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Abstract — In this document, we present a parallel implementation in FreeFem++ of scal-
able two-level domain decomposition methods. Numerical studies with highly heterogeneous
problems are then performed on large clusters in order to assert the performance of our
code.
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1. Introduction

As the performance of modern computers keeps increasing, it is important to
develop and implement efficient numerical software to take full advantage of
their power. The first yet difficult problem is the parallelization of algorithms.
In this paper, we will consider domain decomposition methods [12,14,17],
which constitute one of the dominant paradigms in contemporary large-scale
partial differential equation simulation. The second challenge is the actual im-
plementation of these methods. Here, the C++ domain specific language (DSL)
FreeFem++ is used to solve partial differential equations (PDE) through gen-
eralized Galerkin methods. Other alternatives include deal.II [1], GetFem++,
or the domain specific embedded language (DSEL) Feel++ [11]...

In sections 2 and 3, a model problem is introduced, as well as the basics of
domain decomposition methods. Details on the FreeFem++ implementation of
these methods are given in section 4 and some numerical results are gathered
in section 5.
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75005 Paris, France
§Laboratoire Jean Kuntzmann, CNRS UMR 5224, Université Joseph Fourier, 51 rue des
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2. Model problem and discretization

We focus on the solution of the Darcy equation on a domain Ω⊂ R
d (d = 2

or 3),

∇· (κ∇u) = F in Ω

B(u) = 0 on ∂Ω
(2.1)

where u is the solution, F is the source term, B represents the boundary
conditions and κ is the diffusivity. For the sake of simplicity, we will assume
in this section that Dirichlet boundary conditions are used on ∂Ω, meaning
B = Id. It is then possible to write the variational formulation of (2.1), which
is: find u ∈H1

0 (Ω) such that

∫

Ω
κ∇u ·∇v =

∫

Ω
F v for all v ∈H1

0 (Ω) (2.2)

A feature of FreeFem++ is to penalize Dirichlet boundary conditions. Let
ρ≫ 1 be a very large real number, the above variational formulation is ap-
proximated by: find u ∈H1(Ω) such that

∫

Ω
κ∇u ·∇v +ρ

∫

∂Ω
uv

︸ ︷︷ ︸
a(u,v)

=

∫

Ω
F v

︸ ︷︷ ︸
l(v)

for all v ∈H1(Ω) . (2.3)

Let us consider a simplicial mesh T =
e⋃

i=1

{Ki} of Ω, i.e. a tessellation of Ω

made of e triangles or tetrahedra, on which a finite set of n basis functions
{ϕi}

n
i=1 spans the finite element space V so that all functions of u ∈H1(Ω)

can be discretized as:

u≈
n∑

i=1

u[][i]ϕi (2.4)

where u[] is the vector of degrees of freedom (d.o.f.) of the unknown ap-

proximation of u and u[][i] denotes the value of the ith component of u[]
for all 1 6 i 6 n. The basis functions are frequently chosen as continuous
linear functions (P1 finite elements) or continuous quadratic functions (P2

finite elements). The finite element method then leads to the following linear
system:

Au[] = f. (2.5)

where (Aij)16i,j6n = a(ϕi,ϕj), (fi)16i6n = l(ϕi). The size of this linear system
(2.5) increases with the number of elements e or with the complexity of the
finite element space V . For large simulations, solving (2.5) by a direct method
requires too much memory and can hardly ever be done in a timely fashion on
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a single computer. By exploiting parallel algorithm, these kinds of limitations
can be avoided on current multi-core or many-core computer architectures.
This can be done naturally using domain decomposition methods, which are
some sort of “divide & conquer” algorithms where the workload is spread
among a group of processes so that each subproblem can be solved efficiently.
This will be explained in detail in the next section, and implemented in
section 4.

3. Domain decomposition methods

There are two main branches in domain decomposition: non-overlapping
methods and overlapping methods. Only overlapping methods are considered
in this document. Moreover, domain decomposition methods are seldom used
as stand alone linear solvers. Most of the time, they are indeed used to pre-
condition Krylov methods such as the conjugate gradient method (CG), the
biconjugate gradient stabilized method (BiCGSTAB) [18] or the generalized
minimal residual method (GMRES) [13] for unsymmetric problem. That is
because fixed-point algorithms — which domain decomposition methods are
part of, c.f. (3.3a) — are slower than Krylov methods to solve linear systems
such as (2.5).

3.1. One-level methods

Let us assume that all the elements
e⋃

i=1

{Ki} have been partitioned into N

sets
{
T 0

i

}N

i=1
. We refer to the subdomains associated to T 0

i by Ω0
i so that:

Ω =
N⋃

i=1

Ω0
i ,

∀i ∈ J1;eK, ∃!j ∈ J1;NK : Ki ∈ T
0

j .

(3.1)

The one-overlap partition
{
T 1

i

}N

i=1
of the elements is obtained by including all

the adjacents elements of T 0
i

Iinto T 1
i . Recursively, the partition with l levels

of overlap
{
T l

i

}N

i=1
can be defined, and

{
Ωl

i

}N

i=1
accordingly, c.f. fig. 1 for a

simple example. Note that the width of the overlap is of size “2l elements”.

I all the elements of T sharing at least one vertex, one node or one face (in R
3) with at

least one element of T 0
i
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(a) l = 0 (b) l = 1 (c) l = 2

Figure 1: Partition of Ω = [0;1]2 into N = 5 subdomains
with different values for the overlap parameter

For clarity, the level of overlap for the partition of T is now considered
to be a fixed positive integer l, and the superscript l will be omitted.
On each Ωi, the finite element space Vi is built using the same basis functions
as in section 2 which support intersects Ωi. We say that the basis function ϕk

is associated either to an interior d.o.f. of subdomain i if supp(ϕk)⊂Ωi or to
an interface d.o.f. otherwise. The local number of freedom of each Vi will be
refered to as ni. In order to write algorithms that act on global vectors in V ,
restriction operators {Ri}

N
i=1 from global functions in V ⋆ to local functions in

V ⋆
i are needed. They are from a discrete point of view, rectangular matrices

of size ni×n filled with zeros and a single non-zero coefficient equal to one per
line. Their dual operators, i.e. the extension operators from functions in Vi to

V are simply
{

RT
i

}N

i=1
. Because of the overlap, some unknowns are associated

to elements that lie within multiple subdomains so that
N∑

i=1

ni > n. In fact,

all elements lying in an overlapping region have their unknowns considered
at least twice. These unknowns are being “duplicated” in each of the local
finite element spaces and they are usually weakly coupled with a partition of
unity, which is a set of diagonal matrices {Di ∈ R

ni×R
ni}Ni=1 so that:

I =
N∑

i=1

RT
i DiRi (3.2)

where I is the identity matrix of Rn×R
n and (Di)kk = 0 for all ϕk associated

to interface d.o.f. of Ωi. This algebraic partition of unity plays an essential role
in the formulation and implementation of domain decomposition methods.
The Restricted Additive Schwarz method (RAS) is commonly used in domain
decomposition [3]. It can be used to precondition a Krylov method, but also
in a simpler way to solve (2.5) using a stationary iterative method that reads
at step m:

u[]m+1 = u[]m +M−1
RAS(f []−Au[]m) (3.3a)
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where um ∈ V and

M−1
RAS :=

N∑

i=1

RT
i Di

(
RiART

i

)−1
Ri. (3.3b)

In a parallel framework, it is usually more convenient to formulate algorithms
as much as possible in terms of variables that are local to each finite element
spaces {Vi}

N
i=1. Thus, (3.3a) has to be adapted considering it relies on global

variables on V as above-formulated. Let us define the following rectangular
(or square) matrices:

∀(i, j) ∈ J1;NK2 Ãij := RiART
j ∈ R

ni×R
nj . (3.4)

Due to the fact the diagonal entries of Di are null for interface d.o.f., the
following equality holds for all 1 6 i, j 6 N :

∀uj ∈Vj ÃijDjuj [] = RiART
j Djuj [] = RiR

T
j RjART

j Djuj [] = RiR
T
j ÃjjDjuj [] .

(3.5)
In order to reformulate the RAS method in terms of local variables, the
restriction operator Ri can be applied to the left of (3.3a):

Riu[]m+1 = Riu[]m +
N∑

j=1

RiR
T
j DjÃ−1

jj Rj

(
f []−

N∑

k=1

ART
k DkRku[]m

)

= Riu[]m +
N∑

j=1

RiR
T
j DjÃ−1

jj

(
Rjf []−

N∑

k=1

ÃjkDkRku[]m
)

= Riu[]m +
N∑

j=1

RiR
T
j DjÃ−1

jj

(
Rjf []−

N∑

k=1

RjRT
k ÃkkDkRku[]m

)
.

(3.6)

The last line comes from identity (3.5) applied to Rkum ∈ Vk. At first
sight, (3.6) might look painful to compute: two large sums of vector/matrix
products, but using some simple considerations on the restriction and pro-
longation operators, the number of products in practice is to be greatly de-
creased. Indeed,

∀(i, j) ∈ J1;NK2 (Ωi∩Ωj)◦ = ∅ =⇒ Ãij = 0 and RiR
T
j = 0 .

In all that follows, we will refer to the neighboring subdomains using the
following sets:

∀i ∈ J1;NK Oi := {j ∈ J1;NK : j 6= i and (Ωi∩Ωj)◦ 6= ∅}
Oi :=Oi∪{i}
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so that (3.6) can be reformulated as

um+1
i = um

i +
∑

j∈Oi

RiR
T
j DjÃ−1

jj


Rjf []−

∑

k∈Oj

RjRT
k ÃkkDkum

k


 (3.7)

where um
i := Riu[]m. This reformulation of the RAS algorithm has the ad-

vantage that the non-local computations reduce to the application of RiR
T
l

for l ∈ Oi. These operations corresponds to point-to-point communications:
subdomain l sends to subdomain i data related to their intersection, c.f. fig. 3
page 9. This is the starting formula for our parallel implementation of this
one-level method.

3.2. Two-level methods

As it is well-known, one-level methods are not scalable as they involve com-
munications only between neighboring subdomains as is clear from (3.7). For
large numbers of subdomains, convergence of these methods will suffer from
long plateaux. This can be fixed using an additional preconditioner, that will
couple all subdomains. This is explained in this section.
We will consider three types of preconditioners [9,6]. Let M−1 be the ori-
ginal one-level preconditioner, and Z be a deflation subspace matrix, i.e. a
matrix associated to a subspace to be projected out of the residual of the pre-
conditioned solver. Typically the number of columns of Z is of the order of
the number of subdomains. Each column is associated to a subdomain. The
vector space spanned by the columns of Z defines the coarse space. Three
operators can now be defined:

1. the coarse operator E = ZT ÃZ

2. the correction matrix Ξ = ZE−1ZT

3. the deflation matrix P = I− ÃΞ

Note that since Z is a rectangular matrix belonging to R
n×R

p with n≫ p,
it is much less consuming to solve a linear system involving E ∈Rp×R

p than
one involving the original coefficient matrix A. These three operators yield
various preconditioners thoroughly studied in [16]. We just considered the
followings in the numerical experiments:

PBNN = P T M−1P +Ξ (3.8a)

PA−DEF 1 = M−1P +Ξ (3.8b)

PA−DEF 2 = P T M−1 +Ξ (3.8c)
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4. Implementation

This section is a short overview of the principles behind our implementation
in FreeFem++ of one-level and then two-level Schwarz methods. FreeFem++
is used for all the computations related to the finite element method (mesh
generation, discretization, matrix assembly). Additionaly, ARPACK [8] is used
as an eigenvalue solver, BLAS [2], MKLII or ESSLIII are the possible linear
algebra back ends chosen accordingly to the hardware architecture.

4.1. Pre-processing

4.1.1. Mesh partitioning. The obvious first step of all domain decom-
position methods is to split the global mesh T as done in fig. 2: that leads
to a natural decomposition of the original problem into smaller subproblems.
From the point of view of the finite elements framework, a partitioning is a
piecewise (with respect to T ) constant discontinuous P0 function p, meaning
that each element of T is given a constant value i∈ J1;NK that will correspond
to the subdomain Ω0

i to which it belongs, formally: Ω0
i = p−1(i).

User-defined partitioning. If the shape of Ω is regular with some sym-
metry properties (e.g. rectangles in R

2 — cuboids in R
3), an analytical par-

titioning of Ω can be defined.

Algorithmic graph partitioning. When Ω defines a complex geo-
metry, it is best to use graph partitioners such as Metis [5] or SCOTCH [4]
that will lead to more “balanced” decompositions (less communication, sim-
ilar workload and such). These partitioners can be directly called from within
the FreeFem++ DSL.

(a) With a graph partitioner (b) With a user-defined partitioning

Figure 2: Examples of 16-way partitioning of Ω = [0;1]2

II Intel R© Math Kernel Library
III IBM Engineering and Scientific Subroutine Library for AIX/Linux on POWER
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4.1.2. Local mesh construction. Now that the non-overlapping decom-

position
{

Ω0
i

}N

i=1
is known, all

{
Ω0

i

}N

i=1 can be independently refined by split-

ting each triangle or each tetrahedron into s smaller elements. Very fine
meshes can thus be generated in parallel while starting from a coarse global

mesh. The next step is to build the overlapping decomposition
{

Ωl
i

}N

i=1
where

the level of overlap l is a runtime constant. In the end, the characteristic width
of the overlap is of size “2l fine elements”.

4.1.3. Discrete partition of unity. The approach to build the partition
of unity is the same as in most domain decomposition methods, see for ex-
ample [7]. Let χ̃i be a continuous piecewise linear function of Ωl

i defined as
such:

χ̃i =

{
1 on all nodes of Ω0

i

1−
m

l
on all nodes of Ωm

i \Ω
m−1
i ∀m ∈ J1; lK (4.1)

The local partition of unity is defined as:

χi =
χ̃i∑

j∈Oi

χ̃j |Ωl
i
∩Ωl

j

(4.2)

so that the support of the non negative function χi is Ωl
i and

N∑

i=1

χi = 1. (4.3)

The operator of multiplication by χi corresponds, at the discrete level, to the
diagonal matrix Di so that (3.2) holds. Note that for all k ∈Oi, the restriction
of χk to Ωl

i∩supp(χk) is stored locally.

4.2. Point-to-point transfers

The MPI process instantiation is achieved using mpirun or bgrun: each process
runs a copy of FreeFem++, and each copy will initialize variables and func-
tions locally. As the implementation is fully parallel, it is useless (and even
“impossible”) to consider for example the global matrix A or the global vec-

tor u in (2.5). Formalism of section 3.1 is used: only local matrices
{

Ãii

}N

i=1

and local vectors {Riu}
N
i=1 are considered, with respect to the decomposition

of Ω. In (3.7), for a given subdomain index i, and for all neighbors (includ-
ing subdomain i) k ∈ Oi, the prolongation/restriction operators RiR

T
k are

needed. When k = i, this lead to the identity matrix of Vi, but then again,
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the other terms for k 6= i cannot be simply considered as products of two
matrices, as for each of those matrices, one of the dimension is equal to n,
the number of degrees of freedom of the global problem (2.5). However, when
a vector vk of Ωl

k is considered, computing RiR
T
k vk is rigorously equivalent

to computing Ri↔kRT
k↔ivk where Ri↔k is defined as the linear interpolator

from the finite element space defined on the mesh of the intersection Ωl
i∩Ωl

k

to Vi. In other words, it amounts to transferring vk|Ωl
i
∩Ωl

k
from Ωl

k to Ωl
i. The

goal of algorithm 1 is to construct for a given i, each Ri↔k for k ∈ Oi. The
first step is to mesh for all k ∈ Oi the intersection between the support of
the partition of unity χk and Ωl

i and then define a finite element space on it.
Eventually, Ri↔k is nothing else than the linear interpolator from this finite
element space to Vi.

Ω

(2)

Ωi

uk

Ωk

(1a)

(1b)

RT

k↔i
uk restriction on the intersection(1a)

RT

k
uk prolongation on Ω(1b)

Ri↔kR
T

k↔i
uk = RiR

T

k
uk(2)

prolongation on Ωi restriction on Ωi

Figure 3: Two ways to transfer data to a neighbor-
ing subdomain using linear interpolators

Algorithm 1 FreeFem++ construction of the prolongation/restriction operators on Ωi

1: procedure Restriction

2: for k ∈ Oi do
3: mesh Tintersection← trunc(T l

i , χk|Ωl
i
∩Ωl

k
> 0)

4: fespace Vintersection(Tintersection, Pb) ⊲ b = 0, 1, 2, . . .
5: matrix Ri↔k← interpolate(Vintersection→ Vi)

4.3. Coarse operator construction

This particular coarse space was introduced in [10] and the broad strokes
of its theoretical construction are given in this section. Let us consider at
the continuous level, for a given subdomain index i ∈ J1;NK, the Dirichlet to
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Neumann operator (a.k.a. Poincaré-Steklov operator) DtNi defined on the
interface Γi:

DtNi(Ψi) = κ
∂v

∂ni

∣∣∣∣
Γi

(4.4)

where ni is the outward unit normal to Ψi and v satisfies the homogeneous
boundary value problem (2.1) with Ψi as Dirichlet boundary conditions on
Γi. The construction of the deflation subspace is then based on local low
frequency modes of DtNi: one looks for the eigenpairs (Ψi,λi) verifying

DtNi(Ψi) = λi κΨi =⇒ B̃iiΛi = λiViiΛi (4.5)

where Λi is the harmonic extension of Ψi on Ωi, B̃ii is the coefficient matrix
of the variational form: H1(Ωi)×H1(Ωi)→ R

ai(u,v) =

∫

Ωi

κ∇u ·∇v (4.6)

and Vii is the coefficient matrix of the variational form: H1(Ωi)×H1(Ωi)→R

bi(u,v) =

∫

Γi

κ uv (4.7)

B̃ii cannot be inferred from Ãii since it refers to the matrix prior to assembly
with the neighboring subdomains. However both matrices B̃ii and Vii can be
easily assembled as implemented in algorithm 2.

Algorithm 2 FreeFem++ construction of the discrete eigenvalue problem

1: procedure Assembly

2: varf W(u,v)←
∫

Ωi

κ∇u ·∇v +on(∂Ω∩∂Ωi,u = 0)

3: varf U(u,v)←
∫

Γi

κ uv

4: matrix B̃ii←W(Vi,Vi)
5: matrix Vii← U(Vi,Vi)

Once the two matrices are stored in memory, the ARPACK library is called
and it solves the eigenvalue problem using the Implicitly Restarted Lanczos
Method (IRLM) as in this case the matrix B̃ii is symmetric. As specified
earlier in this paragraph, only low eigenvalues are considered in the con-
struction of the deflation subspace: a threshold criterion is used to select
the νi right eigenvalues. The sets of eigenpairs are then locally indexed by
increasing magnitude of the eigenvalues:
{

(Λi1 ,λi1) ,(Λi2 ,λi2) , . . . ,
(
Λiνi

,λiνi

)}
such that 0 6 λi1 6 λi2 6 · · ·6 λiνi

.



DDM on massively parallel architectures with FreeFem++ 11

The deflation subspace matrix Z is then defined as:

Z =




W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...
0 0 · · · WN


 ∈ R

∑N

i=1
ni×R

∑N

i=1
νi (4.8)

where

{
Wi =

[
DiΛi1 DiΛi2 · · · DiΛiνi

]
∈ R

ni×R
νi
}N

i=1
(4.9)

Notice that with the definition of Z, E := ZT ÃZ is a matrix of size
N∑

k=1

νk×
N∑

k=1

νk.

We define as R the function from

t
1;

N∑

k=1

νk

|
→ J1;NK such that:

R : j 7→max

{
i :

i∑

k=1

νk < j

}
(4.10a)

and ϕ the function from

t
1;

N∑

k=1

νk

|
→ J1;max16k6N (νk)K such that:

ϕ : j 7→ j−
R(j)∑

k=1

νk . (4.10b)

R is the function that maps each column (or row) index of E to its corres-
ponding subdomain index, and ϕ the local number of an eigenvector within
a subdomain. If all νi equals ν (e.g. when uniform decompositions are con-
sidered), then those two functions can be seen as:

R(i) =

⌊
i

ν

⌋
(4.11a)

ϕ(i) = (i mod ν)+1 . (4.11b)

Then, ÃZ is a block matrix of size
N∑

i=1

ni×
N∑

i=1

νi whose block (i, j) of size

ni×1 equals:

(ÃZ)ij = ÃiR(j)DR(j)ΛR(j)ϕ(j)
∈R

ni ∀(i, j) ∈ J1;NK×
t

1;
N∑

k=1

νk

|
(4.12)
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and,

Eij =
(
ZT (ÃZ)

)

ij

= ΛT
R(i)ϕ(i)

DR(i)(ÃZ)R(i)j ∈ R ∀(i, j) ∈

t
1;

N∑

k=1

νk

|2

= ΛT
R(i)ϕ(i)

DR(i)ÃR(i)R(j)DR(j)ΛR(j)ϕ(j)

(4.13)

In practice, the block sparse matrix E needs to be assembled on a single root
process. By taking a closer look at its structure, it can be observed that it
is made of chunk of rows that depends on only one local matrix, using the
same transformation as for the RAS method in (3.6), i.e. the identity (3.5)
applied to DR(j)ΛR(j)ϕ(j)

:

ÃR(i)R(j)DR(j)ΛR(j)ϕ(j)
= RR(i)R

T
R(j)ÃR(j)R(j)DR(j)ΛR(j)ϕ(j)

(4.14)

= RR(i)↔R(j)R
T
R(j)↔R(i)ÃR(j)R(j)DR(j)ΛR(j)ϕ(j)

We use this observation by computing each of these chunks on the appropriate
process. Then, each chunk of rows is sent to the root process in charge of
assembling E.

5. Numerical experiments

Two dimensional test case. The model problem (2.1) is solved on
Ω = [0;1]2 with mixed Dirichlet and homogenous Neumann boundary con-
ditions using P2 finite elements. The diffusivity is a highly heterogeneous
function of Ω→ R, c.f. fig. 4, defined as:

κ(x,y) =

{
105(⌊9x⌋+1) if ⌊9x⌋ ≡ 0 mod 2 and ⌊9y⌋ ≡ 0 mod 2
1 otherwise

Three dimensional test case. The same model problem (2.1) as for
the two dimensional test case is solved once again with mixed Dirichlet and
homogenous Neumann boundary conditions on Ω = [0;1]3 using P2 finite ele-
ments. The diffusivity is defined as:

κ(x,y,z) =

{
105(⌊9x⌋+1)κ↑(z) if ⌊9x⌋ ≡ 0 mod 2 and ⌊9y⌋ ≡ 0 mod 2
1 otherwise

where

κ↑(z) =

{
⌊9z⌋ if ⌊9z⌋ 6≡ 0 mod 3
1 otherwise
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Figure 4: Two dimensional diffusivity κ in our test cases

It is important to note here that using traditional solvers such as Krylov
methods (even with simple preconditioners) would yield really poor results
for those two test cases because of the heterogeneous inclusions, which is why
designing preconditioners robust in heterogeneities is of paramount import-
ance for real world engineering problems (such as black-oil reservoir simula-
tion).

5.1. Scalability tests

All the elapsed time are obtained using the routine MPI Wtime(). Only the

GMRES is timed, meaning that the construction of the meshes
{
T l

i

}N

i=1
, the

partitioning of unity
{

Dl
i

}N

i=1
and the construction (transfers plus factoriz-

ation) of the coarse operator E are not considered. The stopping criterion
is chosen so that the relative residual of the GMRES is inferior to a certain
tolerance ε at convergence. The first way to assess the performance of the
implementation of our parallel solver was done by checking its speedup when
increasing the number of processes. These particular tests were performed on
titane, a 40960-core computer hosted at CEAIV, Bruyères-le-Châtel.

A super linear speedup is observed in two dimensions, c.f. fig. 5 page 14,
as well as in three dimensions, c.f. fig. 6 page 15. Some tests were carried
out on babel, a 121912-core computer hosted at IDRISV, Orsay, to prove
the robustness of the two-level preconditioner. Even when greatly increasing

IV Commissariat à l’Energie Atomique et aux Energies Alternatives
V Institut du Développement et des Ressources en Informatique Scientifique

http://www-ccrt.cea.fr/
http://www.idris.fr/
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p T
N∑

i=1

νi

N∑

i=1

ni

64 65.7 s 1,890 36.5 ·106

128 21.4 s 3,810 36.7 ·106

192 12.7 s 5,730 36.9 ·106

256 9.4 s 7,650 37.1 ·106

320 8.4 s 9,570 37.2 ·106

512 6.0 s 15,330 37.5 ·106

(a) The 3rd column represents the size of the coarse

operator E, and the 4th column is the total number of
unknowns. Notice that it keeps on slightly increasing as
the number of duplicated unknowns increase when more

subdomains are built.

100 200 300 400 500
0

5

10

1.67969

1

p

T
(6

4)

T
(p

)

Linear
Observed

Regression

(b) Speedup normalized to 64 subdomains
with a linear regression of T (p)

Figure 5:
Strong scaling observed when solving a two dimensional test case on a
fixed size global problem using P2 finite elements and a tolerance ε = 10−9

the number of subdomains, the Krylov method still converges quite rapidly in
terms of number of iterations, i.e. in less than 25 iterations for decomposition
made of up to 4096 subdomains.

6. Conclusion

The results displayed in this document assess the efficiency of our framework
for parallel domain decomposition methods for solving a simple boundary
value problem — the Darcy equation — in two and three dimensions with
various finite elements. Our goal is now to tackle more challenging problems,
such as the equations of linear elasticity whose theory has been covered in [15].
As the size of the coarse space keeps on growing, we are also currently looking
into adding another coarse problem, that could potentially lead to “multi-
level” preconditioners, similar to multigrid preconditioner, [19]. Readers will-
ing to try these algorithms should go to http://www.freefem.org/ff++ and
download the open source software.
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p T
N∑

i=1

νi

N∑

i=1

ni

96 26.5 s 1,920 6.9 ·106

128 18.6 s 2,560 7.1 ·106

160 13.0 s 3,200 7.4 ·106

192 10.4 s 3,840 7.6 ·106

224 8.1 s 4,480 7.7 ·106

288 6.9 s 5,760 8.1 ·106

(a) The 3rd column represents the size of the coarse

operator E, and the 4th column is the total number of
unknowns. Notice that it keeps on slightly increasing as
the number of duplicated unknowns increase when more

subdomains are built.
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(b) Speedup normalized to 96 subdomains
with a linear regression of T (p)

Figure 6:
Strong scaling observed when solving a three dimensional test case on a
fixed size global problem using P2 finite elements and a tolerance ε = 10−12
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