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BIALGEBRA OF SPECIFIED GRAPHS AND EXTERNAL STRUCTURES
DOMINIQUE MANCHON AND MOHAMED BELHAJ MOHAMED

ABSTRACT. We construct a Hopf algebra structure on the space of specified Feynman graphs
of a quantum field theory. We introduce a convolution product and a semigroup of characters
of this Hopf algebra with values in some suitable commutative algebra taking momenta into
account. We then implement the renormalization described by A. Connes and D. Kreimer in
[2] and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction

scheme and the Taylor expansion scheme.
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1. INTRODUCTION

Hopf algebras of Feynman graphs have been studied by A. Connes and D. Kreimer in [2],
[4], [3] and [10] as a powerful tool to explain the combinatorics of renormalization in quantum

field theory. In this note we are interested in the Hopf algebra of specified Feynman graphs

Date: June, 17th 2013.
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studied by A. Connes and D. Kreimer in [2].

In the first part we study the simpler case of Hopf algebras of locally one-particle irreducible
(1PI) Feynman graphs, neglecting the specification at this stage. First we consider a theory of
fields T (for example ¢? [2], p* [15], QED and QC'D [15] , [16]...) which gives rise to Feynman
graph types determined by 7: the type of a vertex is determined by the type of half-edges
that are adjacent to it. We then construct a structure of commutative bialgebra ”;EZT on the
space of locally 1P graphs of 7. The coproduct is given by:

AT) = ) veT/y,
yCEI'
T/veT

where the sum runs over all locally 1PI covering subgraphs of I' such that the contracted
subgraph I' /v is in the theory 7 (in other words, locally 1P superficially divergent subgraphs
[1]). The Hopf algebra H 7 is obtained by taking the quotient of the bialgebra Hr above by the
ideal generated by 1 — I', where the unit 1 is the empty graph and I' is a 1P graph without
internal edges. Then we introduce the specification: we are led by quantum field theory to
distinguish between vertices of the same type. For example the list of vertices admitted in ©?

theory and in QFE D are respectively:

{ e <) and {6, e ven ),

0

The contraction of a subgraph on a point rises a problem: For example in ¢?® theory, if we
contract the subgraph —O— inside the graph 4@*, shall we get ( ) or (5:) ?

0 1

Similarly for QE D, does the contraction of _s%_ inside Sk give M or M ?

0 1

We will remedy to this by introducing the specified graph I' = (T, i) where 7 is a multi-index
which identifies the type of residue of I', that is to say, the vertices obtained by contracting
each connected components onto a point. (For example res _(]:\ = —<). The formula for
the coproduct of specified graphs is then given by:

AT) = > yel/y,
e
where the sum runs over all locally 1PI specified covering subgraphs 7 = (v, j) of [ = (T,i)
(see definition 1), such that the contracted subgraph (I'/(v, j),4) is in the theory 7. Here j is
a multi-index that identifies the residue of each of the connected components of . The Hopf
algebra H7 is again obtained by identifying the specified graphs without internal edges with

the unit.

In the second part we are interested in external structures. Feynman rules associate to each

graph a function which depends on moments associated with each half edge of the graph, with
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the constraints p. + pe = 0 for each internal edge (ee’) and Zeest(v) pe = 0 for any vertex v,
where st(v) is the set of half-edges adjacent to v. Feynman rules ® do depend on the refined
types of vertices, but do not depend on the overall specification. Refined types of vertices
combine themselves in a nice way: for example, in ¢* theory, —<— and —><— combine to
, namely [2]: 0 |

o( () r e~ ) = a(—0—).

0 1

an edge

Similary in QED we have:

and

PO + S(mOw) = S(mOw)-
Considering the relations above we could have chosen only one type of bivalent vertex for ¢ or
for the electron edges in QE D, and discard the bivalent vertex for the photon edges: these are
the conventions adopted in [16]. We have chosen not to consider this simplification, in order

to follow [2] more closely.

We introduce a semi-group G of characters of ’flT with values in some suitable commuta-
tive algebra B, and a convolution product ® on G. We then implement the renormalization
described by A. Connes and D. Kreimer in [2] (see also [5, Chap. 1 § 5 & 6]), replacing B
by A := B[z, z]]. We show that each element of G has a unique Birkhoff decomposition for
minimal renormalization scheme A = A_ ® A, , where A, := B[[z]] and A_ := z7'B[z"']. We
also implement the Birkhoff decomposition associated with Taylor expansions in the algebra
B itself, along the lines of [14]. The interest of the construction presented here is the purely
combinatorial nature of the bialgebra '}QT and the Hopf algebra Hy: all the dependence on
momenta is removed in the target algebra B. The Feynman rules, given by the integration of

these functions on the internal momenta, will be the subject of a future article.

Acknowledgements : We would likes to thank Kurusch Ebrahimi-Fard for discussion and
remarks. Research supported by projet CMCU Utique 12G1502 and by Agence Nationale de
la Recherche (CARMA ANR-12-BS01-0017).

2. HOPF ALGEBRAS OF FEYNMAN GRAPHS

2.1. Basic definitions. A Feynman graph is a graph (non-planar) with a finite number of
vertices and edges, which can be internal or external. An internal edge is an edge connected
at both ends to a vertex, an external edge is an edge with one open end, the other end being
connected to a vertex. The edges are obtained by using a half-edges.

More precisely, let us consider two finite sets V and £. A graph I' with V (resp. &) as set of ver-
tices (resp. half-edges) is defined as follows: let o : £ — & be an involution and 0 : & — V.
For any vertex v € V we denote by st(v) = {e € £/0(e) = v} the set of half-edges adjacent
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to v. The fixed points of o are the external edges and the internal edges are given by the
pairs {e,o(e)} for e # o(e). The graph I' associated to these data is obtained by attaching
half-edges e € st(v) to any vertex v € V, and joining the two half-edges e and o(e) if o(e) # e.

Several types of half-edges will be considered later on: the set £ is partitioned into several
pieces &;. In that case we ask that the involution o respects the different types of half-edge,

We denote by Z(I') the set of internal edges and by Ext(I") the set of external edges. The
loop number of a graph I' is given by:

L(I) = |Z(D)] = ()] + [mo(D)],

where (") is the set of connected components of T'.

A one-particle irreducible graph (in short, 1PI graph) is a connected graph which remains
connected when we cut any internal edge. A disconnected graph is said to be locally 1P if

any of its connected components is 1P1.
_CD_ is 1PI and —O-O— isnot 1PI.

A covering subgraph of I is a Feynman graph « (not necessarily connected), obtained from
I' by cutting internal edges. In other words:

(1) V(y) = V().

(2) £(y) =€)

(3) or(e) = e = oy(e) =e.
)1

(4) If 0, (e) # or(e) then o,(e) =e and o,(or(e)) = or(e).

For any covering subgraph =, the contracted graph I/ is defined by shrinking all connected

components of v inside I' onto a point.

r=— .7v=-C <<—=< = rh=-"C0-
=D .+-C-C = 1--0-

The residue of the graph I', denoted by resT, is the contracted graph I'/T". In other words:

it is the only graph with no internal edge and the same external edges than those of T'.

res(A(]:Df): —X— et res(—( )=

The skeleton of a graph I' denoted by sk I is a graph obtained by cutting all internal edges,

k()= <<—<-=<.

for example:
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2.2. Bialgebra ﬁT. We will work inside a physical theory 7, which involves Feynman graphs
of some prescribed type: ©3, ot QED, QCD ...
We denote by E(T) the set of possible types of half-edges and by V(T) the set of possible types

of vertices.

Example 1. £(¢%) ={ ——} , V(@) ={—%—, <}

EQED)={ — wwww} . V(QED) = {=, —%— wwomn}

An element of V(T) can be seen as a function from £(7) into N which to each type of
half-edge associates the number of half-edges of that type arriving on the vertex in question.
Actually the typology of vertices presented here is too coarse, we will return to this point in

Section 2, with the introduction of specified graphs.

Let \77 be the set of 1PI connected graphs I' with edges in £(7) and vertices in V(7T) such
that resT is a vertex in V (condition of superficial divergence [1], [2], [10]). Let Hy = S(V7)
be the vector space generated by superficially divergent, locally 1PI, not necessarily connected

Feynman graphs. The product is given by concatenation, the unit 1 is identified to the empty
graph, and the coproduct is defined by :

AT) = > y®T/y

yCT
r/~eT

In the above sum, v runs over all locally 1P covering subgraphs of I' such that the contracted

subgraph I'/7 is in the theory 7.

Example 2. In ¢* Theory:

M) = <<=<=<=<=<o—{]+—(]) o=
+ 20 <=<=<0 P +2 (] <o —O—

b -C o O+ [ ==<vo .
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The last term is removed because — (O O— ¢ ¢°.
In QED:

Ao@m) = o oo ol ol ol @ e
+ o @ e + 29 el © O

+ 2 g o ol o D ann + g waE © O

Theorem 1. Equipped with this coproduct, '}QT 15 a bialgebra.

Proof. A is coassociative. Indeed:

(AQIDAT) = > AM)eT/y
rrer

= > d®y/6al/y

§CHCD
v/8 ;T /vET

(id@A)AT) = > 5@ AT/

5CT
r/seT

= > se7e([/)/A
5CT 5CT/6
(T/8)/7; T/6€T
For any covering subgraph § of I' such that I'/§ € T, there is an abvious bijection v — 5 = /4
from covering subgraphs of I' containing 0 such that I'/y € 7 and v/ € T, onto covering
subgraphs of I'/d such that (I'/d) /7 € T, given by shriking § [11]. For all 57 C I'/¢ there exist a
unique covering subgraph « of I' containing ¢ such that: ¥ = /6 and we have: (I'/§)/57 = T'/~.
We then obtain:

(ido AAT) = > @ AT/5)

sCHCr
/ST

= Y se@y/5al/y

§CHCD
T/vsv/6€T

The two expressions coincide, therefore A is coassociative. The counit is given by: ¢(I') =1
if I" has no internal edges, and £(I") = 0 for any graph having at least one internal edge. The
bialgebra Hs is graded, and the grading is given by the number L. O
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2.3. Hopf algebra H ;. The Hopf algebra H; is given by identifying all elements of degree
zero (the residues) to unit 1:

(1) Hr =Hr )T

where J is the ideal generated by the elements 1 — resI’ where I' is an 1P graph. Hy is

a connected graded bialgebra, it is therefore a connected graded Hopf algebra, which can be
identified as a commutative algebra with S(Vr), where V7 is the vector space generated by
the 1Pl connected Feynman graphs. The coproduct then becomes:

(2) AD)=10T+T®1+ > v RT /7.
~v proper subgraph of I’
loc 1PI. T'/~eT

Example 3. In ©* Theory:

A=) = 1e(]—+—]P—o1+2-C © Q-
+2(Jo—-0O—+-C (C ©o—0O +Foo0—-

In QED:

AlwEPm) = 10 wEdm + D @ 1+ v v ©@ wOm
+ 2%®@+QW\<§®M@W.

3. SPECIFIED FEYNMAN GRAPHS HOPF ALGEBRA

3.1. Bialgebra ?:ZT. In this paragraph, we denote by )7(7') the set of possible refined types
of vertices: for t € V(T ), you can have a vertices of the same type ¢ but with different refined
type. For any refined type ¢ € )7(7) we denote by [ ¢ ] the underlying vertex type. We denote
also t = (t,7) where the index i serves to distinguish the refined types of same underlying type.

Example 4. V(%) = { < T , <}
V(QED) = { ==, —— e, wpow )

Remark 1. Note that the types of half-edges adjacent to a vertex v are not sufficient to deter-

mine its refined type.

Definition 1. A specified graph of theory T is a couple (I',1) where:
(1) T is a locally 1PI superficially divergent graph with half-edges and vertices of the type
prescribed in T .
(2) i : (') — N, the values of i(vy) being prescribed by the possible types of vertex

obtained by contracting the connected component v on a point.

We will say that (7, j) is a specified covering subgraph of (I, 1), ((v,j) C (I',1)) if:
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(1) v is a covering subgraph of T.
(2) if 0 is a full connected component of 7, i.e if vy is also a full connected component of

L, then j(v0) = i(70)-
Remark 2. Sometimes we denote by I' = (I',4) the specified graph, and we will write ¥ C T’
for (1,4) ().
Definition 2. Let be (v, ) C (I',). The contracted specified subgraph is written:
L/y=(T/7,1),
where T /7 is obtained by contracting each connected component of v on a point, and specifying
the vertex obtained with j.

Remark 3. The specification i is the same for the graph T' and the contracted graph T /7.

Let ’flT be the vector space generated by the specified superficially divergent Feynman graphs
of a field theory 7. The product is given by the concatenation, the unit 1 is identified with
the empty graph and the coproduct is defined by:

AT) = > yol/y,
_Acr
r/5eT

where the sum runs over all locally 1P specified covering subgraphs ¥ = (7,j) of I' = (I, 1) ,
such that the contracted subgraph (I'/(v,7),%) is in the theory T.

Theorem 2. FEquipped with the coproduct A, ”;flT 15 a bialgebra.

Proof. A is coassociative. Indeed :

(A @id)AT) = ZA@)@PM
= ) i®79/el/y

5/8 ;T/AeT

(ido A)AT) = > 50 AT/
eI

= > ieasd//a
SCT sacr/s
(T/8)/a ;T/6€T
For any specified covering subgraph & of I' such that ['/§ € T, there is an obvious bijection
4+ & = 7/0 from specified covering subgraphs of I' containing ¢ such that (I'/§)/a;T'/6 € T,
onto specified covering subgraphs of I'/§ such that /5 ;T/5 € T, given by shriking 6. Then
for any specified covering subgraph a = (a, j) of I'/ § there exists a unique specified covering
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subgraph 7 = (7, j) of T such that § C v and o = /4, we have: @ = 7/6 and (T'/0)/a = T/7.
We then obtain:
((doA)AT) = Y d@7/6al/7.
scyct
5/ ;T/N€T
Then A is coassociative, ”;EZT is a bialgebra where the counit is given by (I') = 1 if T' has no
internal edges, and (') = 0 for any graph ' having at least one internal edge. O

Example 5. In ¢* Theory:

M0 = (0o >+ <<<=<a(—H).0

+ (<<—o—,0)®({},0)

0

+ (<<—o—,1)®({},0).

1

In QED:

ALk 1) = el oo ol ol @ (L3 1)
+ (ﬁ@)@%ﬂ&%%,@)@(g&,n

0

+ (&MMJ)@(&&J).

3.2. Hopf algebra H ;. The Hopf algebra H is given by identifying all elements of degree

zero (the residues) to unit 1:
(3) Hr = Hr)T
where 7 is the ideal generated by the elements 1 —res ' where I is an 1P specified graph. Hs

is a connected graded bialgebra, it is therefore a connected graded Hopf algebra, the coproduct

then becomes:

(4) AM)=1@T+T®1+ 3 5o T/3.
5 proper subgraph of T
loc 1P1. T/5eT

Example 6. Taking the same graphs as the example 5 we obtain in > Theory [2]:

AM—)—0) = ((H—.0e1+18(—)—.0
+ (—o—,0)®({},0)+(—o—,1)®({},0).

0 1
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In QED [16]:

A(Smk 1) = 1@( Swe 1)+ ( Sz 1)®1

+ (&,0)@(&,1”(&,1)@(&,1)

0 1

4. EXTERNAL STRUCTURES

4.1. The unordered tensor product. Let A be a finite set, and let V} be a vector space for
any j € A. The product [, V; is defined by:

[TVi={v:A—]]Vi. v(i) € V;Vi € A}.
jEA jEA
The space V' := @4
space E and for any multilinear map F': ] jeaVj — E, there exists a unique linear map F

V; is then defined by the following universal property: for any vector

such that the following diagram is commutative:

Rjea Vi

”H‘X’V l )
F

sV, —— E

Remark 4. Let (e,\) be a basis of V. A basis of Q) .., V; is given by:

jeA Vi
(fu = ® eu(j))ue/v
jeEA

where A= [[;c s Ay ={pn: A— [leaD; such that p(j) € A}

AEA

4.2. An algebra of C* functions. Let D be an integer > 1 (the dimension). For any half-
edge e of I' we denote by p. € R” the corresponding moment. More precisely the moment

space of graph I' is defined by:
WF = {p : S(P) — RDa Z Pe = 0 Vv e V(P)a Pe +p0(e) =0 Vee V(P) / € 3& 0'(6)}.
ecst(v)

In particular,
|Ext(I)]

WreSF - {<p17 T 7p‘Ext(F)|),pj c RD7 Z p] = 0}

j=1
We introduce then:

Vo =C®(Wr,C) for I' connected |,

v= 1] %.

I" connected



BIALGEBRA OF SPECIFIED GRAPHS AND EXTERNAL STRUCTURES 11

and finally:

(5) B:= I w

I" connected or not

where the space Vr = @), 4

I';’s are the connected components of I'. The space Vr is naturally identified with a subspace

of C*(Wr, C) via:
Q) vilp) = [ T vilpy) with p; = pery).

jEA jeA

Vr, is the unordered tensor product of the ij’s and where the

We equip also B with the unordered concatenation product denoted by e: for v = )
and v = ®jeB v; € Vv (with AN B = (), the product v e v' € Vi is defined by:

(6) vev = ® v;.

JEA]IB

The product e is commutative by definition. This definition extends naturally to a bilinear
product: B x B — B.

Proposition 1. Let I'y and T'y be two graphs (not necessarily connected), and let I' = T'1Ts.
For any vy, v} € Vi, and vy, vy € Vi, we have the following equality in Vr :
(v10]) @ (vavh) = (v1 @ vy) (V] @ V)).

Proof. For p; € Wr, et po € Wr, we have:

(viv7) ® (vav3)(p1,p2) = V1t (p1)vavy(p2)
= ui(p1)vy(pr)va(p2)v(p2)
= v1(p1)va(p2)vy (p1)vy(p2)

p1,p2)(vy @ v5)(p1, p2)
vy ® U5)(p1, ).

V4! v

2)V5(
Jus(

= (v e vy)(
= (v) ® 1) (V]

O

4.3. Convolution product ®. Let I' be a graph and ~ a covering subgraph of I'. We denote
by iry : Vr/y = Vrand m,p : V, — Vi two morphisms of algebras which are defined as follows:
Let Fr, : Wp — Wr,, the projection of Wr onto Wr,, by neglecting the internal moments of

v, that we can still be defined by the following commutative diagram:

&)

iniy lp

E(T/y) — RP
T/
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where inj(I', v) is the natural injection and Fr, = inj(I', 7)*. We now consider the following

commutative diagram:

We define the injection ir, by : ir, = Fr,"
We denote by G, r : Wr < W, the natural inclusion of Wr in W, and we consider the following

commutative diagram:

W,

Gy r
v
Wr Gyr*f c
We define the surjection 7, by: m,r =G, p" : V, = Vp.
Let H7 be the specified Feynman graphs bialgebra associated with a theory 7. We denote
by L(Hr,B) the space of C-linear maps y : Hy — B, and by L(Hr,B) the subspace of
L(H7,B) of x such that:

(1) x does not depend on the specification of T', in other words: x(I',i) = x(I).

(2) x(I') € Vp for any graph I, i.e. the projection of x(I') on Viv vanishes for any graph
4T

(3) x(I") = 1y if " has no internal edges, where 1y, denotes the constant function equal
to 1 on Wr.

Then we define a convolution product ® for all x, n € E(ﬁT, B) and for all specified graphs
(T, 4) by:

(7) xen@i)=xenT) = > mek(Micy[n(T/(,)]-

(7,3 C(T".9)
D)/ (v.d)eT

The product used in the right hand side is the pointwise product in V.

Theorem 3. The product ® is associative.
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Proof. Let x,n and & be three elements of E(;QT, B) and (I',7) a specified graph. We denote
indifferently T' = (T, 1), ¥ = (v, ), 0 = (0,k) and T'/5 = (T'/(v, ), ). First, we have:

x®m®)[l,i) = x®n®d))
= 3 morlx(@)] ins | (n ® E)(T/)]

fg/%efT

= 3wl @) | Y marsl@)insal€((T/0)/a)]]-
scT acT/s
T/6eT (T/8)/aeT

By identifying & with 7/6 where 7 is a subgraph of I' containing 4, and (I'/6)/a with '/ we
obtain:

x®med)l,i) = x@nef)I)
= Z msr[x(0)] irs Wy/a,r/s[’f?(’_Y/g)]iF/a,y/é[f(f/’_y)]]

scycT
3/8;T/A€T

= > worlx(0)] iremarssn(V/8)irsirssayslE(T/7)):
sc qCT
3/85T/5€T

Secondly we have:

x@n)®(T,i) = (x®n) ®T)
= > mrlx®EM)] irs[E(T/7)]

Acrth
T/5eT

= 3w [max@ing (/)] in [€(T/)

= > e )] rian [(7/6)] ira [E(D/7)].

scyCT
5/65T/5€T

The two following diagrams commute:

Fr.s
Wpr —— Wrys Wrys
Fr.s
Gyr Gy/50/6 Fr/s~/s
W e W WF I WF
T E, v/8 Fro /v

From the two preceding diagrams we obtain the following two commutative diagrams:
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i

0

Vi — vy Vs

T
T~y /8,T/8 T, T r,s

Viis —= Wi Vi, —— Wi

r/é irs T T/y iy T
Hence we can write:
(x@n) @&l = > mrl(6)] irsmysr/sn(3/6))irsivssqslE(T/7)-
.

Consequently, as (y®n)®&(L, i) = x® (n® &) (L, 2) for any specified graph (I, 7), the product

® is associative. ]

Theorem 4. Let G = {¢ € L(H7,B) such that o(77) = ©(7) ® o) and ©(1) = 15}.
Equipped with the product ®, the set G is a subgroup of the semigroup of characters of Hy
with values in B.

Proof. Let ¢, ¥ be two elements of G and I' = (T, i), [V = (I'",4') two specified graphs: It is
clear that by definition: ¢ ® ¢ € L(Hr,B). Using Proposition 1 we have then:

(p®Y)(IT) = (p®y)(IT)
= > marle ) i [B(CT/77)]

Ay cTr!
L/ /55'eT

= Y (mrleO e mprleN) (ico [E(T/7)] @ v [0(T'/7)))
i ser

= Y (mrle@lin, [@/D]) @ (70 o] v [0/7)] )

= (p@y)D)(p @ )(I).
The identity element e is defined by:

(8) e(T) = 1y ‘if [ is a specified graph of degree zero
0 if not.

Indeed for any ¢ € Z('fl% B) we have:
If T of degree zero,

(e® @)(I') = e(D)p(I') = (I

Similarly:

(e ®e)(l') = p(l)e(l') = (I
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If T of degree > 1 we have:

(e®@)(T) = Y mrle()]ir,lp(T/7)
()

= Tarr[lv, ] irsr[e(T)]

= ().
(p@®e)(T) = Z%,r [o(7)] iry[e(T/7)]
()
= mrrfe(D)] irrle(skD)]
= ().

The inverse of an element ¢ of G is given by the following formula:

P HI) = (e—(e—9)* I (D)
= D (e—9)™(D).

This sum is well defined: it stops at n = ¢ for specified graph I' of degree ¢q. Then we have:
PR =p®¢" =
O
4.4. Birkhoff decomposition. In this section we will explain how to renormalize a character

@ of the specified graphs graded bigebra '}QT: Let ¢ be a character with values in the unitary
commutative algebra A := B[z7!, 2]] equipped with the minimal subtraction scheme:

(9) A=A_ @A,
where:
Ay = B[],
A =z21B71.

A_ and A, are two subalgebras of A, with 14 € A,. We denote by P the projection on A_
parallel to A, . The space of linear maps of 7-77 to A is equipped with the convolution product
® defined by the formula (7). We have verified in the previous paragraph that the space of
characters ”;flT with values in A is a group for the convolution product ®.

Theorem 5. (1) Any character ¢ € G has a unique Birkhoff decomposition in G :

(10) p=¢" @0,

compatible with the renormalization scheme chosen, in other words, such that ¢ takes
its values in Ay and such that o_(T') € A_ for any specified graph (T,1) of degree > 1.
The components o and p_ are given by simple recursive formulas: for any T of degree

zero (i.e without internal edges) we put: p_(T') = ¢, (T') = o(T') = 1y.. If we assume
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that ¢_(T') and o, (T') are known for T of degree k < n — 1, we have then for any
specified graph T of degree n.:

(1) o (M) = () = =P(p0) + 3 mrle- M ins[o (T/(1.) ])

(12) D) =er () == P) (e + Y mrle- (s | (T/(1.0) ]).
fj%efT

(2) ¢4 and p_ are two characters. We will call ¢ the renormalized character and p_ the
character of the counterterms.

Proof. (1) The fact that ¢ takes its values in A, and that ¢_(I") € A_ is immediate by
definition of P, and we can verify by a simple calculation that ¢, = p_ ® ¢:

o) = (I=P)(¢0)+ 3 murle- Ml ira[e (M/00) ])

= P+ o)+ 3 mrle-()] vy [0 (0/(.) |

T/3eT
By using the fact that ¢_(I') = ¢(I") = 1y, for any graph I' of degree zero we have:
o @pD) = 3 mrle (M) iy [ (0/(1.9) |
f;;geFT

= Tar,ro- (skD)liracr ()] + mrrlo—(D)]irr[p(res )]
+ > mrle-()] i, [‘P (F/<7’i))]

f;/{%efT
= ¢ +e-(D)+ Y murle- (] irg |0 (T/(1.0)) |
fj%efT

Hence: ¢, = p_ ® ¢ is equivalent to saying that: ¢ = 0* ' ® ¢,
We now assume that ¢ = p* ' ® ¢, = ¢* ' ® 1. Thus we obtain:

ey @YY T =p_ @y

The right-hand side of the equality sends any specified graph of degree > 1 in A, but
the left-hand side sends in A_, then for any graph I of degree > 1 we have:

s @I D) =p_ @y ([) = 0.

Then: ¢, ® 1/)?71 = ¢_ ® ¥ ! = e, which proves the uniqueness of the Birkhoff
decomposition.
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(2) We will just prove that ¢_ is a character. Then ¢, = ¢_ ® ¢ is also a character. The
idea follows from the fact that the projection P satisfies the Rota-Baxter equality:

(13) P(a)P(b) = P( —ab+ P(a)b+ P(b)a).

Let ¢ be an element of G. The proof is obtained by induction on the degree of the
graph I'T". For I'T” of degree zero we have 1y;. e 1y, = 1y, We assume that ¢ (I'T") =
w_(I') @ p_(I") for any I'.I" € Hy such that: |['| + |I"| < d — 1 and show the equality
for T', ' € Hy such that: || + |I'| = d, where |T'| denotes the degree of I.
We have :

o (T) e (I") = P(X) e P(Y),
where:

X=p@+ Y mrle-()]ir, [90 (T/ (%i))}
1:;%61;7—

Y=¢)+ Y morle-0iva o (C/(.0) ]
We have: o
o (D) e (I')=P(X)e P(Y) = P( _XeY +P(X)eY +Xeo P(Y)).
Since P(X) = —¢_(I") and P(Y') = —p_(I"), we obtain:

o (T) ey (I') = —P(X oY +o (T)eY +Xe <p_(r’)).

Therefore:
p-(Tep (I") = =P [@(F) o p(I") + (') 0 p(I'") + (I') ® (1)

+ > (MF[S&(’V)] iry @ (T/7) ]) . (w(F’) + w(F')>
Ser

+ 2 (rele- iy [o0/7)]) ¢ (o-(0) +0(0)
oSrer

> (marle s [oT/A)]) @ (R le- (N i [0(/2]) .
// :é

A(IT) = TIV®resTresI” +sksk[" @I'T +TskI" @ IVresT + I"skI' @ T'res T
+ Z AT @ (T/7) resT + sk IV & (T/3)T”

Sser
+ > Yo @/ )resT+yskT@TT/)+ > 37 e [@/NT/7).
Ve L FCT 5/ ¢

F’/w €T T/3;T//5'eT
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Since ¢_(I'T") = —P(cp_ ® p(I'T") — go_(l'T’)), we have:

e (I'T) = —-P [WFF/IF/ [ (CT)]irr o[ (res T res T)]
+  Tacrscr,rr - (skT sk T)]irp gcracr [9(TT)]
+ 7rar e e (T sk ))irr rar [gp(T' res 1:‘)}
T e [ (T sk T)]irp v g [@(T res T))
+> Tl ()ive oy [o(T /7 1es )]+ 7o pre [0 (75K T i 4 [(T/AT)]

+

FC T

T/57eT

> Torrr [ (VD)livr g [9(T /7 1es T)] - 70 v o (7 sk Dives o [0(T/3'T)]
er

+ Y mrrle- (7 )irr e [(T/AT /7)) - @,(Fr’)} .

'yCF ¥'C r/
/5 T/5 €T

We notice that the first and last terms in the right side cancel each other. Since ¢ is a

character, ¢(skI') = ¢_(skI') = 1y;. and by the induction hypothesis we obtain:

o (IT) = —P[p(D) e (I")
+ (Wrsk I/,I'T [o_(I')] ® T gerv FF’ ) (’LFF' FskF’ ,)} ® IITY kI [SO(TQS F)])
+ <7TF' sk I, [T [@—(F,)] ® 7T/ ¢k T, [ ) <’LFF' rar|o(I)] @ irr ar[p(res f')])
+ 3 (marle-(ina [ (F/v)]) (@ (') + (1))
tier
Y (Rl (i [T /7)] ) @ (0-(1) + (1)
+ 3 (mele- 0l emrwle- () (ina [o/] @i [olT'/7] )|

T/3; T/ /¥eT
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By using the proposition 1 we can write:

p-(IT") = -P [@(F) o p(I") + o (I') 0 p(I) + o(I') @ o _(I")
£ 2 (mrle-linale (0/2)]) o (- 00) + ()
£ (merle- 0l o)) o (o0 +40)
f//%/le
Y (marle-O s [o@/A)]) @ (rorlo- (7)) i [0(T/7)] )

AGT, 5T
/33 /y'eT

= Doy (),

which shows that ¢_ is a character.

4.5. Taylor expansions. We adapt here a construction from [7, §9] also used by [14, §3.7],
(see also [8, 9]).

Definition 3. Let B be the commutative algebra defined by (5). Form € N the order m Taylor
expansion operator is:

B
(14) P, € End(B), Pof(v):= /; %aﬁ f,

where 5= (B, ..., Bn) € N™ with the usual notations 5 < a iff B; < oy for alli, |B| == fri+...406x

as well as 59
k
P = H v,f’“, Bl = H B!, 85 = H e

1<k<n 1<k<n 1<k<n YYk |up=0

We can now implement the general momentum scheme using these projections P,,. Let
Hr = @, Hr. be the specified Feynman graphs graded bialgebra: we define a Birkhoff
decomposition:

(15) p=9""®p,.

The components ¢, and (_ are given by simple recursive formulas: for any I' of degree zero

(i.e without internal edges) we put: ¢_(I') = ¢ (I') = p(I') = 1y.. If we assume that ¢_(I)
and o, (T') are known for I' of degree k < m — 1, we have then for any specified graph I' of

degree m:
(16) (L) = =Pu (@D + D morle- ()] ina [0 (1/(19)) |)
(17) e4(l) = (= B) (o) + 3 morlo-(M] s [ (0/(.0) ]).

T/5eT
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The operators P,, form a Rota-Baxter family in the sense of K. Ebrahimi-Fard, J. Gracia-
Bondia and F. Patras [7, Proposition 9.1, Proposition 9.2]: the analogue of the Rota-Baxter
equality defined by the formula (13) is given by following theorem [7, 14]:

Theorem 6. Let I' be a graph, and let f,g € V. The Taylor expansion operators fulfil for
any s,t € N:

(18) (Psf)(Fig) = Psp[(Psf)g + f(Pig) — fg).
Proof. Denote by u(f ® g) = fg the pointwise product on Vr. Using the Leibniz rule:
(19) Jdopu=po(0®Id+I1d®0),
and the formula

o p " v =P 0% (v = 0P oy i ol <s
(20) a5 P, = 0 ; — ng:s %l v) 7 )of - { 0 eli@'

by the formula (14) it suffices to check for any multiindex |a| < s+t that:

FPSg+ F(Pg)— fo] =3 (g)u (DR NS @9+ o (Pg)— g

BLa

=5 (5) (@) + @ ra) - @50 9]

B<a
—Z( ) 0L P.1) (% Pug) = O [(P.f)-Prg)].
B<a
Here we used that in the middle line, by formula (20) the contributions with || > s or
la — | > t give zero. For example, if [o — | > t then |a| — || > t = |5] < |a| — ¢, since
la] < s+t then || < s such that:

AP, =0, and 9P =0,

then
(D P.f)(05 )+ (00 F) (06" Pug) —(05 £)(95 " g) = 0,
—— S———
L f 0
and

(00 Pof )05~ Prg) = 0.
Hence only terms with |3| < s and |a — 8| < ¢ remain, we obtain:
#pr, =00, and 0P =057,
then we have:
(06 Puf)(059) + (06.1) (05" Pg) — (95 )05 g) = (96.)(5"9)
= (OP.f)(05 " Pg).
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Theorem 7. Let '}QT be the specified graphs graded bigebra and ¢ be a character with values
in the unitary commutative algebra B. Further let P : N — End(B) be an indexed renormal-
ization scheme, that is a family (P,)ien of endomorphisms such that:

(21) po(P;®P)=Pyopol[Py®Id+ 1d® P, — Id® Id],
for all s,t € N. Then the two maps ¢— and ¢, defined by (16) and (17) are two characters.

Proof. We will just prove that ¢_ is a character. Then ¢, = ¢p_ ® ¢ is also a character. For
[, I € kere, we write ¢_(I') = —Pry(#(T)) where

A(L) = o0) + Y mrle-(N] iry[o (T/(3,5)) ]-
1:;%61;7'

For proving this theorem we use the formulas (16) and (21).

- (TT) = =Pirry[¢(T) 0 o(I") + - (T) 0 p(I") + (T) o (I")
£ 3 (marle- M ina e (0/9)]) o (=) + (1)
it
+ 2 (merle- O i [o@]) ¢ (o-0) + (D)
r'/%'?T
t 2 (mrle- i [o@/m]) @ (myle- (] i [o0/7)]) |

T/3;T//5'eT

_ mﬂm[(go(rw > (mrle-(] irq e (F/ﬂ}))

f;;%efT
(o) + 3 (rerle (M ivy [o@/7)]))
1"’/51;/7'
+ e (M) + Y (mrrle-() ivo [pT/7)]) )
virer
£ oo (Mo (o) + Z CENC) P ELENI]

= Py | 2() ¢ () ~ AP0 + o)~ Fri (D) «5(0)]
= B [ Ar(@(1)) # 5(T) + Py
= (Pr(@(D)) « (Pry(2(I"))

= ¢ (D) ep ().

Yy
&
o
psl
’1\\
|
Yy
&
°
psl
’1\\
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