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[1] This paper presents the implementation of a new version of the DARDAR (radar
lidar) classification derived from CloudSat and CALIPSO data. The resulting target
classification called DARDAR v2 is compared to the first version called DARDAR v1.
Overall DARDAR v1 reports more cloud or rain pixels than DARDAR v2. In the low
troposphere this is because v1 detects too many liquid cloud pixels, and in the higher
troposphere this is because v2 is more restrictive in lidar detection than v1. Nevertheless,
the spatial distribution of different types of hydrometeors show similar patterns in both
classifications. The French airborne Radar-Lidar (RALI) platform carries a
CloudSat/CALIPSO instrument configuration (lidar at a wavelength of 532 nm and a
95 GHz cloud radar) as well as an EarthCare instrument configuration (high spectral
resolution lidar at 355 nm and a 95 GHz Doppler cloud radar). It therefore represents an
ideal go-between for A-Train and EarthCare. The DARDAR v2 classification algorithm is
adapted to RALI data for A-Train overpasses during dedicated airborne field experiments
using the lidar at 532 nm and the radar Doppler measurements. The results from the RALI
classification are compared with the DARDAR v2 classification to identify where the
classification should still be interpreted with caution. Finally, the RALI classification
algorithm with lidar at 532 nm is adapted to RALI with high spectral resolution lidar data
at 355nm in preparation for EarthCare.
Citation: Ceccaldi, M., J. Delanoë, R. J. Hogan, N. L. Pounder, A. Protat, and J. Pelon (2013), From CloudSat-CALIPSO to
EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations, J. Geophys.
Res. Atmos., 118, 7962–7981, doi:10.1002/jgrd.50579.

1. Introduction
[2] Clouds play a major role in Earth’s radiation bud-

get, water cycle, and climate forecasts [Stephens, 2005;
Sun and Shine, 1995]. Depending on their altitude and on
their particle type, shape, size, and concentration, clouds
have different impacts on absorption and reflection of short-
wave incoming solar radiation and long-wave Earth-emitted
radiation.

[3] Satellite data are vital in order to cover large areas
globally (though they do not cover the poles) in a short
period of time. CloudSat and CALIPSO (Cloud-Aerosol
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Lidar and Infrared Pathfinder Satellite Observations), part of
the A-train constellation of satellites, were launched in April
2006 to study cloud and aerosol properties and the Earth
radiation budget.

[4] CloudSat carries a 94 GHz CPR (Cloud Profiling
Radar) [Stephens et al., 2002]. CALIPSO boards CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization),
a nadir-viewing two-wavelength (532 and 1064 nm),
polarization-sensitive lidar and a three-channel IR (infrared)
radiometer [Winker et al., 2003, 2010]. Each of these instru-
ments has their own strengths and weaknesses; combining
them provides a more thorough picture of a cloud’s struc-
ture and microphysical radiative properties. The synergy
between radar, lidar, and infrared radiometers has proved
effective for retrieving cloud properties [Delanoë and
Hogan, 2008, 2010; Deng et al., 2010; Okamoto et al.,
2010] provided that the location and the nature of hydrom-
eteors are known. Indeed, particle size and IWC (ice water
content)/LWC (liquid water content) retrieval methods
use different microphysical assumptions depending on the
assumed type of targets.

[5] Radar and lidar have complementary properties: In the
Rayleigh scattering regime, when particles are much smaller
than the observing wavelength, the radar return signal is
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Figure 1. CALIPSO daytime signal at 532 nm for granule 05725 on 26 May 2007.

proportional to the sixth moment of the particle size distribu-
tion; hence, within a volume it is most sensitive to the largest
particles. On the other hand, lidar backscatter is propor-
tional to the second moment of the particle size distribution;

therefore, it is most sensitive to particle concentration and
backscattering cross section. Lidar signals are sensitive to
optically thin clouds but are rapidly attenuated in optically
thick clouds, whereas radar signals are able to penetrate even

Figure 2. Processing flow for daytime lidar image of granule 05725. (a) Grayscale image of
log (ˇ532/ˇmol). (b) Enhanced image smoothed with a moving average filter. (c) Figure 2b filtered in the
frequency domain. (d, e, and f) The 0 km to 8.2 km histograms of log (ˇ532/ˇmol) values in Figures 2a–2c,
respectively, with aerosol (dashed line) and cloud (solid line) thresholds in the histogram in Figure 2f.
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Figure 3. Comparison of lidar masks from (a) VFM categorization, (b) DARDAR v1 lidar mask, and
(c) DARDAR v2 lidar mask.

optically thick clouds, such as liquid water clouds, but are
less sensitive to optically thin clouds composed of small
particles.

[6] DARDAR (radar lidar) is a project initiated by
the LATMOS and the University of Reading to provide
collocated CloudSat, CALIPSO, and MODIS (Moderate
Resolution Imaging Spectroradiometer) measurements as
well as a cloud classification and ice cloud retrievals on
a 60 m vertical resolution and 1 km horizontal resolution
grid [Delanoë and Hogan, 2010]. Before inferring cloud
properties from radar and lidar profiles, it is necessary to
develop a reliable method to locate and identify the type
of targets detected. The first DARDAR CloudSat-CALIPSO
target classification (hereafter called DARDAR v1) was
originally developed because neither radar and lidar collo-
cated data nor combined categorization on such a fine grid
are available in the NASA official products. The NASA
CloudSat Data Processing Center provides Level 2 prod-
ucts, such as 2B-GEOPROF, containing information on the
nature of targets in the profiles, as well as CloudSat-CALIOP
synergetic products data such as 2B-GEOPROF-LIDAR,
but these are not available on the same resolution grid as
DARDAR. Although DARDAR v1 is widely used [Delanoë
et al., 2011; Stein et al., 2011a, 2011b; Huang et al.,
2012; Delanoë et al., 2013; Jouan et al., 2012], it has
several points which require improvements. Moreover, the

forthcoming ESA (European Space Agency)/JAXA (Japan
Aerospace Exploration Agency) mission EarthCare (Earth
Clouds, Aerosols and Radiation Explorer), scheduled for
the end of 2016, which goal is to study the role of clouds
and aerosols in Earth’s radiation budget, will board dif-
ferent instruments: ATLID, an atmospheric lidar with high
spectral resolution (HSR) capabilities and depolarization
channel at 355 nm; a cloud profiling radar (CPR) with
Doppler measurements; a scanning multispectral imager
(MSI); and a broadband radiometer (BBR) for top of the
atmosphere radiation and fluxes (http://www.esa.int/esaLP/
ASESMYNW9SC_LPearthcare_0.html). Therefore, having
a classification method ready to be adapted to Earth-
Care data as soon as they are available would be benefi-
cial. This is why the improved version of the DARDAR
cloud classification, hereafter called DARDAR v2, was
implemented.

[7] This paper describes how the DARDAR classification
algorithm was modified in preparation for EarthCare and
how it differs from the original version. This paper focuses
only on the information that can be inferred from the lidar
and radar data interpolated on a 60 m by 1 km resolution
grid. Sections 2 and 3 present the DARDAR v2 classification
method, and section 4 characterizes the differences between
the two versions. In section 5 the DARDAR v2 algorithm
is adapted and compared with the French airborne RALI
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Figure 4. Comparison of radar masks with (a) CloudSat reflectivity [dBZ], (b) CloudSat radar mask
with weak detection corresponding to mask values between 6 and 10 and cloud detection with mask
values above 30, (c) DARDAR v1 radar mask, and (d) DARDAR v2 radar mask.

instruments [Protat et al., 2004; Delanoë et al., 2013], which
are also used to prepare for the EarthCARE mission.

2. Data Set and Masks Implementation
2.1. CloudSat and CALIPSO Data Sets

[8] We use the data set described in [Delanoë and Hogan,
2010], available from the ICARE (Interactions Clouds
Aerosols Radiations Etc) Thematic Centre (http://www.
icare.univ-lille1.fr/). The ICARE Thematic Centre provides
Multi Sensor “CS-TRACK-UNIT” data. These data, origi-
nally provided by the CloudSat data center and the NASA
Langley Centre, are preprocessed so that A-train measure-
ments, NASA official Level 2 products, and ancillary data
are collocated within the CloudSat footprints (1.1 km) with
profiles at a 60 m vertical resolution. This is the DARDAR
resolution grid. The altitude range of the data is –1.02 km to
25.08 km, and the latitude range is –82ı to 82ı (see Delanoë
and Hogan [2010] for further details).

[9] To develop the new DARDAR classification version,
we use input from a number of “CS-TRACK-UNIT” data
products, all available from the ICARE ftp website. The lidar
attenuated backscatter coefficient, ˇ, at 532 nm comes from
the CALIPSO Level 1B profile data and the 94 GHz radar
reflectivity, Ze, from the CloudSat 2B GEOPROF prod-

uct. These data are already calibrated [Winker et al., 2007;
Tanelli et al., 2008; Protat et al., 2009]. Thermodynamic
variables like temperature, pressure, and specific humidity
come from the ECMWF (European Center for Medium-
Range Weather Forecasts)-AUX unit file. The CALIPSO
VFM (Vertical Feature Mask), available in the file CS-
TRACK-UNIT-CAL-LID-L2-VFM, gives information on
the nature of targets in the lidar profiles with a quality flag.
Even if it is interpolated on the “CS-TRACK-UNIT” res-
olution grid, it still presents very large block effect due to
the spatial and vertical averaging used to increase the signal-
to-noise ratio. Therefore, on the DARDAR resolution grid,
some noise pixels are inevitably included in the VFM clouds,
and these cannot be used in the inverse method used for ice
clouds retrievals, but it is still useful for us to distinguish
clouds from aerosols.

2.2. Lidar Mask
[10] Our work is primarily focused on clouds so we have

not developed an independent method to discriminate clouds
from aerosols in lidar data but rather use the VFM. In DAR-
DAR v2, only aerosols that are detectable at the DARDAR
resolution are included, resulting in far less aerosol than
in averaged products such as the VFM. Users interested in
aerosols should use the official CALIOP product.
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Figure 5. Decision tree for classifying layers with a strong
backscatter signal.

[11] We use only the 532 nm CALIOP channel because
this wavelength is more sensitive to small particles, and
hence aerosols and optically thin clouds composed of small
particles, than the 1064 nm channel. Figure 1 shows the
return signal at 532 nm, hereafter ˇ532, from granule 05725
on 26 May 2007. The daytime lidar signals are partic-
ularly noisy due to solar radiation. Darker and brighter
stripes appear according to changes in scene reflectance. The
lidar calibration is assumed to be correct, but we note that
miscalibration could lead to biases in the feature masks.

[12] The technique to select the pixels containing clouds
or aerosols relies on thresholding grayscaled images of
log (ˇ532/ˇmol) with ˇ532 > 0. ˇmol is the modeled molecular
backscattering at 532 nm calculated from temperature and
pressure and is used to remove the molecules’ contribution
in the lidar signal. This technique is applied granule after
granule.

[13] Each granule is first split into three parts (first night
segment, day segment, and last night segment), each treated
independently. Before thresholding, image processing is
applied to the original three day and night images in a
series of steps, as shown in Figure 2 for a daytime example.
Once processed, these three images are vertically split into
three parts (0 km to 8.2 km, 8.2 km to 20.2 km, and 20.2 km
to 25 km) according to the original vertical averaging of
CALIOP data for thresholding.

[14] In Figure 2a, showing the original normalized image
(with values between 0 and 1), the contrast between noise
and clouds is poor, and this is confirmed by the nar-
rowness of the image histogram in Figure 2d. The his-
tograms in Figures 2d, 2e, and 2f are the histograms of the
log (ˇ532/ˇmol) values in the 0 km to 8.2 km image parts; in
this specific example, they are well representative of the
histogram of the full day image. The poor contrast makes
it difficult to find an adequate threshold to extract clouds.
To improve the contrast, the histogram is stretched and a
moving average filter with a 9 pixel window is applied to
reduced speckle. The results of this processing are displayed
in Figures 2b and 2e. The contrast is increased, and the his-
togram now spreads over the full range from 0 to 1, but
intensities of vertical noise stripes are consequently exagger-
ated. As this problem is not present at night, the nighttime
image processing is stopped at this point. Finally, the day-
time images are transformed to their frequency domain with
a bidimensional discrete Fourier transform (DFT). On these
frequency domain images, each pixel represents a frequency
contained in the original spatial image. Before applying the
inverse transformation to go back to spatial domain, we
masked out the center horizontal and vertical lines of the
frequency domain image. This removes all horizontal and
vertical periodicity in the new spatial image, therefore reduc-
ing vertical and horizontal noise variations and minimizing
the vertical striping. Figures 2c and 2f show the final image
and corresponding histogram, in which the cloudy pixel
values are more easily identifiable.

[15] The threshold is subsequently applied to each of
the nine images composing the full granule. The first step
is to select the detectable aerosol pixels. The histogram in
Figure 2f is dominated by a strong mode centered at 0.42
corresponding to noise pixels. The aerosol threshold detec-
tion was chosen empirically as the intensity for which the
number of pixels is equal to half the maximum height of

Table 1. Aerosol/Liquid Mask and Ice/Rain Mask Combinationa

No Aerosol or Liquid Liquid Aerosols Stratospheric Extinguished

Ground Ground (–1) X X X X
No ice or rain Clear sky (0) Liquid clouds (11) Aerosols (6) X Do not know (–2)
Ice Ice clouds (1) Liquid cloud + ice (4) X Stratospheric (8) Ice clouds (1)
Warm rain Warm rain (7) Liquid cloud + warm rain (12) X X Warm rain (+liquid) (14)
Cold rain Cold rain (5) Liquid cloud + cold rain (13) X X Cold rain (5)

aNumbers in parentheses correspond to the number of the class.
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Table 2. DARDAR v2 Classes

Class Number Definition

–4 Clutter
–3 Lidar extinguished
–2 Lidar attenuated
–1 Surface and subsurface
0 Clear sky
1 Ice
2 Lidar ice with depolarization ratio < 0.2
3 Supercooled water
4 Supercooled water + ice
5 Cold rain from ice clouds
6 Aerosols
7 Warm rain/drizzle
8 Stratospheric features
9 High ice concentration layers
10 Strong backscatter convective towers top
11 Liquid water clouds
12 Warm rain + liquid cloud
13 Cold rain + liquid cloud
14 Warm rain (could be mixed with liquid)

the histogram (on the right side of the mode). This limit is
shown by the dashed vertical line in Figure 2f. The pixels
with an intensity greater than this limit are considered to be
likely clouds or aerosols. This is where we use the VFM to
distinguish clouds from aerosols: any of these pixels classi-
fied as aerosol in the CS-TRACK-VFM (with either a bad,
medium, or good quality flag), is then classified as aerosol
in the DARDAR v2 classification. The detection is therefore
done at the DARDAR resolution grid, but the attribution to
aerosols is done with the VFM.

[16] In the same way, we chose the threshold for
cloud detection empirically after testing several options: we
selected the threshold for which the detected pixels cor-
responded to the clouds identified visually on the images.
This threshold is represented by the solid vertical line in
Figure 2f. It was chosen as the intensity for which the num-
ber of pixels is equal to a fifth of the maximum of the
histogram. Any pixel whose intensity is greater than this
threshold is classified as clouds. At this point, the lidar mask
still contains noise pixels, so a final test on backscatter is per-
formed to remove any falsely detected pixels. The logarithm
of the backscattering value of each selected pixel, ˇpix, is
compared to the mean of the logarithm of the backscattering

Table 3. DARDAR v1 Classes

Class Number Definition

–2 Do not know
–1 Surface and subsurface
0 Clear sky
1 Ice clouds
2 Supercooled water + ice
3 Liquid water
4 Supercooled water
5 Rain or drizzle
6 Aerosols
7 Possibly insects
8 Stratospheric features

value of its 24 surrounding cloud or noise pixels, ˇcloud and
ˇnoise, respectively. If ˇpix � ˇcloud –1.5 or if |ˇcloud –ˇnoise| �
0.3 (1.5 and 0.3 values are chosen empirically), then the
center pixel is removed from the cloud mask. Also, every
isolated cloud pixel is removed from the mask. This thresh-
olding technique was tested on several case studies and
found consistent with what is observed by eye.

[17] The lidar mask also contains areas of indetermina-
tion. When the lidar signal is too attenuated to detect the
surface then all pixels below the last detected pixel are clas-
sified as “Lidar extinguished.” When the lidar still detects
the surface but misses some features detected by the radar,
then pixels are classified as “lidar attenuated,” but it is
impossible to quantify to what extent the lidar is attenuated.

[18] The ground is located from the DEM (Digital Eleva-
tion Model) of the L1 Lidar file.

[19] Figure 3a shows the VFM and Figures 3b and 3c
respectively the DARDAR v1 and v2 lidar mask. v1 includes
more pixels than v2. This is because v1 relies on the VFM
that has a block effect (that is, clouds and aerosols present-
ing square features) effect due to the VFM spatial averaging
increasing the number of cloud or aerosol pixels, whereas v2
only relies on 60 m vertical resolution lidar profiles. Note the
presence of a square stratospheric cloud in the VFM and v1
around –20ı where there is no obvious trace of it in Figure 1.
The statistical differences between the two versions will be
fully investigated in section 4.1, but we can already say that
on this specific example we count 3.69% of cloud or aerosols
pixels in DARDAR v2, 4.86% in DARDAR v1, and 5.33%
in the VFM.

Figure 6. DARDAR v2 classification sample of granule 05725 on 26 May 2007.
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Figure 7. Histogram with respect to altitude of cloud or rain occurrence for the two DARDAR classifi-
cations for the granule 05725 on 26 May 2007 in (a) the tropics, (b) the middle northern latitudes, (c) the
middle southern latitudes, (d) the North Pole, and (e) the South Pole.

2.3. Radar Mask
[20] Cloud detection from radar reflectivity relies on

thresholding in the same way as for the lidar mask. We
found that for radar the adequate threshold for cloud detec-
tion is the intensity for which the number of pixels is equal
to a sixth of the maximum of the histogram. In the result-
ing mask, we remove the false radar detection caused by the
500 m original vertical resolution brought on to a 60 m ver-
tical resolution with the help of the lidar mask. When the
lidar is not extinguished, it always detects the tops of clouds
seen by the radar. Therefore, all radar detection above the
lidar cloud top are removed from the mask. This correction
is important because a fake radar cloud top would introduce
a bias in climatologies.

[21] Any pixel less than 1.2 km aboveground with reflec-
tivity higher than 15 dBZ is considered radar clutter. Also,
in the same area, any pixel with reflectivity higher than the
detection threshold is considered radar clutter unless every
pixel below 1.2 km in the vertical column is above the detec-
tion threshold. In this case, we consider that they belong to
cloud or rain.

[22] CloudSat data center provides a mask giving infor-
mation of location of likely hydrometeors [Marchand et al.,
2008]. The mask values, ranging from 0 to 40, give an indi-
cation of the confidence with which we can report a radar
detection. Figure 4a shows the CloudSat reflectivity in dBZ,
Figure 4b is the corresponding radar mask from the Cloud-
Sat data center, and Figures 4c and 4d are, respectively, the

radar masks from DARDAR v1 and v2. In Figure 4b, “Weak
detection” includes the CloudSat mask values ranging from
6 to 10 and “Cloud detected” the values above 30, which
is the most widely used threshold for confident cloud detec-
tion. In the v1 radar mask, ground and clutter are refined
from the CloudSat mask. When the cloud features in the v1
radar mask have a common boundary with the clutter, then
all pixels below the boundary until the ground are consid-
ered as good targets to be classified in the DARDAR v1
classification.

[23] The radar mask from DARDAR v1, DARDAR v2,
and CloudSat are very similar. The percentage of pixels in
the daytime granule that are either cloud or rain in each of the
DARDAR v1, DARDAR v2, and CloudSat mask are 4.59%,
4.61%, and 5.03%, respectively. This slight difference is due
to the corrected cloud tops and because the CloudSat mask
is slightly less restrictive than DARDAR.

3. Target Categorization
3.1. Strong Lidar Backscatter Layers

[24] Lidar backscatter intensity contains information
about the nature of the hydrometeors. Strong backscatter
regions are composed either of warm liquid water, super-
cooled water, ice in high concentration, or a mix of them.
Locating supercooled water layers is crucial as they repre-
sent a major weather hazard in aeronautics and can cause
fatalities [Reehorst et al., 2008]. Moreover, they have an
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influence on retrieval methods [Delanoë and Hogan, 2010]
and radiative transfer calculations [Hogan et al., 2003]. Such
hydrometeors have the power to extinguish the lidar sig-
nal or at least to strongly attenuate it. Delanoë and Hogan
[2010] and Zhang et al. [2010] both describe a method
to identify supercooled water layers. These layers are usu-
ally physically thin (no more than 300 m) and observed in
regions where the temperature is lower than 0ıC and higher
than –40ıC [Hogan et al., 2004; Zhang et al., 2010], which
is the homogenous nucleation temperature.

[25] In DARDAR v2, we locate any type of attenuat-
ing high backscatter layer (ˇ532 > 2.10–5 m–1 sr–1 [Delanoë
and Hogan, 2010]) and then classify them according to
temperature and parameters from the radar and lidar masks.

[26] These layers include any pixel where ˇ532 >
2.10–5 m–1 sr–1 and where ˇ532 drops by a factor of 10 in the
next 480 m. The vertical extent of the layers is defined with
the gates of maximum gradient in ˇ532 in the 240 m below
and 300 m above each of these pixels.

[27] Before November 2007 the CALIOP pointing angle
was almost at nadir but was tilted 3ı off nadir after that.
Horizontal ice crystal plates induce strong returns when
viewed in the nadir configuration but not when viewed off
nadir [Zhou et al., 2012]. The technique used in Delanoë
and Hogan [2010] to identify supercooled water was tested
before and after the tilt, and no large difference was
observed.

[28] Each of these strong backscatter layers is then
treated separately to classify its pixels into five groups: (1)
warm liquid water, (2) supercooled water, (3) supercooled
water mixed with ice, (4) highly concentrated ice, and (5)
top of updrafts in convective towers.

[29] The decision tree presented in Figure 5 classifies
these layers based on the following criteria: temperature,
horizontal extent of layer, thickness, reflectivity, and, for
convective towers, location. If the ECMWF wet bulb tem-
perature (temperature of adiabatic saturation) is greater than
0ıC, then the layer is composed of warm liquid water. The
upper part of strong updrafts in convective towers can be
composed of liquid droplets and ice in different proportion,
so these layers are categorized in a separate class. If the layer
is less than 20 km wide and located in a vertically oriented
cloud whose reflectivity is greater than 5 dBZ, then it is clas-
sified as top of updraft in convective tower (hereafter called
top of convective tower). Doppler radar gives information
on particle terminal fall velocity, and, therefore, precipita-
tion and updraft areas will be more easily identified when
EarthCare Doppler radar data are available. The remaining
layers are classified as ice in high concentration if the layer
is more than 300 m thick and/or if the wet bulb temperature
is lower than –40ıC and as supercooled water otherwise.
The radar is not able to detect pure supercooled water
because its signal is dominated by larger and less numer-
ous particles [Hogan et al., 2003]. So, if the radar detects
a signal collocated with supercooled water layers detected
by the lidar, they are classified as supercooled water mixed
with ice.

[30] DARDAR v1 only selects the layers of supercooled
water (mixed with ice or not). These layers often include
a pixel above the actual increase in backscatter and below
the actual drop off in backscatter. This tends to increase the
supercooled water occurrence and fraction: over 3 months
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Figure 8. Comparison of (a) the CPR reflectivity Ze [dBZ], (b) the logarithm of the CALIOP attenuated
backscatter coefficient ˇ532[m–1 sr–1], (c) DARDAR v1 classification, and (d) DARDAR v2 classification
at the South Pole.

of data, v1 reports 1.8 times more supercooled water (mixed
with ice or not) than v2, and we expect v2 to be more
realistic.

3.2. Creation of DARDAR v2 Categorization
[31] Categorization is based on Table 1, which is a simpli-

fied version of the table presented in the target classification
product for EarthCare described in Delanoë et al. [2010]. We
created an aerosol/liquid mask and an ice/rain mask, from
which many combinations, even mixed phase, are possible.
Note that snow is not included in the DARDAR categoriza-
tion because in microphysical properties retrieval methods
we consider that there is a continuum between ice cloud
and snow.

[32] In a warm atmosphere (ECMWF wet bulb tem-
perature greater than 0ıC), we distinguish precipitating
from nonprecipitating clouds using the CloudSat reflectiv-
ity. Using CloudSat data, Stephens and Haynes [2007] report
that for reflectivities below –15 dBZ the amount of drizzle is
negligible, but Leon et al. [2008] sets this limit to –18 dBZ
in marine stratocumulus clouds. In some other studies this
limit varies between –15 dBZ and –20 dBZ [Liu et al., 2008]
for different types of radar at different wavelengths. We have
chosen a threshold of Ze = –17 dBZ because it lies between
all of these values.

[33] Cold rain is defined by a radar signal detection with
Ze � –17 dBZ located in a warm atmosphere and originat-
ing from ice clouds, whereas warm rain (or drizzle) is a radar
signal detection with Ze � –17 dBZ not coming from ice.
If a cold rain pixel is observed, then all pixels below it until
the ground are classified as rain even when marked as clut-
ter or in cases where Ze decreases when reaching ground.
This phenomenon can appear (more likely in the tropical
regions) when rainwater evaporates before reaching the sur-
face or when radar signal is attenuated by heavy convection
and rain; the ground is then barely observable in the radar
signal. We assume that the rain is falling vertically within
the 1 km long gates. Radar mask pixels in a warm atmo-
sphere, with Ze � –17 dBZ, are assigned as liquid clouds.
DARDAR v1 used the same ECMWF temperature data
and the same reflectivity threshold to separate liquid clouds
from precipitation but did not distinguish cold rain from
warm rain.

[34] From Table 1, we have “cold rain and liquid cloud”
when there is a good lidar signal and the radar reflectivity is
above –17 dBZ. Note that we are not trying to give an esti-
mate of cloud base as the lidar may be extinguished before
actually reaching it. When the lidar is extinguished, the pix-
els are attributed to “cold rain” but they may be mixed with
liquid in some areas close to the melting layer. Warm rain
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Figure 9. Comparison of (a) the CPR reflectivity Ze [dBZ], (b) the logarithm of the CALIOP attenuated
backscatter coefficient ˇ532[m–1 sr–1], (c) DARDAR v1 classification, and (d) DARDAR v2 classification
in the tropics.

pixels found in extinguished or attenuated lidar zones are
categorized as “rain which could be mixed with liquid.”

[35] Any feature detected by the lidar in the ice class
and in the ice/rain mask situated above the lower limit
of the stratosphere is classified as “stratospheric feature.”
We define the stratosphere lower limit as 3 km above the
tropopause. The altitude of the tropopause is usually avail-
able in the CALIPSO L1 product, but when it is not, we
define it as the height of minimal temperature on the vertical
profile. It can happen that the temperature profile presents
no minimum; in that case, the whole profile is described
as troposphere.

[36] We also create a class for ice with low depolarization
ratio. A low total depolarization ratio (we use a depolar-
ization ratio < 0.2 for this class) can indicate that the ice
particles’ cross section is disk-shaped, meaning that the
particles are either spherical or 2-D plates horizontally ori-
ented [Yoshida et al., 2010]. This class is only given as an
indication since multiple scattering and daytime noise can
influence the local inferred depolarization.

[37] DARDAR v2 classes are summarized in Table 2, and
an example of the classification for a case study is shown in
Figure 6. In this example many classes are represented: an
area around –47ı latitude shows liquid clouds in dark brown,
liquid mixed with warm rain in purple and with cold rain in
gray, as well as supercooled water mixed with ice in light
green. Close to 0ı latitude at 6 km there is a supercooled

water layer in red. The radar clutter in dark orange is also
well represented in this example.

4. Comparison Between DARDAR
v1 and v2 Classifications

[38] This section focuses on the differences between the
two DARDAR categorization versions. We first consider
a case study of granule 05725 from 26 May 2007. We
then look at the statistical distribution of hydrometeors from
all the available data from January, February, and March
2010. Our aim is to analyze the differences and similarities
between the two products; we do not produce a climatol-
ogy nor do we study the spatial distribution of different
cloud types.

4.1. Comparison of Classifications Using the Granule
05725 Case Study

[39] As reported in the previous sections, the technique
used to categorize the targets in lidar and radar profiles are
different in the two DARDAR versions. DARDAR v2 now
introduces new classes, including mixed phase classes, mak-
ing the v2 classification more precise. The DARDAR v1
classes are listed in Table 3.

[40] Figure 7 shows the occurrence of cloud or rain in
granule 05725 as a function of altitude in different latitude
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Figure 10. Comparison of rain or cloud occurrence in v1 and v2, defined as the number of pixels
classified as clouds or rain divided by total number of pixels in each bin multiplied by 100. (a) Cloud or
rain occurrence with respect to latitude and altitude for v1. (b) Same as Figure 10a but for v2. (c) The dif-
ference between Figures 10a and 10b with a white dashed line at 500 m altitude. (d) Same as Figure 10a
but as a function of latitude and longitude. (e) Same as Figure 10d but for v2. (f) The difference between
Figures 10e and 10f.

regions. The cloud or rain occurrence is calculated as the
number of pixels classified as cloud or rain divided by the
total number of pixels. The black line is the v1 distribution
and the gray line the v2 distribution.

[41] In order to quantify the differences between the two
classifications, the contingency table in Table 4 reports the
number of pixels agreeing and disagreeing between the two
versions. The lines and columns correspond to the pixels
classified in v1 and v2, respectively. It is simplified in order
to have the two classifications comparable. DARDAR v2
ice, low depolarization ice, top of convective clouds, and
ice in high concentration pixels are all grouped in “Ice.”
Warm rain, cold rain, and mix of rain with liquid clouds
are grouped in “Rain.” The clutter pixels are included in
“surface or subsurface” class, and finally the “lidar extin-
guished” and “lidar attenuated” grouped in “Unknown.” At
the end of each line and column, we give the total number
of pixels attributed to the corresponding class in v1 and v2
and the agreement level between the two classifications. For
instance in the “Ice” line, the total number of pixels clas-
sified as ice in v1 is 930,574. Of these pixels, 762,813 are
also classified as ice in v2, which corresponds to an accor-
dance of 82%, but 142,439 are classified as clear sky in v2,
which corresponds to an disagreement of 15%. Such a dis-
agreement is also apparent in Figure 7, clearly showing that
on average DARDAR v1 includes more pixels in the classifi-
cation than DARDAR v2. The occurrence differences reach
5% or more at low altitudes (below 2 km) in the tropics

(Figure 7a), at high altitudes (above 7 km) in the middle
northern latitudes (Figure 7b), and even reach 10% in the
stratosphere in the South Pole (Figure 7e). Occurrence dif-
ferences observed above 5 km are due to the block effect of
the VFM; we have shown in section 2.2 that the v1 lidar
mask includes, on average, more pixels than v2. The block
effect is very well illustrated in Figure 8: Figures 8a and
8b are, respectively, the CPR reflectivity and the CALIOP
backscatter in the South Pole, and Figures 8c and 8d are,
respectively, the corresponding DARDAR v1 and v2 clas-
sifications. The stratospheric cloud observed between –81ı
and –77ı in v1 encompasses more pixels than in v2 and has
square contours. This is in agreement with the contingency
table that indicates that 47% of stratospheric pixels in v1 are
actually classified as clear sky in v2.

[42] As said in section 2.3, in v1, if a cloud and the clutter
have common boundary, then all pixels below the boundary

Table 5. Moments of the Differences in Distribution of Cloud and
Rain Occurrence Between DARDAR v1 and DARDAR v2 Shown
in Figure 10

– Latitude-Altitude Longitude-Latitude

Mean 1.11% 1.11%
Standard deviation 1.85% 0.81%
Maximum 13.67% 6.06%
Minimum –16.15% –0.76%
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Figure 11. Contingency matrix of the two DARDAR versions using all available granules in January,
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are given the same classification as the pixels above the
boundary. This is not done in v2 because we cannot tell if
liquid and ice clouds are precipitating or not, so we can-
not confidently extend them to the ground without reliable
reflectivity. Cold rain is the only hydrometeor that we extend
to the ground even with contaminated radar reflectivity. An
example of these differences is illustrated in Figure 8. In the
descending pass around –60ı, v2 reports some rain where,
in v1, it is undefined because, in this region v1 has no com-
mon boundary with the clutter. In the ascending pass around
–60ı, v1 reports some ice below 1 km where, in v2, it is
undefined. In this region, features in v1 have a few common
boundaries with the clutter so v1 assigns as ice some square
areas even if the reflectivity is obviously contaminated by
clutter (Ze� 15 dBZ). Note that in warmer regions it hap-
pens with liquid clouds instead of ice. This effect can also
be seen in the contingency table indicating an agreement of
65% for the “unknown” v1 class, but 4% of “unknown” v1
pixels are classified as rain in v2. Therefore, at low altitude
(below 1.2 km), v2 could report more rain than v1 but v1
more ice and liquid clouds than v2.

[43] The differences observed in Figure 7a below 5 km
altitude can be explained by the amount of liquid clouds
reported in v1. In Figure 9c (same as Figure 8c but for
the tropics), there are some artifacts in the detection of liq-
uid clouds between aerosol areas at low altitudes between
–25ı and –16ı and between 9ı and 13ı in the ascending

pass. To a lesser extent in this granule, it appears as well
in the descending passes. These cloud features are not real-
istic considering their shapes and the absence of strong
lidar backscatter. These artifacts come from the fact that v1
assigned as liquid clouds the pixels classified as “aerosols
none” and “clouds none” in the VFM. These pixels are
usually not even included in the v2 lidar mask. This misclas-
sification can be seen in the contingency table showing that
there is only an accordance of 33% for the liquid clouds of
v1. Indeed, 34.5% of liquid cloud pixels from v1 are actually
classified as clear sky in v2, and 12.5% and 13.5% are clas-
sified as unknown and subsurface, respectively (remember
that the v2 clutter is included in the subsurface in the contin-
gency table). The low-altitude tropics are the regions where
aerosols are mostly encountered; this is why this region has
the largest differences in cloud or rain occurrence.

4.2. Comparison of the Two Classifications During
Winter 2010
4.2.1. Occurrences Comparison

[44] Figures 10a, 10b, and 10c show the clouds or rain
occurrence distributions as a function of latitude and altitude
for v1, v2, and the difference between v1 and v2, respec-
tively, for granules of the winter 2010. Figures 10d, 10e, and
10f show the same occurrence as a function of longitude and
latitude. The mean, standard deviation, maximum, and min-
imum of the distribution of the differences between v1 and
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Figure 12. Histogram with respect to altitude of (a) rain, (b) liquid clouds, and (c) ice occurrence in
different regions for the two DARDAR classifications in winter 2010.

v2 are listed in Table 5. Figure 11 is the contingency table for
these data displayed with colors corresponding to the loga-
rithm of the number of pixels in each grid box. The matrix
presents all the classes from v2 (except low depolarization
ice) in order to understand the impacts of the introduction of
new classes in the classification. The colors help to visual-
ize the correspondence between the two classifications and
to quickly identify the classes between which there is the
most confusion. The white boxes correspond to the classes
for which there is no confused pixel.

[45] Figures 10a and 10b show that clouds and rain are
distributed according to latitude and altitude. Figure 10c and
Table 5 show that the differences between the two versions
can reach 16% in some areas. This represents a significant
difference when it comes to evaluating general circulation
models (GCMs). Figures 10d and 10e show some geograph-
ical dependence. Most clouds or rain are located in the
tropics, in the Northern Atlantic, and in Northern Europe,
and this is where the largest differences are consequently
observed in Figure 10f (not more than 6% according to
Table 5).

[46] Figure 10c shows an almost continuous red area
below 500 m (white dashed line), indicating that v1 occur-
rences are larger by 5–6% than v2 occurrences. For slightly
higher altitudes, between 500 m and 2 km, red still predom-
inates in the tropics and middle latitudes, while in the poles
v2 occurrences are larger by 5–6% than v1 occurrences.

This observation is consistent with the difference in the way
clutter is treated in v1 and v2, as discussed in section 4.1.
Differences are more easily quantifiable in Figures 12a, 12b,
and 12c that show the rain, liquid clouds, and ice occurrence,
respectively, in DARDAR v1 in black and v2 in gray for dif-
ferent latitude regions. For rain above 1.2 km, where clutter
treatment has no more effect, there is almost no difference
between the two versions, but below 1.2 km, v2 reports more
rain than v1 (except in the tropics). For liquid clouds, the
largest differences are also located below 1.2 km where v1
reports more liquid clouds than v2.

[47] Above this limit the differences are explained by the
false liquid cloud detection in aerosol areas, discussed previ-
ously. The contingency table tells us that v1 “liquid clouds”
pixels are dispatched into several classes in v2. First of all,
12.8% of these pixels are classified as clutter in v2 because
liquid clouds in v1 are extended to the ground where v2
reports nothing but ground clutter. Secondly, 11.7% of them
are classified as extinguished lidar in v2. This happens when
spurious detection is found in the middle of an extinction
area (such cases were observed but are not shown here).
Finally, as expected, 28.1% of them are classified as clear
sky in v2.

[48] In Figure 10c at high altitudes in the tropics, the dif-
ferences reach more than 15% due to v1 being less restrictive
on cloud pixel detection than v2 and because of the block
effect (see section 2.2). Note in Figure 11 that the v2 “clear
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Figure 13. Comparison of the distribution of atmospheric constituents, with respect to altitude and lat-
itude, for DARDAR v1 and v2. (a) The distribution of ice fraction calculated as the number of pixels
classified as ice divided by the number of pixels classified as cloud or rain in the same bin. The top plot
is for v1, the middle plot is for v2, and the bottom plot shows the difference in fractions between the two
versions. (b) Same as Figure 13a but for supercooled water (mixed with ice or not) fraction. (c) Same as
Figure 13a but for rain or drizzle fraction. (d) Same as Figure 13a but for liquid clouds fraction.

sky” pixels are dispatched to many classes in v1, such as
ice, liquid clouds, aerosols, and stratospheric features. Dis-
crepancies between the v1 and v2 lidar masks make the v1
accordance for those classes not very good: the v1 strato-
spheric accordance in only 28.7%, the remaining pixels are
categorized mainly as clear sky and ice in v2. For liquid
clouds, there are almost as many pixels classified as clear
sky as are classified as liquid clouds in v2. Fifteen percent
of v1 ice pixels are classified as clear sky in v2. Figure 12c
also shows that there is quite a good match between the two
versions below 8 km in the tropics and below 5 or 6 km in
other regions. This corresponds to areas where ice is mainly
detected by radar; we showed earlier that radar masks on v1
and v2 are almost identical.
4.2.2. Phase Fractions Comparison

[49] Figure 13 presents the distribution of ice, rain, super-
cooled water (mixed with ice or not), and liquid clouds
fractions as a function of altitude and latitude. The fraction
is defined as the number of pixels classified as a certain
type of hydrometeor divided by the number of pixels clas-
sified as cloud or rain. It represents the chance that a pixel
will belong to a class when detected by the radar and/or the
lidar. For instance, an ice fraction of 100% means that, in
the considered bin, the only hydrometeor to be found is ice.
Comparing the fractions helps to identify the discrepancies
between classes and to identify the locations where different
hydrometeors coexist.

[50] It is clear from Figures 13a and 13b that there is
a mix-up between ice and supercooled water. Indeed, the
increase in ice fraction in v2 (higher fraction v2 by up to

15%) in Figure 13a perfectly matches the decrease in super-
cooled water fraction (lower fraction in v2 by up to 15%)
in Figure 13b. This means that v1 is more likely to assign
the target pixels to supercooled water than v2. This is ver-
ified by the contingency table in Figure 11 (numbers not
displayed in the figure) where 20.5% of the pixels classi-
fied as supercooled water in v1 are classified as ice in v2.
This is because v1 sometimes includes an additional pixel
above and below the actual layer of strong backscatter (see
discussion in section 3.1).

[51] The differences observed along the tropopause in
Figure 13a correspond to the mix-up between stratospheric
and tropospheric pixels.

[52] Figure 13c shows that, in many areas, the fraction of
rain or drizzle is larger by 10 to 15% in v2 than in v1, while
we observe the opposite for liquid clouds in Figure 13d.
Similarly to ice and supercooled water, the changes between
v1 and v2 in rain and liquid clouds match each other. Rain
fraction in v2 includes the fractions of cold rain, warm rain,
and any kind of rain mixed with liquid clouds. The con-
tingency matrix confirms, as expected, the mix-up between
liquid clouds in v1 and liquid clouds mixed with rain in v2.
When grouping all rain classes from v2, we have 91.5%
agreement with v1 pixels. Of rain pixels in v2, 0.4% are clas-
sified as liquid clouds in v1 and the other 7% as unknown,
clear sky, or surface, but these latter do not play a part in the
fraction computation. Therefore, we see that a small mix-
up of 0.4% can represent quite a big difference in fractions:
the maximum differences (not displayed in Figure 13c for
visibility reasons) reach 80% in low altitudes (below 1 km).
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Figure 14. Comparison of DARDAR v2 and RALI classification during the LNG-CALIPSO campaign
on 29 November 2010 (Flight 33). (a) CALIOP backscatter ˇ532[m–1 sr–1], (b) CloudSat reflectivity Ze
[dBZ], (c) classification result from DARDAR v2 algorithm, (d) LNG backscatter ˇ532[m–1 sr–1], (e)
RASTA reflectivity Z [dBZ], and (f) classification result from RALI algorithm.

Rain fraction in v2 reaches 100% below 1 km because, as
detailed previously, it is the only hydrometeor which can
be assigned so close to the surface in regions where it is
more than 0ıC. In v1, some of the clutter contaminated
pixels were assigned as liquid clouds or ice, hence the
lower fraction.

5. Adaptation of the DARDAR v2 Algorithm to
Airborne RALI Data
5.1. RALI Missions and Data Sets

[53] RALI is an instrumentation project devoted to the
characterization of microphysical, macrophysical, radia-
tive, and dynamical properties of clouds, aerosols, and
convection [Protat et al., 2004]. It consists of an air-
borne platform (either a Falcon 20 or an ATR-42 aircraft)
combining RASTA (Radar System Airborne), a 95 GHz
Doppler cloud radar, and LNG (Leandre New Generation),
a triple-wavelength (355 nm, 532 nm, and 1064 nm) dual-
polarization lidar with HSR capabilities at 355 nm. The HSR
gives the opportunity to separate molecular from particle
return in the lidar signal and therefore to get a direct mea-
surement of extinction [Bruneau and Pelon, 2003]. For more
details about the RALI project, see Protat et al. [2004] and
Delanoë et al. [2013].

[54] Since the launch of the A-Train satellites, several
RALI campaigns were conducted (http://rali.projet.latmos.

ipsl.fr). The campaigns where both radar and lidar data were
acquired are as follows:

[55] 1. CIRCLE II (Cirrus Cloud Experiment II) in May
2007 in France and Germany. The mission was designed for
satellite validation and study of cirrus clouds properties.

[56] 2. EUCAARI (European integrated project on
Aerosol Cloud Climate and Air Quality Interactions) in
Spring 2007 in the Netherlands. The mission’s scientific
objectives were aerosol, cloud, climate, and air quality
interaction studies.

[57] 3. POLARCAT (Polar Study using Aircraft, Remote
Sensing, Surface Measurements, and Models of Climate,
Chemistry, Aerosols, and Transport) [Stohl et al., 2010]
in Spring 2008 in northern Scandinavia dedicated to the
investigation of arctic processes, including cloud processes
[Delanoë et al., 2013].

[58] 4. LNG-CALIPSO (Leandre New Generation-
CALIPSO) in Autumn 2010 over the Atlantic for CALIPSO
validation and LNG HSR tests.

[59] During the CIRCLE II, POLARCAT, and LNG-
CALIPSO missions, several A-Train overpasses were car-
ried out. As the RALI platform carries a 95 GHz radar and
a 532 nm lidar, the data collected during these overpasses
were very useful to check the performance of CloudSat
and CALIOP instruments as well as the new version of
the DARDAR classification algorithm. Moreover, during the
LNG-CALIPSO mission, HSR lidar data at 355 nm during
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Figure 15. Comparison of DARDAR v2 and RALI classification during the LNG-CALIPSO cam-
paign on 4 December 2010 (Flight 36). (a) CALIOP backscatter ˇ532[m–1 sr–1], (b) CloudSat reflectivity
Ze [dBZ], (c) classification result from DARDAR v2 algorithm, (d) LNG backscatter ˇ532[m–1 sr–1],
(e) RASTA reflectivity Z [dBZ], and (f) classification result from RALI algorithm.

A-Train overpasses are available to evaluate the CALIPSO
extinction retrieval algorithm, which will be the subject of
future work.

5.2. A-Train/RALI Overpasses Case Study
[60] The comparison of airborne and spaceborne

classifications allows for an investigation of errors due to
the coarser resolution of the spaceborne measurements as
compared to RALI. The original resolution of the RALI data
are 15 m vertical and 30 to 100 m horizontal resolution for
LNG and 60 m vertical resolution for RASTA with a sensi-
tivity down to –37 dBZ. These data, interpolated on a 60 m
vertical resolution and 3 s horizontal resolution grid, reveal
more details of the cloud structures than satellite data. The
LNG lidar data are far less noisy than those from CALIOP.
This difference in noise is due to the smaller field of view
of LNG which allows fewer solar photons to corrupt the
signal. Therefore, for the lidar mask creation, LNG needs no
different treatment whether it is day or night. Moreover,
LNG is also less affected by multiple scattering than
CALIOP.

[61] For the comparison of airborne and satellite classi-
fications, we have adapted the DARDAR v2 algorithm to
RALI data on A-Train overpasses. Results from DARDAR
and RALI are then compared in order to identify the differ-
ences between the two classifications and understand their
consequences in our ability to classify the different types of
hydrometeors.

[62] Figure 14 presents satellite data with DARDAR
v2 classification and airborne data with its corresponding

classification during the LNG-CALIPSO campaign on 29
November 2010 (Flight 33). This overpass gives a good
example of melting layer detection. In RALI the melting
layer is located with Doppler signal, whereas in DARDAR,
ECMWF AUX data, whose original vertical resolution is
240 m, are used. Figures 14c and 14f show that melting
layers from both satellite and airborne classifications are
quite similar. Assuming that the melting layer obtained with
Doppler measurements is accurate, we find a height root
mean square error (RMSE) for the ECMWF 0ıC isotherm
of 57 m and a bias of 25 m.

[63] Figure 15 gives another example of A-Train over-
pass on 4 December 2010 (Flight 36). On this example, we
have a RMSE of 116 m and a bias of –48 m, with the largest
differences about˙300 m.

[64] Comparing melting layers in DARDAR and RALI
classifications gives an idea of how precisely DARDAR v2
locates the melting layer using ECMWF wet bulb tempera-
ture. These examples show that if the rain is stratiform, there
is a very good correspondence (error smaller than a gate of
60 m), but when there is more convection the differences can
reach 300 m, which is quite significant but still smaller than
the native vertical resolution of CloudSat.

[65] Mittermaier and Illingworth [2002] ran the same
kind of comparison but with a vertically pointing ground-
based radar at 94 GHz in Chilbolton. The ECMWF wet bulb
0ıC isotherm is compared to the observed bright band height
which is defined as the height of the step increase in radar
reflectivity. The authors found, with a much larger data set, a
RMSE of 316 m and a bias of 58 m above the observed bright
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Figure 16. Comparison of DARDAR v2 and RALI classification during the POLARCAT campaign on
10 April 2008 (Flight 34). (a) CALIOP backscatter ˇ532[m–1 sr–1], (b) CloudSat reflectivity Ze [dBZ],
(c) classification result from DARDAR v2 algorithm, (d) LNG backscatter ˇ532[m–1 sr–1], (e) RASTA
reflectivity Z [dBZ], and (f) classification result from RALI algorithm.

band. Our study gives slightly different results of RMSE
but about the same order of magnitude; more RALI case
studies would be useful to compare [Mittermaier and Illing-
worth, 2002] results with ours. We must also remember that
the data used in Mittermaier and Illingworth [2002] are col-
lected from the ground, while RALI data are obtained from
an aircraft resulting in different viewing geometries. Further-
more, we use the Doppler signal to identify the melting layer,
whereas Mittermaier and Illingworth [2002] used reflectiv-
ity measurements. The two approaches are slightly different
since the Doppler signal indicates the altitude where the
particles start to fall, whereas the step increase in radar
reflectivity indicates the altitude where ice particles start to
get coated in liquid water. Doppler signal is more adapted
to melting layer detection, especially with a 95 GHz radar
where the bright band can be barely noticeable. Note that the
differences found can also be explained by ECMWF model
improvements within the last decade.

[66] Moreover, areas of strong convection can be
observed in RALI but unfortunately not in satellite data. In
the RALI classification a class called “Suspected convec-
tion” is added. Indeed, it is a class derived from the lack
of RASTA data. In these cases, RASTA is extinguished
(even the ground is missing in the signal), and usually
the Doppler signal indicates updraft and precipitation areas
nearby each other. It is very difficult to create a convenient
class since in convective clouds, different hydrometeors are
mixed together. Updrafts drag liquid droplets above the
0ıC isotherm, and, when they weaken, the droplets start to

precipitate again, hence the confused Doppler signal. This
is clearly seen during the Flight 36 of the LNG-CALIPSO
mission in Figure 15 at 49.2ı and 48.1ı. In Figure 15e,
at 49.2ı between 3 and 4 km, the RASTA signal is very
strong but quickly attenuated, whereas the CloudSat reflec-
tivity in Figure 15b still reaches 10 dBZ. In this region,
the Doppler signal (not displayed here) shows a situa-
tion of both updraft and precipitation. Such phenomenon is
described in Battaglia et al. [2007], where multiple scat-
tering (MS) enhancement (difference between multiple- and
single-scattering reflectivity) from CloudSat and airborne
radar are compared. The authors show that the MS enhance-
ment is lower than 3 dB in the airborne configuration,
whereas it can reach very high values in the spaceborne con-
figuration when passing through areas of strong content of
hydrometeors. This can explain the differences observed in
Figure 15, but we must also remember that CloudSat’s sen-
sitivity does not drop much with range contrary to RASTA.
Without Doppler we can only rely on ECMWF, which gives
no information on updrafts. The use of Doppler therefore
helps to locate the melting layer and also the convection
areas.

[67] Comparing the classifications from airborne and
space instruments is also interesting regarding the location
and classification of strong backscatter layers. Figures 15
and 16 give examples of such layers. The algorithm stays
the same for both the airborne or spaceborne lidar data since
both lidar operate at the same wavelength, 532 nm, but ever
so, the classification for these layers differs. For instance,
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Figure 17. Results of the RALI mask and comparison with DARDAR masks. (a to c) Spaceborne data
and DARDAR v2 classification. (d to f) RALI data with LNG 532 nm Doppler and resulting classification.
(g to i) RALI data with HSR LNG 355 nm and resulting classification.

in Figure 15, the strong backscatter layer found at 7 km and
48.6ı is classified as ice in high concentration in DARDAR
and as a mix of supercooled water and ice in RALI. Simi-
larly, Figure 16 shows an example of a layer classified as ice
in high concentration in DARDAR and as a mix of super-
cooled water and ice in RALI. This difference is due to the
thickness of the layer. The comparison between CALIOP
and LNG data shows that the CALIOP layer looks much
thicker than the LNG one, and this might be because of mul-
tiple scattering. Since the algorithm relies on a thickness
threshold to separate ice and liquid, the results can be very
sensitive to a small variation of layer thickness.

[68] CALIOP and LNG data in Figure 16 show that
CALIOP data are quite noisy and do not reveal the cloud
running from 3 km at 70.5ı to 4.5 km at 71.5ı. For the
moment RALI classifies this as ice cloud but it could be
aerosols. Similarly, the low level cloud located around 70.3ı
is probably aerosols, but because the RALI algorithm does
not have a method to distinguish clouds from aerosols, we
leave it as clouds for now. This tells us that RALI is able to
detect clouds with signal down to ˇ532 = exp(–5.9) m–1 sr–1

in a noise signal of ˇ532 = exp(–6.2) m–1 sr–1, whereas in
CALIOP the noise lies around ˇ532 = exp(–5.7) m–1 sr–1

and therefore misses such optically thin clouds or aerosols
layers.

[69] We have only been able to run this kind of compari-
son on the few RALI cases where A-Train overpasses were
available. This study, therefore, does not constitute a proper
validation of the DARDAR v2 algorithm, but it does help

to identify the classes where DARDAR classification should
be taken with caution.

5.3. Adaptation of the Algorithm to RALI Data in
Preparation for EarthCare

[70] RALI is the perfect instrument to prepare for the
transition from CloudSat-CALIPSO products to EarthCare.
Indeed, RALI carries the same active instruments as in each
of the two spaceborne systems. RASTA is a Doppler 95 GHz
radar equivalent to the 95 GHz Cloud Profiling Radar on
CloudSat and the 95 GHz Doppler CPR on EarthCare. LNG
is a three-wavelength lidar (355 nm with HSR, 532 nm, and
1064 nm) like CALIOP (532 nm and 1064 nm) and like
EarthCare (355 nm with HSR).

[71] The first step in the creation of the EarthCARE classi-
fication is to adapt DARDAR v2 to airborne data (see previ-
ous section). The second step which we detail in this section
is to adapt the airborne RALI algorithm to the HSR 355 nm
lidar in order to have an algorithm almost ready to use when
EarthCare data are available. The only modification that has
to be done here lies in the lidar detection and thresholding
at 355 nm. A comparison of ˇ532 versus ˇ355 from the LNG
lidar (not shown here) shows that the corresponding thresh-
old for the selection of strong backscatter layers at 532 nm
ˇ532 > 2.10–5 m–1 sr–1 is ˇ355 > 1.10–5 m–1 sr–1.

[72] Figure 17 presents the two steps of preparation for
EarthCare for flight 35 on 2 December 2010. On the left
column (Figures 17a, 17b, and 17c), we present CALIPSO
and CloudSat profiles on the overpass and the resulting
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DARDAR v2 classification. The middle column shows
RALI data with LNG at 532 nm (Figure 17d), RASTA
(Figure 17e), and the resulting RALI classification
(Figure 17f). The right column shows RALI data with HSR
capabilities at 355 nm with particle return (Figure 17g),
molecular return (Figure 17h), and the resulting classifica-
tion (Figure 17i). The horizontal resolution is lower when
using HSR data because it requires temporal averaging,
but the vertical resolution is still 60 m as for the space-
borne data. HSR capabilities are revealed useful to create
the lidar mask directly from the particle returns. The result-
ing HSR RALI classification shown in Figure 17i shows
good agreement with the RALI classification in Figure 17f.
Nevertheless, more LNG HSR data would be needed to
test the algorithm more thoroughly. HSR data could also
be further investigated to develop a method to discrimi-
nate aerosols from clouds using the depolarization and the
extinction-to-backscatter ratio.

6. Conclusion and Perspectives
[73] In this paper, we have detailed the method to cre-

ate the new DARDAR classification version from CloudSat
and CALIPSO profiles. It represents a step toward Earth-
Care as it does not rely on NASA official Level 2 products
except to distinguish clouds from aerosols. Moreover, it is
improved from the first DARDAR version in the sense that
it is less affected by the lidar block effect and false detection
of liquid clouds in the lower troposphere. It is believed that
the amount of clouds reported in DARDAR v2 is closer to
reality and hence better for evaluating GCMs.

[74] The DARDAR v2 algorithm also has the advantage
that it can be easily transposed to either RALI data with lidar
at 532 nm and Doppler radar or ground-based radar and lidar.
The results from the comparison between DARDAR v2 and
RALI classifications during overpasses on the POLARCAT
and LNG-CALIPSO campaigns revealed that ice in high
concentration is to be taken with caution and that future work
should take into account the effects of multiple scattering.
They also tell us that the melting layer is locally precise to
˙300 m, especially in the cases where convection lies in the
rain structure, but globally the differences are expected to be
around˙100 m. In stratiform cases the ECMWF estimate is
quite reliable. The Doppler data are very useful to validate
and quantify the errors in the ECMWF 0ıC isotherm and to
locate strong convection areas. We have also seen that the
DARDAR classification can miss some clouds (or aerosols)
because of noise in the CALIOP data.

[75] Finally, we have shown that the RALI classification
algorithm can be easily transposed to RALI data with HSRL
at 355 nm. The results from the three classification algo-
rithms tested on the overpass acquired during the Flight 35
of LNG-CALIPSO campaign on 2 December 2010 are quite
similar. This is very encouraging and proves that it is sen-
sible to use RALI data to prepare for the transition from
CloudSat and CALIPSO to EarthCare.

[76] The use of HSR lidar observations also seems to be
very promising, and future work regarding the DARDAR
product will consist of using it to distinguish aerosols
from cloud.
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