above a 1 and with all ui,j negative
(substracting −1 multiplied by weights inferior to 1 to −1).
The second member of this equation, being initially

b0 =


Lexo
C+1 − Lexo

1

Lexo
C+2 − Lexo

2

...
Lexo
T−1 − Lexo

T−C−1

1

 (42)

is finally proven to be positive after all the transformations,
which are enumerated with an index iter, the last being denoted
by Iter. The second member after iter operations is written biter.
Observe first that because Lexo is increasing, biter

1 = Lexo
C+1 −

Lexo
1 , which will not be modified by these transformations,

will be always positive. The successive transformations on the

lines consisting in substracting a line to its C − 1 directly
following lines and to the last, it can be expressed as

Linet+1 → Linet+1 − riter1 Linet
Linet+2 → Linet+2 − riter2 Linet
...
Linet+C−1 → Linet+C−1 − riterC−1Linet
LineT−C → LineT−C − riterT−CLinet

(43)

The reader can then easily verify that

∀iter, ∀c, 1 ≤ c < C, riterc ≤ 1 (44)

and that riterT−C = 1 for the C first iterations, then riterT−C = 2
for the C following and so on. Due to (43-44), we have

∀iter, ∀t, 1 ≤ t < T − C, 0 ≤ biter
t ≤ Lexo

t+C − Lexo
t (45)

which gives the positivity of the lines 2 to T − C − 1 of
the second member b because

∀iter, biter
t+c −mcb

iter
t ≥ biter

t+c − biter
t (46)

≥
[
Lexo
t+2C − Lexo

t+C

]
−
[
Lexo
t+C − Lexo

t

]
≥ 0

using the convexity of Lexo in the last inequality. Finally,
bIterT−C is given by

bIter
T−C = 1−

qT,C∑
k=1

(qT,C − k + 1)
[
Lexo
T−1−(k−1)C − L

exo
T−1−kC

]
= 1− qT,CL

exo
T−1 +

qT,C∑
k=1

Lexo
T−1−kC . (47)

Given assumption on Lexo, bIter is thus positive. With the
upper triangular structure of the modified matrix of the system
and the positivity of b, the positivity of x̃ is obvious. Because
this system is linear, this point is unique and is the unique
maximum of ΦNA, which concludes the proof.
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