
HAL Id: hal-00835048
https://hal.science/hal-00835048v1

Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simultaneous measurement of the microscopic dynamics
and the mesoscopic displacement field in soft systems by

speckle imaging
Luca Cipelletti, Giovanni Brambilla, Simona Maccarrone, Sami Caroff

To cite this version:
Luca Cipelletti, Giovanni Brambilla, Simona Maccarrone, Sami Caroff. Simultaneous measurement of
the microscopic dynamics and the mesoscopic displacement field in soft systems by speckle imaging.
Optics Express, 2013, 21 (19), pp.22353-22366. �10.1364/OE.21.022353�. �hal-00835048�

https://hal.science/hal-00835048v1
https://hal.archives-ouvertes.fr


Simultaneous measurement of the

microscopic dynamics and the

mesoscopic displacement field in soft

systems by speckle imaging

L. Cipelletti1,2, G. Brambilla1,2,3, S. Maccarrone1,2, S. Caroff1,2
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Abstract: The constituents of soft matter systems such as colloidal sus-

pensions, emulsions, polymers, and biological tissues undergo microscopic

random motion, due to thermal energy. They may also experience drift

motion correlated over mesoscopic or macroscopic length scales, e.g. in

response to an internal or applied stress or during flow. We present a new

method for measuring simultaneously both the microscopic motion and

the mesoscopic or macroscopic drift. The method is based on the analysis

of spatio-temporal cross-correlation functions of speckle patterns taken in

an imaging configuration. The method is tested on a translating Brownian

suspension and a sheared colloidal glass.
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1. Introduction

Rough surfaces and scattering media generate a characteristic speckle pattern [1] when illumi-

nated by coherent light, e.g. from a laser. By analyzing a time sequence of speckle patterns,

valuable information can be retrieved on the sample evolution. Broadly speaking, one may

distinguish between “static” speckle patterns generated by solid objects and “dynamic” speck-

les formed by soft matter systems (e.g. colloidal suspensions, emulsions, polymer solutions,

biological tissues), whose components undergo Brownian motion, thereby continuously recon-

figuring the scattered speckle pattern. In the former case, relevant to metrology and interfer-

ometry [2], a rigid displacement or a long wave-length deformation is often measured, e.g. in

response to vibrations, applied load, or a change of temperature; speckle patterns are recorded

onto a 2D detector such as a CCD or CMOS camera, using an imaging optics. By contrast, the

microscopic (e.g. Brownian) dynamics of soft systems is quantified by g2(τ)− 1, the autocor-

relation function of the temporal fluctuations of the scattered intensity. In these dynamic light



scattering measurements (DLS, a.k.a. photon correlation spectroscopy [3]) a point-like detector

(e.g. a phototube) is placed in the far field, where it collects light within a few speckles.

Recent developments have made the distinction between these two research fields increas-

ingly fuzzy. On the one hand, imaging geometries similar to those for static speckles have been

used to detect motion, e.g. in vascular flow ([4, 5] and references therein). Motion is typically

quantified by inspecting the contrast of the speckle pattern,< I2 >/< I >2, where I is the local

intensity and 〈· · ·〉 is an average over a small region centered around the point of interest. The

method is based on the fact that speckles are blurred and the contrast reduced in those regions

where significant motion occurs [6]. Rigid motion has been measured also by laser speckle ve-

locimetry [7, 8], by applying spatial cross-correlation methods to speckle images, an approach

similar to particle imaging velocimetry [9] and image correlation velocimetry [10] often used

in fluid mechanics. On the other hand, CCD and CMOS cameras are now routinely used as

detectors for DLS, especially for samples exhibiting slow dynamics, i.e. speckle fluctuations

on time scales from a fraction of second up to several hours. In the first implementations of

these so-called multispeckle approaches [11, 12], the far field detection scheme of traditional

DLS was used and the intensity correlation function was calculated from

g2(τ)− 1 =

〈 〈
Ip(t)Ip(t + τ)

〉
p〈

Ip(t)
〉

p

〈
Ip(t + τ)

〉
p

− 1

〉

t

, (1)

where Ip(t) is the intensity of the p−th pixel at time t and < · · · >p and < · · · >t indicate

averages over pixels and time, respectively. In the far field detection scheme, each pixel receives

light issued from the whole scattering volume and all pixels are associated to nearly the same

scattering vector q = 4πnλ−1 sinθ/2, where n is the solvent refractive index, λ the in-vacuo

laser wavelength and θ the scattering angle. As in traditional DLS, the decay time of g2(τ)−1

is related to the time it takes a scatterer to move (relative to the other scatterers) over a distance

∼ q−1 [3]. A further step in bridging the gap between DLS and speckle imaging methods

is represented by photon correlation imaging (PCI) [13]. In PCI, DLS data are obtained by

analyzing time series of speckle patterns acquired using a 2D detector and a low-magnification

imaging optics. Similarly to conventional imaging, a given area of the detector corresponds

to a well-defined region in the sample. Unlike conventional imaging, however, the image is

formed using only light scattered in a narrow range of scattering vectors q . This allows one to

calculate a spatially-resolved version of Eq. (1), where pixel averages are performed on small

regions of the detector, thereby providing information on the local dynamics. This method has

been applied to systems whose microscopic dynamics are significantly heterogeneous in space,

such as glassy or jammed soft matter [13, 14], and it has been extended to highly turbid media

such as drying coatings [15] and granular systems [16].

As highlighted by this short overview, previous works have focussed either on the measure-

ment of the rigid displacement of a set of scatterers, regardless of any relative motion between

them, or, conversely, on their relative motion due to the microscopic dynamics, regardless of

any average drift component. Here, we present a new method that allows one to quantify in a

single measurement the contribution of each of these phenomena to the evolution of speckle

patterns formed in the imaging geometry [17]. Figure 2, which will be discussed later, shows

the essence of the method in a glimpse: the spatial cross-correlation of two speckle images

taken at a time lag τ exhibits a peak, whose position and height yield the sample rigid shift and

its internal dynamics over the time τ , respectively. Applications of this method to gels submit-

ted to gravitational [18] or internal [19] stress have been presented in previous publications, but

the method itself was not discussed there. In this paper, we provide a detailed description of

the algorithm used to implement the method, addressing in particular the challenges inherent to

PCI experiments, i.e. the reduced size of the speckles and the need to process a very large num-



ber of images in a reasonably short time. Finally, we demonstrate our method by testing it on a

model system, a suspension of Brownian particles contained in a cell displaced by a motor, and

by measuring the velocity profile and the microscopic dynamics of a sheared colloidal glass.

2. Sub-pixel Digital Imaging Correlation algorithm

The first step in our method is to find the local rigid displacement with sub-pixel resolution. To

this end, we use a cross-correlation technique inspired by particle imaging velocimetry [9] and

image correlation velocimetry [10]. A time series of images of the sample is taken, using a PCI

setup. Each image is divided into a grid of regions of interest (ROIs), corresponding to square

regions of side L in the sample. Under a rigid drift, the speckle pattern in a ROI at time t will

appear in a shifted position in a successive image taken at time t + τ . If the scatterers undergo

relative motion, in addition to a rigid shift, the shifted ROI will not be an identical copy of the

original one. Still, the displacement field can be estimated by calculating by what amount a

ROI of the second image has to be back-shifted in order to maximize its resemblance with the

corresponding ROI of the first image. In practice, for a given ROI the shift along the horizontal

and vertical directions, ∆x and ∆y, is determined by searching the maximum of corr[I,J], the

spatial crosscorrelation of the intensity of the two images, defined by

corr[J, I](k, l) =
covar[J, I](k, l)√

var[J]var[I]
(2)

with

covar[J, I](k, l) = N−1 ∑
r,c

Jr,cIr+k,c+l −N−2 ∑
r,c

Jr,c ∑
r,c

Ir+k,c+l (3)

var[I] = N−1 ∑
r,c

I2
r,c −

(
N−1 ∑

r,c

Ir,c

)2

. (4)

In the above equations, Ir,c is the intensity at time t of the pixel at row r and column c, Jr,c is the

intensity at the same location but at time t + τ , and k and l are the shifts expressed in number

of rows and columns, respectively. Here and in the following, double sums over r and c extend

over all rows and columns for which the terms of the sum exist, in this case the N pixels of

the overlap region between the full image and the shifted ROI. For computational efficiency,

covar[J, I] is usually calculated in Fourier space [20]. Note that covar[J, I] → 0 far from the

peak, where I and J are uncorrelated.

The position (k, l) of the global maximum of corr[J, I] yields the desired displacement along

the direction of columns (x axis) and rows (y axis), ∆x = l and ∆y = k respectively, with pixel

resolution. Several schemes have been proposed to improve this resolution, e.g. by calculating

the centroid of corr[J, I], or by fitting its peak to a 2-dimensional analytical function such as a

Gaussian. While both methods work well for broad, circularly symmetric peaks, they tend to

be less robust when the peak is sharp or it has an asymmetric shape. The shape of the peak

is determined by the spatial autocorrelation of the intensity pattern; for our speckle images, it

depends on the shape and size of the speckles, which may not be symmetrical, depending on

the shape of the illuminated sample volume and the imaging optics [1]. Moreover, the peak

usually extends over just a few pixels, because one minimizes the speckle size in order to

maximize the information content in the image. To overcome the limitations inherent to peak-

based schemes, we use an alternative approach based on a least-square method that allows us

to obtain the displacement field with a typical resolution of a few hundredths of a pixel, with

no requirements on the shape or broadness of the peak and without using any fitting function.
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Fig. 1. a): schematic representation of an image J that is a shifted version of image I (only

four pixels are shown for clarity). The intensity in a given pixel of J may be obtained as a

linear combination of (up to) four pixels of I, with weights proportional to the colored areas.

b): quadrant detection scheme for locating the direction of the shift. The nine elements

closest to the peak of the cross-correlation between I and J are represented here. See Sec. 7

for more details.

The first step of our shift-finding algorithm is the same as in standard PIV methods: corr[J, I]
is calculated and the pixel-resolved shift, (k, l), is determined from the position of its global

maximum. The next step consists in the refinement of such displacement with sub-pixel res-

olution. For the sake of simplicity, let us first assume that J is simply a shifted version of I,

with displacement (∆x = l + δx,∆y = k+ δy), with |δx| < 1, |δy| < 1. The intensity Jr,c may

then be expressed as a weighted average over a suitable set of pixels of the intensity of the

image I. In principle, an infinite number of terms are needed to obtain Jr,c, if δx and δy are

non-integer [21]. In practice, linear interpolation is usually sufficient to reconstruct J to a good

approximation, thereby greatly simplifying the calculation. Using linear interpolation, the in-

tensity Jr,c at a given pixel is expressed as the weighted sum over the (at most) four pixels of I

that partially overlap with that pixel, as exemplified in Fig. 1a. Thus,

Jr,c = d0,0Ir+k,c+l + d1,0Ir+k+1,c+l + d0,1Ir+k,c+l+1 + d1,1Ir+k+1,c+l+1 + εr,c . (5)

The coefficients d are the overlap areas shaded in Fig. 1a: d0,0 = (1− δx)(1 − δy), d1,0 =
δx(1− δy) and similarly for the other terms. The term εr,c has been added to account for the

fact that in general J will not be an exact (albeit shifted) replica of I, because of experimental

noise and due to any evolution of the speckle pattern, which in our case is due to the microscopic

dynamics of the scatterers. For distinct speckles, these fluctuations are uncorrelated [1, 3]; we

thus treat ε as a noise term and determine the displacement (∆x,∆y) as the rigid shift that

minimizes, in a least-squares sense, the difference between J and the linear combination of I in

the r.h.s. of Eq.(5). More specifically, we search for a set of four coefficients a = {a1,a2,a3,a4}
that minimizes the cost function χ2 defined as

χ2(a) = ∑
r,c

4

∑
i=1

(
aiIr+ki,c+li − Jr,c

)2
, (6)

where explicit expressions relating a to the sub-pixel shift and ki, li to the pixel-resolved shift

will be provided in the following. Note that in principle nine coefficients are required, instead



of the four introduced here, since the direction of the shift is not known a priori. However, we

expect that only up to four of them differ significantly from zero. In order to speed up the de-

termination of a, we calculate the centroid of the peak of corr[J, I] in order to predetermine the

direction of the shift (e.g. top-left, top-right etc.), so that only four coefficients have to be com-

puted. This is done by calculating in which of the four quadrants labeled by A, ...,D in Fig. 1b

lays the center of mass of the crosscorrelation peak, as explained in detail in Sec. 7, where

we also provide explicit expressions for ki, li. Note that the centroid algorithm is only used to

determine the direction of the shift, not its subpixel magnitude, thus avoiding the limitations

recalled above for sharp or non-symmetric peaks.

The optimum shift is obtained by imposing ∂ χ2/∂ai = 0, i= 1, ..,4. By exchanging the order

of the sums in Eq. (6) one recognizes that a is the solution of b = M ·a, with:

bi = covar[J, I](ki, li) (7)

Mi, j = covar[I, I](ki − k j, li − l j) . (8)

Any standard method is suitable to solve the above set of equations; in our implementa-

tion, we use singular value decomposition [20]. It should be emphasized that b is known,

since covar[J, I] has been already calculated to estimate the pixel-resolved displacement (see

Eqs. (2,3)). Therefore, the only extracost required for calculating the displacement with sub-

pixel resolution is the computation of covar[I, I] and the solution of the set of linear equations

b = M · a. This moderate computational extracost is due to the fact that a linear interpolation

scheme has been adopted in Eq. (6): higher-order interpolations, although more precise, would

lead to a much more complex, non-linear minimization problem. Finally, we note that in a typ-

ical multispeckle DLS experiment, one calculates the correlation functions for a given starting

time (i.e. a given image I) and several time delays τ (i.e. several images J). Therefore, the com-

putational cost for calculating covar[I, I] is shared between several lags, further increasing the

efficiency of the algorithm.

Once a is computed, the shifts along the x and y directions are calculated with subpixel

precision according to

∆x =
a2 + a4

∑4
i=1 ai

+ l1 (9)

∆y =
a3 + a4

∑4
i=1 ai

+ k1 (10)

(see Eqs. (27) and (29) in Sec. 7 for the definition of k1 and l1).

3. Dynamic Light Scattering: corrections to g2(τ)− 1 for drifting samples

In order to quantify the internal dynamics, one needs to compute the intensity correlation func-

tion g2 − 1 between image J and a shifted version of I, so as to avoid any artifact due to the

rigid shift of the speckles. Denoting by I′ the image I shifted by (∆x,∆y), the (un-normalized)

intensity correlation function corrected for the shift contribution is

G2(τ) = N−1 ∑
r,c

Jr,cI′r,c . (11)

The shifted image I′ may be constructed using an interpolation method. Tests on real speckle

images show that linear interpolation, although suitable for determining the shift with good

accuracy, is not precise enough to reconstruct a shifted version of I suitable for the calculation

of g2 − 1. Higher-order interpolation schemes are thus required. As shown in Ref. [21], image



shifting by interpolation is equivalent to convolving the original image with a suitable kernel:

I′r,c = ∑
k,l

h(r+∆y− k)h(c+∆x− l)Ik,l , (12)

where we have assumed for simplicity that the kernel is symmetrical and separable, i.e. that

2Dh(x,y) = h(x)h(y). Unfortunately, in our case this approach would be too time-consuming,

because it requires a convolution operation, Eq. (12), in addition to the calculation of the cor-

relation function, Eq. (11).

We introduce below an alternative method that leads to a much faster algorithm, where the

only computational cost is that of evaluating the kernel for a few points, with no need for

the calculation of convolution and correlation functions. It is convenient to consider only non-

negative fractional shifts δ̃x, δ̃y, given by

∆x = jx + δ̃x (13)

∆y = iy + δ̃y , (14)

with jx = floor(∆x), iy = floor(∆y), where floor(x) is the largest integer ≤ x. As we shall discuss

it below, the choice of the kernel is not crucial; a good choice is a truncated, windowed sinc

function with an even number, M, of supporting points:

h(x) = w(x)sin(πx)/(πx) for |x| ≤ M/2 (15)

h(x) = 0 elsewhere ,

where we choose the three-term Blackman-Harris window function [21, 22] defined as

w(x) = 0.42323+ 0.49755cos

(
2πx

M

)
+ 0.07922cos

(
4πx

M

)
. (16)

With this choice, the kernel is DC-constant [21, 22], i.e.

M/2

∑
k,l=−M/2+1

h(x) = 1 , (17)

a property that will be of use in the following.

Using Eqs. (13,14), the convolution product (12) may be rewritten as

I′r,c =
M/2

∑
k,l=−M/2+1

h(δ̃y− k)h(δ̃x− l)Ik+r+iy,l+c+ jx . (18)

By replacing the r.h.s. of Eq. (18) in Eq. (11) and by exchanging the order of the sums, we

obtain:

G2(τ) =
M/2

∑
k,l=−M/2+1

h(δ̃y− k)h(δ̃x− l)

[
N−1 ∑

r,c

Jr,cIr+k+iy,c+l+ jx

]
. (19)

Finally, by recalling the definition of the covariance between J and I, Eq. (3), and using the fact

that the kernel is DC-constant, Eq. (17), one obtains

G2(t,τ)− J I =
M/2

∑
k,l=−M/2+1

h(δ̃y− k)h(δ̃x− l)covar[J, I](k+ iy, l + jx) (20)



or, equivalently,

g2(t,τ)− 1 =
∑

M/2

k,l=−M/2+1
h(δ̃y− k)h(δ̃x− l)covar[J, I](k+ iy, l + jx)

J I
, (21)

where I = N−1 ∑r,c Ir,c and similarly for J.

Equation (21) is the central result of our method. It shows that the intensity correlation func-

tion corrected for the shift contribution can be simply obtained as a linear combination of a

few terms of covar[J, I], weighted by the kernel. Since covar[J, I] has already been calculated

to determine the shift, the extra cost is essentially limited to the evaluation of M2 values of

the kernel, which is typically negligible. Finally, we note that covar[J, I] vanishes on the length

scale of the speckle size as its argument departs from (iy, jx), which is close to the location of

the peak of the covariance. Hence, it is sufficient to take M on the order of a few speckle sizes

(in units of pixels), because in Eq. (21) the contribution of the kernel for larger lags would be

multiplied by a vanishingly small quantity. For example, we find that for images with a speckle

size of about 5 pixels, the correction is virtually independent of M for M ≥ 8.

4. Experimental tests

We test our method on two samples: a suspension of Brownian particles loaded in a cell dis-

placed by a motor, and a colloidal glass to which a shear deformation is applied. The Brownian

sample is a dispersion of polystyrene microspheres (radius R = 0.265 µm) in an aqueous solu-

tion of fructose at 75% weight fraction. The particle volume fraction is 10−5 and the sample is

kept at a temperature T = 9 ◦C. The setup is described in [23]; we use the imaging geometry

shown in Fig. SM1 a) of [13], where an image of the sample is formed onto a CCD detector us-

ing light scattered at θ = 90 deg, corresponding to a scattering vector q = 2.46 µm−1. The field

of view is 1820× 364µm2 and images are acquired at a rate of 10 Hz. The sample cell is at-

tached to a motor that can impose a drift in the y direction at a controlled speed, vy = 10µm s−1.

Figures 2 a)-c) show the spatial crosscorrelation calculated applying Eq. (2) to pairs of

speckle images taken while displacing the sample, for three different time lags. For τ = 0 s,

Eq. (2) yields the spatial autocorrelation of the speckle pattern: accordingly, a sharp peak of

height one and centered at ∆x = ∆y = 0 is visible, whose FWHM ≈ 2.9 pixels provides the

speckle size. As the lag increases, the peak position drifts in the y direction, due to the transla-

tion motion imposed by the motor. Additionally, its height decreases, due to the relative motion

of the Brownian particles that reconfigure the speckle pattern. Figure 2 d) shows a cut of the

crosscorrelation peak along the ∆x = 0 direction, for four values of τ . From this plot, it is clear

that if g2(τ)− 1 was to be computed from a purely temporal crosscorrelation, as in Eq. 1, one

would observe a spurious, fast decay, essentially due to the rigid shift only. This would corre-

spond to follow corr[I(t), I(t +τ)] at ∆x = ∆y = 0, as a function of τ . By contrast, if the relative

motion of the Brownian particles is to be obtained, one has to measure the height of the peak as

it drifts, as in the method proposed here. The inset of Fig. 2 d) shows the same data, plotted as a

function of distance along y with respect to the (subpixel) peak position. It is worth noting that

the peak width remains constant, in contrast to what suggested (but not demonstrated, to our

knowledge) in patent literature [24], where it was proposed that the peak would broaden with

τ as a result of the internal motion of the scatterers. Thus, the relevant parameter for extracting

the relative motion is indeed the peak height, not its width.

In figure 3 a), we show the displacement of the speckle pattern as a function of τ , obtained

from the sub-pixel peak position averaged over 200 pairs of images (i.e. 20 s), taken while

translating the sample. The data are very well fitted by a linear law (red line) as expected

for motion at constant speed, thus indicating that our algorithm captures very well the drift
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Fig. 2. a)-c) spatial cross-correlation between speckle images generated by a diluted Brow-

nian suspension that is translated along the y direction by a motor. The speckle patterns

are recorded on a CCD using an imaging collection optics (see text for more details). As

the delay τ between pair of images is increased, the peak position shifts to larger y and its

height decreases, due to the relative motion of the Brownian particles. d) cut of the cross-

correlation along the ∆x = 0 line. Curves are labeled by τ . Inset: same data, replotted as a

function of spatial shift with respect to the peak position.
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Fig. 3. a): displacement versus time, measured for a diluted Brownian suspension translated

at a constant speed. The line is a linear fit to the data. b) Intensity correlation functions

probing the microscopic dynamics. Solid squares: quiescent sample; open circles: raw g2−
1 measured while translating the sample with a motor; crosses: same data, corrected for the

contribution of the rigid motion of the speckle pattern.

component of the speckle pattern, from a fraction of a pixel up to tens of pixels. The error

bars are the standard deviation of the displacement over the measurement time, σy. For τ ≤
4.2 s, σy/∆y < 4% and the error bars are smaller than the symbol size, indicating that the

detection of the peak position is very reliable, even when the peak height is as low as 0.1

or the displacement is just a fraction of a pixel. For τ = 5.6 s, the error bar is significantly

larger, because the peak height becomes comparable to the noise level and the peak position

can be hardly resolved. Beyond τ = 5.6 s, no peak can be reliably found, thus preventing the

displacement to be measured. The slope of the linear fit to the data is 3.30± 0.03 pixel s−1.

Recalling that the nominal speed of the motor is vy = 10µm s−1, this implies that 1 pixel

corresponds to 3.03±0.03 µm in the sample, in excellent agreement with 3.15±0.15 µm/pixel

as obtained from the magnification of the imaging system, evaluated using geometrical optics.

Figure 3 b) shows the intensity correlation function g2(τ)−1, averaged over 20 s. If the sample

is kept at rest during the measurement (black squares), the intensity correlation function exhibits

an exponential decay, as expected for diluted Brownian suspensions [3], as better seen in the

inset that shows the same data in a semilog plot. When the sample is translated at constant

speed, the uncorrected g2 − 1 decays on a much shorter time scale (blue circles) and its shape

departs from a simple exponential. Clearly, no information on the microscopic dynamics can be

obtained from the uncorrected data. The red crosses are the data corrected according to Eq. (21):

for τ ≤ 4.2 s the corrected g2 − 1 is very close to that measured for the stationary sample,

thereby demonstrating the effectiveness of our correction scheme. For larger lags, the corrected

data tend to overestimate g2 − 1: this is consistent with the fact that the displacement cannot

be reliably measured, as discussed in relation to fig. 3 a). Indeed, in this case the peak-finding

algorithm spuriously interprets the highest level in the noisy base line of corr[I(t), I(t + τ)] as

the (higher-than-expected) degree of correlation.

Having validated our method on a model sample whose displacement is well controlled, we

test it on a more realistic experimental situation, a sheared colloidal glass for which the velocity

field is not uniform over the field of view. The sample is a dense suspension of hard-sphere-like

colloidal particles, a widely-studied model system for the glass transition [26]. The particles

have radius ≈ 100 nm (as in [25]) and volume fraction ϕ ≈ 0.6. The setup is similar to that
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Fig. 4. a): velocity profiles for a sheared colloidal glass (symbols). Data are labeled by the

time after initiating the shear. The dotted line indicates the position of the mobile wall, the

solid line is the the velocity profile for uniform shear. The arrow indicates the location for

which the data shown in b) have been measured. b) intensity correlation functions for the

quiescent glass (crosses) and after applying a constant shear. Open (solid) symbols indicate

the raw (corrected for drift) intensity correlation functions.

for the Brownian sample, but here the sample is kept in a square cell of section 10× 10 mm2,

in which a glass bead of diameter D = 5 mm is inserted. The bead is attached to a motor that

displaces it in the y (vertical) direction, parallel to the cell wall, at a speed vy = 0.1 µm s−1.

The minimum gap e between the wall and the bead surface is 1280± 90 µm. For the small

displacements studied here (≤ 850 µm) and given that e << D, the deformation is close to a

simple shear. The sample is illuminated by a laser sheet in the vertical (x,y) plane, of thickness

≈ 100 µm. We image a region of size 710× 530 µm2 using light scattered at θ = 90 deg,

corresponding to q = 20.6 µm−1. To obtain space-resolved information on the mesoscopic

displacement and the microscopic dynamics, we run our algorithm on ten ROIs of size 31×
264 µm2 regularly spaced at a growing distance x from the moving wall.

Figure 4a shows the velocity profiles close to the bead wall, for two times t after starting

shearing the sample. In this representation, the slope of the data is the local shear rate γ̇ .

The solid line shows the velocity profile expected for homogeneous shear, corresponding to

an average shear rate across the whole gap of γ̇ = 7.9× 10−5 s−1. It is clear that already at

t = 120 s γ̇ is non-uniform across the gap, with a highly-sheared band close to the moving

surface (x ≥ −164 µm, γ̇ ≈ 1.4× 10−4 s−1), followed by a low shear region (x ≤ −220 µm,

γ̇ ≈ 6.0× 10−5 s−1). Similar shear banding has been reported for other colloidal glasses [27].

Interestingly, shear banding is seen to evolve with time. At t = 820 s, the shear rate for

the high- and low-shear bands is comparable to that at t = 120 s (γ̇ ≈ 1.3× 10−4 s−1 and

γ̇ ≈ 6.1× 10−5 s−1, respectively), but the boundary between the two zones has moved from

x = −190 µm to x = −240 µm. Additionally, the occurrence of a marked drop of vy close to

the moving surface suggests slipping. This behavior is reminiscent of that reported for a variety

of jammed or glassy soft materials, see e.g. [28], which exhibit complex spatio-temporal shear

patterns. Figure 4b) shows the intensity correlation function measured for the ROI at the posi-

tion indicated by the arrow in a). For the unsheared sample (crosses) no dynamics is observed

on time scales up to 20s, about 2000 times the Brownian time for the same particles in the

diluted regime. This is consistent with the notion that the microscopic dynamics of a sample



at rest is slowed down by orders of magnitude on approaching the glass transition. The open

symbols show the uncorrected g2−1: a fast decay is observed, essentially due to the translation

of the speckle pattern due to the imposed shear. Once corrected, the data still show a decay of

g2 − 1 (albeit a slower one), thus indicating that particles move with respect to each other, in

addition to be advected by the shear deformation. We emphasize that the corrected g2 − 1 is

sensitive to the component of the particle displacement along the direction of q, which lays in

the horizontal plane, perpendicular to the shear direction. Therefore, the decay of g2 − 1 is not

due to the affine component of the particle displacement along y, but rather to irreversible re-

arrangements associated with flow in glassy systems [29]. Interestingly, we find that the decay

of g2 − 1 is faster at t = 820 s, when both the local γ̇ and its gradient are larger. This suggest a

direct relation between (local) shear rate and plastic rearrangements, as proposed for granular

materials [16] and emulsions [30].

5. Conclusions

We have introduced a method to obtain the mesoscopic displacement field and the microscopic

dynamics in soft materials where the constituents undergo both a drift motion and a relative

displacement. The algorithm proposed here is optimized for the typical features of speckle

images in PCI experiments, where a small speckle size is highly desirable to maximize the spa-

tial resolution and the statistics of the measurement. The algorithm is highly efficient in that

the correction of g2 − 1 does not requires any significant computational extracost, besides that

necessary to determine the displacement field. The method has been successfully tested on a

Brownian suspension and a colloidal glass. Although similar information may be in principle

obtained using confocal or optical microscopy, our method allows one to investigate samples

that are difficult or impossible to visualize in real space, such as the very small particles of our

colloidal glass. A generalization to speckle patterns obtained under partially coherent illumi-

nation, such as in recent microscopy developments [31, 32] is also possible [33]. The method

presented here should be particularly valuable for soft materials where slow dynamics is cou-

pled to the effects of an external stress, as in rheological experiments or in samples submitted to

an external field such as gravity [18], or in disordered jammed materials, where internal stress

is known to play a major role [19, 34] in the sample dynamics.
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7. APPENDIX A: Center-of-mass algorithm for determining the direction of shift

In our speckle images the speckle size is comparable to the pixel size. Hence, the peak of

corr[J, I] extends over a few pixels at most. Accordingly, we calculate the center of mass of

the peak based on the values of corr[J, I] at its maximum, located at (k, l), and in the eight

neighboring pixels as showed in Fig. 1b. Our aim is to determine in which of the four quadrants

A, B, C, and D shown in Fig. 1b lays the center of mass of the correlation peak. To avoid

any bias introduced by the square shape and the orientation of the pixels, we adopt a circular

symmetry by considering only the contribution of the areas indicated by α1,α2,α3 in Fig. 1b

(for clarity, only the overlap areas for quadrant B are shown in the figure). This is accomplished

by weighting the contribution of each element of corr[J, I] by its overlap with the circle shown

in the figure. The weights wA, wB, wC, wD associated with quadrants A, B, C, D respectively

are then

wA = α2corr[J, I](k− 1, l− 1)+α1[corr[J, I](k− 1, l)+ corr[J, I](k, l − 1)+α3corr[J, I](k, l) (22)



wB = α2corr[J, I](k− 1, l+ 1)+α1[corr[J, I](k− 1, l)+ corr[J, I](k, l + 1)+α3corr[J, I](k, l) (23)

wC = α2corr[J, I](k+ 1, l− 1)+α1[corr[J, I](k, l − 1)+ corr[J, I](k+ 1, l)+α3corr[J, I](k, l) (24)

wD = α2corr[J, I](k+ 1, l+ 1)+α1[corr[J, I](k, l + 1)+ corr[J, I](k+ 1, l)+α3corr[J, I](k, l) , (25)

with α1 = 0.485869913, α2 = 0.545406041, α3 = 0.25. Once the weights of the four quadrants

are determined, the indexes to be used in Eq. (6) and following are calculated from

k1 = k2 = floor(k+ δ r) (26)

k3 = k4 = k1 + 1 (27)

l1 = l3 = floor(l + δc) (28)

l2 = l4 = l1 + 1 , (29)

where δ r and δc are obtained from wA, ...,wD:

δ r =
wC +wD −wA −wB

wA +wB +wC +wD

(30)

δc =
wB +wD −wA −wC

wA +wB +wC +wD

. (31)


