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BOUNDARY LAYERS, RELLICH ESTIMATES AND

EXTRAPOLATION OF SOLVABILITY FOR ELLIPTIC SYSTEMS

PASCAL AUSCHER AND MIHALIS MOURGOGLOU

Abstract. The purpose of this article is to study extrapolation of solvability
for boundary value problems of elliptic systems in divergence form on the upper
half-space assuming De Giorgi type conditions. We develop a method allowing to
treat each boundary value problem independently of the others. We shall base our
study on solvability for energy solutions, estimates for boundary layers, equivalence
of certain boundary estimates with interior control so that solvability reduces to
a one-sided Rellich inequality. Our method then amounts to extrapolating this
Rellich inequality using atomic Hardy spaces, interpolation and duality. In the
way, we reprove the Regularity-Dirichlet duality principle between dual systems
and extend it toH1−BMO. We also exhibit and use a similar Neumann-Neumann
duality principle.
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1. Introduction

Boundary value problems for second order elliptic equations have a long history.
The breakthroughs of Dahlberg [Da] for the Laplace equation on Lipschitz domains
and the boundedness of the corresponding layer potentials by Coifman, McIntosh
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and Meyer [CMcM] opened the door to a thorough study of such problems, gen-
eralizing domains or operators. By flattening the boundary, one instead looks at
equations with measurable coefficients and considers two types of domains, either
the upper-half space as a prototype for unbounded domains or the unit ball as a
prototype for a bounded domain. There one can study boundary value problems
with different types of data spaces. All of this is well explained in the book by
Kenig [Ke]. Solving these boundary value problems can be a difficult task; there
is no comprehensive nor unified treatment of this issue at this time. Let us just
mention that the solution of the Kato conjecture [AHLMcT] and its developments
gave rise to new estimates and new methods so that progress in the area is rather
impressive as of now.
The purpose of this article is to study extrapolation of boundary value problems

for elliptic systems in divergence form on the upper half-space R1+n
+ , 1 + n ≥ 2.

Extrapolation means that, assuming the problem can be solved for some space X
of data, one can push the solvability range to some other spaces. For Regularity
and Neumann problems, X is an Lr space, r > 1 and one extrapolates to Lp for
1 < p < r and Hp data for some range of p below 1. For Dirichlet problems, one
starts from Lq for some q < ∞ and extrapolates to Lp for q < p < ∞, BMO and
Hölder spaces up to some exponent. In fact, one can see the Dirichlet problem as
a Regularity problem in spaces of data with regularity exponent -1. One can also
formulate Neumann problems in spaces of data with regularity -1.
We do not treat here the openness property of extrapolation, that is that solv-

ability at one space of data can be perturbed to nearby spaces in the given scale.
This will be treated in [AS] using further developments.
These types of extrapolation results are not new, at least for equations, starting

from the seminal works of [DaK] for the Laplace equation on Lipschitz domains
and [KP] for real symmetric equations. Further contributions are in [Br] for the
Laplace equation looking at Hp data for p < 1, in [Di] in the context of the Laplace
equation on smooth domains of Riemannian manifolds and in [DK] for real equations
on bounded Lipschitz domains. See also some comments in [HKMP2] outlining a
strategy using Kalton-Mitrea extrapolation [KM] when layer potentials associated
to the operators are invertible. Of course, we are just mentioning the works related
to extrapolation in this subject and not the numerous ones on solvability for second
order elliptic operators under various assumptions. In some sense, we are after a
sort of extrapolation reminiscent to the Calderón and Zygmund extrapolation for
singular integrals because the operators under considerations can be thought of as
generalized singular integrals.
To do so, we introduce a new method which allows to treat each boundary value

problem independently of the other ones and to consider systems and not just equa-
tions, assuming De Giorgi-Nash type local Hölder regularity, in the interior and for
reflections across the boundary. For the Neumann problem, this is completely new:
in [KP], which is the closest antecedent to our results here, extrapolation of solv-
ability for the Neumann problem was linked to that of the Regularity problem. Our
method will clarify the Regularity-Dirichlet duality principle for solvability obtained
in [HKMP2], extend its range to H1 − BMO and we will also formulate and use a
new duality principle for Neumann problems. Also our exponents are explicitly de-
termined by the ones in the De Giorgi conditions. Our strategy can be summarized
as follows: try to distinguish as much as possible interior and boundary estimates
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so as to use a priori estimates most of the time. To do so, we have to reverse the
order in which we use some tools compared to other works.
Our divergence operators will be precisely defined in Section 2 and ellipticity will

be taken in the sense of some G̊arding inequality. The boundary value problems are
treated for operators whose coefficients do not depend on t, the transverse variable to
the boundary, but some results do not need this. For the purpose of the introduction,
it is best to assume t-independence.
We shall rely on energy solutions. Indeed, Regularity and Neumann problems

are always well-posed (modulo constants) in the energy class without any further
information. We deviate here from the treatment done in [KR] or [HKMP2] by
using the “natural” energy space given by the Dirichlet integral

∫
|∇u|2. Even in

the unbounded situation of the upper half-space, things turn out to work rather well
with this space. Solvability of Regularity and Neumann problems means here that

energy solutions satisfy the required inequality respectively: control of ‖Ñ∗(∇u)‖p,
the Lp norm of (a modified) non-tangential maximal function of ∇u, by ‖∇xu|t=0‖p,
where ∇xu|t=0 is the tangential gradient at the boundary or by ‖∂νAu|t=0‖p, where
∂νAu|t=0 is the conormal derivative at the boundary. For the boundary estimates,
the norm ‖ ‖p denotes an Lp norm if p > 1 and a Hardy Hp norm if p ≤ 1.
One of the main results here is the following. Assuming interior De Giorgi

type conditions, there is an a priori equivalence between ‖Ñ∗(∇u)‖p and the sum
‖∂νAu|t=0‖p+‖∇xu|t=0‖p in a range 1−ε < p ≤ 2 for energy solutions (and for other
types of solutions as well) with ε specified by our assumptions.1 For p = 2, this was
one of the key result in [AA]. The bound from below holds for any weak solution:
it was known in the range 1 < p < ∞ from [KP] and has been proved recently in a
range 1− ε < p ≤ 1 in [HMiMo]. The bound from above has been addressed in the
range 1 < p < 2+ ε′ in [HKMP2] for a class of solutions u which can be represented
by the layer potentials built in [AAAHK] using Green’s representation formula

(1) u(t, x) = St(∂νAu|t=0)(x)−Dt(u|t=0)(x)

where St and Dt are respectively the single and double layer potentials associated to
divA∇ on R1+n. We shall prove (Theorem 9.1) that the bound from above holds in
the range 1−ε < p ≤ 2 for any solution in the energy class and other classes. Here, we
use the newly discovered relation by A. Rosén [R1] between the layer potentials and
the first order formalism of [AAMc], which gives L2 boundedness of the double layer
potential and L2 → Ẇ 1,2 boundedness of the single layer potential in full generality.
It allows to use instead the differentiated form of (1) which actually comes before in
the analysis (and one does not care about the constant of integration at this stage)

(2) ∇u(t, x) = ∇St(∂νAu|t=0)(x)−∇Dt(u|t=0)(x)

and one only needs to have two a priori bounds for the layer potentials. The first
one is ‖Ñ∗(∇Dth)‖p . ‖∇xh‖p that we obtain in the range 1 − ε < p < 2 (again,
recall that boundary norms are Hp norms when p ≤ 1). We note this was proved
for 1 < p < 2 + ε′ for complex equations and 1 + n ≥ 3 in [HKMP2, Proposition
5.9] and there is an interesting comment to make as an illustration of reversing the
order in which we use tools. The argument there uses an estimate for what is called

1We shall not attempt to treat here the range 2 < p < 2 + ε′. In fact, it can be shown to hold
without the De Giorgi condition, at the expense of some further work which shall be presented in
[AS].
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L-harmonic conjugates (such an estimate is a one-sided Rellich inequality in disguise
(see below)) and seems therefore to be limited to p > 1. Instead, our argument for
this inequality does not require such an estimate; it only uses atomic theory and
interpolation. This is made possible because we use (2) and not (1); the Rellich

inequality is used later. The other needed a priori bound ‖Ñ∗(∇Sth)‖p . ‖h‖p in
the range 1− ε < p < 2 + ε′ was known from [HMiMo] at least in the equation case
and 1+n ≥ 3. With this in hand, solvability for a given p in this range is equivalent
to a boundary estimate of Rellich type (again for energy solutions) which is

(3) ‖∂νAu|t=0‖p . ‖∇xu|t=0‖p

for the Regularity problem and

(4) ‖∇xu|t=0‖p . ‖∂νAu|t=0‖p

for the Neumann problem.
The outcome of this is that in order to extrapolate solvability, it suffices to ex-

trapolate a one-sided Rellich inequality. This step, therefore, completely happens
at the boundary. Basically, in the spirit of the ideas in [DaK] and [KP], we can use
Hardy space atomic theory on the boundary and interpolation. But the difference
is that we only have to prove (3) or (4) with given data a 2-atom (Section 4) and we
do this by showing that the missing data is a molecule (Section 10) without going
back to non-tangential maximal estimates. Aside from some pointwise estimates on
solutions shown in Section 6 relying on some form of boundary regularity, this step
uses, of course, the initial solvability assumption even to get the molecular decay.
Note also that harmonic measure techniques are forbidden to us as we work with
systems. The way it works is that we use in fact the dual formulation of the in-
equalities (3) or (4) when p > 1. We were therefore led to investigate this further
(Section 3). The dual of (3) is an inequality akin to the one needed to solve the
adjoint Dirichlet problem in Lp′ . The dual formulation of (4) is new. What is also
new is that these dual formulations do not require any assumption on the operator,
not even t-independence, but the ellipticity, because we use duality brackets and not
integrals. We also use the integrated layer potential representation (1) for solutions
of the dual system: the De Giorgi condition comes into play to show that (1) holds
whenever u|t=0 ∈ Lp and ∂νAu|t=0 ∈ Ẇ−1,p for p > 2.
As for the Dirichlet problem, we can basically treat it with the duality principle

that Regularity solvability with Lp data is equivalent to Dirichlet solvability for Lp′

data of the dual system. While the Regularity to Dirichlet direction has been known
since [KP] for real symmetric equations, the converse is fairly recent for general
systems (some partial results for real symmetric equations in Lipschitz domains are
in [S]) and requires to incorporate square functions in the formulation of the Dirichlet
problem. This was proved in full generality in [AR] for p = 2 and then in [HKMP2]
for equations and 1 + n ≥ 3 and p 6= 2 (Both articles allow some tdependence as
well). We reprove and strengthen it even with the hypotheses there and also extend
it to H1 for Regularity vs BMO (or VMO) for Dirichlet. The Dirichlet problem is
stated only with a square function estimate and no non-tangential maximal control
which in fact comes as a priori information. We shall use in this part a recent result
obtained by one of us together with S. Stahlhut [AS].
We only discuss the case of the upper half-space, but of course, the analogous

results hold for systems in the lower half-space. Also by change of variable, one can
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treat the case of special Lipschitz domains with operators that do not depend on
the vertical variable. The principal example is the Laplacian for which extrapolation
results were proved in the seminal paper [DaK] and pursued in [Br]. We also mention
that the same strategy can certainly be developed in the unit ball with radially
independent coefficients instead, that is, the framework of [KP], using the first order
formalism developed in [AR]. This would require writing out some details on layer
potentials. We leave this to further developments.
All our estimates in this article depend only on ellipticity constants ‖A‖∞ and

the largest λ in the specified ellipticity inequality, and on the constants in the De
Giorgi condition when assumed.
The second author is supported by the Fondation Mathématique Jacques Hadamard.

The authors were partially supported by the ANR project “Harmonic analysis at
its boundaries” ANR-12-BS01-0013-01 and they thank the ICMAT for hospitality
during the writing of this article. We warmly thank S. Hofmann for discussions
pertaining to this work, for providing us with unpublished material and letting us
use some of it, and for helping us with historical comments.

2. General theory and energy solutions

If E(Ω) is a normed space of C-valued functions on a set Ω and F a normed space,
then E(Ω;F ) is the space of F -valued functions with ‖|f |F‖E(Ω) < ∞.
Denote points in R1+n by boldface letter x,y, . . . and in coordinates in R×Rn by

(t, x) etc. We set R1+n
+ = (0,∞)×Rn. Consider the system of m equations given by

(5)
n∑

i,j=0

m∑

β=1

∂i

(
Aα,β

i,j (x)∂ju
β(x)

)
= 0, α = 1, . . . , m

in R1+n
+ , where ∂0 =

∂
∂t

and ∂i =
∂
∂xi

if i = 1, . . . , n. For short, we write divA∇u = 0

to mean (5), where we always assume that the matrix

(6) A(x) = (Aα,β
i,j (x))

α,β=1,...,m
i,j=0,...,n ∈ L∞(R1+n

+ ;L(Cm(1+n))),

is bounded and measurable and satisfies some ellipticity. For systems, we use several
forms of ellipticity. One is the G̊arding inequality

(7)

∫

R1+n
+

Re(A(x)∇g(x) · ∇g(x)) dx ≥ λ

n∑

i=0

m∑

α=1

∫

R1+n
+

|∂ig
α(x)|2dx

for all g ∈ C1
0(R

1+n
+ ;Cm) (C1 functions with compact support) and some λ > 0, and

sometimes one needs the stronger G̊arding inequality

(8)

∫

R1+n
+

Re(A(x)∇g(x) · ∇g(x)) dx ≥ λ
n∑

i=0

m∑

α=1

∫

R1+n
+

|∂ig
α(x)|2dx

for all g ∈ C1
0 (R

1+n;Cm) and some λ > 0. We have set

A(x)ξ · η =

n∑

i,j=0

m∑

α,β=1

Aα,β
i,j (x)ξ

β
j η

α
i .

Note that the integrals are on the upper-half space. For systems, an elementary
computation shows that (8) is equivalent to the G̊arding inequality (17) on R1+n

(see below) for the extended matrix A♯ to R1+n obtained by changing the sign when
t changes sign of the coefficients for the mixed t, xi derivatives in (5). The scalar case
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corresponding to equations is when m = 1. In this case, the accretivity condition
above are equivalent to the usual pointwise accretivity condition

(9) Re(A(x)ξ · ξ) ≥ λ|ξ|2, ξ ∈ C1+n, a.e. on R1+n
+ .

Alternately, scalar can mean a diagonal system in the sense that Aα,β
i,j = Ai,jδ

a,β us-
ing the Kronecker symbol. When A has t-independent coefficients, that is A(t, x) =
A(x), (8) is implied by the strict accretivity ofA on the subspaceH0 of L2(Rn;Cm(1+n))
defined by (fα

j )j=1,...,n is curl free in Rn for all α, that is, for some λ > 0

(10)

∫

Rn

Re(A(x)f(x) · f(x)) dx ≥ λ

n∑

i=0

m∑

α=1

∫

Rn

|fα
i (x)|

2dx, ∀ f ∈ H0.

Even when A is t-independent, (9) is stronger than (10) when m ≥ 2 except when
n = 1. See [AAMc] and [AR] for details. Such conditions are stable under taking
adjoint of A.
The system (5) is always considered in the sense of distributions with weak solu-

tions, that is H1
loc(R

1+n
+ ;Cm) solutions.

There is an important space for the theory of energy (or variational) solutions in
R1+n

+ . We shall use the homogeneous space of energy solutions

E := Ḣ1(R1+n
+ ;Cm),

which is different from the one used in [KR] and [HKMP2]. Recall that Ḣ1(R1+n
+ )

is the space of L2
loc(R

1+n
+ ) functions u with finite energy

∫
R1+n
+

|∇u(x)|2 dx < ∞.

The fact that we assume local square integrability is of particular help (in fact, it
suffices to even assume u to be a distribution as u can then be identified with an
L2
loc function), even if the “norm” is defined modulo constant. Indeed, the proof of

Lemma 3.1 in [AMcM] shows that Ḣ1(R1+n
+ ) imbeds into C([0,∞);L2

loc(R
n)), where

C(Ω) stands for the space of continuous functions on Ω, (up to identification of
measurable functions on null sets) and that the restriction to R1+n

+ of C∞
0 (R1+n) is

dense in Ḣ1(R1+n
+ ). In particular, the trace of Ḣ1(R1+n

+ ), identifying ∂R1+n
+ with

Rn, is the space of f ∈ L2
loc(R

n) such that f ∈ Ḣ1/2(Rn) and has C∞
0 (Rn) as

dense subspace. Thus we can interpret boundary equalities also in L2
loc and measure

size only with the “homogeneous” norm in Ḣ1/2(Rn). Recall that Ḣ1
0 (R

1+n
+ ) is the

subspace of Ḣ1(R1+n
+ ) consisting of functions with constant trace: it is the closure

of C∞
0 (R1+n

+ ) for the semi-norm above. Note also that Ḣ1(R1+n
+ ) is stable (as a set)

under multiplication by C∞
0 (R1+n) functions restricted to R1+n

+ .

In what follows, we denote by Ḣs(Rn) the homogeneous Sobolev space with ex-
ponent s ∈ R defined as the completion of L2(Rn) for the semi-norm ‖(−∆)s/2f‖2,
where ∆ is the self-adjoint Laplace operator on L2(Rn). For s > 0, it is the closure
of C∞

0 (Rn) (= limits of Cauchy sequences for the homogeneous semi-norms) and can
be realized as a subset of L2

loc(R
n), and it becomes a Banach space when moding

out polynomials of some order. For s < 0, it is a space of tempered distributions,
identified with the dual of Ḣ−s(Rn) in the usual sesquilinear pairing. It is convenient
to introduce the space Ḣs

∇(R
n;Cn) := ∇Ḣs+1(Rn) = ∇(−∆)−1/2Ḣs(Rn). Using the

boundedness of the Riesz transforms on Ḣs(Rn) for all s ∈ R, it is the subspace of

the curl free elements in Ḣs(Rn;Cn). We will use them for s = −1/2 and s = 1/2,
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in which case they are dual spaces for the usual duality and notice that they both
have D∇(R

n;Cn) := ∇C∞
0 (Rn) as a dense subspace.

Let us continue with the definition of the conormal derivative and the abstract
Green’s formula.

Lemma 2.1. Let A(x) be any bounded measurable matrix in R1+n
+ . Let u ∈ E

such that divA∇u = 0 in R1+n
+ . Then, there exists a distribution in Ḣ−1/2(Rn;Cm),

denoted by ∂νAu|t=0 or ∂νAu0
2 and called the conormal derivative of u at the boundary,

such that for any φ ∈ E with φ0 = φ|t=0,

(11)

∫

R1+n
+

A∇u · ∇φ = −〈∂νAu0, φ0〉.

In particular, for u, w ∈ E with divA∇u = 0 and divA∗∇w = 0 in R1+n
+ , one has

the abstract Green’s formula

(12) 〈u0, ∂νA∗w0〉 = 〈∂νAu0, w0〉.

The brackets are interpreted in the Ḣ−1/2, Ḣ1/2 sesquilinear duality, but, by abuse,
in no definite order for the factors so as to make the formula look like the Green’s
formula obtained by integration by parts (when feasible). The conormal derivative
agrees with ν · (A∇u)|t=0 whenever this makes sense, where ν is the upward unit
vector in the t-direction (hence the inward normal for R1+n

+ ). This convention for
conormal derivatives will be useful later. This explains the negative sign in the
defining formula.

Proof. The definition of the conormal derivative is a consequence of the facts that
(11) is 0 when φ ∈ E with constant trace (because C∞

0 (R1+n
+ ;Cm) is dense in it) and

that the trace is bounded from E onto Ḣ1/2(Rn). The details are left to the reader.
The abstract Green’s formula follows immediately from definition of the conormal
derivatives. �

Remark that the theory of energy solutions (that is, solutions of divA∇u = 0
in E) done in [AMcM, Section 3] for t-independent systems satisfying (10) extends
immediately to t-dependent systems satisfying the appropriate G̊arding inequality
allowing to use the Lax-Milgram lemma. We state the well-posedness results for
convenience. Note that by density, (7) and (8) extend to all g in Ḣ1

0 (R
1+n
+ ;Cm) and

Ḣ1(R1+n
+ ;Cm) = E respectively.

Lemma 2.2. Let A(x) be bounded measurable with the stronger G̊arding inequality

(8). Let g ∈ Ḣ−1/2(Rn;Cm). Then, there is an energy solution u ∈ E , unique
modulo constants in Cm, of the system divA∇u = 0 in R1+n

+ with ∂νAu|t=0 = g in

Ḣ−1/2(Rn;Cm).

This uses the Lax-Milgram lemma in E/Cm. One can define the Neumann to
Dirichlet operator as the bounded linear operator

ΓND : Ḣ−1/2(Rn;Cm) → Ḣ
−1/2
∇ (Rn; (Cm)n)

in such a way that ΓND(∂νAu|t=0) = ∇xu|t=0, if u is one of the energy solution with
given Neumann datum ∂νAu|t=0.

2We shall use both notations.
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Lemma 2.3. Let A(x) be bounded measurable with the G̊arding inequality (7). Let
f ∈ L2

loc(R
n;Cm) ∩ Ḣ1/2(Rn;Cm). Then, there is a unique energy solution u ∈ E of

the equation divA∇u = 0 where u|t=0 = f holds in Ḣ1/2(Rn;Cm) ∩ L2
loc(R

n;Cm).

Proof. Given an extension φ of f in E , by the Lax-Milgram lemma applied in
Ḣ1

0 (R
1+n
+ ;Cm), there exists, unique modulo Cm, a solution w ∈ E to divA∇w =

−divA∇φ with w|t=0 = 0 with equality in Ḣ1/2(Rn;Cm). Thus u = w + φ solves
divA∇u = 0 with u|t=0 = f . Since f ∈ L2

loc(R
n;Cm), we can fix the constant by

imposing the equality in L2
loc(R

n;Cm). Thus u is uniquely defined. �

Similarly, one can define the Dirichlet to Neumann operator as the bounded linear
operator

ΓDN : Ḣ
−1/2
∇ (Rn; (Cm)n) → Ḣ−1/2(Rn;Cm)

in such a way that ΓDN(∇xu|t=0) = ∂νAu|t=0, if u is the energy solution with given
Dirichlet datum u|t=0 (or alternately, any of the energy solution with given regularity
datum ∇xu|t=0).
Let us come to some local inequalities. We use the notation B(x, r) to denote

the open ball in Rn+1, centred at x, of radius r. Given such a ball B = B(x, r),
we let κB denote the concentric dilate of B by a factor of κ. For x ∈ Rn, we let
∆ = ∆(x, r) := B((0, x), r)∩ ({0} ×Rn) denote the “surface ball” on Rn centred at
x and with radius r and B+(x, r) = B((0, x), r) ∩ R1+n

+ the half-ball.
If A(x) is bounded measurable with the G̊arding inequality (7), any weak solution

u in a ball B = B(x, r) with B ⊂ R1+n
+ of divA∇u = 0 enjoys the Caccioppoli

inequality for any 0 < α < β < 1 and some C depending on the ellipticity constants,
n,m, α and β,

(13)

∫

αB

|∇u|2 ≤ Cr−2

∫

βB

|u|2,

and any weak solution u ∈ W 1,2(B+;C
m) = H1(B+;C

m) of divA∇u = 0 on B+ =
B+(x, r) with u|t=0 = 0 on ∆(x, r) enjoys the boundary Caccioppoli inequality for
any 0 < α < β < 1 and some C depending on the ellipticity constants, n,m, α and
β,

(14)

∫

αB+

|∇u|2 ≤ Cr−2

∫

βB+

|u|2.

If A(x) satisfies the stronger boundary G̊arding inequality (8), then any weak so-
lution u ∈ H1(B+;C

m) of divA∇u = 0 on B+ = B+(x, r) with ∂νAu|t=0 = 03 on
∆(x, r) enjoys the boundary Caccioppoli inequality (14). The proofs are standard.
This gives for example the following kind of local boundary estimates.

Proposition 2.4. Let A(x) be bounded measurable with the G̊arding inequality (7).
Let u, w ∈ E with divA∇u = 0 and divA∗∇w = 0 in R1+n

+ . Assume that u0 is
supported in a surface ball ∆0 = ∆(x0, ρ) and w0 is supported in a surface ball
∆ = ∆(x, r) with 4∆ ∩∆0 = ∅. Then

(15) |〈∂νAu0, w0〉| ≤ Cr−2

(∫

Ω+

|u|2
)1/2(∫

Ω+

|w|2
)1/2

with Ω+ = 3B+ \ 2B+, B+ = B+(x, r).

3It can be defined locally.
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Proof. Fix ϕ ∈ C∞
0 (Rn) supported in 3B, ϕ = 1 on 2B where B = B((0, x), r) with

‖ϕ‖∞ ≤ 1 and ‖∇ϕ‖∞ . r−1. Let ϕ0 be its restriction to Rn. Remark that ϕw ∈ E
so its trace ϕ0w0 is well-defined in L2

loc ∩ Ḣ1/2 and ϕ0w0 = w0 using that ϕ0 = 1 on
the support of w0. Thus 〈∂νAu0, w0〉 = 〈∂νAu0, ϕ0w0〉. Next,

〈∂νAu0, ϕ0w0〉 = −

∫
A∇u · ∇(ϕw) = +

∫
uA∇ϕ · ∇w −

∫
A∇u · w∇ϕ

where the last equality uses the fact that divA∗∇w = 0 and that ϕu ∈ E with
ϕ0u0 = 0 so that −

∫
A∇(ϕu) · ∇w = 〈ϕ0u0, ∂νA∗w0〉 = 0. We conclude for both

terms by using Cauchy-Schwarz inequality, Caccioppoli and boundary Caccioppoli
inequalities, and that the support of ∇ϕ is contained in Ω+. �

Remark 2.5. There are variants for the right hand side. As u vanishes on 3∆\2∆,

one can show r−1
( ∫

Ω+
|u|2
)1/2

.
( ∫

Ω+
|∇u|2

)1/2
by using variants of Poincaré’s

inequality. The similar observation applies to w.

There is a similar statement for disjointly supported conormal derivatives.

Proposition 2.6. Let A(x) be bounded measurable with the stronger G̊arding in-
equality (8). Let u, w ∈ E with divA∇u = 0 and divA∗∇w = 0 in R1+n

+ . Assume
that ∂νAu0 is supported in a surface ball ∆0 = ∆(x0, ρ) and ∂νA∗w0 is supported in a
surface ball ∆ = ∆(x, r) with 4∆ ∩∆0 = ∅. Then

(16) |〈u0, ∂νA∗w0〉| ≤ Cr−2

(∫

Ω+

|u|2
)1/2(∫

Ω+

|w|2
)1/2

with Ω+ = 3B+ \ 2B+, B+ = B+(x, r).

Proof. Let ϕ ∈ C∞
0 (Rn) be as above. Again ϕu ∈ E so its trace ϕ0u0 is well-defined

in L2
loc ∩ Ḣ1/2. Thus 〈u0, ∂νA∗w0〉 = 〈ϕ0u0, ∂νA∗w0〉 using that ϕ0 = 1 on the support

of ∂νA∗w0. We conclude exactly as in the previous argument. We skip details. �

Remark 2.7. Note that one can replace u by u − c in this argument as they have
the same conormal derivative. Thus one can choose c to our like. For example, if

we choose the solution u whose average on Ω+ equals 0, then r−1
( ∫

Ω+
|u|2
)1/2

.
( ∫

Ω+
|∇u|2

)1/2
by Poincaré’s inequality. One can do similarly with w. In our

applications, we shall need decay estimates for u if ∆0 and ∆ are far apart and some
control on w. See Theorem 10.6.

3. Rellich estimates and duality principles for 1 < p < ∞

We next want to shed a new light on duality principles for global boundary es-
timates of Rellich type. Recall that we will not assume anything but ellipticity on
the coefficients at this point.
For 1 < p < ∞, let Ẇ 1,p(Rn) = {f ∈ L1

loc(R
n) ; ∇f ∈ Lp(Rn;Cn)} (one can show

that this is the same space, upon identification, assuming instead f ∈ D′(Rn)) and
set ‖f‖Ẇ 1,p = ‖∇f‖p. For p = 2, this is also Ḣ1(Rn). Some well-known properties
are summarized here.

Proposition 3.1. (1) C∞
0 (Rn) is dense in Ẇ 1,p(Rn).



10 PASCAL AUSCHER AND MIHALIS MOURGOGLOU

(2) Ẇ−1,p′(Rn), the dual of Ẇ 1,p(Rn), is the space of distributions divg for some
g ∈ Lp′(Rn;Cn) with norm inf ‖g‖p′ taken oven all choices of g.

We note the importance of the L1
loc requirement to get the density. The following

well-known lemma will be useful.

Lemma 3.2. For f ∈ L1
loc(R

n), ‖∇f‖Ẇ−1,p′ ∼ inf{‖f + c‖p′ ; c ∈ C}.

The left hand side is the norm in Ẇ−1,p′(Rn;Cn). In other words, the left hand
side is finite if and only if there exists one (and only one since constants are not in
Lp′(Rn)) c ∈ C such that f + c ∈ Lp′(Rn).
As we identify ∂R1+n

+ with Rn, we use here the subscript 0 to indicate the restric-
tion to the boundary. Thus ∇u0 is short notation for ∇xu0.

Theorem 3.3. Let A(x) be a bounded measurable matrix with the G̊arding inequality
(7). Let 1 < p < ∞. The following are equivalent.

(1) There exists Cp < ∞ such that for any u ∈ E solution of divA∇u = 0,
‖∂νAu0‖p ≤ Cp‖∇u0‖p.

(2) There exists Cp′ < ∞ such that for any w ∈ E solution of divA∗∇w = 0,
‖∂νA∗w0‖Ẇ−1,p′ ≤ Cp′‖∇w0‖Ẇ−1,p′ .

Theorem 3.4. Let A(x) be a bounded measurable matrix with the stronger G̊arding
inequality (8). Let 1 < p < ∞. The following are equivalent.

(1) There exists Cp < ∞ such that for any u ∈ E solution of divA∇u = 0,
‖∇u0‖p ≤ Cp‖∂νAu0‖p.

(2) There exists Cp′ < ∞ such that for any w ∈ E solution of divA∗∇w = 0,
‖∇w0‖Ẇ−1,p′ ≤ Cp′‖∂νA∗w0‖Ẇ−1,p′ .

Some remarks are necessary. The tangential gradient and conormal derivative
at the boundary of an energy solution are distributions in Rn (in Ḣ−1/2). Thus,
finiteness of any of the norms above means that the distribution is identified with
an element in the considered space which is also embedded in the space of distribu-
tions. Theorem 3.3 concerns boundary inequalities needed for solving the regularity
problem for divA∇ in Lp and the Dirichlet problem for divA∗∇w = 0 in Lp′, or
rather a regularity problem in Ẇ−1,p′. For p = 2, this is akin to a result of [AR].
It can be compared with Theorem 3.1 of [HKMP2], stated only for t-independent
equations with De Giorgi condition and a restriction on p. In contrast, our result
here is independent of any kind of interior control on solutions besides the energy
estimate and this is why it holds for any p. The energy class is used here as an
existence and uniqueness class. Any other such class would do a similar job. The-
orem 3.4 is new and relates the Neumann problem for divA∇ in Lp to a Neumann
problem for divA∗∇ in Ẇ−1,p′, which has not been studied up to our knowledge. A
related statement appears in [R2] for p = 2.

Proof of Theorem 3.3. Assume (1) and let w ∈ E be a solution of divA∗∇w = 0.
Assume also ‖∇w0‖Ẇ−1,p′ < ∞ otherwise there is nothing to prove. By lemma 3.2
and the fact that for any c ∈ Cm, w+c is also a solution with same conormal deriva-
tive as w, we may assume ‖w0‖p′ < ∞. By Proposition 3.1, it is enough to estimate
〈∂νA∗w0, g〉 for any g ∈ C∞

0 (Rn ; Cm) with ‖∇g‖p ≤ 1. Let u ∈ E be the solution of
divA∇u = 0 with u0 = g (Lemma 2.3). By Lemma 2.1, 〈∂νA∗w0, g〉 = 〈w0, ∂νAu0〉.
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Now w0 ∈ Lp′ and by (1), ‖∂νAu0‖p ≤ Cp‖∇g‖p ≤ Cp. Hence, reinterpreting the last
bracket in the usual Lp′, Lp duality and using Hölder’s inequality, we obtain

|〈∂νA∗w0, g〉| ≤ ‖w0‖p′‖∂νAu0‖p ≤ Cp‖w0‖p′

and we conclude for (2).
Conversely assume (2) and let u ∈ E solution of divA∇u = 0. Assume also u0 ∈

Ẇ 1,p and ‖∇u0‖p < ∞ otherwise there is nothing to prove. It is enough to estimate
〈∂νAu0, g〉 for any g ∈ C∞

0 (Rn ; Cm) with ‖g‖p′ ≤ 1. Let w ∈ E be the solution of
divA∗∇w = 0 with w0 = g (Lemma 2.3). By Lemma 2.1, 〈∂νAu0, g〉 = 〈u0, ∂νA∗w0〉.

Now u0 ∈ Ẇ 1,p and, using (2) and Lemma 3.2, ‖∂νA∗w0‖Ẇ−1,p′ ≤ Cp′‖∇g‖Ẇ−1,p′ .

‖g‖p′ ≤ 1. Thus reinterpreting the last bracket in the Ẇ 1,p, Ẇ−1,p′ duality, we obtain

|〈∂νAu0, g〉| ≤ ‖u0‖Ẇ 1,p‖∂νA∗w0‖Ẇ−1,p′ . ‖∇u0‖p

and we conclude for (1) by density. �

Proof of Theorem 3.4. Assume (1) and let w ∈ E be a solution of divA∗∇w = 0.
Assume also ‖∂νA∗w0‖Ẇ−1,p′ < ∞ otherwise there is nothing to prove. By Propo-
sition 3.1 (in a vector-valued form), it is enough to estimate 〈∇w0, g〉 for any
g ∈ C∞

0 (Rn ; (Cm)n) with ‖g‖Ẇ 1,p = ‖∇g‖p ≤ 1. Let u ∈ E be a solution of
divA∇u = 0 with ∂νAu0 = −divg (Lemma 2.2). By Lemma 2.1, 〈∇w0, g〉 =
〈w0,−divg〉 = 〈∂νA∗w0, u0〉. By (1), ‖u0‖Ẇ 1,p ≤ Cp‖∂νAu0‖p ≤ Cp‖divg‖p . 1.

Hence, reinterpreting the last bracket in the Ẇ−1,p′, Ẇ 1,p duality we obtain

|〈∇w0, g〉| ≤ ‖∂νA∗w0‖Ẇ−1,p′‖u0‖Ẇ 1,p . ‖∂νA∗w0‖Ẇ−1,p′

and we conclude for (2).
Conversely, assume (2) and let u ∈ E solution of divA∇u = 0. Assume also

‖∂νAu0‖p < ∞ otherwise there is nothing to prove. It is enough to estimate 〈∇u0, g〉
for any g ∈ C∞

0 (Rn ; (Cm)n) with ‖g‖p′ ≤ 1. Let w ∈ E be a solution of divA∗∇w = 0
with ∂νA∗w0 = −divg (Lemma 2.2). By (2), any such w satisfies ‖∇w0‖Ẇ−1,p′ ≤
Cp′‖∂νA∗w0‖Ẇ−1,p′ ≤ Cp′‖divg‖Ẇ−1,p′ ≤ Cp′‖g‖p′ ≤ Cp′. By Lemma 3.2, there exists

c ∈ Cm such that w0 + c ∈ Lp′ with ‖w0 + c‖p′ . ‖∇w0‖Ẇ−1,p′ . Since w + c is
also a solution of the same problem, we may select w by imposing w0 ∈ Lp′ which
we do. By Lemma 2.1, 〈∇u0, g〉 = 〈u0,−divg〉 = 〈∂νAu0, w0〉. As w0 ∈ Lp′ and
‖∂νAu0‖p < ∞, it follows by reinterpreting the last bracket in the Lp, Lp′ duality
that

|〈∇u0, g〉| ≤ Cp′‖∂νAu0‖p‖w0‖p′ . ‖∂νAu0‖p

and we conclude for (1). �

A consequence of the proofs is the following self-improvement of each of the 4
boundary inequalities in the above statements.
We say that an energy solution of divA∇u = 0 has smooth Dirichlet data if

u0 ∈ C∞
0 (Rn;Cm) and has smooth Neumann data whenever ∂νAu0 ∈ C∞

0 (Rn;Cm)
(necessarily with mean value 0).

Theorem 3.5. Let A(x) be a bounded measurable matrix with the G̊arding inequality
(7). Let 1 < p < ∞. The following holds.

(i) If there exists Cp < ∞ such that for any energy solution u of divA∇u = 0
with smooth Dirichlet data, one has ‖∂νAu0‖p ≤ Cp‖∇u0‖p, then this holds
for any energy solution u of divA∇u = 0, possibly with a different constant.
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(ii) If there exists Cp < ∞ such that for any energy solution of divA∇u = 0 with
smooth Dirichlet data one has ‖∂νAu0‖Ẇ−1,p ≤ Cp‖∇u0‖Ẇ−1,p, then this holds
for any energy solution u of divA∇u = 0, possibly with a different constant.

Proof. For (i), we remark that to prove (1) implies (2) in Theorem 3.3, we use (1)
with smooth data. Thus the assumption of (i) implies (2) in Theorem 3.3 and we
conclude using the converse (2) implies (1) in the same theorem. The proof of (ii)
is similar starting from (2) for A and p instead of A∗ and p′ in Theorem 3.3. �

For Neumann problems we have,

Theorem 3.6. Let A(x) be a bounded measurable matrix with the stronger G̊arding
inequality (8). Let 1 < p < ∞. The following holds.

(i) If there exists Cp < ∞ such that for any energy solution u of divA∇u = 0,
with smooth Neumann data one has ‖∇u0‖p ≤ Cp‖∂νAu0‖p, then this holds
for any energy solution u of divA∇u = 0, possibly with a different constant.

(ii) If there exists Cp < ∞ such that for any energy solution of divA∇u = 0
with smooth Neumann data one has ‖∇u0‖Ẇ−1,p ≤ Cp′‖∂νAu0‖Ẇ−1,p, then
this holds for any energy solution u of divA∇u = 0, possibly with a different
constant.

The proof is similar noting that we use smooth data of the form −divg in the
arguments. Details are left to the reader.

4. Rellich estimates: the case n
n+1

< p ≤ 1

Here, the duality equivalence is a subtle issue for p < 1 but remains for p = 1.
We prove this first. Then we consider the problem of extension from estimates on
atoms to global estimates.
Let Hp(Rn) denote the real Hardy space if n

n+1
< p ≤ 1. We have that Hp(Rn) are

distributions spaces and, in this range, C∞
0 (Rn) functions with mean value 0 form a

dense subspace. For n
n+1

< p ≤ 1, let Ḣ1,p(Rn) = {f ∈ S ′(Rn); ∂xi
f ∈ Hp(Rn), i =

1, . . . , n} with norm ‖f‖Ḣ1,p(Rn) = ‖∇f‖Hp(Rn;Cn). This is the homogeneous Hardy-

Sobolev space which has been studied in many places ([Str], [Mi], [ART], [BB],
[BG], [KS], [LMc]... ). In particular, elements in these spaces are known to be
locally integrable functions and C∞

0 (Rn) is a dense subspace.
Let us turn to recalling duality. For all of them, we use the standard hermitian

duality on functions, extended appropriately. Recall that if α = n(1/p − 1) ∈
[0, 1), the dual of Hp(Rn) is identified with Λ̇0(Rn) := BMO(Rn) is p = 1 and
with the homogeneous Hölder space Λ̇α(Rn) of those continuous functions such that
|u(x)− u(y)| ≤ C|x− y|α for all x, y ∈ Rn, the smallest C defining the semi-norm.
These spaces can also be seen within D′

0(R
n), the space of distributions modulo

constants, in which they are Banach. Recall also that H1(Rn) is the dual space of
VMO(Rn) (sometimes called CMO), the closure of C∞

0 (Rn) in BMO(Rn). The dual

of Ḣ1,p(Rn) is identified with Λ̇α−1(Rn) defined as the space of distributions divf ,
f ∈ Λ̇α−1(Rn), equipped with the quotient norm.

Let us call X = Hp(Rn;Cd) with d = m or mn indifferently. Let Y = Λ̇α be the
dual space and Y −1 = Λ̇α−1.
First we complete Theorems 3.3 and 3.4 by the following results.
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Theorem 4.1. Let A(x) be a bounded measurable matrix with the G̊arding inequality
(7). Let n

n+1
< p ≤ 1, 0 ≤ α = n(1

p
− 1) < 1, and X and Y −1 be the corresponding

boundary spaces. Then (1) implies (2), where

(1) There exists CX < ∞ such that for any u ∈ E solution of divA∇u = 0,
‖∂νAu0‖X ≤ CX‖∇u0‖X .

(2) There exists CY −1 < ∞ such that for any w ∈ E solution of divA∗∇w = 0,
‖∂νA∗w0‖Y −1 ≤ CY −1‖∇w0‖Y −1.

The converse holds in the case p = 1.

Theorem 4.2. Let A(x) be a bounded measurable matrix with the stronger G̊arding
inequality (8). Let n

n+1
< p ≤ 1, 0 ≤ α = n(1

p
− 1) < 1, and X and Y −1 be the

corresponding boundary spaces. Then (1) implies (2), where

(1) There exists CX < ∞ such that for any u ∈ E solution of divA∇u = 0,
‖∇u0‖X ≤ CX‖∂νAu0‖X .

(2) There exists CY −1 < ∞ such that for any w ∈ E solution of divA∗∇w = 0,
‖∇w0‖Y −1 ≤ CY −1‖∂νA∗w0‖Y −1.

The converse holds if p = 1.

The proofs are mutatis mutandi the same as when 1 < p < ∞ using C∞
0 functions

with mean value 0 as test functions in Hp. The converses at p = 1 use the fact
that H1 is the dual space of VMO in which test functions are dense and also that
‖∇f‖BMO−1 ∼ ‖f‖BMO for f ∈ L1

loc. Details are left to the reader.
We now turn to the extension problem. Recall that a 2-atom for Hp(Rn) is a

function a ∈ L2(Rn) such that

(1) the support of a is contained in a ball ∆(x0, r),
(2) ‖a‖2 ≤ r−n(1/p−1/2),
(3)

∫
a = 0.

A 2-atom for Hp(Rn) is smooth if it is C∞
0 (Rn). Set D0(R

n) the subspace of C∞
0 (Rn)

of functions with mean 0. For our purpose here, observe that 2-atoms for Hp(Rn)
are elements of Ḣ−1/2(Rn). In fact, if a is such a function, a classical result of
Nec̆as [N] asserts that there exists a function b ∈ W 1,2(Rn;Cn) (inhomogeneous
Sobolev space) with support in the ball supporting a such that a = divb on Rn.
Thus, if f ∈ Ḣ1/2(Rn), 〈a, f〉 = −〈b,∇f〉 and we remark that by interpolation

‖b‖Ḣ1/2(Rn,Cn) ≤ C(‖b‖2‖∇b‖2)
1/2 < ∞, while ∇f ∈ Ḣ−1/2(Rn;Cn).

Let

Hp
∇(R

n;Cn) = {g ∈ Hp(Rn;Cn); curl g = 0} = {∇f ; f ∈ Ḣ1,p(Rn)}

and D∇(R
n;Cn) := ∇(C∞

0 (Rn)). It is easy to see using Ḣ1,p spaces that D∇(R
n;Cn)

is dense in Hp
∇(R

n;Cn). As for the duality, one can see that the dual (for the same

duality as the other spaces) of Hp
∇(R

n;Cn) is Λ̇α
∇(R

n;Cn) identified as the subspace

of Λ̇α(Rn;Cn) with curl free elements. The identification is easy. For the duality, if
R = ∇(−∆)−1/2 is the array of Riesz transforms, then the self-adjoint operator RR∗

extends to a bounded projection from Hp(Rn;Cn) onto Hp
∇(R

n;Cn) and similarly

from Λ̇α(Rn;Cn) onto Λ̇α
∇(R

n;Cn). From here, the duality for the ranges of the
projection follows from that of the source spaces.
For Hp

∇(R
n;Cn), the 2-atoms in [LMc] for differential forms on Rn, identifying ∇

with the exterior derivative on functions, suit our needs. It was done for p = 1 there
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(Definition 6.1), but careful inspection shows it extends to n
n+1

< p ≤ 1 with the
following definition.

Definition 4.3. Let n
n+1

< p ≤ 1. A 2-atom for Hp
∇(R

n;Cn) is a function a ∈

L2(Rn;Cn) such that

(1) there exists b ∈ L2(Rn) such that a = ∇b in D′(Rn),
(2) the supports of a and b are contained in a ball ∆(x0, r),
(3) ‖a‖2 ≤ r−n(1/p−1/2),
(4) ‖b‖2 ≤ r1−n(1/p−1/2).

Note that 2-atoms for Hp
∇(R

n;Cn) are in particular 2-atoms for Hp(Rn;Cn) since
they satisfy

∫
a = 0. A 2-atom for Hp

∇(R
n;Cn) is smooth when b ∈ C∞(Rn).

It is easily seen from the definition that 2-atoms for Hp
∇(R

n;Cn) belong to the

space Ḣ
−1/2
∇ (Rn;Cn). We shall require the following result.

Proposition 4.4. (1) Let T be a linear operator defined on D0(R
n) such that

sup ‖Ta‖Hp
∇(Rn;Cn) < ∞, where the supremum is taken over all smooth 2-

atoms for Hp(Rn). Then T has a bounded extension from Hp(Rn) into
Hp

∇(R
n;Cn).

Suppose, in addition, that T was originally a bounded linear operator

from Ḣ−1/2(Rn) into Ḣ
−1/2
∇ (Rn;Cn). Then T and the above extension coin-

cide on Ḣ−1/2(Rn) ∩Hp(Rn).
(2) Let T be a linear operator defined on D∇(R

n;Cn) such that sup ‖Ta‖Hp(Rn) <
∞, where the supremum is taken over all smooth 2-atoms for Hp

∇(R
n;Cn).

Then T has a bounded extension from Hp
∇(R

n;Cn) into Hp(Rn).
Suppose, in addition, that T was originally a bounded linear operator

from Ḣ
−1/2
∇ (Rn;Cn) into Ḣ−1/2(Rn). Then T and the above extension coin-

cide on Ḣ
−1/2
∇ (Rn;Cn) ∩Hp

∇(R
n;Cn).

Of course the statement applies with Cm-valued functions instead of C-valued
functions.

Proof. The first part of (1) is a special case of Theorem 1.1 in [YZ]. For the second
part, we adapt a classical procedure found, for example as Proposition 4.2 of [MSV],

which is also reminiscent of the method of proof of Theorems 3.6 and 3.5. Call T̃ the

extension defined above. First if f ∈ Ḣ
1/2
∇ (Rn;Cn) ∩ Λ̇α

∇(R
n;Cn) and g ∈ D0(R

n),

〈g, T ∗f〉 = 〈Tg, f〉 = 〈T̃ g, f〉 = 〈g, T̃ ∗f〉.

The first two brackets are interpreted in the Ḣ−1/2, Ḣ1/2 duality, then we use that
Tg = T̃ g as g can be seen as a multiple of a 2-atom for Hp(Rn). This allows us to

reinterpret the last two brackets in the Hp, Λ̇α duality. We conclude that T ∗f = T̃ ∗f

in D′
0(R

n), hence they both belong to Ḣ
1/2
∇ (Rn;Cn) ∩ Λ̇α

∇(R
n;Cn) and differ by a

constant. Next, let f ∈ D∇(R
n;Cn) (contained in both Ḣ

1/2
∇ (Rn;Cn), Λ̇α

∇(R
n;Cn)

and dense in the first) and g ∈ Ḣ−1/2(Rn) ∩Hp(Rn). Then

〈Tg, f〉 = 〈g, T ∗f〉 = 〈g, T̃ ∗f〉 = 〈T̃ g, f〉.

Here, the first two brackets are interpreted in the Ḣ−1/2, Ḣ1/2 duality. The second
can be reinterpreted in the Hp, Λ̇α duality. In the second equality, we then use
T ∗f = T̃ ∗f up to a constant, which is annihilated. In particular, we obtain that
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|〈T̃ g, f〉| ≤ ‖Tg‖Ḣ−1/2‖f‖Ḣ1/2. Thus, T̃ g ∈ Ḣ
−1/2
∇ (Rn;Cn) and we conclude that

T̃ g = Tg.
The proof of (2) is the same, once we make the following observation. The proof

of Theorem 1.1 in [YZ] depends only on having a Calderón reproducing formula
with smooth and compactly supported convolution kernels and the characterisation
of the Hardy space by the Lusin functional based on the kernels involved. Now,
the atomic decomposition of [LMc] is exactly obtained via the same strategy with
further algebraic constraints on the kernels to obtain the gradient form of the 2-
atoms. Thus the analysis in [YZ] applies and their Theorem 1.1 extends to our
situation. This provides us with the extension. The second part of the argument is
mutatis mutandi the same. �

We can now state the results we are after.

Theorem 4.5. Let A(x) be a bounded measurable matrix with the G̊arding inequality
(7). Let n

n+1
< p ≤ 1. If sup ‖∂νAu0‖Hp(Rn;Cm) ≤ Cp taken over all energy solutions

u of divA∇u = 0 with (smooth) 2-atoms for Hp
∇(R

n; (Cm)n) as regularity data, then
‖∂νAu0‖Hp(Rn;Cm) ≤ Cp‖∇u0‖Hp

∇(Rn;(Cm)n) for any energy solution u of divA∇u = 0,
possibly with a different constant.

Theorem 4.6. Let A(x) be a bounded measurable matrix with the stronger G̊arding
inequality (8). Let n

n+1
< p ≤ 1. If sup ‖∇u0‖Hp

∇(Rn;(Cm)n) ≤ Cp taken over all energy

solutions u of divA∇u = 0 with (smooth) 2-atoms for Hp(Rn;Cm) as Neumann
data, then ‖∇u0‖Hp

∇(Rn;(Cm)n) ≤ Cp‖∂νAu0‖Hp(Rn;Cm) for any energy solution u of
divA∇u = 0, possibly with a different constant.

The proof of the first theorem follows on applying (2) of the above proposition to
the Dirichlet to Neumann operator ΓDN and of the second on applying (1) of the
above proposition to the Neumann to Dirichlet operator ΓND.

5. Fundamental solutions

Assuming the De Giorgi condition for the operators divA∇ and divA∗∇ in R1+n,
these operators have fundamental solutions which have the expected estimates. It
is convenient to state the relevant statements and references. We use the notation
of section 2 for points and balls in R1+n.
Consider an elliptic system divA∇ in R1+n, with bounded measurable matrix A(x)

depending on all variables. Ellipticity is taken in the sense the G̊arding inequality

(17)

∫

R1+n

Re(A(x)∇g(x) · ∇g(x)) dx ≥ λ
n∑

i=0

m∑

α=1

∫

R1+n

|∂ig
α(x)|2dx,

for all g ∈ Ḣ1(R1+n;Cm) and some λ > 0. We say that divA∇ satisfies the De
Giorgi condition if

(18)

∫

B(x,r)

|∇u|2 . (r/R)n−1+2µ

∫

B(x,R)

|∇u|2

holds for all weak solutions u to divA∇u = 0 in B(x, 2R) ⊂ R1+n and all x ∈ R1+n

and 0 < r < R, for some µ ∈ (0, 1]. It is known that (18) is equivalent to the Hölder
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estimate of Nash

(19) ess supy,z∈B(x,R),y 6=z

|u(y)− u(z)|

|y− z|α
. R−α−(1+n)/2

(∫

B(x,2R)

|u|2
)1/2

whenever u is a weak solution to divA∇u = 0 in B(x, 3R) ⊂ R1+n, for any x ∈ R1+n

and 0 < r < R, for some α ∈ (0, 1]. Furthermore, the upper bounds of µ’s in (18)
and α’s in (19) are equal, which we set µA

DG and call the De Giorgi exponent of
divA∇.
De Giorgi’s theorem [DeG] states that (18), or equivalently (19) of Nash [Na],

holds for all divergence form equations (m = 1) divA∇u = 0 when A is real. It also
holds for any system if dimension 1 + n = 2 [Mor]. [AAAHK], Section 11, shows it
is also the case in dimension 1+n = 3 (the argument presented for equations, works
for our systems as it relies on Meyers’ [Me] and Caccioppoli estimates which holds
for such systems) when, in addition, A has t-independent coefficients. Finally, in
[A], it is shown that (18) is a stable property under L∞ perturbations of A (again,
this is shown for equations but it holds for our systems).
Estimates (18) and (19) also imply the Moser local boundedness estimate [Mo]

(20) ess supy∈B(x,R)|u(y)| . R−(1+n)/2

(∫

B(x,2R)

|u|2
)1/2

whenever divA∇u = 0 in B(x, 3R) ⊂ R1+n for all x ∈ R1+n and 0 < R < ∞. We
refer to [HK, Sec. 2] for details.

Proposition 5.1. Let n+1 ≥ 2 and assume that divA∇ and divA∗∇ satisfy the De
Giorgi condition or equivalently, the Nash local regularity condition. Then divA∇
and divA∗∇ have a fundamental solution ΓA(x;y) = ΓA

y (x) ∈ W 1,1
loc (R

1+n;L(Cm))

at pole y ∈ R1+n and ΓA∗
(y;x) = ΓA∗

x (y) ∈ W 1,1
loc (R

1+n;L(Cm)) at pole x ∈ R1+n

(ie, divxA(x)∇xΓ
A
y (x) = δy(x) and divyA

∗(y)∇yΓ
A∗
x (y) = δx(y)) with for some

0 < µ < inf(µA
DG, µ

A∗

DG),

(21) |ΓA(x;y)| . |x− y|1−n, if 1 + n ≥ 3, and . 1 + | ln |x− y|| if 1 + n = 2,

(22) |ΓA(x;y)− ΓA(x;y′)| .

(
|y − y′|

|x− y|

)µ

|x− y|1−n, if |y− y′| ≤ |x− y|/2,

and

(23)

∫

B(z,ρ)

|∇yΓ
A∗

(y;x)|2 dy ≤ C
ρn−1+2µ

|x− z|2n−2+2µ
if ρ > 0 and |x− z| ≥ 2ρ,

and symmetrically by exchanging the roles of ΓA and ΓA∗
.

Proof. This result is in [R1], Theorem 1.2. Note that this result is stated slightly
differently there but all what is used is the De Giorgi condition. Note also that the
estimate (22) is stated with an extra multiplicative log factor when 1 + n = 2, but
the proof there does give what we state. �

Remark 5.2. 1) If ρ ∼ |x − z|/2, then the right hand side of (23), |x − z|1−n,
is obtained during the construction. The gain µ comes from use of the De Giorgi
condition (18) with the balls B(z, ρ) ⊂ B(z, |z− x|/2).
2) Assume 1+n ≥ 3. There is a previous construction in [HK] under the stronger

pointwise ellipticity assumption on A. But examination shows that only (17) is



RELLICH ESTIMATES AND SOLVABILITY 17

required. More estimates are obtained there. These are the only ones we need here.
In particular, uniqueness of the fundamental solution is proved together with the
symmetry relation ΓA∗

(y;x) = ΓA(x;y)
∗
, where the latter is the hermitian adjoint

of ΓA(x;y) as an m×m matrix.
3) Assume 1+n = 2. The first construction for complex coefficients is in [AMcT]

for scalar operators (m = 1). An analogous estimate was obtained in [DoK], Theo-
rem 2.21, for systems but was only carried out explicitly assuming strong ellipticity.
See also [CDoK]. [B, Chapter 4] used the construction in [AMcT] and showed
uniqueness and also that it is possible to choose the constant of integration in such
a way the symmetry relation holds. This construction extends mutatis mutandi to
systems and does give the above estimates, with possible exception of uniqueness as
the argument relies on properties of harmonic functions.

6. Decay estimates for energy solutions

In this section, we consider without mention systems with A(x) bounded, measur-
able, non necessarily t-independent, with the stronger G̊arding inequality (8) and we
assume that the reflected matrix A♯ and its adjoint satisfy the De Giorgi condition
on R1+n.4 The number µ > 0 in the statements below will be any number less than
the De Giorgi exponents for A♯ and its adjoint.
This situation covers dimension 1+n = 2 or dimensions 1+n ≥ 3 with A close in

L∞ to a real and scalar matrix (for systems, scalar means diagonal). In particular
we cover the case of real equations. In this respect, our first result extends Lemma
4.9 of [HKMP1].

Lemma 6.1. Let x0 ∈ Rn, r > 0, and set x0 := (0, x0), B := B(x0, r), ∆ :=
∆(x0, r). Suppose that w ∈ L2

loc(R
1+n
+ \ B;Cm) with ∇w ∈ L2(R1+n

+ \ B; (Cm)1+n)

is a weak solution of divA∇w = 0 in R1+n
+ \ B, and that w|Rn\∆ ≡ 0. Then w

is (identified to) a bounded and continuous function on R1+n
+ \ 3B, and for some

constants C and µ > 0, depending only upon the assumption on A,

|w(x)| ≤ C
r

n+1

2
+µ−2

|x− x0|n−1+µ

(∫

Ω+

|w|2
)1/2

, |x− x0| ≥ 3r .

Here, Ω+ = 3B+ \ 2B+ and B+ = R1+n
+ ∩ B. In particular, w → 0 at infinity.

Proof. Let us drop the dependence on m in the notation to simplify the exposition.
First, the assumption w ∈ L2

loc(R
1+n
+ \ B) with ∇w ∈ L2(R1+n

+ \ B) implies that

w ∈ C([0,∞);L2
loc(R

n \ ∆)). See the argument in [AMcM]. In particular, the
equation w|Rn\∆ ≡ 0 holds in L2

loc. Set v = wχ where χ is a smooth real-valued

function supported on R1+n \ (11/5)B, which is 1 on R1+n \ (14/5)B with ‖χ‖∞ ≤ 1
and ‖∇χ‖∞ ≤ C/r. One has that v ∈ Ḣ1(R1+n

+ ), v|Rn ≡ 0 holds in L2
loc and

divA∇v = f + divg weakly in R1+n
+ , with f = A∇χ.∇w and g = A∇χw. Note that

‖g‖2 . r−1

(∫

Ω+

|w|2
)1/2

,

4This is a way of saying that A and its adjoint satisfy both interior and boundary De Giorgi
condition on the upper half-space. Some variants in the hypotheses are certainly possible here.
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the implicit constant depending on the L∞ bound for A and dimension. Also

‖f‖2 ≤ r−1

(∫

R1+n
+

∩((14/5)B\(11/5)B)

|∇w|2

)1/2

. r−2

(∫

Ω+

|w|2
)1/2

,

where the last inequality uses boundary and interior Caccioppoli inequalities.
One can represent v using the method of reflection. Let v♯, f ♯ be the odd extensions

of v, f and g♯ is the extension of g defined by g♯(y) = Ng(Ny), with N(t, y) =
(t, y)♯ = (−t, y). Remark that since f ♯ ∈ L2, with support in 3B and mean value
condition

∫
f ♯ = 0, then f ♯ ∈ Ḣ−1(R1+n) with ‖f ♯‖Ḣ−1(R1+n) . r‖f ♯‖2. Thus v♯ ∈

Ḣ1(R1+n) with divA♯∇v♯ = f ♯ + divg♯. As Ḣ1(R1+n) is a uniqueness class modulo
constants for this equation (since we have (17) for A♯), it follows that v♯ is the

unique odd (with respect to N) element in Ḣ1(R1+n) solving this equation. If v♯1 is

the unique odd solution obtained from f ♯ and v♯2 is the unique odd solution obtained

from −divg♯, one has v♯ = v♯1 − v♯2 (in L2
loc). Now using the fundamental solution

ΓA♯
, v♯1(x) and v♯2(x) have the respective integral representations for x ∈ R1+n away

from the supports of f ♯ and g♯,

v♯1(x) =

∫

R1+n

ΓA♯

(x;y)f ♯(y) dy,

v♯2(x) =

∫

R1+n

(∇yΓ
A♯

)(x;y)g♯(y) dy.

One can check that changing x to x♯ change the signs of both integrals. That is,
both integrals are odd with respect to N . It follows that v♯1 and v♯2 agree with these
integrals in L2

loc away of the supports of f ♯ and g♯. Next, restricting to x ∈ R1+n
+ ,

still away from the supports of f and g, we can rewrite the integrals as

v♯1(x) =

∫

R1+n
+

(ΓA♯

(x;y)− ΓA♯

(x;y♯))f(y) dy,

v♯2(x) =

∫

R1+n
+

((∇yΓ
A♯

)(x;y)− (∇yΓ
A♯

)(x,y♯))g(y) dy.

We have shown that v is the difference of these 2 integrals in L2
loc away from the

supports of f and g. As they have the desired pointwise bounds using Proposition
5.1 applied with A♯, the conclusion follows from the fact that v = w on the range
where these pointwise inequalities hold. �

Lemma 6.2. Let f ∈ L2(Rn;Cm)∩Ḣ1/2(Rn;Cm) with compact support in the surface
ball ∆ = ∆(x0, r). Then the solution of divA∇u = 0 where u|t=0 = f given by
Lemma 2.3 is locally Hölder continuous on R1+n

+ , continuous up the boundary away
from B(x0, 3r), tends to 0 at ∞ and, has the estimate for some C, µ > 0,

|u(x)| ≤ C
r

n+1

2
+µ−1

|x− x0|n−1+µ
‖f‖Ḣ1/2(Rn;Cm), |x− x0| ≥ 3r .

Proof. By Remark 2.5, one can change
( ∫

Ω+
|u|2
)1/2

by r
( ∫

Ω+
|∇u|2

)1/2
in the right

hand side of the estimate of Lemma 6.1. The latter is controlled by r‖f‖Ḣ1/2(Rn;Cm)

by the existence theory for energy solutions. �
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Here 3r is for convenience of the statements and can be changed to (1 + ε)r for
any ε > 0.
It is worth relating the above results to solutions constructed by harmonic mea-

sure, even if we do not use this estimate.

Lemma 6.3. Assume 1 + n ≥ 2 and A(x) has scalar and real (not necessarily t-
independent) coefficients and ellipticity is taken in the usual pointwise sense. Then
for all Lispchitz functions f with bounded support in a surface ball ∆(x0, r), the
solution u with boundary data f given by harmonic measure for divA∇ is an energy
solution. Hence it agrees with the solution given in Lemma 6.2. In particular, it has
further the estimate for any ρ > r

(24) |u(x)| ≤ C
rn+µ

|x− x0|n−1+µ
‖∇f‖∞, |x− x0| ≥ ρ,

so that u → 0 at infinity.

Proof. First notice that writing f = f+ − f−, the positive and negative parts both
satisfy the same assumptions as f . Hence we may assume f ≥ 0.
Let R > 2r and ΩR = R1+n

+ ∩ B(x0, R). Now let us recall the construction of the
solution given by harmonic measure on R1+n

+ taken from granted the construction
on bounded domains (See [Ke]). Let ωx

R be the harmonic measure for divA∇ on
ΩR at pole x. Hence x 7→ uR(x) =

∫
∂ΩR

f dωx
R is the unique continuous function

on ΩR, solution of the classical Dirichlet problem divA∇uR = 0 with u|∂ΩR
= f ,

where we have naturally extended f by 0 on ∂ΩR ∩ R1+n
+ . It is also an energy

solution on ΩR,
∫
ΩR

|∇uR(x)|
2 dx bounded by a uniform constant. Indeed, it is

constructed as uR = φR + F where F is a fixed Lipschitz extension of f and φR

solves divA∇φR = −divA∇F with φR ∈ W 1,2
0 (ΩR), so that the constant in the

energy inequality depend on the Lipschitz norm of f and the ellipticity constants of
A.
Using the maximum principle of Stampacchia and the positivity of f , we have

0 ≤ uR ≤ uR′ ≤ supRn f in ΩR when R < R′. Thus for any x ∈ R1+n
+ , uR(x) con-

verges to a finite number u(x) as R → ∞ (with u(0, ·) = f on Rn since uR(0, ·) = f
on ∆(x0, R) ). Already, this and the density of the space of compactly supported
Lipschitz continuous functions on Rn into the space of compactly supported continu-
ous functions imply that ωx

R|Rn converges weakly to a finite positive measure on Rn,
denoted ωx, and that u(x) =

∫
Rn f dωx. Also, by Harnack’s principle and Ascoli’s

theorem, uR (naturally extended by 0 outside ΩR) converges locally uniformly to u

on R1+n
+ . Next, this extension of uR is an element of Ḣ1(R1+n

+ ), form a bounded
family in that space. It easily follows that u is an energy solution of divA∇u = 0 in
R1+n

+ by a weak limit argument with u|t=0 = f . By uniqueness in Lemma 2.3, u is
the only one. The rest of the proof is left to the reader. �

We turn to decay estimates useful for Neumann solutions.

Lemma 6.4. Let u ∈ E be an energy solution of divA∇u = 0 whose conormal
derivative at the boundary is further integrable and supported in some boundary ball
∆(x0, r). After a suitable choice of the constant of integration, we have

|u(x)| ≤ C
rµ

|x− x0|
n−1+µ‖∂νAu|t=0‖1
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whenever |x− x0| ≥ 2r for some C depending on the assumptions on A, with x0 =
(0, x0). In particular, u → 0 at infinity in any direction.

Proof. Let α = ∂νAu|t=0. We assumed u belongs to the energy class, so it is de-
termined up to a constant. We shall select one in a moment. Using the reflection
principle, we see that the even extension of u across the boundary is a solution of
the equation

∫

R1+n

A♯∇u♯ · ∇φ dx = −2

∫

Rn

α(x)φ(0, x) dx = −2〈αδ|t=0, φ〉

for all φ ∈ C1
0(R

1+n;Cm) where A♯ is the reflected matrix of A (the − sign in
the formula comes from our convention for ∂νA). Observe that the bracket is

the Ḣ−1(R1+n;Cm), Ḣ1(R1+n;Cm) duality by seeing αδ|t=0 ∈ Ḣ−1(R1+n;Cm) from
trace theory. Let L♯ = divA♯∇ on R1+n. By invertibility of L♯ we have u♯ =

−2L♯−1
(αδ|t=0) in Ḣ1(R1+n;Cm), which means that the two agree up to a constant.

Under the assumption of the lemma, Proposition 5.1 applies to A♯ and let ΓA♯
be

the fundamental solution of divA♯∇. Using the fact that α ∈ L1 with support in
the surface ball ∆(x0, r), we have up to a constant for |x− x0| ≥ 2r,

2L♯−1
(αδ|t=0)(x) = 2

∫

Rn

ΓA♯

(x; 0, y)α(y) dy

as the integral converges from the size condition (21). We now choose the constant
of integration so as u♯(x) agrees with this integral when |x− x0| ≥ 2r. As α is the
conormal derivative of u and is integrable, we have necessarily

∫
α = 0. Thus

u♯(x) = −2

∫

Rn

(ΓA♯

(x; 0, y)− ΓA♯

(x; 0, x0))α(y) dy.

Then (22) readily gives the desired estimate using, in addition, the support of α. �

7. Short review of the first order formalism

In this section, we assume that the matrix A(x) is bounded, measurable, t-
independent (i.e., A(x) = A(x) when x = (t, x)) and satisfies the accretivity as-
sumption (10) on Rn. It is convenient to write A in a 2× 2 block form. Identifying
C(1+n)m = (Cm)1+n = Cm × (Cm)n, A(x) takes the form of a 2× 2 matrix

A(x) =

[
a(x) b(x)
c(x) d(x)

]
,

where a(x) ∈ L(Cm), etc... Call A the set of such 2× 2 block matrices A.
Following [AAMc] and [AA], one can characterize weak solutions u to the di-

vergence form equation (5), by replacing u by its conormal gradient ∇Au as the
unknown function. More precisely (5) for u is replaced by (26) for

F (t, x) = ∇Au(t, x) =

[
∂νAu(t, x)
∇xu(t, x)

]
,

and ∂νAu(t, x) := (A∇t,xu)⊥ denotes the upward conormal derivative of u, that
is the first component of A∇t,xu, consistently with earlier notation. Here we use

the notation v =

[
v⊥

v‖

]
for vectors in (Cm)1+n and v⊥ ∈ Cm is called the scalar
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part and v‖ ∈ (Cm)n the tangential part of v. For example, ∂tu = (∇t,xu)⊥ and
∇xu = (∇t,xu)‖.
We remark that there is the pointwise comparison |∇u| ∼ |∇Au|.

Proposition 7.1. The pointwise transformation

(25) A 7→ Â :=

[
1 0
c d

] [
a b
0 1

]−1

=

[
a−1 −a−1b
ca−1 d− ca−1b

]

is a self-inverse bijective transformation of the set of matrices in A.
For a pair of coefficient matrices A = B̂ and B = Â, the pointwise map ∇t,xu 7→

F = ∇Au gives a one-one correspondence, with inverse F 7→ ∇t,xu =

[
(BF )⊥
F‖

]
,

between gradients of weak solutions u ∈ H1
loc(R

1+n
+ ;Cm) to (5) and solutions F ∈

L2
loc(R

1+n
+ ; (Cm)1+n) of the generalized Cauchy–Riemann equations

(26) ∂tF +

[
0 divx

−∇x 0

]
BF = 0 and curlxF‖ = 0,

where the derivatives are taken in the R1+n
+ distributional sense.

This originates from [AAMc] and is proved in this generality in [AA]. Denote by
D the self-adjoint operator on H = L2(Rn; (Cm)1+n) defined by

D :=

[
0 divx

−∇x 0

]
with D(D) =

[
D(∇)
D(div)

]
.

The closure of the range of D is the set of F ∈ H such that curlxF‖ = 0, that is

R(D) = H0. It is shown in [AKMc] that the operators DB and BD with respective
domains B−1

D(D) and D(D) are bisectorial operators with bounded holomorphic
functional calculi on the closure of their range H0 and BH0 respectively. Observe
the similarity relation

(27) B(DB) = (BD)B on D(DB)

that allows to transfer functional properties between DB and BD. In particular, if
sgn(z) = 1 for Re z > 0 and −1 for Re z < 0, the operators sgn(DB) and sgn(BD)
are well-defined bounded involutions on H0 and BH0 respectively. One defines
the spectral spaces H0,±

DB = N(sgn(DB) ∓ I) and H0,±
BD = N(sgn(BD) ∓ I). They

topologically split H0 and BH0 respectively. The restriction of DB to the invariant
space H0,+

DB is sectorial of type less than π/2, hence it generates an analytic semi-
group e−tDB , t ≥ 0, on it. Similarly, the restriction of BD to the invariant space
H0,+

BD is sectorial of type less than π/2, hence it generates an analytic semi-group

e−tBD, t ≥ 0, on H0,+
BD.

Theorem 7.2. Let u ∈ H1
loc(R

1+n
+ ;Cm). The function u is a weak solution of

divA∇u = 0 with ‖Ñ∗(∇u)‖2 < ∞ if and only if there exists F0 ∈ H0,+
DB such

that ∇Au = e−tDBF0. Moreover, F0 is unique and ‖F0‖2 ≈ ‖Ñ∗(∇u)‖2. We set
∇Au|t=0 := F0.

The if part was obtained in [AAMc] and the only if part in [AA, Theorems 8.2].

Here Ñ∗(g) is the Kenig-Pipher modified non-tangential function where

Ñ∗(g)(x) := sup
t>0

t−(1+n)/2‖g‖L2(W (t,x)), x ∈ Rn,
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with W (t, x) := (c−1
0 t, c0t) × ∆(x, c1t), for some fixed constants c0 > 1, c1 > 0. A

remark is that the same proof shows when coefficients are t-independent that for the

equivalence to hold one could replace ‖Ñ∗(∇u)‖2 by supt>0(
1
t

∫ 2t

t
‖∇t,xu‖

2
2 ds)

1/2 or

the stronger supt>0 ‖∇t,xu‖2 or even the square function (
∫
R1+n
+

t|∂t∇t,xu|
2dtdx)1/2,

so that in the end all these quantities are a priori equivalent for weak solutions.
Let us pursue further the discussion by extending this to Sobolev spaces with

negative order. Say that u ∈ Es with s < 0 if
∫
R1+n
+

t−2s−1|∇t,xu|
2dtdx < ∞ while

u ∈ E0 if ‖Ñ∗(∇u)‖2 < ∞. With this notation E−1/2 = E .

Proposition 7.3. Let s ∈ [−1, 0).

(1) The operator DB|
R(D) can be extended to a bi-sectorial operator on the ho-

mogeneous Sobolev space Ḣs which is the closure of R(D) = Ḣ0 for the homo-
geneous Sobolev norm ‖(−∆)−s/2f‖2. This operator, which we keep writing

DB for simplicity, has a bounded holomorphic functional calculus on Ḣs. In
particular, the operators sgn(DB)∓I are well-defined projections on Ḣs and
their ranges Ḣs,±

DB form a splitting of Ḣs.
(2) Let u ∈ H1

loc(R
1+n
+ ). Then u is a weak solution of divA∇u = 0 in R1+n

+

with u ∈ Es if and only if there exists F0 ∈ Ḣs,+
DB such that ∇Au = e−tDBF0.

Moreover, F0 is unique and

‖F0‖Ḣs ≈

(∫

R1+n
+

t−2s−1|∇t,xu|
2dtdx

)1/2

.

We set ∇Au|t=0 := F0.

Here ∆ is the self-adjoint Laplacian acting componentwise on L2(Rn; (Cm)1+n).

It agrees with −D2 on R(D).

Proof. Item (1) is in Proposition 4.5 of [AMcM] where DB|
R(D) is called T there.

Item 2 for s = −1 is Corollary 4.5 of [AMcM], for s = −1/2 is Proposition 4.7 of
[AMcM]. The other cases are treated in [R2]. �

Remark 7.4. We have introduced a notion of conormal gradient at the boundary
∇Au|t=0 for solutions in Es. Strictly speaking this notion depends on s as well and in
particular for s = −1/2, we recover the notions already defined for energy solutions.
What allows us not to distinguish s in the notation is that it is a consistent notion
for two different values of s. More precisely, if u ∈ Es ∩ Es′ with s, s′ ∈ [−1, 0], then

the convergence of ∇Au(t, ·) as t → 0 is both in Ḣs and Ḣs′ , hence the limits agree
in the space of distributions.

8. Boundary layer operators

In this section, we assume that A is bounded measurable t-independent matrix
which is strictly accretive on H0, that is satisfying (10).
It has been proved recently in [R1] using the functional calculi for DB and BD

that the classical single and double layer operators for divA∇, ∇St and Dt, can be
defined as L2 bounded operators, uniformly with respect to t > 0, with limits at
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t = 0. More precisely, for t > 0, define ∇ASt and Dt for h ∈ L2(Rn;Cm) by

(28) (∇ASth)(x) :=

(
e−tDBX+(DB)

[
h
0

])
(x)

and

(29) (Dth)(x) := −

(
e−tBDX+(BD)

[
h
0

])

⊥

(x),

where X+(z) = 1 if Re z > 0 and 0 if Re z < 0 so that X+(z) = 1
2
(sgn(z) + 1).

Remark that at this general level, there is an abuse of language as the operator St

is not defined (although it will in Ḣ1(Rn;Cm)), only ∇ASt is. It follows from the
bounded holomorphic functional calculus for DB and BD that the right hand sides
are L2-bounded operators and have strong limits when t → 0.

Lemma 8.1. Whenever h ∈ W 1,2(Rn;Cm),

(30) ∇ADth = −e−tDBX+(DB)

[
0
∇h

]
.

Proof. From the calculations in [AA], we have

∇A

(
e−tBDX+(BD)

[
h
0

])

⊥

= −De−tBDX+(BD)

[
h
0

]

= −De−tBDX+(BD)

[
h
0

]

= −e−tDBX+(DB)D

[
h
0

]

= +e−tDBX+(DB)

[
0
∇h

]
.

�

The right-hand side in (30) makes sense for any distribution h such that ∇h ∈
L2(Rn; (Cm)n), that is, h ∈ Ẇ 1,2(Rn;Cm).

Lemma 8.2 (Boundary layer representation). Assume that u ∈ E0, i.e., ‖Ñ∗(∇u)‖2 <
∞. Then

∇Au(t, ·) = ∇ASt(∂νAu|t=0)−∇ADt(u|t=0)

where ∇ADt(u|t=0) is interpreted as the right hand side of (30). The equality holds
in E0 ∩ C([0,+∞); Ḣ0,+

DB).

Proof. Using Theorem 7.2, if ‖Ñ∗(∇u)‖2 < ∞ then ∇Au = e−tDBF0, with F0 ∈ H0,+
DB

and F0 = ∇Au|t=0. As X+(DB) is a projection on H0,+
DB, we have X+(DB)F = F
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when F ∈ H0,+
DB, so that

∇Au = e−tDB

[
∂νAu|t=0

∇xu|t=0

]

= e−tDBX+(DB)

[
∂νAu|t=0

∇xu|t=0

]

= e−tDBX+(DB)

[
∂νAu|t=0

0

]
+ e−tDBX+(DB)

[
0

∇xu|t=0

]

= ∇ASt(∂νAu|t=0)−∇ADt(u|t=0).

�

Remark 8.3. If one can make sense of both St(∂νAu|t=0) and Dt(u|t=0) as distribu-
tions and fixing the constants of integration, one has the representation

u = St(∂νAu|t=0)−Dt(u|t=0).
5

This, of course, is the classical formula obtained from Green’s theorem if one can
write St and Dt in integral form using the fundamental solution of L∗. We come to
this below.

Corollary 8.4 (Generalized boundary layer representation). Let s ∈ [−1, 0], and
u ∈ Es be a weak solution of Lu = 0 in R1+n

+ . Then

∇Au(t, ·) = ∇ASt(∂νAu|t=0)−∇ADt(u|t=0)

where∇ADt(u|t=0) is interpreted as the right hand side of (30) with ∇h ∈ Ḣs
∇(R

n; (Cm)n)
and ∇Au|t=0 = F0 given by Theorem 7.2 for s = 0 and Proposition 7.3 for s < 0.

The equality holds in Es ∩ C([0,+∞); Ḣs,+
DB).

Proof. For s = 0, this is Lemma 8.2. For s < 0, using the extension of functional
calculus ofDB|

R(D) on Ḣs in Proposition 7.3, one defines ∇ASt on the scalar Sobolev

space Ḣs(Rn;Cm) and ∇ADt by (30) with ∇h ∈ Ḣs
∇(R

n; (Cm)n). The proof is now
the same as for s = 0. �

Remark 8.5. Let Lu = 0 with u ∈ Es and s < 0. We know that the semigroup
equation ∇Au(t, ·) = e−tDB ∇Au(0, ·) holds in C([0,+∞); Ḣs,+

DB). Thus for all ε > 0
and t > 0, ∇Au(t + ε, ·) = e−tDB∇Au(ε, ·). From

∫
R1+n
+

t−2s−1|∇t,xu|
2dtdx < ∞,

for almost every ε > 0, ∇Au(ε, ·) ∈ L2(Rn; (Cm)1+n), hence to ∇Au(ε, ·) ∈ R(D)
as any L2-conormal gradient. Set uε(t, x) = u(t + ε, x). By Theorem 7.2, the

semigroup equation implies that uε ∈ E0, that is ‖Ñ∗(∇Auε)‖2 < ∞ and ∇Auε ∈
C([0,∞); Ḣ0,+

DB). An easy argument shows that this must hold for all ε > 0. In
particular, the generalized boundary layer representation in the statement above
holds in C((0,∞);L2(Rn, (Cm)1+n) (not at the boundary t = 0) as well, and even
in C∞((0,∞);L2(Rn, (Cm)1+n) by semigroup theory. Thus there is instantaneous
regularisation of solutions in the upper half-space.

5Since we have upward convention for conormal derivatives and fundamental solutions for divA∇
(usually it is taken for −divA∇), we obtain the same sign rule as in the usual Green’s formula,
due to the cancellation of two minus signs. Had we been working in the lower-half space though,
the upward normal is the outward normal and the sign rule would be opposite.
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Proposition 8.6 ([R1]). Let A be as in the beginning of this section. Assume further
that divA∇ and divA∗∇ satisfy the De Giorgi condition or equivalently, the Nash
local regularity condition. Let ΓA and ΓA∗

be the fundamental solutions constructed
in Proposition 5.1.

i) For t ∈ R, t 6= 0, let Dt be the operator given by the double layer integral
(when it converges for suitable h)

Dth(x) =

∫

Rn

〈h(y), ∂νA∗Γ
A∗

(s, y; t, x)|s=0〉 dy(31)

=

∫

Rn

〈h(y), (A∗(y)∇s,yΓ
A∗

(0, y; t, x))⊥〉 dy, t > 0, x ∈ Rn.

Here, 〈 , 〉 stands for the canonical complex inner product on Cm. Then, the
abstract operator Dt agrees with the usual double layer potential in the sense
that one has for h ∈ L2(Rn;Cm) with compact support and t > 0, Dth = Dth
and thus showing that Dt extends to a bounded map on L2(Rn;Cm), uniformly
in t > 0, with strong limit as t → 0.

ii) For t ∈ R, t 6= 0, let St be the operator defined by the single layer integral
(when it converges for suitable h)

(32) Sth(x) =

∫

Rn

ΓA(t, x; 0, y)h(y) dy.

Then for h ∈ L2(Rn;Cm) with compact support and t > 0, ∇ASth = ∇ASth,
thus allowing to define Sth(x) by the single layer integral Sth(x) and showing
that St extends to a bounded map, uniformly in t, from L2(Rn;Cm) into
Ẇ 1,2(Rn;Cm), with strong limit as t → 0.

We next recall estimates on the layer potentials.

Lemma 8.7. Let A be as in the beginning of this section and assume that divA∇
and divA∗∇ satisfy the De Giorgi condition or equivalently, the Nash local regularity
condition. Then

(1) The single layer operator St maps Lp(Rn;Cm) to Ẇ 1,p(Rn;Cm) for 1 < p ≤ 2
uniformly in t > 0, and converges when t → 0 for the weak operator topology.

(2) The single layer operator St maps Ẇ−1,p(Rn;Cm) to Lp(Rn;Cm) for 2 ≤ p <
∞ uniformly in t > 0, and converges when t → 0 for the weak operator
topology.

(3) The double layer operator is bounded on Lp(Rn;Cm) for 2 ≤ p < ∞, uni-
formly in t > 0, and converges when t → 0 for the weak operator topology.

Proof. The proof of (1) and (3) is given for equations and 1+n ≥ 3 in [HMiMo], but
the arguments using the De Giorgi conditions are applicable here. We skip details.
(2) is the dual statement of (1) as the adjoint of the single layer for A is the single
layer for A∗ and we use De Giorgi condition for both. �

The next result was observed in a special case as part of the proof of Theorem
5.35 in [HKMP2]. It receives a much simpler proof here.

Corollary 8.8. Let A be as in the beginning of this section and assume that divA∇
and divA∗∇ satisfy the De Giorgi condition or equivalently, the Nash local regularity
condition. Let u be an energy solution to divA∇u = 0 in R1+n

+ . Assume that for
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some 2 ≤ p < ∞, u|t=0 ∈ Lp(Rn;Cm) and ∂νAu|t=0 ∈ Ẇ−1,p(Rn;Cm). Then the
abstract boundary layer representation

u(t, x) = St(∂νAu|t=0)(x)−Dt(u|t=0)(x)

holds for all t ≥ 0 in L2
loc(R

n;Cm). In particular, supt≥0 ‖u(t, ·)‖Lp(Rn;Cm) < ∞.

Proof. By Corollary 8.4, the equality holds up to a constant, that is

u(t, x) = St(∂νAu|t=0)(x)−Dt(u|t=0)(x) + c, t > 0,

in L2
loc(R

1+n
+ ;Cm), but also in L2

loc(R
n;Cm) for each t > 0 as p ≥ 2 and the right

hand side belongs to Lp(Rn;Cm) + Cm by the previous lemma and the left hand
side is in L2

loc(R
n;Cm). One can pass to the limit in t → 0, after testing against a

C∞
0 (Rn;Cm) function. For the right hand side, we use the previous lemma and for

the left hand side, this is because t → u(t, ·) is continuous at 0 in L2
loc(R

n;Cm) as u
is an energy solution. One obtains u|t=0(x) = S0(∂νAu|t=0)(x) − D0+(u|t=0)(x) + c.
As all the functions belong to Lp(Rn;Cm), we conclude that c = 0. �

Remark 8.9. The same statement holds for solutions in the classes Es for all s ∈
[−1, 0]. For s > −1, Es can be shown to imbed into C([0,∞);L2

loc(R
n;Cm)), so the

proof is the same. For s = −1, it follows from [AA] that any solution of divA∇u = 0
in the class E−1, that is with the square function bound

∫∫
t|∇u|2 dtdx < ∞, belongs

in fact to C([0,∞);L2(Rn;Cm)) +Cm ⊂ C([0,∞);L2
loc(R

n;Cm)). This is enough to
finish the argument. It can be shown that the boundary layer representation also
holds in the space of continuous functions valued in Lp(Rn;Cm) equipped with the
weak topology.

9. Interior non-tangential maximal estimates

We prove here the following a priori inequality.6 See the introduction for history
and differences in approach for this result.

Theorem 9.1. Let divA∇ be a uniformly elliptic system with A(x) measurable,
bounded, t-independent, complex coefficients on R1+n with the strict G̊arding inequal-
ity on H0, namely (10). Assume that divA∇ and divA∗∇ satisfy the De Giorgi con-
dition and call 0 < µDG the exponent that works for both. Then for all n

n+µDG
< p ≤ 2

and for any weak solution of Lu = 0 on the upper half-space R1+n
+ , 1+n ≥ 2, in any

of the classes Es, −1 ≤ s ≤ 0, we have

(33) ‖Ñ∗(∇u)‖p . ‖∂νAu|t=0‖Hp(Rn;Cm) + ‖∇xu|t=0‖Hp(Rn;(Cm)n),

where Hp(Rn) denotes the real Hardy space if p ≤ 1 and Lp(Rn) for p > 1.

Recall that for h ∈ L2(Rn;Cm) and t > 0,

∇ASth = e−tDBX+(DB)

[
h
0

]

and for h ∈ W 1,2(Rn;Cm) and t > 0,

∇ADth = −e−tDBX+(DB)

[
0
∇h

]
.

6This inequality will be proved in larger generality in [AS] with a different argument.
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Remark that ∇ means here the tangential gradient ∇x, while ∇A still means the
full conormal gradient. Recall also that the size of the full conormal gradient is
pointwise comparable to that of the full gradient ∇t,x.

It is convenient to set Hp
∇(R

n; (Cm)n) = ∇Ẇ 1,p(Rn;Cm) (or again, those Lp curl-
free functions) for p > 1 (for p ≤ 1 it was defined in Section 4) and to define the
operator Vt on H2

∇(R
n; (Cm)n) by

Vtg = −e−tDBX+(DB)

[
0
g

]

for any g ∈ Ḣ2
∇(R

n; (Cm)n).
Theorem 9.1 follows immediately from the next a priori boundedness result, to-

gether with Proposition 8.4.

Theorem 9.2. Let L be as in Theorem 9.1. Then for n
n+µDG

< p ≤ 2,

(34) ‖Ñ∗(∇ASth)‖p . ‖h‖Hp(Rn;Cm)

(35) ‖Ñ∗(Vtg)‖p . ‖g‖Hp
∇(Rn;(Cm)n)

This means that there is a linear extension of the map h 7→ (∇ASth)t>0 defined on
L2(Rn;Cm) ∩ Hp(Rn;Cm) to Hp(Rn;Cm) with such an estimate, and of the map
g 7→ (Vtg)t>0 from H2

∇(R
n; (Cm)n) ∩ Hp

∇(R
n; (Cm)n) to all of Hp

∇(R
n; (Cm)n) with

such an estimate.

In particular, this yields

(36) ‖Ñ∗(∇ADth)‖p . ‖∇h‖Hp
∇(Rn;(Cm)n)

whenever h ∈ L2(Rn;Cm) and ∇h ∈ L2(Rn; (Cm)n) as well (in fact more general h
can be used provided one makes sense of the various objects).
We use the notation Np

2 (R
n) to denote the (quasi-)Banach space of all L2

loc(R
1+n
+ )

functions such that ‖Ñ∗(f)‖p < ∞, 0 < p < ∞. These spaces are further studied in
[HR]. See also [Hu] for a more systematic approach.
For this purpose, we use again the 2-atoms for Hp

∇(R
n;Cn) but in a slightly

different way.

Lemma 9.3. Let n
n+1

< p ≤ 1.

(1) Hp
∇(R

n;Cn) has the following atomic characterization: Let g ∈ D′(Rn;Cn).
Then g ∈ Hp

∇(R
n;Cn) if and only if g =

∑
λjaj in D′(Rn;Cn) with

∑
|λj|

p <
∞ and aj are 2-atoms for Hp

∇(R
n;Cn). Moreover, ‖g‖Hp

∇(Rn;Cn) ∼ inf ‖(λj)‖ℓp
with the infimum taken over all such decompositions.

(2) Hp
∇(R

n;Cn) ∩ H2
∇(R

n;Cn) is the subspace of Hp
∇(R

n;Cn) of those g having
an atomic decomposition with ‖g‖Hp

∇(Rn;Cn) ∼ ‖(λj)‖ℓp and which converges

also in H2
∇(R

n;Cn). It is dense in Hp
∇(R

n;Cn).

(3) A bounded linear operator T : H2
∇(R

n;Cn) → N2
2 (R

n) with sup ‖Ñ∗(Ta)‖p <
∞, where the supremum is taken over all 2-atoms for Hp

∇(R
n;Cn), extends

to a bounded map from Hq
∇(R

n;Cn) to N q
2 (R

n), for p ≤ q ≤ 2.
(4) A bounded linear operator T : Hr

∇(R
n;Cn) → N r

2 (R
n) for some 1 < r < 2

with sup ‖Ñ∗(Ta)‖p < ∞, where the supremum is taken over all 2-atoms
for Hp

∇(R
n;Cn), extends to a bounded map from Hq

∇(R
n;Cn) to N q

2 (R
n), for

p ≤ q ≤ r.
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All this extends straightforwardly to Hp
∇(R

n; (Cm)n) spaces.

Proof. The proof of (1) is done in [LMc] when p = 1. As already mentioned, the
method in [LMc] is to construct a Calderón reproducing formula that allows to see
that Hp

∇(R
n) is a retract of the tent space T p

2 of [CMS] : Hp
∇(R

n;Cn) is isomorphic to
closed and complemented subspace of T p

2 and one can use the atomic decomposition
of T p

2 which, given the particular form of the retract mappings in [LMc], gives (1).
Their method extends to the range n

n+1
< p ≤ 1 without difficulty. We skip details.

The proof of (2) is as follows. The retract mappings are of Littlewood-Paley
type with smooth and compactly supported convolution kernels with mean 0 so
they work simultaneously and boundedly for all n

n+1
< p < ∞. Denoting by S

the mapping from T p
2 to Hp

∇(R
n;Cn) of the retract diagram, we have S(T p

2 ∩ T 2
2 ) =

Hp
∇(R

n;Cn)∩H2
∇(R

n;Cn). Thus, it suffices to show that T p
2 ∩ T 2

2 is the subspace of
T p
2 of those elements having a T p

2 atomic decomposition that converges also in T 2
2 .

This fact is implicit in the proof of [AMcR, Theorem 4.9, step 3] for p = 1 and the
very same argument applies when p < 1. Again we skip details. A different and
explicit method is in [JY], Proposition 3.1. The density follows from the density of
T p
2 ∩ T 2

2 in T p
2 .

The proof of (3) is now simple using (2). To prove the boundedness at q = p,
choose an atomic decomposition

∑
λjaj for g ∈ Hp

∇(R
n;Cn) ∩ H2

∇(R
n;Cn) that

converges also in H2
∇(R

n;Cn). Then this convergence and boundedness of T imply

Tg =
∑

λjTaj and it follows that ‖Tg‖Np
2
(Rn) . ‖g‖Hp

∇(Rn;Cn) using sup ‖Ñ∗(Ta)‖p <
∞. It remains to extend by density. The boundedness when p < q < 2 follows by
interpolation. The spaces Hp

∇(R
n;Cn) for n

n+1
< p < ∞ interpolate by the retract

property and the interpolation property of the tent spaces ([CMS], [Be] and [CV]
for p < 1). The result follows by using real interpolation for the sublinear operator

g 7→ Ñ∗(Tg).
We finish with the proof of (4). Remark that 2-atoms for Hp

∇(R
n;Cn) are elements

of Hr
∇(R

n;Cn) as r < 2, so the statement is meaningful. It is enough to prove the
boundedness at q = p as interpolation takes care of the other values of q. Choose
an atomic decomposition

∑
λjaj for g ∈ Hp

∇(R
n;Cn) ∩H2

∇(R
n;Cn) that converges

also in H2
∇(R

n;Cn). Of course, one has also the convergence in Hp
∇(R

n;Cn). In-
terpolation implies that it converges also in Hr

∇(R
n;Cn). Thus Tg =

∑
λjTaj by

boundedness of T at exponent r and it follows that ‖Tg‖Np
2
(Rn) . ‖g‖Hp

∇(Rn;Cn) using

sup ‖Ñ∗(Ta)‖p < ∞. It remains to extend by density. �

Proof of Theorem 9.2. We prove (35). By lemma 9.3 it is enough to prove the bound
for 2-atoms for Hp

∇(R
n; (Cm)n) when n

n+µ
= p > p0 =

n
n+µ0

with 0 < µ0 < µDG. Fix

such a p. The argument follows a method of Kenig-Pipher [KP]. Let a = ∇b be a
2-atom for Hp

∇(R
n; (Cm)n), with a, b supported in a surface ball ∆(x0, r). We note

that in this case Vta = ∇ADtb as both a, b are L2 functions. As our techniques are
scale invariant, we assume that x0 = 0 and r = 1 to simplify the exposition. We let
∆k = ∆(0, 2k) and Ck = ∆k+1 \∆k for k ∈ N. We have

‖Ñ∗(∇ADtb)‖Lp(∆2) ≤ |∆2|
1/p−1/2‖Ñ∗(∇ADtb)‖L2(∆2)

≤ C‖∇b‖2|∆2|
1/p−1/2 ≤ C4n(1/p−1/2).



RELLICH ESTIMATES AND SOLVABILITY 29

It remains to show ‖Ñ∗(∇ADtb)‖L2(Ck) ≤ C2−k(n/2+µ0) = C2−k(n/p0−n/2) when

k ≥ 2, which implies ‖Ñ∗(∇ADtb)‖
p
Lp(Ck)

≤ C2−k(n/p0−n/p)p. Indeed, summing all

these estimates for k ≥ 1, yields ‖Ñ∗(∇ADtb)‖
p
p . 1.

Set u(t, x) = Dtb(x) be the solution of divA∇ for (t, x) ∈ R1+n away from the
support of b (identifying Rn with {0} × Rn) given by the double layer integral in
(31) (which will be shown to converge under the De Giorgi assumption on divA∇
and its adjoint). Under these assumptions, we know that u(t, x) = Dtb(x) for t > 0
(Proposition 8.6) where Dt is the abstract double layer operator. We claim that

(37) |u(t, x)| . |(t, x)|−n+1−µ0 , |(t, x)| ≥ 2.

Indeed, using (31), Proposition 2.1 in [AAAHK] for the solution (s, y) 7→ ΓA∗
(s, y; t, x)

for L∗ in (−2, 2)×∆(0, 2), as divA∗∇ is t-independent (this results extends mutatis
mutandi to systems), and then (23), we have

|u(t, x)| ≤ ‖A∗‖∞‖b‖2

(∫

∆(0,1)

|(∇s,yΓ
A∗

)(0, y; t, x)|2 dy

)1/2

.

(∫

∆(0,1)

∫ 1

−1

|(∇s,yΓ
A∗

)(s, y; t, x)|2 dsdy

)1/2

. |(t, x)|−n+1−µ0 .

Remark that a similar strategy gives (bad but finite) pointwise bounds for Dtb(x)
for (t, x) not in the support of b, showing that u is well-defined. As we shall see,
(37) is all we need to run the Kenig-Pipher method.
Fix k ≥ 2, x ∈ Ck. We estimate t−(1+n)

∫
W (t,x)

|∇u|2. If t ≥ 2k, by Caccioppoli

inequality and (37)

t−(1+n)

∫

W (t,x)

|∇Au|
2 ≤ Ct−(3+n)

∫

W̃ (t,x)

|u|2 . 2−2k(n+µ0),

with W̃ (t, x) a slightly enlarged version of W (t, x).
It remains to consider the case t < 2k. The argument of [KP], Lemma 8.10, p. 494,

yields the estimate for some C depending only on ellipticity and dimension,

sup
t<2k

t−(1+n)

∫

W (t,x)

|∇Au|
2 ≤ C sup

t≤(1+c0)2k ,x∈C̃k

|∂tu(t, x)|
2 +CM(|∇xu(0, ·)|

q1C̃k
)(x)2/q,

for some q < 2 (coming from usage of Poincaré inequalities in Rn), where M is the

Hardy-Littlewood maximal operator and C̃k is the union of all ∆(x, c1t) for x ∈ Ck

and t < 2k. Thus if c1 in the definition of W (t, x) is chosen small to start with,

C̃k is an annulus at distance proportional to 2k from the support of b of the form
c32

k ≤ |x| ≤ c42
k. As A is t-independent, we have that ∂tu is also a solution. Moser’s

local estimate (20), Caccioppoli inequality and (37) imply that

sup
t≤(1+c0)2k,x∈C̃k

|∂tu(t, x)|
2 . 2−k(n+1)

∫

Čk

∫ (1+c0)2k+1/2

−(1+c0)2k+1/2

|∂tu(t, x)|
2 dtdx

. 2−k(n+3)

∫

Čk

∫ (1+c0)2k+1

−(1+c0)2k+1

|u(t, x)|2 dtdx

. 2−2k(n+µ0),



30 PASCAL AUSCHER AND MIHALIS MOURGOGLOU

where C̃k ( Čk ( Ĉk are annuli of the form |x| ∼ 2k.
For the last term, we have by the Hardy-Littlewood theorem,

‖M(|∇xu(0, ·)|
q1C̃k

)(x)2/q‖2L2(Ck)
≤ C

∫

C̃k

|∇xu(0, ·)|
2 dx,

and since u is a weak solution of L away from the support of b and A has t-
independent coefficients, we have by Proposition 2.1 in [AAAHK] and then Cac-
cioppoli inequality

∫

C̃k

|∇xu(0, x)|
2 dx . 2−k

∫

C̃k

∫ 2k

−2k
|∇t,xu(t, x)|

2 dtdx

≤ 2−3k

∫

Čk

∫ 2k+1

−2k+1

|u(t, x)|2 dtdx

. 2−k(n+2µ0),

where Čk is again a slightly larger version of C̃k.

Gathering all the estimates we have obtained that ‖Ñ∗(∇ADtb)‖L2(Ck) ≤ C2−k(n/2+µ0)

as desired.
Let us present the proof for the single layer. By [MSV], Theorem 4.1, if p = 1,

and [YZ] if p ≤ 1, and interpolation, it is enough to prove the bound for 2-atoms
for Hp(Rn;Cm) for p as above.
Let a be a 2-atom for Hp(Rn;Cm), with a supported in a surface ball ∆(x0, r).

Again, we assume that x0 = 0 and r = 1 to simplify the exposition. We let ∆k =
∆(0, 2k) and Ck = ∆k+1 \∆k for k ∈ N. We have

‖Ñ∗(∇ASta)‖Lp(∆2) ≤ |∆2|
1/p−1/2‖Ñ∗(∇ASta)‖L2(B2)

≤ C‖a‖2|∆2|
1/p−1/2 ≤ C4n(1/p−1/2).

As above, it is enough to show for u(t, x) = Sta(x), which is is a weak solution of
divA∇ for (t, x) ∈ R1+n away from the support of a, the estimate

(38) |u(t, x)| . |(t, x)|−n+1−µ0, |(t, x)| ≥ 2.

Indeed, we know from Proposition 8.6 that ∇ASta = ∇ASta for t > 0. By the mean
value of a we can write

u(t, x) =

∫

∆(0,1)

(ΓA(t, x; 0, y)− ΓA(t, x; 0, 0))a(y) dy

and conclude using (22). �

10. Extrapolation of solvability for regularity and Neumann

problems

We are now ready to attack the extrapolation for solvability by gathering all pieces
of information obtained so far.
Let divA∇ be a uniformly complex elliptic system with A(x) measurable, bounded,

t-independent on R1+n with the strict G̊arding inequality on H0, namely (10).
In addition, assume that divA∇ and its adjoint satisfy the De Giorgi condition.

Consider the reflected matrix A♯. It is no longer with t-independent coefficients.
However, it is easy to see that it does satisfy the G̊arding inequality (17) on R1+n.
We also assume that the second order system with matrix A♯ and its adjoint satisfy
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the De Giorgi condition. We call µDG ∈ (0, 1] the best exponent that works for all
4 operators.
With these conditions, all results in prior sections apply. Again, this situation

covers dimension 1 + n = 2 or dimensions 1 + n ≥ 3 with A close in L∞ to a real
and scalar matrix.
Here is a fact we are going to use. Let n

n+1
< p ≤ 2. It is shown in [HMiMo]

(Lemma 6.1) that any weak solution u of divA∇u = 0 with ‖Ñ∗(∇Au)‖p < ∞ ad-
mits a conormal gradient at the boundary in Hp(Rn; (Cm)1+n) with ‖∇Au|t=0‖Hp .

‖Ñ∗(∇Au)‖p and that ∇Au(t, ·) converges in the sense of distributions to ∇Au|t=0 as
t → 0. The implicit constant depends only on the L∞ bound for A and dimension. In
particular, if u is also an energy solution, then the two notions of conormal gradients
at the boundary must coincide from the convergence in the sense of distributions.
As mentioned in the introduction, we shall restrict our attention to solvability

exponents not exceeding 2. See [HKMP2] for the Regularity problem for exponents
exceeding 2. See also the forthcoming [AS].

10.1. Regularity problem. Slightly modifying the original approach of [KP], we
say that the Regularity problem (Rp

A) is solvable if there exists Cp < ∞ such that

for any f ∈ Hp
∇(R

n; (Cm)n)∩Ḣ
−1/2
∇ (Rn; (Cm)n) the energy solution u of divA∇u = 0

with regularity data ∇xu|t=0 = f satisfies

‖Ñ∗(∇Au)‖p ≤ Cp‖f‖Hp
∇(Rn;(Cm)n).

There is a difference between solvability and well-posedness in the class where

‖Ñ∗(∇Au)‖p < ∞ given the data f . See the discussion in [HKMP2] about unique-
ness. Axelsson [Ax] also showed by an explicit example for a real equation in di-
mension 1 + n = 2 that there might be solutions not in the energy class, even for
very smooth data, while the energy solution does not satisfy this bound.
Solvability implies well-posedness of the following restricted problem: given f ∈

Hp
∇(R

n; (Cm)n), there exists a unique solution u of divA∇u = 0 with ‖Ñ∗(∇Au)‖p ≤
Cp‖f‖Hp

∇(Rn;(Cm)n), ∇xu|t=0 = f and such that there exists a sequence of energy solu-

tions uk with ‖Ñ∗(∇Au−∇Auk)‖p → 0. The constant Cp is the one specified by solv-

ability assumption. This follows from density of Hp
∇(R

n; (Cm)n)∩ Ḣ
−1/2
∆ (Rn; (Cm)n)

in Hp
∇(R

n; (Cm)n). This fact, which is just a reformulation of the extension by
continuity for linear maps, is left to the reader.

Theorem 10.1. Assume that A is as specified at the beginning of the section with
µDG ∈ (0, 1]. Let pDG = n

n+µDG
. Let 1 < r ≤ 2. Assume that the Regularity problem

(Rr
A) is solvable. Then the Regularity problem (Rp

A) is solvable for pDG < p < r.

Corollary 10.2. This theorem applies to the following situations for A in addition
to having the assumption at the beginning of the section (t-independence, ellipticity
and De Giorgi conditions):

(1) A is constant plus t-independent L∞ perturbation
(2) A is hermitian plus t-independent L∞ perturbation
(3) A is block upper-triangular plus t-independent L∞ perturbation
(4) A real (non necessarily symmetric) and scalar plus t-independent L∞ pertur-

bation
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Proof. We know from [A] that De Giorgi assumption is stable under L∞ perturba-
tions. It suffices to show that (Rr

A) is solvable in the four items for some 1 < r ≤ 2.
From [AAMc], we also know that (R2

A) is stable under t-independent L∞ perturba-
tion of A and is verified for A constant or hermitian (for real symmetric scalar A,
this was done in [KP]), while [AMcM] proves (R2

A) for A block upper-triangular (the
block diagonal case is a direct consequence of [AHLMcT]). Hence, the first three
items satisfy (R2

A). The fourth item is shown on combining [KKPT, KR] and [B]
(who also shows (R1

A)) if n + 1 = 2 and [HKMP2] for n+ 1 ≥ 3. �

Remark 10.3. The block upper-triangular case can be slightly relaxed. Instead of
the lower coefficient c to be 0, we may only assume divc = 0. See [AMcM, Remark
6.7].

Lemma 10.4. Let pDG < p ≤ 2. Then (Rp
A) is solvable if and only if there exists

Cp < ∞ such that for any u ∈ E solution of divA∇u = 0,

(39) ‖∂νAu|t=0‖Hp(Rn;Cm) ≤ Cp‖∇xu|t=0‖Hp
∇(Rn;(Cm)n).

Proof. Let u be the energy solution with regularity data f = ∇xu|t=0. Let α =

∂νAu|t=0. The solvability of (R
p
A), together with ‖∇Au|t=0‖Hp(Rn;(Cm)1+n) . ‖Ñ∗(∇Au)‖p,

implies the desired inequality. Conversely, assuming this estimate for any energy so-

lution, we can use Theorem 9.1 to conclude that ‖Ñ∗(∇Au)‖p . Cp‖∇xu|t=0‖Hp
∇(Rn;(Cm)n),

hence (Rp
A) is solvable. �

Proof of Theorem 10.1. Let us begin with the case pDG < p ≤ 1. By Lemma 10.4
and Theorem 4.5, it suffices to show that if a is a 2-atom for Hp

∇(R
n; (Cm)n), then

we obtain a uniform estimate ‖α‖Hp(Rn;Cm) ≤ C where α is the conormal derivative
of the energy solution u produced by the Dirichlet datum b with a = ∇b as in the
definition of 2-atoms for Hp

∇(R
n;Cm). By scale invariance of our assumptions, we

assume that a and b are supported in the surface ball ∆(0, 1). We shall show that
α is a r-molecule for Hp(Rn;Cm) (see below) with bound independent of a. Hence
there is a constant C independent of a such that ‖α‖Hp(Rn;Cm) ≤ C as desired.
We now prove the r-molecule property for α. As in the proof of Theorem 9.2, set

∆k = ∆(0, 2k) and Ck = ∆k+1 \∆k for k ∈ N. It suffices to show that ‖α‖Lr(∆2) . 1

and that ‖α‖Lr(Ck) . 2−kµ2−nk/r′ for some 0 < µ < µDG with p > n
n+µ

with r′

the conjugate exponent to r. Indeed, 2−kµ2−nk/r′ = 2−kε2−nk(1/p−1/r) for ε = −µ +
n(1/p− 1) > 0 which is the right decay for being in the Hardy space Hp. The local
estimate ‖α‖Lr(∆2) . 1 follows from the global bound ‖α‖r . ‖a‖r . ‖a‖2 . 1
(here we use that the support of a is contained in ∆0 = ∆(0, 1)). The main task
is therefore to obtain the decay on Ck. Note that Ck can be covered by boundedly
(in k) many surface balls ∆ with radius proportional to 2k and with distance to ∆0

proportional to 2k and with 4∆ ∩ ∆0 = ∅. Thus it is enough to work on one of
those. Let g ∈ C∞

0 (∆;Cm) with ‖g‖r′ ≤ 1. It suffices to estimate 〈α, g〉. Let w be
the energy solution of divA∗∇w = 0 on R1+n

+ with w|t=0 = g (Lemma 2.3). Using
Theorem 3.3, we deduce from (Rr

A) that

‖∂νA∗w|t=0‖Ẇ−1,r′ ≤ Cp′‖∇g‖Ẇ−1,r′ . ‖g‖r′ ≤ 1.
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We deduce from the representation of Corollary 8.8 that supt>0 ‖w(t, ·)‖r′ . 1. We
now invoke (15), which tells

|〈α, g〉| ≤ C2−2k

(∫

Ω+

|u|2
)1/2(∫

Ω+

|w|2
)1/2

,

with Ω+ contained in a box [0, c2k]× 3∆. Hölder’s inequality using r′ ≥ 2 yields

(∫

Ω+

|w|2
)1/2

≤ |Ω+|
1/2−1/r′

(∫ c2k

0

‖w(t, ·)‖r
′

)1/r′

. 2k/r
′

2(1+n)k(1/2−1/r′).

Now for u we use the decay estimate from Lemma 6.2 together with the observation
that ‖b‖Ḣ1/2 . (‖b‖2‖∇b‖2)

1/2 . 1, to get |u| ≤ 2−k(n−1+µ) on Ω+. Working out the
powers of 2k we obtain the desired bound for |〈α, g〉|.
We now continue with the case 1 < p < r. Another way to reformulate Lemma

10.4 is to say that the Dirichlet to Neumann operator satisfies ‖ΓDNf‖Hr(Rn;Cm) ≤

Cr‖f‖Hr
∇(Rn;(Cm)n) for all f ∈ Hr

∇(R
n; (Cm)n) ∩ Ḣ

−1/2
∇ (Rn; (Cm)n). Let Tr be the

continuous extension from Hr
∇(R

n; (Cm)n) into Hr(Rn;Cn). We just showed a uni-
form estimate for ‖ΓDNa‖H1(Rn;Cm) when a is a 2-atom for H1

∇(R
n;Cm), which are

elements in Hr
∇(R

n; (Cm)n) ∩ Ḣ
−1/2
∇ (Rn; (Cm)n). Hence Tra = ΓDNa. We can apply

the same interpolation procedure as for (4) of Proposition 9.3. Hence, for 1 < p < r,
we obtain Tr bounded from Hp

∇(R
n; (Cm)n) into Hp(Rn;Cm). In particular, we

obtain ‖ΓDNf‖Hp(Rn;Cm) ≤ Cp‖f‖Hp
∇(Rn;(Cm)n) for all f ∈ D∇(R

n; (Cm)n), that is

‖∂νAu|t=0‖Hp(Rn;Cm) ≤ Cp‖∇xu|t=0‖Hp
∇(Rn;(Cm)n) for all energy solutions with smooth

Dirichlet data. We conclude using (1) in Theorem 3.5 to waive the restriction on
the data and then Lemma 10.4 again. �

Remark 10.5. When p < 1, the solvability information is used to obtain the decay
for α but in a dual way, not on the solution u attached to α. Note that this argument
has the flavor of many of the different steps for Theorem 5.2 of [KP]. But the order
in which they are invoked is completely different trying to use a priori estimates as
much as possible. In particular, we avoid the localization technique there and the
recourse to solvability of dual Dirichlet problem per se. We only use available a
priori estimates. This last point will be important later.

10.2. Neumann problem. Slightly modifying the original approach of [KP], we
say that the Neumann problem (Np

A) is solvable if there exists Cp < ∞ such that

for any g ∈ Hp(Rn;Cm) ∩ Ḣ−1/2(Rn;Cm) the (modulo constants) energy solution u
of divA∇u = 0 with conormal derivative ∂νAu|t=0 = h satisfies

‖Ñ∗(∇Au)‖p ≤ Cp‖h‖Hp(Rn;Cm).

Here too, there is a difference between solvability and well-posedness in the class

where ‖Ñ∗(∇Au)‖p < ∞ given the data f . An explicit example for a real equation
in dimension 1+n = 2 in [Ax] shows that there might be solutions not in the energy
class, even for very smooth data, while the energy solution does not satisfy this
bound. Note that in 2 dimensions, Neumann and Regularity problems are the same
up to taking conjugates.
Solvability implies well-posedness of the following restricted problem: given h ∈

Hp(Rn;Cm), there exists a unique solution u of divA∇u = 0 with ‖Ñ∗(∇Au)‖p ≤
Cp‖h‖Hp

∇(Rn;(Cm)n), ∂νAu|t=0 = h and such that there exists a sequence of energy
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solutions uk with ‖Ñ∗(∇Au−∇Auk)‖p → 0. The constant Cp is the one specified by

solvability assumption. This follows from density of Hp(Rn;Cm) ∩ Ḣ−1/2(Rn;Cm)
in Hp(Rn;Cn). This fact is left to the reader.

Theorem 10.6. Assume that A is as specified at the beginning of the section with
µDG ∈ (0, 1]. Let pDG = n

n+µDG
. Let 1 < r ≤ 2. Assume that the Neumann problem

(N r
A) is solvable. Then the Neumann problem (Np

A) is solvable for pDG < p < r.

Corollary 10.7. This theorem applies to the following situations for A in addition
to having the assumption at the beginning of the section (t-independence, ellipticity
and De Giorgi conditions):

(1) A is constant plus t-independent L∞ perturbation
(2) A is hermitian plus t-independent L∞ perturbation
(3) A is block lower-triangular plus t-independent L∞ perturbation
(4) A real (non necessarily symmetric) and scalar if 1+n = 2 plus t-independent

L∞ perturbation

Proof. It suffices to show that (N r
A) is solvable in the four items for some 1 < r ≤ 2.

We know from[A] that De Giorgi assumption is stable under L∞ perturbations. From
[AAMc], we also know that (N2

A) is stable under t-independent L∞ perturbation of
A and is verified for A constant or hermitian (for real symmetric scalar A, this was
done in KP), while [AMcM] proves (N2

A) for A block upper-triangular (the block
diagonal case is a direct consequence of [AHLMcT]). Hence, the first three items
satisfy (N2

A). The fourth item is shown on combining [KR] and [B] (who also shows
(N1

A)) as n+ 1 = 2. �

We note that solvability of the Neumann problems for real (non-symmetric) equa-
tions is still open in dimensions 1 + n ≥ 3.

Lemma 10.8. Let pDG < p ≤ 2. Then (Np
A) is solvable if and only if there exists

Cp < ∞ such that for any u ∈ E solution of divA∇u = 0, ‖∇xu|t=0‖Hp(Rn;(Cm)n) ≤
Cp‖∂νAu|t=0‖Hp

∇(Rn;Cm).

Same proof as Lemma 10.4.

Proof of Theorem 10.6. The case 1 < p < r is exactly as in the proof of Theorem
10.1 once we have done the case pDG < p ≤ 1.
Let us assume pDG < p ≤ 1. By Lemma 10.4 and Theorem 4.5, it suffices to show if

a is a 2-atom forHp(Rn;Cn), then we obtain a uniform estimate ‖f‖Hp
∇(Rn;(Cm)n) ≤ C

where f is the tangential derivative of any energy solution u produced by the
Neumann datum a. By scale invariance of our assumptions, we assume that a
is supported in the surface ball ∆(0, 1). We shall show that f is a r-molecule for
Hp(Rn; (Cm)n) with bound independent of a. Hence there is a constant C indepen-
dent of a such that ‖f‖Hp(Rn;(Cm)n ≤ C as desired. Since f is of a gradient form, it
automatically fulfills the Hp

∇(R
n; (Cm)n) estimate.

We now prove the r-molecule property for f . As in the proof of of Theorem 9.2,
set ∆k = ∆(0, 2k) and Ck = ∆k+1 \∆k for k ∈ N. As before, it suffices to show that
‖f‖Lr(∆2) . 1 and that ‖f‖Lr(Ck) . 2−kµ2−nk/r′ for some 0 < µ < µDG with p > n

n+µ

with r′ the conjugate exponent to r. The local estimate ‖f‖Lr(∆2) . 1 follows from
the global bound ‖f‖r . ‖a‖r . ‖a‖2 . 1 (here we use that the support of a is
contained in ∆0 = ∆(0, 1)). The main task is therefore to obtain the decay on Ck.
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Again it is enough to work on a surface ball ∆ with radius proportional to 2k and with
distance to ∆0 proportional to 2

k and with 4∆∩∆0 = ∅. Let g ∈ C∞
0 (∆; (Cm)n) with

‖g‖r′ ≤ 1. It suffices to estimate 〈f, g〉. Write f = ∇xu|t=0 with u|t=0 being the still
unspecified Dirichlet data as we have not yet chosen the constant of integration. Let
w be one of the energy solutions of divA∗∇w = 0 on R1+n

+ with ∂νA∗w|t=0 = −divg
(Lemma 2.2). We have, therefore, 〈f, g〉 = 〈u|t=0, ∂νA∗w|t=0〉. Using Theorem 3.4,
we deduce from (N r

A) that

‖∇xw|t=0‖Ẇ−1,r′ ≤ Cr′‖ − divg‖Ẇ−1,r′ ∼ ‖g‖r′ ≤ 1.

Using Lemma 3.2, we now choose w so that w|t=0 ∈ Lr′ . We can deduce from the
boundary layer representation of Corollary 8.8 that supt>0 ‖w(t, ·)‖r′ . 1. Next,
invoke (16), which tells

|〈u|t=0, ∂νA∗w|t=0〉| ≤ C2−2k

(∫

Ω+

|u|2
)1/2(∫

Ω+

|w|2
)1/2

,

with Ω+ contained in a box [0, c2k]× 3∆. Hölder’s inequality using r′ ≥ 2 yields

(∫

Ω+

|w|2
)1/2

≤ |Ω+|
1/2−1/r′

(∫ c2k

0

‖w(t, ·)‖r
′

)1/r′

. 2k/r
′

2(1+n)k(1/2−1/r′).

Remark that we have not yet specified the constant of integration for u. We choose
it now so as to use the decay estimate from Lemma 6.4 to get |u| ≤ 2−k(n−1+µ) on
Ω+ since ‖a‖1 . 1. Working out the powers of 2k we obtain the desired bound for
|〈f, g〉|. �

Remark 10.9. In the block lower-triangular case, when the upper coefficient b to
be 0, or equivalently that the conormal vector field is proportional to the transversal
vector field, one can obtain an L2-molecular decay for the tangential gradient by
a direct integration by parts which does not use at all the initial L2 solvability
information. This one is only used for the local estimate. This means that the
difficulty in the study of Neumann problems lies in the upper coefficient of A. It
remains to understand its exact role when it is not 0 or when A is not hermitian in
dimensions 1 + n ≥ 3.

11. Extrapolation of solvability for Dirichlet problems and other

Neumann problems

We gather in this section the needed results to prove extrapolation of Dirichlet
problems and of a new type of problems, namely Neumann problems with data in
negative Sobolev spaces.
It is convenient to introduce the following correspondences of spaces to be read

line by line.

exponents Y Y −1 T X1 X

1 < p, q < ∞, q = p′ Lq Ẇ−1,q T q
2 Ẇ 1,p Lp

α = 0, p = 1 BMO ˙BMO
−1

T∞
2 Ḣ1,1 H1

0 < α = n(1
p
− 1) < 1 Λ̇α Λ̇α−1 T∞

2,α Ḣ1,p Hp
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Here Y , Y −1 are the dual spaces of X , X1 respectively. They are spaces on the
boundary. Next, T are tent spaces on R1+n

+ . For 1 < q ≤ ∞, T q
2 is the tent space of

[CMS]. For q = ∞, this is defined via Carleson measures:
∫∫

(0,r)×∆

|f(t, x)|2
dtdx

t
≤ ‖f‖2T∞

2
|∆|.

For 0 < α < 1, ∫∫

(0,r)×∆

|f(t, x)|2
dtdx

t
≤ ‖f‖2T∞

2,α
|∆|1+

2α
n .

Here ∆ are balls in Rn and r is the radius of ∆.
We next turn to equivalence of boundary norms with interior estimates of tent

space nature.

Theorem 11.1. Let divA∇ be a uniformly elliptic system with A(x) measurable,
bounded, t-independent, complex coefficients on R1+n with the strict G̊arding in-
equality on H0, namely (10). Assume that divA∇ and divA∗∇ satisfy the De Giorgi
condition and call 0 < µDG the exponent that works for both. Then for all spaces in
the table with 2 ≤ q and α < µDG and for any weak solution of Lu = 0 on the upper
half-space R1+n

+ , 1 + n ≥ 2, in any of the classes Es, −1 ≤ s ≤ 0, we have

(40) ‖t∇u‖T ≈ ‖∂νAu|t=0‖Y −1 + ‖∇xu|t=0‖Y −1.

Again, we do not consider the case 2 − ε < q < 2 which can be handled without
the De Giorgi condition (See the forthcoming [AS]).

Proof. The inequality . follows from the generalized boundary layer representation
of Corollary 8.4 together with the estimates proved in [HMaMo] for the single and
double layer potentials (again in the case of equations and 1 + n ≥ 3 but with
immediate extension to our situation). The converse inequality is a result from
[AS], where the other direction is proved as well in this generality. �

Remark 11.2. Remark that in the case 2 < q < ∞, the inequality & is akin to the
inequality (3.9) in [HKMP2]. It is more precise though as it does not contain any
non-tangential maximal function. In fact, [AS] will show under the above assump-
tions that the non-tangential maximal function of u is controlled in Lq by the T q

2

norm of t∇u. This was proved for real equations in [HKMP1].

11.1. The Dirichlet problem. Let Y = Y (Rn;Cm) be one of the spaces from
the above table. We say that the Dirichlet problem (DY

A) is solvable if there exists

CY < ∞ such that for any f ∈ Y ∩Ḣ1/2(Rn;Cm) the energy solution u of divA∇u = 0
with Dirichlet data u|t=0 = f satisfies

‖t∇u‖T ≤ CY ‖f‖Y .

We remark that we formulate here the Dirichlet problem uniquely in term of the
tent space estimate. From the remark above, the non tangential maximal estimate
comes as a bonus.

Corollary 11.3. For the spaces Y considered in Theorem 11.1, we have that (DY
A)

is solvable if and only if there exists CY −1 < ∞ such that for any u ∈ E solution of
divA∇u = 0, ‖∂νAu|t=0‖Y −1 ≤ CY −1‖∇xu|t=0‖Y −1.
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The proof is a direct consequence of Theorem 11.1. As before, the solvability is
reduced to a boundary estimate. We obtain a refined version of the main result of
[HKMP2], which treats only the cases X = Lp, Y = Lp′, 1 < p < 2 + ε, but not the
endpoint spaces.

Corollary 11.4. Consider the spaces Y of Theorem 11.1 and their preduals X.
If (RX

A ) is solvable then (DY
A∗) is solvable. The converse holds when X = Lp and

Y = Lq, q = p′ and when X = H1 and Y = BMO.

Proof. The equivalence in the range X = Lp, Y = Lq follows from Corollary 11.3,
Lemma 10.4 and Theorem 3.3. The implication in the other cases and the equivalence
when p = 1 follow from Theorem 3.3, Theorem 4.1 and Corollary 11.3. �

This applies when the conditions of Corollary 10.2 are satisfied for A∗. Details
are left to the reader.
Remark that the back and forth proof allows to replace Y = BMO by Y = VMO

in the statement. This fact that the Dirichlet problems for VMO or BMO data are
equivalent was also observed in [DKP] for real equations.
To finish we can state the extrapolation result for the Dirichlet problem. This is

only here that we use more assumptions on A.

Theorem 11.5. Consider an elliptic system with all the assumptions at the begin-
ning of Section 10. Let 2 ≤ q < ∞ and assume (DY

A) is solvable for Y = Lq(Rn;Cm).
Then (DY

A) is solvable for Y = Lp(Rn;Cm), q < p < ∞, BMO(Rn;Cm), and

Λ̇α(Rn;Cm) with 0 < α < µDG.

Proof. It suffices to combine Corollary 11.4 with Theorem 10.1. �

11.2. The Neumann problem in negative Sobolev spaces. Let Y = Y (Rn;Cm)

be one of the spaces from the above table. We say that the Neumann problem (NY −1

A )

is solvable if there exists CY −1 < ∞ such that for any f ∈ Y −1 ∩ Ḣ−1/2(Rn;Cm) the
energy solution u of divA∇u = 0 with Neumann data ∂νAu|t=0 = f satisfies

‖t∇u‖T ≤ CY −1‖f‖Y−1 .

Corollary 11.6. For the spaces Y considered in Theorem 11.1, we have that (NY −1

A )
is solvable if and only if there exists CY −1 < ∞ such that for any u ∈ E solution of
divA∇u = 0, ‖∇xu|t=0‖Y −1 ≤ CY −1‖∂νAu|t=0‖Y −1.

The proof is a direct consequence of Theorem 11.1. As before, the solvability is
reduced to a boundary estimate.

Corollary 11.7. Consider the spaces Y of Theorem 11.1 and their preduals X. If
(NX

A ) is solvable then (NY −1

A∗ ) is solvable. The converse holds when X = Lp and

Y −1 = Ẇ−1,q, q = p′ and when X = H1 and Y −1 = BMO−1.

Proof. The equivalence in the range X = Lp, Y = Lq follows from Corollary 11.3,
Lemma 10.4 and Theorem 3.4. The implication in the other cases and the equivalence
when p = 1 follow from Theorem 3.4, Theorem 4.2 and Corollary 11.3. �

This applies when the conditions of Corollary 10.7 are satisfied for A∗. Details
are left to the reader.
Remark that the back and forth proof allows to replace Y = BMO by Y = VMO

in the statement.
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To finish we can state the extrapolation result for the Neumann problem in neg-
ative Sobolev spaces. This is only here that we use more assumptions on A.

Theorem 11.8. Consider an elliptic system with all the assumptions at the begin-
ning of Section 10. Let 2 ≤ q < ∞ and assume (NY −1

A ) is solvable for Y −1 =

Ẇ−1,q(Rn;Cm). Then (NY −1

A ) is solvable for Y −1 = Ẇ−1,p(Rn;Cm), q < p < ∞,
BMO−1(Rn;Cm), and Λ̇α−1(Rn;Cm) with 0 < α < µDG.

Proof. It suffices to combine Corollary 11.7 with Theorem 10.6. �

References

[AAAHK] Alfonseca M., Auscher P., Axelsson A., Hofmann S., and Kim, S. Analyticity
of layer potentials and L2 Solvability of boundary value problems for divergence form elliptic
equations with complex L∞ coefficients, Adv. Maths. 226 (2011) 4533–4606. 3, 16, 29, 30

[A] Auscher, P. Regularity theorems and heat kernel for elliptic operators. J. London Math.
Soc. (2) 54, 2 (1996), 284–296. 16, 32, 34

[AA] Auscher, P., and Axelsson, A. Weighted maximal regularity estimates and solvability
of non-smooth elliptic systems I. Invent. Math. (2011) 184: 47–115. 3, 20, 21, 23, 26

[AAMc] Auscher, P., Axelsson, A., and McIntosh, A. Solvability of elliptic systems with
square integrable boundary data. Ark. Mat. 48 (2010), 253–287. 3, 6, 20, 21, 32, 34

[AHLMcT] Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., and Tchamitchian, P.

The solution of the Kato square root problem for second order elliptic operators on R
n. Ann.

of Math. (2) 156, 2 (2002), 633–654. 2, 32, 34
[AMcM] Auscher, P., McIntosh A. , and Mourgoglou M. On L2 solvability of BVPs for

elliptic systems, J. Fourier Anal. Appl. 2013, Volume 19, Issue 3, pp 478-494. 6, 7, 17, 22, 32,
34

[AMcR] Auscher, P., McIntosh, A., and Russ, E. Hardy spaces of differential forms on
Riemannian manifolds. J. Geom. Anal. 18 1, (2008), 192-248. 28

[AMcT] Auscher, P., McIntosh, A., and Tchamitchian, P. Heat kernels of complex elliptic
operators and applications, J. Funct. Anal. 152 (1998), 22–73 17

[ART] Auscher, P., Russ, E., and Tchamitchian, P. Hardy-Sobolev spaces on strongly Lip-
schitz domains of Rn, J. Funct. Anal. 218 (2005), 54–109. 12

[AR] Auscher, P., and Rosén, A. Weighted maximal regularity estimates and solvability of
non-smooth elliptic systems II. Analysis and PDE, Vol. 5 (2012), No. 5, 983–1061. 4, 5, 6, 10

[AS] Auscher, P., and Stahlhut, S. A priori estimates for boundary value elliptic problems
In preparation 2, 3, 4, 26, 31, 36

[Ax] Axelsson, A. Non unique solutions to boundary value problems for non symmetric diver-
gence form equations. Trans. Amer. Math. Soc. 362 (2010), 661–672. 31, 33

[AKMc] Axelsson, A., Keith, S., and McIntosh, A. Quadratic estimates and functional
calculi of perturbed Dirac operators. Invent. Math. 163, 3 (2006), 455–497. 21

[BB] Badr, N., and Bernicot, F. Abstract Hardy-Sobolev spaces and Interpolation, J. Funct.
Anal. 259 (2010), no. 5, 1169–1208. 12

[BG] Badr, N., and Dafni, G. An atomic decomposition of the Hajlasz Sobolev space M1

1
on

manifolds, J. Funct. Anal. 259 (2010), no. 6, 1380–1420. 12
[B] Barton, A. Elliptic partial differential equations with complex coefficients, Mem. Amer.

Math. Soc., posted on October 24, 2012, PII S 0065-9266(2012)00677-0 (to appear in print).
17, 32, 34

[Be] Bernal, A. Some results on complex interpolation of T p

q
spaces, Interpolation spaces and

related topics, (Ramat-Gan), Israel Mathematical Conference Proceedings, vol. 5, 1992, pp.
1–10. 28

[Br] Brown, R. The Neumann problem on Lipschitz domains in Hardy spaces of order less than
one. Pacific J. Math. 171 (1995), no. 2, 389?407. 2, 5

[CDoK] Cho, S., Dong, H., and Kim, S. Global Estimates for Green’s Matrix of Second Order
Parabolic Systems with Application to Elliptic Systems in Two Dimensional Domains. Pot.
Anal. 36 (2012), 339–372. 17



RELLICH ESTIMATES AND SOLVABILITY 39

[CMcM] Coifman, R., McIntosh, A., and Meyer, Y. L’intégrale de Cauchy définit un
opérateur borné sur L2 pour les courbes lipschitziennes. Annals of Math. 116 (1982), 361–
387. 2

[CMS] Coifman, R. R., Meyer, Y., and Stein, E. M. Some new function spaces and their
applications to harmonic analysis. J. Funct. Anal. 62, 2 (1985), 304–335. 28, 36

[CV] Cohn, W. S., Verbitsky, I. E., Factorization of tent spaces and Hankel operators, J.
Funct. Anal. 175 (2000), no. 2, 308–329. 28

[Da] Dahlberg, B. On the absolute continuity of elliptic measures. Amer. J. Math. 108, 5 (1986),
1119–1138. 1

[DaK] Dahlberg, B., and Kenig, C. Hardy spaces and the Neumann problem in Lp for Laplace’s
equation in Lipschitz domains. Ann. Math. 125, 437–465 (1987). 2, 4, 5
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