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Packings of irregular polyhedral particles: Strength, structure, and effects of angularity
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We present a systematic numerical investigation of the shear strength and structure of granular packings
composed of irregular polyhedral particles. The angularity of the particles is varied by increasing the number
of faces from 8 (octahedronlike shape) to 596. We find that the shear strength increases with angularity up to
a maximum value and saturates as the particles become more angular (below 46 faces). At the same time, the
packing fraction increases to a peak value but declines for more angular particles. We analyze the connectivity
and anisotropy of the microstructure by considering both the contacts and branch vectors joining particle centers.
The increase of the shear strength with angularity is shown to be due to a net increase of the fabric and force
anisotropies but at higher particle angularity a rapid falloff of the fabric anisotropy is compensated by an increase
of force anisotropy, leading thus to the saturation of shear strength.
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I. INTRODUCTION

The paradigm of sphere packings is commonly used to
describe the structure of matter at different scales, from ordered
atomic arrangements to disordered assemblies of colloidal
particles. The sphere packing is also a model for granular
materials when the interactions are governed by contact and
friction. However, compared to real granular materials, the
spherical shape of the particles is an enormous simplification.
For example, it is classically well known in soil mechanics that
the mechanical behavior of granular soils is strongly influenced
by deviations of particles from spherical shape, described in
terms of elongation, angularity, platiness, and other shape
characteristics [1,2]. It is obvious that sphere packings are
more easily amenable to numerical simulations and analysis.
Moreover, it is often believed that, major ingredients such
as frictional contact, dissipative collisions, steric exclusions,
and structural disorder being equally present in packings of
spherical and aspherical particles, the shape is a secondary
factor that should not lead to significant amendment of
our understanding of granular materials. The issue remains,
nevertheless, as to the limits of deviation from spherical
shape. For example, a packing of very elongated particles
such as fibers is likely to behave very differently from a
sphere packing. This holds true also for characteristics such as
platiness and nonconvexity.

Recently, the packing fraction and shear strength of
two-dimensional (2D) packings of different particle shapes
were investigated in a collective work by discrete-element
simulations [3]. It was found that, for different shapes, the
shear strength is mainly controlled by a low-order common
parameter describing particle shape by its deviation from
circular shape. At the same time, the packing fraction increases
with slightest deviation, reaches a peak value, and then declines
for still larger deviation. This is an interesting observation as it
means that an assembly of particles with large deviation from
circular shape has a high shear strength despite a low packing
fraction.
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The nonmonotonic evolution of packing fraction in pack-
ings prepared by isotropic compression or sheared towards
a steady shear state has been more extensively studied in the
case of elongated particles [4–9]. Such particles are interesting
since they give rise to a rich microstructure due to local and
long-range orientational ordering of the particles [10–15], but
also because they form a large class defined by a single
parameter (the aspect ratio) having sphere as a special case
(unit aspect ratio). This behavior was also observed in the case
of nonconvex aggregates in 2D [16,17].

Angular shape represents basically a property of polygonal
particles in 2D and polyhedral particles in 3D [18–29]. It
is only very recently that systematic studies were reported
on the maximal-density packings of monodisperse Platonic
polyhedra [30–32] on one hand and for sheared packings
composed of regular polygons on the other hand [33]. In this
case, a nonlinear dependence of the shear strength and packing
fraction has been evidenced by means of numerical simulations
in 2D packings. The shear behavior and microstructure of
granular materials composed of polyhedral particles was also
investigated by comparing numerically a packing of polyhedral
particles with a packing of similar particle size distribution
and contact friction but with spherical particles [22,24]. The
polyhedra packing is found to have a higher shear stress
and dilatancy. The origin of these enhanced properties of the
polyhedra packing was traced back to the properties of both
packings in terms of branch vectors and contact forces. In
particular, it was shown that the face-face contacts capture
strong force chains, leading to a higher force anisotropy.

In this paper, we perform a systematic study of the effect
of angularity by simulating different packings of irregular
polyhedral particles with different numbers of faces but similar
values of their other characteristics. The angularity increases
as the number of faces declines from 596 (least angular shape)
to 8 (most angular shape). We are interested in the packing
properties in the dense state generated by isotropic compaction
and the shear behavior and evolution of fabric parameters
under axial compression as particle angularity is varied. The
least angular particles are very close to spherical shape but,
because of the large number of faces, the simulations take
much more time. Simulating such particles makes it possible
to evaluate directly the influence of small deviations from
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spherical shape. Ultimately, we would like to understand to
what extent very angular particles are different from less
angular particles.

In the following, the numerical procedures in the framework
of the contact dynamics method are presented in Sec. II. In
Sec. III, we focus on shear strength and packing fraction for
different values of angularity. The microstructure is analyzed
in Sec. IV in terms of connectivity, fabric anisotropy, and
forces anisotropy. We conclude with a summary of the main
findings of this work.

II. NUMERICAL MODEL

A. Simulation of polyhedral particles

The simulations were carried out by means of the contact
dynamics (CD) method [27,34–36]. The CD method is based
on implicit time integration of the equations of motion and a
nonsmooth formulation of mutual exclusion and dry friction
between particles. This method requires no elastic repulsive
potential and no smoothing of the Coulomb friction law for the
determination of forces. For this reason, the simulations can
be performed with large time steps compared to molecular
dynamics simulations. The unknown variables are particle
velocities and contact forces. These are calculated at each
time step by taking into account the conservation of momenta
and the constraints due to mutual exclusion between particles
and Coulomb friction. We use an iterative research algorithm
based on a nonlinear Gauss-Seidel scheme. The uniqueness is
not guaranteed for perfectly rigid particles in absolute terms.
However, by initializing each step of calculation with the
forces calculated in the preceding step, the set of admissible
solutions shrinks to fluctuations which are basically below the
numerical solution.

Angular polyhedral particles are constructed following a
strict procedure in order to isolate and control precisely the
shape. First, a set of nv vertices is randomly generated on
a unit sphere. The convex hull of these points is created by
associating three vertices for each face. This condition implies
that the number nf of faces is simply given by nf = 2nv − 4.
Second, as illustrated in Fig. 1, the principal axis lengths Lp,
lp, and hp of the particle are calculated. The aspect ratios
of a particle is then given by Lp/hp and lp/hp. In order to
eliminate the effect of particle eccentricity, we impose that
both ratios Lp/hp and lp/hp be greater than 0.9. This can be

Lplp

hp

FIG. 1. (Color online) Definition of the aspect ratio.

TABLE I. Geometrical characteristics of numerical samples.

Samples nf 〈α〉 〈Lp/hp〉 〈lp/hp〉 �α

S1 Spheres 0 1 1 0
S2 596 0.135 0.98 0.95 2.1 × 10−3

S3 176 0.248 0.97 0.94 2.1 × 10−3

S4 96 0.339 0.96 0.94 3.8 × 10−3

S5 46 0.496 0.93 0.95 7.7 × 10−3

S6 30 0.631 0.93 0.94 1.16 × 10−2

S7 20 0.772 0.93 0.91 1.66 × 10−2

S8 8 1.181 0.92 0.92 1.08 × 10−2

evaluated also thanks to the sphericity parameter S, defined as
the ratio of the surface area of a sphere with the same volume as
that of the given particle [37]. This means that, numerically, the
sets of vertices are generated until this condition is satisfied. We
define thus the angularityα of a polyhedral particle as the mean
exterior angle between its touching faces. In this simple way,
for a given aspect ratio, we can control the angularity of the
particles with a single continuously variable shape parameter
depending only on the number of faces nf ; see Table I.

Contact detection represents an important part of the dis-
crete numerical modeling of polyhedra particles. The detection
methods are split into different steps. First, a rough description
of the particles leads to building a list of neighboring particle
pairs. This first step is known as the “bounding box” method
[38]. Then the distance between each pair of polyhedra is
calculated by computing the separating plane through the
so-called “common plane” method introduced by Cundall [39].
This is an iterative method based on the perturbation of the
orientation of the normal vector. The process is initialized by
a first guess based on the the vector joining the centers of the
two polyhedra. The main advantage of this method is to be
quite fast when optimized as proposed by [18,40,41]. Note
that, a dual approach based on separated axis, also known as
the “shadow overlap” method, has been developed by Saussine
et al. [23,24,28,33,38,42,43].

Finally, different situations may arise, such as grazing,
separated, or penetrated contacts. For penetrated or ideal
grazing contacts, different cases are possible, such as those
shown in Fig. 2: contact point, contact line, or contact
surface. Point contacts include face-vertex (f v), edge-edge
(ee), vertex-vertex (vv), or vertex-edge (ve) contacts. Note that
vv and ve contacts are very rare. However, when they occur, the
common plane method is able to give us the normal direction.
Without any modification of the contact law, a contact line (or
face-edge f e) can be represented by two points, whereas a flat
contact (or face-face ff ) can be replaced by three points since
they involve an equivalent number of geometrical unilateral
constraints. In the iterative procedure of determination of
the contact forces and velocities, the points representing the
contact between two particles are treated as independent points
but the net resultant of the calculated forces is attributed to the
contact with its application point located on the contact plane.
In our simulations the average overlap between particles at
different types of contact (simple, double, or triple) is 0.01d.

For our simulations, we used the LMGC90, which is
a multipurpose software developed in Montpellier, capable
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(a) (b)

(c) (d)

FIG. 2. (Color online) Different types of contacts between two
polyhedra: (a) vertex to face, (b) edge to face, (c) face to face,
(d) edge to edge.

of modeling a collection of deformable or nondeformable
particles of various shapes by different algorithms [43–46].

B. Sample generation

We prepared seven different packings, each of them
comprising 40 000 irregular polyhedra with the same number
nf of faces. The mean packing angularity 〈α〉 is given by the
mean angularity of the particles in the packing. We prepare
one more packing composed of spheres. In order to avoid long-
range ordering, we introduce also a weak size polydispersity
by varying the diameter d of the circumscribing sphere of
the particles in the range of [dmin,2dmin] with a uniform
distribution of particle volume fractions. The geometrical
characteristics of each sample are summarized in Table I.
Note that the standard deviation of particle angularity �α

in each sample is used in all plots as the error bar on the
angularity. Figure 3 displays several snapshots of the packings
for different values of 〈α〉 at the end of isotropic compaction
(see below).

All samples are prepared according to the same protocol.
A dense packing composed of spheres is first constructed
by means of a layer-by-layer construction model based on
simple geometrical rules [47]. The spherical particles are
sequentially placed inside a box by searching a position of
lowest gravitational potential energy so that each new particle
is supported by three particles. For polyhedral particles, the
same sphere packing is then used with each sphere serving as
the circumscribing sphere of a polyhedral particle. The latter is
inscribed with the given value of 〈α〉 and a random orientation.

Following this geometrical process, each packing is com-
pacted by isotropic compression inside a box of dimensions
L0 × l0 × H0 in which the left, bottom, and back walls are
fixed and the top, right, and front walls are subjected to the
same compressive stress σ0 as illustrated in Fig. 4(a). The
gravity g and friction coefficient between particles and with

FIG. 3. (Color online) Snapshot of a portion of the packings
at the end of isotropic compression with nf = 596 (a), nf = 46
(b), nf = 20 (c), and nf = 8 (d).

the walls are set to zero during isotropic compression in order
to obtain isotropic dense packings.

The isotropic samples obtained in this way are subjected
to vertical compression by downward displacement of the top
wall at a constant velocity vz for a constant confining stress
σ0 exerted on the lateral walls; see Fig. 4(b). The friction
coefficient between particles is set to μ = 0.4 and to zero with
the walls. Since we are interested in quasistatic behavior, the
shear rate should be such that the kinetic energy supplied by
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FIG. 4. (Color online) Boundary conditions for (a) isotropic and
(b) triaxial compression.

shearing is negligible compared to the static pressure. This
can be formulated in terms of an inertia parameter I defined
by [48]

I = ε̇

√
m

dσ0
, (1)

where ε̇ = ż/z and m is the particle mass. The quasistatic limit
is characterized by the condition I � 1. In our simulations, I

remains below 10−3 during shear. Note that video samples of
the simulations analyzed in this paper can be found following
this link: www.cgp-gateway.org/ref016.

III. MACROSCOPIC BEHAVIOR

A. Macroscopic parameters

We need to evaluate the stress tensor and packing fraction
during deformation from the simulation data. For the stress
tensor, we start with the internal moment M i of each particle
i defined by [49]

Mi
γδ =

∑
c∈i

f c
γ rc

δ , (2)

where f c
γ is the (only) γ component of the force exerted on

particle i at the contact c, rc
δ is the δ component of the position

vector of the same contact c, and the summation runs over
all contact neighbors of particle i (noted briefly by c ∈ i).
The average stress tensor σ in the volume V of the granular
assembly is given by the sum of the internal moments of
individual particles divided by the total volume [49],

σ = 1

V

∑
i∈V

M i = 1

V

∑
c∈V

f c
γ �c

δ, (3)

where �c is the branch vector joining the centers of the two
touching particles at the contact point c. We note that the
first summation runs over all particles, whereas the second
summation involves the contacts, each contact appearing only
once.

Under triaxial conditions with vertical compression, we
have σ1 � σ2 = σ3, where the σα are the stress principal
values. The mean stress p and stress deviator q are defined by

p = (σ1 + σ2 + σ3)/3, (4)

q = (σ1 − σ3)/3. (5)

For our system of perfectly rigid particles, the stress state is
characterized by the mean stress p and the normalized shear
stress q/p.

0 0.2 0.4 0.6 0.8 1
ε

q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q/
p

S1
S2
S3
S4
S5
S6
S7
S8

FIG. 5. (Color online) Normalized shear stress q/p as a function
of cumulative shear strain εq for each sample.

The cumulative strain components εα are defined by

ε1 =
∫ H

H0

dH ′

H ′ = ln

(
1 + �H

H0

)
, (6)

ε2 =
∫ L

L0

dL′

L′ = ln

(
1 + �L

L0

)
, (7)

ε3 =
∫ l

l0

dl′

l′
= ln

(
1 + �l

l0

)
, (8)

where H0, l0, and L0 are the initial height, width, and length of
the simulation box, respectively, and �H = H0 − H , �l =
l0 − l, and �L = L0 − L are the corresponding cumulative
displacements. The volumetric strain is given by

εp = ε1 + ε2 + ε3 =
∫ V

V0

dV ′

V ′ = ln

(
1 + �V

V0

)
, (9)

where V0 is the initial volume and �V = V − V0 is the total
volume change. The cumulative shear strain is defined by

εq ≡ ε1 − ε3. (10)

We note that the choice of the deviatoric stress variable q in
Eq. (5) with a prefactor 1/3 results from the requirement that
the total power Ẇ = σ1ε̇1 + σ2ε̇2 + σ3ε̇3 should be expressed
as a sum of the products of the volumetric and deviatoric
conjugate variables Ẇ = p ε̇p + 2 q ε̇q .

B. Shear strength and dilatancy

Figure 5 shows the normalized shear stress q/p as a
function of shear strain εq for all values of 〈α〉. The jump
observed at εq = 0 reflects both the rigidity of the particles
and high initial packing fraction of the samples (see below). In
all cases, the shear stress passes by a peak before relaxing to a
stress plateau corresponding to the so-called “residual state” in
soil mechanics [1,50]. We observe also that the value of shear
strength at the peak and residual state, respectively (q/p)+ and
(q/p)∗, varies with particle’s angularity. Figure 6(a) shows the
variation of (q/p)+ and (q/p)∗ as a function of 〈α〉. We see
that (q/p)+ increases with 〈α〉 up to a maximum value and
then decreases as particles become more angular. In contrast,
in the residual state (q/p)∗ increases with 〈α〉 from 0.2 for
spheres but saturates to 
0.4 for the most angular shape.

062203-4



PACKINGS OF IRREGULAR POLYHEDRAL PARTICLES: . . . PHYSICAL REVIEW E 87, 062203 (2013)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
<α>

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(q/p)+

(q/p)*

0 0.2 0.4 0.6 0.8 1 1.2 1.4
<α>

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ϕ∗

Fitting form

(a)

(b)

FIG. 6. (Color online) Normalized shear stress at peak and
averaged in the residual state (a) and internal angle of friction ϕ∗

together with an exponential fit (b) as a function of 〈α〉. Error bars
represent the standard deviation in the residual state.

For triaxial geometry, the internal angle of friction ϕ∗,
representing the shear strength of the material, is defined from
the mean value (q/p)∗ of the normalized shear stress in the
residual state by [1]

sin ϕ∗ = 3(q/p)∗

2 + (q/p)∗
. (11)

Figure 6(b) shows the variation of ϕ∗ as a function of 〈α〉.
As for (q/p)∗, we see that the friction angle increases from
ϕ∗

0 
 0.3 and tends asymptotically to ϕ∗
1 
 0.5. The data are

well fit to an exponential function,

ϕ∗ = ϕ∗
0 + (ϕ∗

1 − ϕ∗
0 )(1 − e−α/αc ), (12)

with αc 
 0.4.
The fast increase of ϕ∗ with 〈α〉 and its saturation is

rather unexpected as it indicates that small deviations from
spherical shape have much stronger effect on ϕ∗ than the larger
variations of angularity (in the range of low numbers of faces).
Heuristically, this effect may be understood by remembering
that the particles may interact at two contacts (face-edge) or
three contacts (face-face), so that the kinematic constraint
due to such contacts increases even if the contact surface is
small, as, for example, the case of polyhedra having 596 faces.
This point is discussed in more detail when we analyze the
microstructure.

Figure 7 displays the cumulative volumetric strain εp as a
function of εq for all values of 〈α〉. Starting with an initially
dense state, all packings dilate and hence the volume increases.

0 0.2 0.4 0.6 0.8 1
ε
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0.1

0.2

0.3

ε p
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S2
S3
S4
S5
S6
S7
S8

FIG. 7. (Color online) Cumulative volumetric strain εp as a
function of shear strain εq for each samples.

A careful analysis of the velocity field indicates that the volume
change is inhomogeneous and involves nonpersistent shear
bands passing through different parts of the samples. For
this reason, the shear strain εq required to reach the critical
state depends on the evolution of shear bands as well as the
angularity. According to our data, it may be considered that
the critical state with isochoric deformation is reached with a
good approximation for all packings at εq 
 0.6.

Figure 8 displays the packing fraction ν as a function of 〈α〉
at the initial state (ν0) and averaged in the critical state (ν∗). It is
remarkable that initially the packing fraction increases with 〈α〉
up to a maximum value for 〈α〉 
 0.5 and then declines as 〈α〉
increases. We note that packing fractions as large as ν0 
 0.75
can be obtained in the initial state. A similar nonmonotonic
behavior was observed for packings of ellipses, ellipsoidal, and
platy particles with varying aspect ratios [4–7,51]. Recently,
using molecular dynamic simulations, the maximally random
jammed (MRJ) packings were also analyzed with “superballs”
[52] whose shapes, defined by a single parameter k ∈ [0,∞],
vary continuously from octahedronlike shapes (k < 1) to
cubelike shapes (k > 1) and with Platonic polyhedra [31,32].
In both cases, the variation of packing fraction is also found
to be nonmonotonic with k or with the number of faces of the
polyhedra. In particular, the packing fraction for octahedral
particle shape (i.e., k = 0.85 for superballs) or for regular

0 0.2 0.4 0.6 0.8 1 1.2 1.4
<α>

0.5

0.6

0.7

0.8

ν0

ν∗

FIG. 8. (Color online) Packing fraction ν0 at the initial state
(before shearing) and ν∗ averaged in the residual state as a function of
〈α〉. Error bars represent the standard deviation in the residual state.
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(a)

(b)

FIG. 9. Gray level map of particle connectivities for S3 (a) and S8
(b) in the residual state. Color intensity is proportional to coordination
number.

polyhedral shapes is nearly equal to 0.68, which is similar to
what we obtain with our irregular octahedral particles (sample
S8) by means of CD simulations.

A series of discrete element simulations reported recently
with different particles shapes indicate that the nonmonotonic
evolution of the packing fraction as a function of a shape
parameter is a generic behavior [3]. The initial rapid increase
of the packing fraction reveals that excluded-volume effects
are not the prevailing mechanism at low angularity 〈α〉. In
this limit, slight deviations from spherical shape have strong
space-filling effect on the packing although the excluded
volume increases at the same time and becomes dominant
for the higher angularities. In contrast, the packing fraction ν∗
decreases from 0.58 (sphere) to 0.54 (octahedron).

The fact the packing fraction follows a trend opposite to that
of the shear strength with increasing angularity is a somewhat
counterintuitive finding, since it is often assumed that the
shear strength in granular materials increases with the packing
fraction. Our results for angular particles extend recent findings
based on 2D simulations of elongated [8,9], polygonal [33],
and nonconvex [16,17] particle shapes.

IV. GRANULAR MICROSTRUCTURE

A. Topology of the contact network

A typical gray-level map of particle connectivity is shown in
Fig. 9 for two values of α in the residual state. The packings of
more angular particles are more connected. The coordination
number z in the initial state and its average value in the residual
state are plotted as a function of 〈α〉 in Fig. 10(a). The initial
value z0 
 6 corresponds to a frictionless packing of spherical
particles in the isostatic state. Indeed, sphere rotations being

0 0.2 0.4 0.6 0.8 1 1.2 1.4
<α>
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(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
<α>
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12

z
c

0

z
c
*

FIG. 10. (Color online) Initial and residual values of the coordi-
nation number as a function of 〈α〉. Error bars represent the standard
deviation in the residual state.

immaterial, the isostatic condition z = 2df , where df is the
number of degrees of freedom, implies three independent
constraints (normal forces), which amounts to a coordination
number 6. As 〈α〉 increases, z0 increases and tends to a plateau
value ∼8.

These polyhedral shapes seem to violate the isostatic
condition because for frictionless aspherical particles the
rotations should be considered as effective degrees of freedom
and a similar counting argument leads to a coordination
number of 12. It has been found that ellipses, ellipsoids [53],
and tetrahedra [54] have an average jamming contact number
below their respective isostatic values (so “underconstrained”).
The departure of ellipsoids from isostatic behavior has been
attributed to the presence of floppy modes, which provide
vanishing restoring force, whereas for tetrahedra it has been
attributed to the varying degrees of rotational constraint
by discrete contact topologies (e.g., vertex-face, edge-edge,
edge-face, and face-face contacts).

However, remembering that face-edge and face-face con-
tacts between polyhedra are equivalent to two and three contact
points (involving thus, respectively, two and three unilateral
constraints), we distinguish the coordination number z (num-
ber of contact neighbors), from the connectivity numberzc

defined as the mean number of contacts per particle. We have

zc

z
= kee + kf v + 2kf e + 3kff , (13)

where kff , kf e, kf v , and kee are the proportions of ff , f e,
f v, and ee contacts. Note that for spheres we have z = zc. In
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FIG. 11. (Color online) Proportions of f v, ee, f e, and ff

contacts as a function of 〈α〉 in initial (a) and residual (b) states.
The error bars represent the standard deviation in the residual state.

Fig. 10(b) we have plotted zc in both isotropic and residual
states for all values of 〈α〉. We see that z0

c jumps from 6 for
spheres to ∼12 for 〈α〉 > 0, which is in full agreement with
the isostatic nature of our initial packings. This observation
indicates that aspherical particles are not underconstrained,
and in numerical simulations the complex contacts can be
represented by a set of point contacts. A similar result was
also obtained by Saint-Cyr et al. in 2D with nonconvex
particles [17].

In the residual state z and z∗
c are lower but both increase from

4 (spheres) to 5.5 and 7, respectively, as angularity increases.
The effect of increasing angularity is therefore expressed by an
increasing number of complex contacts as well as an increasing
number of neighbors per particle, and thus for large 〈α〉 the
packings are loose but well connected. A similar behavior
was found with elongated, nonconvex, and polygonal particles
in 2D [8,17,55]. Hence, the increase of shear strength with
angularity seems to be linked more fundamentally with the
increase of network connectivity rather than packing fraction,
which varies rather nonmonotically with angularity.

To get further insight into the properties of the contact net-
work, we plot in Fig. 11(a) the proportions of different contact
types in the initial isostatic and residual states as a function of
〈α〉. Interestingly, we observe that the proportion of f v and
f e contacts in the isostatic state are nearly independent of
〈α〉, and we have kf e ∼ 2kf v ∼ 0.3. In contrast, kff decreases
from 0.4 to 0.1 and at the same time kee increases from ∼0 to
0.55 as a function of angularity. Hence, as particle angularity

z

y

x

→

→

→

FIG. 12. Snapshot of radial forces in packing for S4 in the steady
state. Line thickness is proportional to the radial force.

increases, the packing changes from a network dominated
by ff contacts to a network dominated by ee contacts.
Furthermore, remarking that kee + kf v + kff + kf e = 1 in
Eq. (13), we have the following relation between z and zc:

zc = (1 + kf e + 2kff ) z. (14)

This shows that in the initial state where zc 
 12 the loss of
face-face contacts is compensated by the increase of z. In the
residual state, the proportion of f v contacts is higher than in
the isostatic state but it decreases with angularity from 0.6 to
0.2. In contrast, we observe a loss of ff and f e contacts in
the residual state compared to the initial isotropic state for all
values of 〈α〉.

B. Anisotropies and origins of strength

The above description of the microstructure in terms of
the average coordination and connectivity numbers between
polyhedra provides a basic picture of the effect of shape
angularity. However, this picture is clearly insufficient since
the contact and force networks are generically anisotropic as
shown in Fig. 12, where a typical map of “radial” forces,
defined as the components of contact forces along the branch
vectors, is displayed in the sample S4. In this section, we
would like to evaluate these anisotropies, their relation with
shear strength, and their evolution with particle angularity.

1. Integral expression of the stress tensor

The stress tensor defined by Eq. (3) is an arithmetic mean
involving the branch vectors � and contact force vectors f .
Hence, it can be expressed as an integral through the joint
probability density P�f of the force and branch vectors,

σγ δ = nc

∫
fγ �δ P�f d f d�, (15)

where nc is the number density of contacts.
The components of the branch vector and contact force for

each pair of particles can be projected onto the local contact
frame (n,t,s), where t is an orthonormal unit vector oriented
along the tangential force, and s is defined such that the triad
(n,t,s) is an orthonormal basis; see Fig. 13(a). We have

f = fnn + ft t, � = �nn + �t t + �s s, (16)
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FIG. 13. (Color online) (a) Contact frame (n,t,s), (b) branch
vector frame (n′,t ′,s′), (c) azimutal (φ) and radial (θ ) angles.

where fn and ft are the normal and tangential components of
the contact force, and �n, �t and �s are the components of the
branch vector. We note that only for disks or spherical particles
we have � = �n, where � is the length of the branch vector.

A similar decomposition can be applied also to the
“neighborhood network” defined by the branch vector frames
(n′,t ′,s′), where n′ is the unit vector along the branch vector;
see Fig. 13(b). We express the components of the branch vector
and contact force also in this frame by orienting the pair (t ′,s′)
such that the component of the force along s′ vanishes. We
have

� = �n′ n′, f = fn′ n′ + ft ′ t ′, (17)

where fn′ and ft ′ are the radial and orthoradial components
of the contact force, and �n′ = �.

The orientations of the orthonormal local basis attached to
the contact or to the branch vector can be parametrized by the
angles θ and φ:

n = (cos θ, sin θ cos φ, sin θ sin φ),

t = (− sin θ, cos θ cos φ, cos θ sin φ), (18)

s = (0, − sin φ, cos φ),

where  = (θ,φ) is the solid angle that defines the orientation
of n or n′ as illustrated in Fig. 13(c). Introducing the force
and branch vector components in Eq. (15) and integrating
with respect to φ, we get the following expressions for the
two independent invariants of the stress tensor in the contact
frame:

p = nc

3
〈fn�n + ft�t 〉,

q = nc

6
〈fn�n(3 cos3 θ − 1) − 3(ft�t cos2 θ )

− 3

2
(fn�t + ft�n) sin 2θ〉. (19)

In this expression, the average 〈· · · 〉 involves only the angle θ

through the measure P (θ ) sin θdθdfndft ,d�n,d�t . Note that,
due to the axial symmetry of the system, the s components do
not appear. In the same way, we get the following expressions
in the branch-vector frame:

p = nc

3
〈fn′�〉,

q = nc

6

〈
fn′�(3 cos3 θ − 1) − 3

2
(ft ′�) sin 2θ

〉
. (20)

Pθ(θ)
Pθ (θ)

z

(a)

z

n (θ)

n (θ)

(b)

z

t (θ) (c)

fn (θ)
fn (θ)

z

(d)

ft (θ)
ft (θ)

−→z

(e)

−→

−→

−→
−→

FIG. 14. (Color online) Polar representation of the functions
Pθ̄ (θ ) (a), 〈�n̄〉(θ ) (b), 〈�t 〉(θ ) (c), 〈fn̄〉(θ ) (d), and 〈ft̄ 〉(θ ) (e) (symbols)
and with the corresponding harmonic approximations (solid lines)
for S6.

2. 3D Harmonic representation of the microstructure

In order to extract useful information from the expressions
given in Eqs. (19) and (20), we can integrate out all force
and branch components and keep only the dependence of
the force and branch-vector components with respect to θ .
Let S() be the set of contact vectors or branch vectors
pointing in the direction  up to a solid angle d. From
our numerical data we can evaluate the probability density
functions P() and P′() of contact orientations and
branch vector orientations, respectively, as well as the angular
averages of the force components 〈fn〉(), 〈ft 〉(), 〈fn′ 〉(),
and 〈ft ′ 〉() and branch vector components 〈�n〉(), 〈�t 〉(),
and 〈�n′ 〉(), defined by

P̄() = Nc()

Nc

, (21)

〈fn̄〉() = 1

Nc()

∑
c∈S()

f c
n̄ , (22)

〈ft̄ 〉() = 1

Nc()

∑
c∈S()

f c
t̄ , (23)

〈�n̄〉() = 1

Nc()

∑
c∈S()

�c
n̄, (24)

〈�t 〉() = 1

Nc()

∑
c∈S()

�c
t , (25)

where Nc is the total number of contacts, Nc() the number of
contacts pointing in the direction , (n̄,t̄) = (n,t) if ̄ = ,
and (n̄,t̄) = (n′,t ′) if ̄ = ′.

Under axisymmetric conditions, these probability density
functions are independent of the azimuthal angle φ. Figure 14
displays a polar representation of these functions in the θ plane
in the residual state for S6. We observe an anisotropic behavior
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in all cases. The peak value occurs along the compression axis
θ = 0 for Pθ̄ (θ ) and for 〈fn〉(θ ), where θ̄ stands for θ or θ ′. The
peak values for 〈�t 〉(θ ), 〈ft 〉(θ ), and 〈ft ′ 〉(θ ) occur at θ = π/4.
For 〈�n〉(θ ) and 〈�n′ 〉(θ ) the probability density function’s are
nearly isotropic. We see also that 〈fn〉(θ ) 
 〈fn′ 〉(θ ).

The simple shapes of the above functions suggest that
an approximation based on spherical harmonics at leading
terms should capture their anisotropic behavior. There are
nine second-order basis functions Y l

m(θ,φ) but only the
functions compatible with the symmetries of the problem
(i.e., independent with respect to φ and π periodic in θ )
are admissible. The only admissible functions are, therefore,
Y 0

0 = 1 and Y 0
2 = 3 cos2 θ − 1. Hence, within the harmonic

model of fabric and force, we have [24,56]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pθ̄ (θ ) = 1
4π

{1 + āc[3 cos2 θ − 1]}, (a)
〈�n̄〉(θ ) = 〈�n̄〉{1 + aln̄[3 cos2 θ − 1]}, (b)
〈�t 〉(θ ) = 〈�n〉alt sin 2θ, (c)
〈fn̄〉(θ ) = 〈fn̄〉{1 + af n̄[3 cos2 θ − 1]}, (d)
〈ft̄ 〉(θ ) = 〈fn̄〉af t̄ sin 2θ, (e)

(26)

where 〈�n̄〉 and 〈fn̄〉 are the mean normal and radial lengths
and the mean normal and radial forces. The anisotropy
parameters are (ac,aln,af n,af t ,alt ) in the frame (n,t,s), and
(a′

c,aln′ ,af n′ ,af t ′ ) in the frame (n′,t ′,s′). As a result of axial
symmetry, the privileged direction of all these functions is the
vertical direction (θ = 0).

In the following, we refer to ac as contact anisotropy, to a′
c

as branch orientation anisotropy, to (aln̄,alt ) as branch length
anisotropies, and to (af n̄,af t̄ ) as normal and tangential or radial
and orthoradial force anisotropies, respectively, depending on
the local frame used for harmonic decomposition. In practice,
the values of all anisotropy parameters can be calculated from
generalized fabric tensors presented in Appendix A.

Using the harmonic approximation (26), the averages given
by Eqs. (19) and (20) can be evaluated by integration with
respect to space directions θ . Neglecting cross products
between all anisotropies, we get the following simple relations
[8,24,56,57]:

q

p



{
2
5 (ac + aln + alt + af n + af t ),
2
5 (a′

c + aln′ + af n′ + af t ′).

(27a)

(27b)

These equations express the normalized shear stress as a
function of the anisotropy parameters with two different local
frames. These equations hold only under axial symmetry. In
the most general case, more anisotropy parameters should be
introduced.

3. Granular texture

Here, we analyze the anisotropies described in the previous
section and their respective roles in the shear strength as a
function particle angularities. Figure 15 displays the variations
of the orientation anisotropies of contacts and branch vectors,
respectively ac and a′

c, averaged in the steady state as a function
of 〈α〉. We see that ac increases with 〈α〉 up to a maximum
value and then declines for 〈α〉 > 0.6. a′

c follows a similar
trend with an increasing phase followed by a decreasing phase
for 〈α〉 > 0.2. It is often admitted that the shear strength
in granular media is a consequence of the buildup of an
anisotropic structure. However, here we have a nonmonotonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4
<α>

0.1

0.2

0.3

0.4

0.5

a
c

a’
c

FIG. 15. (Color online) Contact anisotropy ac and branch vector
anisotropy a′

c as a function of angularity 〈α〉 averaged in the residual
state. Error bars represent the standard deviation in the residual state.

evolution of both anisotropies as a function of 〈α〉 although
the shear strength continues to increase.

Figure 16 shows the variation of branch-vector length
anisotropies aln, alt , and aln′ averaged in the steady state as
a function of 〈α〉. These parameters are negligibly small (in
particular, aln = aln′ 
 0) for all values of 〈α〉. This is due
to the absence of shape eccentricity of the particles and also
because of the low span in the particle size distribution [58]. It
is remarkable also that alt is negative and increases in absolute
value in the residual state. This means that the particles tend to
form longer branch vectors with their neighbors in the direction
of extension rather than compression [8].

4. Force transmission and friction mobilization

The normal and tangential force anisotropies af n and af t

are plotted in Fig. 17 as a function of 〈α〉, together with the
radial and orthoradial force anisotropies af n′ and af t ′ averaged
in the steady state. We see that af n 
 af n′ . In connection
with the variations of ac and a′

c, the increase of af n and
af n′ shows that stronger force chains are transmitted along
the principal stress direction and thus the mean normal and
radial forces increase, too. It is worth mentioning that af n

0 0.2 0.4 0.6 0.8 1 1.2 1.4
<α>

-0.08

-0.04

0.00

0. 04

0.08

a
ln

a
lt

a
ln’

FIG. 16. (Color online) Normal and tangential branch-vector
length anisotropies aln, alt , and aln′ as a function of angularity 〈α〉
averaged in residual state. Error bars represent the standard deviation
in the residual state.
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FIG. 17. (Color online) Normal and tangential force anisotropies
an and at , and radial and orthoradial force anisotropies a′

n and a′
t , as

a function of 〈α〉 in the residual state. The error bars represent the
standard deviation in the residual state.

and af n′ increase slowly at higher angularity while ac and a′
c

decrease at the same time. This means that the stress along
the compression axis is sustained by less contacts but stronger
forces. As mentioned previously, the new contacts coming into
play at higher angularity are mainly face-face contacts, which
capture stronger forces.

Figure 17 shows also the variation of tangential and
orthoradial force anisotropies. We see that both af t and
af t ′ increase with 〈α〉. In particular, af t ′ is larger than af t

and increases also faster. The dry friction law implies that
|ft̄ | < μ̄fn̄, where μ̄ = μ in the contact frame and μ̄ =
(fn′/fn)

√
(1 + μ2) − (fn/fn′ )2 in the branch-vector frame.

Hence, the ratio Īc = |ft̄ |/(μ̄fn̄) can be used as an index
of friction mobilization for a contact c. A map of mobilized
friction forces is shown in Fig. 18 for S5. At the scale of
the packing, the index Iμ̄ = 〈|ft̄ |〉/〈μ̄fn̄〉 represents the mean
friction mobilization. Integrating Eq. (26)(e) in the range of
[0,π/2] and assuming that μ̄ and fn′ are weakly correlated,
we get

Iμ̄ = 5

2μ̄
at̄ . (28)

FIG. 18. (Color online) Snapshot of radial forces for the sample
S5. Line thickness is proportional to the radial force. Mobilized forces
(Ic 
 1) are in red.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
<α>

0.2

0.4

0.6

0.8

k sl
id

e

FIG. 19. Proportion of sliding contacts as a function of 〈α〉
averaged in the residual state. The error bars represent the standard
deviation.

As a result, the increase of af t and af t ′ with 〈α〉 implies
that at higher angularity the force balance is ensured by a
strong activation of friction forces. This effect can also be
evidenced by plotting the proportion kslide of sliding contacts
as a function of 〈α〉; see Fig. 19. As expected, kslide increases as
the particles become more and more angular, reaching values
as high as 0.6, i.e., 2 times above those measured in the packing
composed of spheres. This finding can be related to a recent
work showing that one of the main influencing factors behind
the mechanical behavior of granular systems composed of
angular particles is the partial hindrance of rotations pushing
the particles to slide over one another to accommodate the
imposed deformations [59]. The contributions of each contact
type to the force anisotropies are analyzed more precisely in
the following section.

The anisotropy parameters can also be calculated at the
stress peak state. They are not shown here, but the trends are
similar, except for a+

f n and a+
f n′ , which decline at higher values

of 〈α〉. Figure 20 displays the peak-state and residual-state
values of the normalized shear stresses (q/p)+ and (q/p)∗,
respectively, as a function of 〈α〉 calculated both directly from
the simulation data and from Eqs. (27a) and (27b) separately
for the contact frames and branch-vector frames. We see that
Eq. (27b), which is based on general considerations, expressed

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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FIG. 20. (Color online) Normalized shear stress (q/p)+ and
(q/p)∗ at peak and residual states as a function of 〈α〉 together with
the analytical expressions given by Eqs. (27a), (27b), and (B1). The
error bars represent the standard deviation in the residual state.
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−→z
−→y

−→x

FIG. 21. (Color online) Snapshot of radial forces for S5. Line
thickness is proportional to the radial force. ee contacts are in green,
f v contacts in red, f e contacts in blue, and ff contacts in yellow.

in the branch-vector frame, provides an excellent fit, whereas
the approximation proposed in the contact frame is correct but
it underestimates the shear strength both at peak and residual
states. This can, however, be easily corrected by including the
cross products among the anisotropies, which are neglected
[56]; see Appendix B .

Equations (27a) and (27b) allows us to evaluate the relative
weights of fabric anisotropy, force chains, and friction mobi-
lization with regard to shear strength. We see that, expressed
in the contact frame, the increase of the shear strength at low
angularities is due to an increase of both contact and force
anisotropies, whereas the saturation trend is a consequence of
a rapid falloff of the contact anisotropies compensated by an
increase of the tangential force anisotropy. Expressed in the
branch-vector frame, the variation of the shear strength follows
that of the radial force anisotropy. In other words, the loss of
branch-vector anisotropy is fully compensated by the gain in
radial force anisotropy.

C. Role of contact types

In this section, we would like to quantify the relative
contributions of each type of contact to the shear strength
and anisotropy parameters. A map of contact forces projected
along the branch vectors is displayed in Fig. 21 for S5 in
different colors according to the contact type. The network of
strong force chains appears to be mostly composed of ff and
f e contacts mediated occasionally by ee and f v contacts.

Let us consider the discrete expression of the stress tensor
in Eq. (3) and partition it as a sum of different terms, each
containing only the contribution of all contacts of the same
type,

σ = σff + σf e + σf v + σee, (29)

where σff , σf e, σf v , and σee are obtained by restricting the
summation to ff , f e, f v, and ee contacts, respectively. The
respective stress deviators qff , qf e, qf v , and qee normalized
by the pression p are shown in Fig. 22. We see that, at low
angularity qee/p ∼ qf e/p < qff /p even if kf e < kff < kee.
At higher angularities, the stress plateau appears to be a
consequence of a decrease of qff /p (resulting from the
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FIG. 22. (Color online) Shear strength (q/p)∗ for f v, ee, f e,
and ff contacts as a function 〈α〉, together with the harmonic
approximation fits in (n′,t ′) frame (· · · ). The error bars represent
the standard deviation in the residual state.

decrease of kff ) compensated by an increase of both qf e/p

and qee/p. It is remarkable that qf e/p ∼ qee/p, whereas
kf e � kee. We also see that qf v/p decreases with 〈α〉 as a
result of the decrease of kf v . In this way, the growth of the
number of ff and f e contacts shown in Fig. 11 is clearly the
main origin of the increase of shear strength at low angularity.

We now consider the “relative” texture and force
anisotropies supported by each contact type. Since the texture
and force anisotropies expressed in the branch frames are sim-
pler and more accurate than in the contact frames, we restrict
here our analysis to the branch-vector partition. By partitioning
the fabric and force tensors mentioned in Appendix A as we
did for the stress tensor, we can also calculate the partial fabric
and force anisotropies (a′

cγ , aln′γ , af n′γ , and af t ′γ ), where γ

stands alternatively for {ff,f s,f v,ee}. In our case, assuming
that in the steady state the principal directions of the partial
angular functions of branch vectors and forces are the same as
the global branch and force angular functions, we have

qγ

p

 2

5
(a′

cγ + aln′γ + af n′γ + af t ′γ ), (30)

As illustrated in Fig. 22, this relation holds for each contact
type.
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FIG. 23. (Color online) Contact anisotropy in the frame (n′,t ′)
for f v, ee, f e, and ff contacts as a function 〈α〉. The error bars
represent the standard deviation in the residual state.
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FIG. 24. (Color online) Radial (a) and orthoradial (b) force
anisotropy in the (n′,t ′) frame for f v, ee, f e, and ff contacts as
a function 〈α〉. The error bars represent the standard deviation in the
residual state.

Figures 23 and 24 display the variation of a′
cγ , af n′γ , and

af t ′γ averaged in the steady state as a function of 〈α〉. The
decrease of a′

c is a consequence of the decrease of a′
cff , whereas

a′
cee (<a′

cf v) remains nearly constant with 〈α〉. This is clearly
due to the decrease of kff . In the same way, the saturation
of af n′ results from the decrease of af n′ff compensated by
the increase of both af n′ee and af n′f s . Finally, the increase
of af t ′ is attributed to the increase of both af t ′ee and af t ′f s .
In particular, it is remarkable that af t ′ee = af t ′f s and af t ′ff

is constant, whereas kee > kf e and kff decreases with 〈α〉. In
other words, even if the proportion of contacts involving a face
is as small as ff contacts or less numerous than ee contacts,
this population of contacts involves a higher mobilization of
friction.

V. CONCLUSIONS

In this paper, a systematic analysis of the effect of angular
shape on the quasistatic rheology of sheared granular materials
was carried out by means of numerical simulations. Angular
particle shapes were modeled as irregular polyhedral particles
in the framework of the CD method. This method is partic-
ularly relevant to address the quasistatic plastic deformations
of dense and large systems by avoiding numerical artifacts
arising from a finite stiffness at the contacts between flat
faces and edges of the particles. The particles are irregular
polyhedra generated from spheres and characterized by a
single angularity parameter 〈α〉, defined as the mean exterior
angle between adjacent faces. The angularity was gradually
increased from α = 0 (spheres) to 〈α〉 ∼ 1.18 (irregular
octahedron). The rheological behavior of several packings
of 40 000 particles subjected to triaxial compression were
analyzed as a function of 〈α〉.

An important finding of this work is that the shear strength
first increases with the angularity but saturates as the particles
become more angular. Unexpectedly, very small deviations

from spherical shape have stronger effect on the shear strength
than large variations of angularity at low number of faces.
To understand the microscopic origins of this behavior, we
performed an additive partition of the stress tensor based
on a harmonic approximation of the angular dependence of
the average local forces and branch vectors expressed either
in the contact frame or in the branch-vector frame. These
two descriptions provide complementary points of view of
the microstructure. As a result of the aspherical shape of the
particles, the contact network is different from the network of
neighboring particles, materialized by the branch vectors, and
one important issue is then how the particle shape is reflected
in the differences between the two viewpoints. The nature of
the contact network is obviously guided by the organization
of the contact types. In contrast, the branch network reflects
mainly the spatial distribution of the particles. In this sense,
this network is may be used as the reference microstructure to
characterize the contact network.

Our detailed analysis of the corresponding fabric and
force anisotropies allowed us to highlight the microscopic
mechanisms that lead to the dependence of shear strength with
respect to 〈α〉. The increase of shear strength results from
that of both contact and force anisotropies. The plateau of the
shear strength is a consequence of the decrease of the contact
anisotropy compensated by the increase of the tangential
anisotropy. This means that the increasing mobilization of
friction forces is the key effect of particle angularity. In
particular, the proportion of sliding contacts increases strongly
as the particles become more angular.

In this investigation, the sphericity of the particles was
fixed to ∼1 in order to isolate the effect of particle angularity.
However, it should be interesting to vary the sphericity of
the particles in order to compare the effects of flatness or
elongation of the particles with those of angularity. In the
same way, since friction mobilization plays a major role at
large angularity, it should be interesting to investigate also the
influence of the coefficient of friction for angular particles.
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APPENDIX A: FABRIC TENSORS

It is convenient to estimate the anisotropy parameters from
the following fabric and force tensors [8,60]:

F̄αβ =
∫



n̄αn̄βP̄()d,

χln̄
αβ = 1

〈�n̄〉
∫



〈�n̄〉()n̄αn̄βP̄()d,

χlt̄
αβ = 1

〈�n̄〉
∫



〈�t̄ 〉()n̄α t̄βP̄()d, (A1)

χ
f n̄

αβ = 1

〈fn̄〉
∫



〈fn̄〉()n̄αn̄βP̄()d,

χ
f t̄

αβ = 1

〈fn̄〉
∫



〈ft̄ 〉()n̄α t̄βP̄()d,
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where α and β design the components in the considered
frame. Note that, by construction, we have χ lt ′

αβ = 0. From
Eqs. (26) and (A1), assuming that under axial symmetry the
major principal direction of all tensors is vertical (θ = 0), the
following relations are easily obtained:

āc = 5
2 (F̄1 − F̄3)/(F̄1 + F̄2 + F̄3),

aln̄ = 5
2 (χln̄

1 − χln̄
3 )/(χln̄

1 + χln̄
2 + χln̄

3 ) − āc,

alt̄ = 5
2 (χl̄

1 − χl̄
3)/(χl̄

1 + χl̄
2 + χl̄

3) − āc − aln̄, (A2)

af n̄ = 5
2 (χf n̄

1 − χ
f n̄

3 )/(χf n̄

1 + χ
f n̄

2 + χ
f n̄

3 ) − āc,

af t̄ = 5
2 (χf̄

1 − χ
f̄

3 )/(χf̄

1 + χ
f̄

2 + χ
f̄

3 ) − āc − af n̄,

where χ l̄ = χ ln̄ + χ lt̄ , χ f̄ = χf n̄ + χf t̄ and the indices 1,
2, and 3 refer to the principal values of each tensor. By
construction, we have (F̄1 + F̄2 + F̄3) = 1, (χl̄

1 + χl̄
2 + χl̄

3) =
1, and (χf̄

1 + χ
f̄

2 + χ
f̄

3 ) = 1. Note that āc, af n̄, and af t̄ are
always positive, whereas āln and alt̄ may be negative.

APPENDIX B: SHEAR STRENGTH APPROXIMATION AT
SECOND ORDER

The shear strength can be expanded to the second order
without neglecting the cross products between anisotropies. In

the contact frame we have [56]

q

p

 2

5
(ac + aln + alt + af n + af t )

+ 4

105
(ac · af n + ac · aln + aln · af n)

+ 16

105
(ac · af t + ac · alt + aln · af t + alt · af n). (B1)

As we see in Fig. 20, Eq. (B1) gives a better approximation
than Eq. (27a). Note also that the excellent fits to the data
by Eqs. (27b) and ((B1) indicate that the assumption of
weak correlations between forces and branch vector lengths
is indeed a good approximation. This can be checked directly
from the simulation data by evaluating the Pearson correlation
parameter C�f defined by

C�f = 〈� f 〉√
〈�2〉

√
〈f 2〉

, (B2)

where f is the magnitude of the contact force. We find that
|C�f | does not exceed 0.05.
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