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Introduction

Inverse scattering has been the subject of intense studies over the last twenty years, and has in particular spawned the growth and flourishing of qualitative, samplingbased, methods [START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF][START_REF] Cakoni | Qualitative methods in inverse scattering theory[END_REF][START_REF] Potthast | A survey on sampling and probe methods for inverse problems[END_REF]] that aim at providing a robust and computationally effective alternative to more customary approaches based on successive linearizations or iterative optimization methods. Since the scattering operator (see e.g. [START_REF] Lax | Scattering theory[END_REF]) plays a central role in forward scattering problems, inverse scattering methods have early been designed as strategies to extract the information contained in the corresponding measurement operator [START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF][START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF]. The following brief bibliographical review on the subject highlights the importance of this idea and connections between some of these methods:

-Exploitation of the spectrum of the measurement or the scattering operator [START_REF] Colton | Eigenvalues of the far field operator and inverse scattering theory[END_REF][START_REF] Kirsch | Characterization of the shape of a scattering obstacle using the spectral data of the far field operator[END_REF][START_REF] Mast | Focusing and imaging using eigenfunctions of the scattering operator[END_REF].

-Linear sampling and factorization methods, seen as two comparable strategies [START_REF] Arens | The linear sampling method revisited[END_REF] to extract information from the scattering operator in a "simple" way [START_REF] Cakoni | Qualitative methods in inverse scattering theory[END_REF][START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF]. -Parallels between the MUSIC algorithm, linear sampling and factorization methods [START_REF] Cheney | The linear sampling method and the MUSIC algorithm[END_REF][START_REF] Kirsch | The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF][START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF]. -Use of the MUSIC algorithm to deal with inverse scattering problems [START_REF] Devaney | Super-resolution processing of multi-static data using time reversal and MUSIC[END_REF][START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF].

-MUSIC algorithm and time reversal [START_REF] Devaney | Super-resolution processing of multi-static data using time reversal and MUSIC[END_REF][START_REF] Devaney | Time reversal imaging of obscured targets from multistatic data[END_REF].

-Time reversal and imaging [START_REF] Cassereau | Limits of self-focusing using closed time-reversal cavities and mirrors -theory and experiment[END_REF][START_REF] Fink | Time reversal of ultrasonic fields -part I: Basic principles[END_REF][START_REF] Prada | The iterative time reversal process: Analysis of the convergence[END_REF][START_REF] Borcea | Imaging and time reversal in random media[END_REF].

-Exploitation of the spectrum of the time reversal operator and DORT method (French acronym for Decomposition of the Time-Reversal Operator ) [START_REF] Prada | Eigenmodes of the time reversal operator: A solution to selective focusing in multiple target media[END_REF][START_REF] Prada | Decomposition of the time reversal operator: Application to detection and selective focusing on two scatterers[END_REF][START_REF] Prada | Flaw detection in solid with the D.O.R.T. method[END_REF].

In addition to all the aforementioned approaches, the concept of topological derivative, which first appeared in the context of topological optimization of structures [START_REF] Eschenauer | Bubble method for topology and shape optimization of structures[END_REF][START_REF] Jackowska-Strumillo | Topological optimization and inverse problems[END_REF], revolves around the quantification of the leading perturbation of a given cost functional, namely its topological derivative, due to the creation of a virtual object of vanishingly small characteristic size at a prescribed location z inside the background (i.e. defectfree) medium. Over the last few years the topological derivative of data misfit cost functionals has been investigated in a variety of inverse scattering situations as a way to define an indicator function of the hidden objects, see e.g. [START_REF] Bonnet | Sounding of finite solid bodies by way of topological derivative[END_REF][START_REF] Guzina | From imaging to material identification: a generalized concept of topological sensitivity[END_REF][START_REF] Bellis | A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data[END_REF][START_REF] Dominguez | Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection[END_REF][START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF][START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF][START_REF] Bonnet | Inverse acoustic scattering by small-obstacle expansion of a misfit function[END_REF][START_REF] Laurain | Topological sensitivity analysis in fluorescence optical tomography[END_REF]. While defining and formulating the topological derivative of a given cost functional is mathematically rigorous, its subsequent use for imaging a given domain remains largely heuristic. Nonetheless, the method has been shown to lead to efficient and robust imaging functionals; moreover, it is very flexible in terms of exploitable data and misfit functionals, and easily implementable using classical computational methods [START_REF] Bonnet | Sounding of finite solid bodies by way of topological derivative[END_REF][START_REF] Guzina | From imaging to material identification: a generalized concept of topological sensitivity[END_REF][START_REF] Bellis | A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data[END_REF][START_REF] Dominguez | Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection[END_REF][START_REF] Laurain | Topological sensitivity analysis in fluorescence optical tomography[END_REF]. On the other hand, investigations towards a better theoretical understanding of this approach have begun only recently. For example, [START_REF] Dominguez | Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection[END_REF] points out the analogy with time reversal, and the imaging of a single small scatterer is mathematically studied in [START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF], where proofs of stability with respect to medium or measurement noises are also given. This article focuses on indicator functions provided by the topological derivative of L 2 misfit cost functionals, in the context of inverse scattering by an acoustic medium characterized by a inhomogeneous refraction index n. The available data is assumed to consist of measurements of the scattered far-field patterns, gathered into the farfield operator F . This work aims at providing a mathematical basis to the, until now heuristic, use of the topological derivative approach in this context. The behavior of the indicator function will be studied depending on the location of the sampling point z, the choice of the trial refraction index featured in the asymptotic analysis of the cost functional and the values of characteristic frequency, contrast q = n 2 -1 and obstacle size. Scattering by either spatially extended inhomogeneities or a collection of pointlike scatterers will be considered, either under the weak-scatterer (Born) approximation or using a full scattering model taking into account multiple-scattering effects. In the latter case, a full justification of the topological derivative approach will be obtained only within limitations on the frequency and scatterer characteristics. The analysis, and the justification results obtained, exploits a fundamental relation, established here, between the topological derivative and the far-field operator F . In conjunction with the use of explicit factorizations of F in the different situations considered, this relation is instrumental in gaining insight into the workings of the topological derivative approach and putting it in perspective within the general class of sampling methodologies for inverse scattering, which are the two main objectives of this work.

This article is accordingly organized as follows. Section 2 gathers background material on the forward scattering problem. Section 3 is then devoted to the topological derivative of far-field measurement-based least-squares cost functionals. Its validity as an indicator function is first justified under the Born approximation, and then partially extended to the full scattering model, mainly by using connections with the far-field operator and exploiting its known factorization. The section ends with analytical and numerical examples. Similar analyses are next carried out in Section 4 for the identification of spatially small, point-like obstacles (with full scattering modelled using the Foldy-Lax approximation), and again completed by numerical results. Finally, Section 5 puts the topological derivative approach in a broader perspective, by discussing both its specificities and its connections with other sampling methods.

Forward acoustic scattering problem

Consider a infinite homogeneous background acoustic medium, occupying all of R d with d = 2 or 3 and characterized by the constant wave velocity c 0 . Let D = M m=1 D m ⊂ R d be a open and bounded domain with Lipschitz boundary ∂D and such that R d \D is connected. D denotes the support of a scattering inhomogeneity characterized by a realvalued contrast function q ∈ L ∞ (D), of constant sign in each connected component D m , and for which there exists n D > 0 such that 1 + q(x) ≥ n 2 D for all x ∈ D. The contrast q is related to the index of refraction n = c/c 0 (with c denoting the wave velocity in D) by q = n 2 -1. It is extended to R d by setting q = 0, i.e. n = 1, in R 3 \ D.

Let k = ω/c 0 be the wave number in the background medium. Considering an incident field u i that is a known solution of the unperturbed Helmholtz equation ∆u + k 2 u = 0 in R d , the forward acoustic scattering problem under consideration is

∆u + k 2 (1 + q)u = 0 in R d , (1a) 
u = u i + v, (1b) ∂v ∂|x| -ikv = O(|x| -(d+1)/2 ) for |x| → ∞ (1c)
where u ∈ H 1 loc (R d ) is the total acoustic field, the scattered field v satisfies the Sommerfeld radiation condition (1c) uniformly in x = x/|x| ∈ S, with S denoting the unit circle if d = 2 or the unit sphere if d = 3. The latter condition implies the existence of a far-field pattern v ∞ such that

u(x) = u i (x) + γ d e ik|x| |x| (d-1)/2 v ∞ (x) + O(|x| -(d+1)/2 ) for |x| → ∞, (2) 
where the parameter γ d is such that

γ 2 = e iπ/4 / √ 8πk, γ 3 = 1/4π.
The radiating fundamental solution Φ of the Helmholtz equation in R d is given by

Φ(x, y) = i 4 H (1) 0 (k|x -y|) (for d = 2), Φ(x, y) = e ik|x-y| 4π|x -y| (for d = 3),
where H

(1) 0

is the Hankel function of the first kind and order zero. Denoting by h(•, θ) the plane wave propagating in the direction θ ∈ S defined by

h(x, θ) = e ikx•θ , x ∈ R d , (3) 
the far-field pattern Φ ∞ y (x) of Φ, such that the asymptotic expansion

Φ(x, y) = γ d e ik|x| |x| (d-1)/2 Φ ∞ y (x) + O(|x| -(d+1)/2 ) for |x| → ∞ (4)
holds, is given by Φ

∞ y (x) = h(y, -x) = h(y, x). ( 5 
)
Solving problem (1a-c) is known [START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF] to be equivalent to finding the solution u ∈ L 2 (D) of the Lippmann-Schwinger integral equation

(I -ST b )u = u i , (6) 
where the volume potential operator S :

L 2 (D) → L 2 (D) is defined by Sϕ(x) := D ϕ(y)Φ(x, y) dV y , x ∈ D, (7) 
I is the identity, and the operator

T b : L 2 (D) → L 2 (D) is defined by T b ϕ = k 2 q ϕ. Then, the scattered field v in R d \ D is given by the explicit integral representation v(x) = ST b u(x), x ∈ R d \ D, (8) 
with S denoting the L 2 (D) → H 1 loc (R d ) extension of the volume potential operator [START_REF] Kirsch | Characterization of the shape of a scattering obstacle using the spectral data of the far field operator[END_REF]. In particular, using (2) and ( 4) in [START_REF] Mast | Focusing and imaging using eigenfunctions of the scattering operator[END_REF], the far-field pattern v ∞ is then given by

v ∞ (x) = D k 2 q(y)u(y)h(y, x) dV y , x ∈ S. (9) 
The introduction of the parameter γ d in definitions ( 2) and ( 4) of the far-field patterns makes the ensuing analysis and results independent, to a large extent, of the spatial dimension d.

If the incident field is chosen as a plane wave propagating in the direction θ ∈ S, i.e. u i = h(•, θ), the corresponding far-field pattern v ∞ is denoted A(•, θ), i.e.:

u(x) = h(x, θ) + γ d e ik|x| |x| (d-1)/2 A(x, θ) + O(|x| -(d+1)/2 ) for |x| → ∞. (10) 
Then, if D is illuminated instead by a continuous superposition of plane waves, i.e. u i is a Herglotz wave with density g ∈ L 2 (S):

u i (x) = S h(x, θ)g(θ) dS θ x ∈ R d , (11) 
the corresponding far-field pattern v ∞ is expressed in terms of the far-field operator

F : L 2 (S) → L 2 (S) with kernel A: v ∞ (x) = F g(x), F g(x) := S A(x, θ)g(θ) dS θ , (12) 
which is known [START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF] to be normal (i.e. F F ⋆ = F ⋆ F ) since q is real-valued. Finally, the Herglotz operator H and its adjoint H ⋆ are defined for later reference:

H : L 2 (S) → L 2 (D), Hg(x) = S h(x, θ)g(θ) dS θ , (13a) 
H ⋆ : L 2 (D) → L 2 (S), H ⋆ φ(x) = D h(y, -x)φ(y) dV y = D h(y, x)φ(y) dV y . (13b) 
The following identity satisfied by H will later prove very useful:

Lemma 1. Let ζ 0 denote the function defined for x ∈ R d by ζ 0 (x) = 2πJ 0 (k|x|) (d = 2), ζ 0 (x) = 4πj 0 (k|x|) = 4π sin(k|x|) k|x| (d = 3), ( 14 
)
where J 0 is the Bessel function of the first kind and order zero and j 0 its spherical counterpart. Then, one has

HΦ ∞ z (y) = ζ 0 (y -z), y ∈ D.
Proof. By definition of H and Φ ∞ z , one has that

HΦ ∞ z (y) = S e ik(y-z)•θ dS θ , y ∈ D.
The above integral is then readily seen to coincide (up to the appropriate constant factor) with the integral representation of the relevant Bessel function (see e.g. [START_REF] Olver | NIST handbook of mathematical functions[END_REF], formulae 10.9.1 and 10.54.1).

Inverse scattering by an inhomogeneous medium

Topological derivative of L 2 cost functionals

The illumination by an incident wave u i of a given trial obstacle D ⋆ , characterized by an assumed contrast q ⋆ such that 1 + q ⋆ ≥ n 2 ⋆ > 0 in D ⋆ and D ⋆ = supp(q ⋆ ), generates the corresponding far-field pattern v ∞ ⋆ . Therefore, in order to quantify the discrepancy between D ⋆ and the obstacle D to be identified, one may introduce the following type of least-squares cost functional J evaluating the misfit between far-field measurements v ∞ obs of (9) and their trial counterpart v ∞ ⋆ :

J (D ⋆ , q ⋆ ) := S 1 2 |v ∞ ⋆ (x) -v ∞ obs (x)| 2 dS x. ( 15 
)
One further assumes that the data v obs featured in (15) consists of noise-free measurements on S of the acoustic field scattered by D, i.e. v ∞ obs ≡ v ∞ . The above functional assumes data from just one incident wave; multiple data may then be taken into account via finite sums or continuous superposition of functionals, as required.

Sampling methods are commonly investigated under the assumption that fullaperture far-field data be available for all possible directions of incident plane waves, i.e. that the kernel A(x, θ) of F be known from measurements for all x, θ ∈ S, as this data uniquely determines the refraction index q (see e.g. Theorem 6.26 in [START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF]). The cost functional of type [START_REF] Devaney | Time reversal imaging of obscured targets from multistatic data[END_REF] corresponding to this situation, denoted hereinafter as J S , is defined by

J S (D ⋆ , q ⋆ ) := S S 1 2 |A ⋆ (x, θ) -A(x, θ)| 2 dS x dS θ , (16) 
The case of a single incident wave of Herglotz type, i.e. of the form u i = Hg for some g ∈ L 2 (S), is also of interest, especially when g is selected on the basis of the full experimental information A(x, θ). The corresponding cost functional of type [START_REF] Devaney | Time reversal imaging of obscured targets from multistatic data[END_REF], denoted by J [g] to emphasize its dependence on the Herglotz density g, is defined by

J [g](D ⋆ , q ⋆ ) := S 1 2 |F g(x) -F ⋆ g(x)| 2 dS x. ( 17 
)
The remainder of this article is mainly focused on studying the topological derivative of the cost functionals J S and J [g] as means for the qualitative reconstruction of D.

Topological derivative. For a given sampling point z ∈ R d , let the trial obstacle be endowed with a uniform contrast q ⋆ and geometrically defined by

D ⋆ = D ε z := z + εD, where D ⊂ R d is
a fixed open set containing the origin and with volume measure |D|. The topological derivative T (z) of J at z is defined through the asymptotic expansion of J as ε → 0:

J (D ε z , q ⋆ ) = ε→0 J (∅) + η(ε)T (z) + o( v ∞ ε,z L 2 (S) ), (18) 
where v ∞ ε,z is the far-field pattern arising from the scattering of u i by D ε z , η(ε) defines the leading asymptotic behavior of J as ε → 0 and J (∅) is the value of J in the absence of any trial obstacle. Now, using the first-order Taylor expansion of J (D ε z , q ⋆ ) with respect to v ∞ ε,z , T (z) and η(ε) are determined by identification in the asymptotic equality (see e.g. [START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF])

η(ε)T (z) ∼ ε→0 -Re S v ∞ (x) v ∞ ε,z (x) dS x . (19) 
The scattered field for the infinitesimal inclusion D ε z is known [START_REF] Ammari | Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency[END_REF] to have the behavior

v ε,z (x) = ε d |D|k 2 q ⋆ u i (z)Φ(x, z) + o(ε d ), ( 20 
)
at any point x = z, implying that the corresponding far-field pattern reads

v ∞ ε,z (x) = ε d |D|k 2 q ⋆ u i (z)h(z, -x) + o(ε d ). ( 21 
)
Considering an incident wave u i = Hg in (21) for some g ∈ L 2 (S), one therefore has v ∞ ε,z (x) = F ε z g(x), with the far-field operator F ε z having the expansion

F ε z g(x) = ε d F 0 z g(x) + o(ε d ). ( 22 
)
The operator F 0 z therefore has (in the sense of definition ( 12)) a kernel A 0 z , given by [START_REF] Borcea | Imaging and time reversal in random media[END_REF], the asymptotic behavior η(ε) and the topological derivative T [g] of J [g] are found to be η(ε) = ε d and

A 0 z (x, θ) = |D|k 2 q ⋆ h(z, θ)h(z, -x) = |D|k 2 q ⋆ Φ ∞ z (θ)Φ ∞ z (x) (23) Replacing v ∞ (x) by F g(x) and v ∞ ε,z (x) by ε d F 0 z g(x) + o(ε d ) in
T [g](z) = -Re S F g(x)F 0 z g(x) dS x . (24) 
Similarly, the same behaviour η(ε) = ε d is found for J S , with its topological derivative T S (z) obtained as [START_REF] Borcea | Imaging and time reversal in random media[END_REF], retaining the leading contribution as ε → 0 and integrating the result over θ ∈ S. In addition, key relationships hold between topological derivatives and the far-field operator: Proposition 1. The topological derivatives [START_REF] Jackowska-Strumillo | Topological optimization and inverse problems[END_REF] and (25) can be recast as follows in terms of the far-field operator F associated with the unknown scatterer (D, q):

T S (z) = -Re S S A(x, θ)A 0 z (x, θ) dS x dS θ (25) by replacing v ∞ (x) by A(x, θ) and v ∞ ε,z (x) by ε d A 0 z g(x, θ) + o(ε d ) in
T [g](z) = -|D|k 2 q ⋆ Re (g, Φ ∞ z ) L 2 (S) (Φ ∞ z , F g) L 2 (S) , (26a) 
T S (z) = -|D|k 2 q ⋆ Re Φ ∞ z , F Φ ∞ z L 2 (S) . (26b) 
Proof. Formula (26a) results from using

F 0 z g(x) = |D|k 2 q ⋆ (g, Φ ∞ z ) L 2 (S) Φ ∞ z (x)
(by virtue of ( 23)) in [START_REF] Jackowska-Strumillo | Topological optimization and inverse problems[END_REF] and treating the resulting integral over S as a scalar product in L 2 (S).

To establish (26b), one first uses definitions (23) of A 0 z and invokes the reciprocity property A(x, θ) = A(-θ, -x) of F ( [START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF], Theorem 8.8), to obtain

A(x, θ)A 0 z (x, θ ′ ) = -|D|k 2 q ⋆ A(-θ, -x)h(z, -x)h(z, θ ′ ) = -|D|k 2 q ⋆ A(-θ, -x)Φ ∞ z (-x)Φ ∞ z (-θ ′
), for arbitrary θ, θ ′ ∈ S. Equation (26b) then follows from integrating the result over (θ, θ ′ ) ∈ S × S.

Remark 1. The leading asymptotics of the least-squares cost functionals considered in this study is remarkably expressed, as in [START_REF] Jackowska-Strumillo | Topological optimization and inverse problems[END_REF] or [START_REF] Bonnet | Sounding of finite solid bodies by way of topological derivative[END_REF], in terms of the conjugated (i.e. time-reversed in the time domain) counterpart of the far-field pattern scattered by the unknown obstacle D. This observation directly leads to the key relations of Proposition 1, which show the link between the topological derivative and the far-field operator.

Sign heuristic

The value T (z) quantifies the sensitivity of the featured cost functional J to the perturbation of the reference medium induced by the nucleation at z ∈ R d of an infinitesimal obstacle with contrast q ⋆ . It is then natural to consider z → T (z) as a potential obstacle indicator function, as was previously done on several occasions (see [START_REF] Bonnet | Sounding of finite solid bodies by way of topological derivative[END_REF][START_REF] Guzina | From imaging to material identification: a generalized concept of topological sensitivity[END_REF][START_REF] Bellis | A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data[END_REF] and the references therein). The heuristic underlying this usage is as follows: if q ⋆ is of the same sign than q, then the sought object D (or the set thereof) is expected to be located at the sampling points z at which T attains its most pronounced negative values, i.e. at which the introduction of a sufficiently small scatterer with a contrast of the same sign than that of D induces the most pronounced decrease of J . Note that no smallness requirement for D is made in this approach, which is referred to hereinafter as the sign heuristic of the topological derivative. Up to now, this sign heuristic lacks rigorous justification but is supported by many numerical experiments. This study aims at investigating the validity of such heuristic and determining conditions under which it has a mathematical justification, in the limited framework of the identification of obstacles characterized by refraction index perturbations using far-field data.

Born approximation

It is natural to start by evaluating the validity of the topological derivative approach under the assumption of a weak scatterer approximation for the sought object D before considering the more complex case of the full scattering model (Sec. 3.4). With reference to the Lippmann-Schwinger equation [START_REF] Colton | Eigenvalues of the far field operator and inverse scattering theory[END_REF], this corresponds to situations where k, |D|, q are such that ST b ≪ 1. If ST b < 1, equation ( 6) can be solved by fixed-point iterations. The first iterate, defined by

u b = u i in D and v b = ST b u i in R d \ D, constitutes
the Born approximation. The Born approximation is indicated by the subscript or superscript "b" affixed to all relevant fields and operators. Moreover, one notes that, in view of [START_REF] Prada | Eigenmodes of the time reversal operator: A solution to selective focusing in multiple target media[END_REF], the probing infinitesimal trial obstacle also obeys the Born approximation.

Under the weak scatterer approximation, the far-field operator has a known, and simple, factorization: Lemma 2 ([10], Sec. 4.3). The far-field operator under the Born approximation, denoted by F b , is defined by [START_REF] Kirsch | The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF] with the kernel A b :

A b (x, θ) = D k 2 q(y)h(y, x)h(y, θ) dV y , x, θ ∈ S.
F b is compact and (for real-valued contrast q ∈ L ∞ (D)) self-adjoint; as such, it has a complete orthonormal system with eigenvalues λ b ℓ ∈ R and eigenfunctions Ψ b ℓ ∈ L 2 (S). Moreover, it admits the factorization

F b = H ⋆ T b H,
where the operator

T b : L 2 (D) → L 2 (D) is defined by T b f = k 2 q f and
with H, H ⋆ as defined by (13a) and (13b).

Applying this factorization to (26a,b) and using Lemma 1 for every occurrence of HΦ ∞ z , one obtains more explicit expressions for the topological derivatives: Proposition 2. Under the Born approximation, the topological derivatives T b [g] and T b S are given (with the function ζ 0 as defined in Lemma 1) by

T b [g](z) = -|D|k 2 q ⋆ Re (Φ ∞ z , g) L 2 (S) (T b Hg, HΦ ∞ z ) L 2 (D) = -|D|k 4 q ⋆ Re (Φ ∞ z , g) L 2 (S) D q(y)ζ 0 (y -z)Hg(y) dV y , (27a) 
T b S (z) = -|D|k 2 q ⋆ HΦ ∞ z , T b HΦ ∞ z L 2 (D) = -|D|k 4 q ⋆ D q(y)ζ 2 0 (y -z) dV y , ( 27b 
)
where g ∈ L 2 (S) is arbitrary in (27a). Moreover, letting g = Ψ b k , where Ψ b k ∈ L 2 (S) is an eigenfunction of F b for the eigenvalue λ b k ∈ R, λ b k = 0, so that F b g = λ b k g (see Lemma 2), one has T b [Ψ b k ](z) = -|D|k 2 q ⋆ λ b k (Ψ b k , Φ ∞ z ) L 2 (S) 2 (28a) = -|D|k 2 q ⋆ (λ b k ) -1 (T b HΨ b k , HΦ ∞ z ) L 2 (D) 2 . ( 28b 
)
Proof. Formulae ( 27) are readily found by applying the factorization

F b = H ⋆ T b H to (26a,b
) and using Lemma 1 for every occurrence of

HΦ ∞ z . Next, (26a) with g = Ψ b k reads T b [g](z) = -|D|k 2 q ⋆ Re (Φ ∞ z , Ψ b k ) L 2 (S) (F b Ψ b k , Φ ∞ z ) L 2 (S) . Formula (28a) then results from setting F b Ψ b k = λ b k Ψ b k in the second inner product, whereas formula (28b) is obtained by setting Ψ b k = (λ b k ) -1 F b Ψ b
k in the first inner product and using the factorization

F b = H ⋆ T b H.
Decay properties of the topological derivative. The topological derivatives as given in Proposition 2 involve the function ζ 0 defined by ( 14), which has the well-known decay properties (see e.g. equations 10.7.8 and 10.52.3 in [START_REF] Olver | NIST handbook of mathematical functions[END_REF])

ζ 0 (x) = O |x| -1/2 (if d = 2), ζ 0 (x) = O |x| -1 (if d = 3), |x| → +∞. ( 29 
)
As a result, T b [g](z) and T b S (z) decay away from D, as dist(z, D) → ∞, according to: Proposition 3. The topological derivatives T b [g] (for any g ∈ L 2 (S)) and T b S have the following asymptotic behavior away from D:

|T b [g](z)| = O dist(z, D) (1-d)/2 , |T b S (z)| = O dist(z, D) 1-d , |z| → ∞. ( 30 
)
Moreover, the above estimate for T b [g] can be refined in two cases: (i) for any density g ∈ C 0 (S), one has

|T b [g](z)| = O |z| (1-d)/2 dist(z, D) (1-d)/2 |z| → ∞, (31) 
and (ii

) letting g = Ψ b k , where Ψ b k ∈ L 2 (S) is an eigenfunction of F b for the eigenvalue λ b k ∈ R, one has |T b [g](z)| = O dist(z, D) 1-d |z| → ∞. (32) 
Proof. Estimates ( 30) and ( 32) stem directly from invoking the Cauchy-Schwarz inequality and using ( 29) in (27a,b) and (28b), respectively. Moreover, estimate [START_REF] Bonnet | Inverse acoustic scattering by small-obstacle expansion of a misfit function[END_REF] follows from

(Φ ∞ z , g) L 2 (S) = S e -ikz•x g(x) dS x = O(|z| (1-d)/2 ),
which holds for any g ∈ C 0 (S) by virtue of known properties of oscillatory integrals (see e.g. [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF], Sec. 8.1). Sign properties of the topological derivative. First, in the case where q has a constant sign in D, it is clear from (27b) that

The decay properties given by

sign(T b S (z)) = -sign(q ⋆ q). (33) 
The topological derivative T b S , which is based on enough information for (D, q) to be exactly identifiable, is thus found to have both desired attributes of TD-based imaging, namely (i) the sharpest decay (among the variants considered) away from D, and (ii) a sign which is consistent with its heuristic meaning (J S decreases when a small trial scatterer such that sign(q ⋆ ) = sign(q) appears at z).

It does not appear that the sign of T b [g] can be ascertained for arbitrary choices of g. However, for any eigenfunction

Ψ b k ∈ L 2 (S) of F b , one has sign(λ b k ) = sign(q) if sign(q) is constant in D due to F b = H ⋆ T b H and the definition of T b . Hence, if g = Ψ b k , the topological derivative T b [Ψ b k ],
which exploits one single combination of the available measurement, has characteristics similar to T b S , namely is such that

sign(T b [Ψ b k ](z)) = -sign(q ⋆ λ b k ), |T b [Ψ b k ](z)| = O(dist(z, D) 1-d ) (|z| → ∞). (34) 
Now, the more complex case where D is multiply connected (i.e. supp(q) = D = ∪ M m=1 D m ) with q having constant sign in each connected component D m , is considered. The topological derivative T b S then satisfies the following corollary of Propositions 2, 3: Corollary 1. Considering the case d = 3, let σ m := sign(q| Dm ), σ ⋆ := sign(q ⋆ ), α := 16π 2 k 2 |D| and define

Q m := Dm q(y) dV y , I m (z) := -|D|k 4 Dm q ⋆ q(y)ζ 2 0 (z -y) dV y (1 ≤ m ≤ M ), noting that sign(I m (z)) = -σ ⋆ σ m . Then, for any exterior sampling point z e / ∈ D, one has -α σ⋆σm=1 q ⋆ Q m dist(z, D m ) 2 ≤ T b S (z e ) ≤ -α σ⋆σm=-1 q ⋆ Q m dist(z, D m ) 2 (35) 
and for any interior point z i ∈ D m 0 ⊂ D, where m 0 ∈ {1, . . . , M }, one has

I m 0 (z i ) -α m =m 0 σ⋆σm=1 q ⋆ Q m dist(z, D m ) 2 ≤ T b S (z i ) ≤ I m 0 (z i ) -α m =m 0 σ⋆σm=-1 q ⋆ Q m dist(z, D m ) 2 . ( 36 
)
Proof. Inserting the definition ( 14) of ζ 0 in (27b) and distinguishing between components D m where q ⋆ q m is positive or negative, one has

T b S (z) = α - σ⋆σm=1 Dm |q ⋆ q(y)| sin 2 (k|y -z|) |y -z| 2 dV y + σ⋆σm=-1 Dm |q ⋆ q(y)| sin 2 (k|y -z|) |y -z| 2 dV y := α(-S + + S -). If z / ∈ D, then for each m = 1, . . . , M 0 ≤ Dm |q ⋆ q(y)| sin 2 (k|y -z|) |y -z| 2 dV y ≤ |q ⋆ Q m | dist(z, D m ) 2 ,
and [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF] follows from applying this inequality to derive separate upper bounds of the positive sums S -and S + . Note that the upper and lower bounds of this inequality are respectively positive and negative.

If z ∈ D, then there exists m 0 ∈ {1, . . . , M } such that z ∈ D m 0 and one similarly obtains

I m 0 (z) -α m =m 0 σ⋆σm=1 q ⋆ Q m dist(z, D m ) 2 ≤ T b S (z) ≤ I m 0 (z) -α m =m 0 σ⋆σm=-1 q ⋆ Q m dist(z, D m ) 2 .
Remark 2. Proposition 3 and Corollary 1 give a key justification to the heuristic of the topological derivative approach presented in Section 3.1 under the Born approximation. Away from the scattering obstacle D, the expected decay of

T b S is O(dist(z, D) 1-d ).
Moreover, for a given m 0 , if the probing scatterer D ⋆ is qualitatively of same nature than D m 0 (i.e. if σ ⋆ σ m 0 = 1), then T b S exhibits large negative values inside D m 0 provided that the effects of the remaining obstacle components D m , m = m 0 can be neglected. On the contrary, if D ⋆ and a given D m 0 have opposite behaviors (i.e. σ ⋆ σ m 0 = -1), then pronounced positive values of T b S occur inside D m 0 . This statement (that we do not formalize) is valid in the situations where the different geometrical components D m are sufficiently far from each other or when their material contrasts are relatively low.

The inequalities [START_REF] Stein | Introduction to Fourier analysis on Euclidean spaces[END_REF] show that there exist configurations where the reconstruction of a given D m 0 can be skewed by the effects of the surrounding inhomogeneities, for example in terms of the sign of the topological derivative.

Remark 3. Corollary 1 does not have a simple counterpart for d = 2 because J 2 0 (x) ≤ Cx -1 only in the limit x → ∞, whereas j 2 0 (x) ≤ Cx -2 for any x > 0.

Topological derivative in convolutional form. Let f ⋆ g denote the convolution product of functions f, g

∈ L 2 (R d ), i.e. [f ⋆ g](x) = R d f (y)g(x -y) dV y .
By initial assumption, q ∈ L ∞ (D) and has compact support D; hence q ∈ L 2 (R d ). The following proposition then follows by treating (27b) as a convolution integral: S is then given by

T b S (z) = -|D|k 4 q ⋆ [q ⋆ χ](z). (37) 
In formulation (37) of T b S , the convolution with the function χ acts as a filter on the material contrast function q, which has compact support. Therefore, the image provided by T b S is expected to be a smoothed version of the actual object (D, q), with the value T b S (z) at a given sampling point z related to the average of q over a neighborhood of z. This idea of geometrical filtering is analyzed next. Remark 4. It is possible to find an asymptotic form of the right-hand side of (37) as k → ∞. Within this type of approximation and owing to the known asymptotic behavior of ζ 0 (zy), the indicator function T b S is expected to provide a sharper image of the sought obstacle. However, the relevance of this asymptotics remains constrained by the validity of the Born approximation (see discussion in Sec. 5.3). In particular, in the short-wavelength regime, the contrast function q is restricted by (74) to very small values, which makes this type of approximation of very limited practical interest.

In order to obtain further insight on T b

S by exploiting its convolutional form [START_REF] Erdélyi | Tables of Integral Transforms, volume II, Bateman Manuscript Project[END_REF], one introduces the Fourier transform of a function f as f defined by

f (ξ) = F[f ](ξ) = R d f (x)e -2πix•ξ dV x .
The Fourier transform χ of the radial function χ is also radial (see Theorem IV 3.3 in [START_REF] Stein | Introduction to Fourier analysis on Euclidean spaces[END_REF]), and simple calculations with the recourse to [START_REF] Erdélyi | Tables of Integral Transforms, volume II, Bateman Manuscript Project[END_REF] show that

χ(ξ) = 4π |ξ| 1 (k 2 -π 2 |ξ| 2 ) 1/2 (if |ξ| < k π ), χ(ξ) = 0 (if |ξ| > k π )
for d = 2, and

χ(ξ) = 4π 3 |ξ|k 2 (if |ξ| < k π ), χ(ξ) = 0 (if |ξ| > k π )
for d = 3. From the identity (37), one obtains

T b S (z) = -|D|k 4 q ⋆ [q ⋆ χ](z) = -|D|k 4 q ⋆ F -1 q(ξ) χ(ξ) (z). ( 38 
)
Since χ(ξ) = 0 for |ξ| > k/π for d = 2 or 3, equation [START_REF] Colton | Eigenvalues of the far field operator for the helmholtz equation in an absorbing medium[END_REF] implies that spatial variations of q within a characteristic length scale smaller than λ/2, with λ = 2π/k, cannot be recovered. Hence, geometrical details of D on a scale smaller than the resolution limit λ/2 are filtered out in the reconstruction by the indicator function T b S . In view of this resolution limit, it is natural to seek the transformation which, through deconvolution, will lead to the optimal reconstruction, in the L 2 -norm sense, of the function q from T b S . To do so, let the functions Θ and Π be defined as follows in terms of their Fourier transforms:

Θ(ξ) = 1/ χ(ξ) (if 0 < |ξ| < k/π), Θ(ξ) = 0 (if |ξ| > k/π), (39a) Π(ξ) = 1 (if |ξ| < k/π), Π(ξ) = 0 (if |ξ| > k/π). (39b) 
Using Theorem IV.3.3 in [START_REF] Stein | Introduction to Fourier analysis on Euclidean spaces[END_REF], duality properties of the Fourier transform and Eq. 19.1.3 in [START_REF] Erdélyi | Tables of Integral Transforms, volume II, Bateman Manuscript Project[END_REF], the function Π can be shown to be given by

Π(x) = k π J 1 (2k|x|) |x| (if d = 2), Π(x) = 2k 2 π 2 j 1 (2k|x|) |x| (if d = 3), ( 40 
)
where J 1 is the Bessel function of the first kind and order 1 and j 1 its spherical counterpart. Then, the following corollary immediately follows from equation [START_REF] Colton | Eigenvalues of the far field operator for the helmholtz equation in an absorbing medium[END_REF] and the definitions of functions Θ and Π:

Corollary 2. With the functions Θ and Π defined by (39a) and (40), one has

[Θ ⋆ T b S ](z) = -|D|k 4 q ⋆ [q ⋆ Π](z). The functions T b
S and Θ ⋆ T b S both involve the convolution of the unknown contrast function q with a function of compact support |ξ| ∈ [0; k/π]. However, since in the Fourier domain one has

F[Θ ⋆ T b S ](ξ) = -|D|k 4 q ⋆ q(ξ) (if |ξ| < k π ), F[Θ ⋆ T b S ](ξ) = 0 (if |ξ| > k π )
the convolution of T b S with Θ allows to recover, up to the user-chosen factor |D|k 4 q ⋆ , the Fourier transform of q for the spatial frequencies less than k/π. In fact, it is pointed out in [START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF] (p. 93, after eq. 4.21) that q is analytic (by virtue of q having compact support) and hence can in principle be recovered in all of R d from its truncated version.

Full scattering model

The topological derivative exploiting far-field measurements v ∞ of the scattered field is now formulated within the full-scattering model. In this framework, the following factorization holds for the far-field operator: Lemma 3 ([10], Theorem 4.5). Let the far-field operator F : L 2 (S) → L 2 (S) be defined by [START_REF] Kirsch | The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF]. Then

F = H ⋆ T H (41) 
with operators H, H ⋆ defined by (13a) and (13b), respectively. The operator T : Proof. The proof follows [START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF][START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF] and is presented for completeness. By superposition, for given g ∈ L 2 (S), F g is the scattering far-field pattern arising from illuminating the inhomogeneity D by the incident wave Hg ∈ L 2 (D). By virtue of the Lippmann-Schwinger equation ( 6), the total field u ∈ L 2 (D) in D solves (I -ST b )u = Hg (x ∈ D). By ( 8), the far-field pattern corresponding to u is then given by H ⋆ T b u, i.e. by

L 2 (D) → L 2 (D)
H ⋆ T b (I -ST b ) -1 Hg = H ⋆ (T -1 b -S) -1 Hg. Hence F = H ⋆ (T -1 b -S) -1 H.
The topological derivatives and their decay properties are thus as follows:

Proposition 5. Under the full-scattering model, the topological derivatives T [g] and T S are given by

T [g](z) = -|D|k 2 q ⋆ Re (Φ ∞ z , g) L 2 (S) (T Hg, HΦ ∞ z ) L 2 (D) , (42a) 
T S (z) = -|D|k 2 q ⋆ Re HΦ ∞ z , T HΦ ∞ z L 2 (D) . (42b) 
Moreover, they decay with the distance dist(z, D) according to

|T [g](z)| = O(|z| (1-d)/2 dist(z, D) (1-d)/2 ) |T S (z)| = O(dist(z, D) 1-d ) |z| → ∞. (43) 
Proof. Formulae (42a,b) result directly from applying Lemma 3 to (26a-b). Moreover, the decay properties [START_REF] Pinçon | Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors[END_REF] are identical to those obtained under the Born approximation and hold for the same reasons (they are not influenced by whether T , rather than T b , is used in the factorization F = H ⋆ T H).

The far-field operator F is normal and compact [START_REF] Colton | Eigenvalues of the far field operator and inverse scattering theory[END_REF]. As a consequence, there exists a complete set of orthonormal eigenfunctions Ψ ℓ ∈ L 2 (S) with corresponding eigenvalues

λ ℓ ∈ C such that F g = ∞ ℓ=0 λ ℓ g, Ψ ℓ L 2 (S) Ψ ℓ . ( 44 
)
This allows the following reformulations of T [g] and T S : Proposition 6. The topological derivative T S is given in terms of the L 2 (S)-orthonormal system (λ ℓ , Ψ ℓ ) ℓ∈N of F by

T S (z) = -|D|k 2 ∞ ℓ=0 q ⋆ Re[λ ℓ ] Φ ∞ z , Ψ ℓ L 2 (S) 2 . ( 45 
)
Moreover, letting g = Ψ k for some k ∈ N, the topological derivative T [Ψ k ] is given by

T [Ψ k ](z) = -|D|k 2 q ⋆ Re[λ -1 k ] (T HΨ k , HΦ ∞ z ) L 2 (D) 2 . ( 46 
)
This in particular implies, by virtue of Lemma 1 and (29), that

T [Ψ k ](z) = O(dist(z, D) 1-d ). ( 47 
)
Proof. Reformulation ( 45) is obtained by using ( 44) into (42b), while [START_REF] Ammari | MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions[END_REF] is established in the same way as (28b) with T b replaced with T , taking advantage of the factorization [START_REF] Vainikko | Fast solvers of the Lippmann-Schwinger equation[END_REF].

The topological derivative T [g] can in fact easily be reformulated in terms of (Ψ ℓ , λ ℓ ) ℓ∈N for arbitrary densities g ∈ L 2 (S); the resulting expression is not shown as it does not permit additional general insight. Besides, the case of a single incident plane wave is summarized in the following remark: Remark 5. The topological derivative for the case where D is probed using a single plane wave of incidence direction θ, denoted T [θ](z), is obtained by replacing F g(x) with A(x, θ) in (17), ( 24), (26a) and

(Φ ∞ z , g) L 2 (S) with Φ ∞ z (θ) in (26a).
As a result, one obtains

T [θ](z) = -|D|k 2 q ⋆ Re Φ ∞ z (θ) H ⋆ T HΦ ∞ z (-θ) = O(dist(z, D) (1-d)/2 ) |z| → ∞.
This case is easily generalized to measurements available for a finite number N of plane waves with incidence directions θ n (1 ≤ n ≤ N ), with the topological derivative at z then given by N n=1 T [θ n ](z). Unsurprisingly (since the assumed available data is scarcer), the decay of T [θ](z) away from D is less pronounced than that of T S (z) or T [Ψ k ](z). Moreover, sign T [θ](z) cannot be ascertained from the above expression.

Propositions 5 and 6 address the decay of the topological derivative away from D, but not their sign properties; these are addressed next.

Sign properties of the topological derivative. Determining the sign of the topological derivative is more difficult than in the case of the Born approximation. This has much to do with the fact that, F being normal but (unlike T b ) not self-adjoint, the eigenvalues λ ℓ are complex-valued. They are in fact known [START_REF] Colton | Eigenvalues of the far field operator and inverse scattering theory[END_REF][START_REF] Colton | Eigenvalues of the far field operator for the helmholtz equation in an absorbing medium[END_REF] to lie on the circle of the complex λ-plane defined by

kγ 2 d |λ ℓ | 2 -Im[λ ℓ ] = 0. ( 48 
)
Equation ( 45) highlights the fact that the indicator function z → T S (z) defined in the topological derivative approach, based on an asymptotic expansion of the L 2 norm-based misfit function [START_REF] Cassereau | Limits of self-focusing using closed time-reversal cavities and mirrors -theory and experiment[END_REF], reduces to the sum of the projections of the test function Φ ∞ z onto the eigenvectors Ψ ℓ of the far-field operator, weighted by the products q ⋆ Re[λ ℓ ] with the trial contrast q ⋆ chosen a priori. Equation [START_REF] Brühl | A direct impedance tomography algorithm for locating small inhomogeneities[END_REF] shows that the sign of T S depends on the signs of Re(λ ℓ ), with T S (z) guaranteed to be negative if sign[Re(λ ℓ )] is constant and equal to sign(q ⋆ ) for all ℓ ∈ N. Equation ( 48) implies that -8π 2 /k ≤ Re(λ ℓ ) ≤ 8π 2 /k and Im(λ ℓ ) ≥ 0 for any ℓ ∈ N, allowing to readily characterize sign[Im(λ ℓ )] but not sign[Re(λ ℓ )] (whereas the latter sign was known in the Born approximation case). Indeed, the analytical exemple of Sec. 3.5 will show that Re(λ ℓ ) can be either positive or negative for sufficiently high frequency and/or contrast, causing sign changes of T S (z) for z ∈ D. Likewise, the verification of the sign heuristic for T [Ψ k ] as given by ( 46) also requires sign[Re(λ k )] = sign(q ⋆ ). However, this requirement can be satisfied in practice by selecting the pair (λ k , Ψ k ) appropriately since only one such pair is involved in [START_REF] Ammari | MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions[END_REF].

It is nevertheless possible to extend the validity of the sign-characterization result [START_REF] Olver | NIST handbook of mathematical functions[END_REF] beyond the Born approximation, to a limited extent. To this end, assume that q has a constant sign over D and introduce the operator S:

L 2 (D) → L 2 (D) such that S = sign(q)T 1/2 b ST 1/2 b , with the operator T 1/2 b : L 2 (D) → L 2 (D) defined by T 1/2 b f = (k 2 |q|) 1/2 f . Setting ψ := T 1/2 b HΦ ∞ z ∈ L 2 (D)
, and recalling that T = (T -1 b -S) -1 , the topological derivative T S (z) can be recast from (42b) in the form

T S (z) = -|D|k 2 q ⋆ sign(q) Re ψ, T -1/2 b T T -1/2 b ψ L 2 (D) = -|D|k 2 q ⋆ sign(q) Re ψ, (I -S) -1 ψ L 2 (D) .
The following result then holds: Proposition 7. Assume that (i) q has a constant sign over D, and (ii) D, k and q are such that S < 1/2, where S := sup φ L 2 (D) =1 Sφ L 2 (D) . Then: sign(T S (z)) = -sign(q ⋆ q). Proof. Using the identity (I -S) -1 = I + S(I -S) -1 , T S (z) is recast as

T S (z) = -|D|k 2 q ⋆ sign(q) ψ 2 L 2 (D) + Re ψ, S(I -S) -1 ψ L 2 (D) .
Moreover, one has (I -S) -1 ≤ 1/(1 -S ) whenever S < 1. Applying the Cauchy-Schwarz inequality to | ψ, S(I -S) -1 ψ L 2 (D) |, one thus obtains

ψ, S(I -S) -1 ψ L 2 (D) ≤ S 1 -S ψ 2 L 2 (D)
The condition S < 1/2 therefore ensures that ψ, S(I -S) -1 ψ L 2 (D) < ψ 2 L 2 (D) for any ψ ∈ L 2 (D). This in turn guarantees that ψ 2 L 2 (D) +Re ψ, S(I -S) -1 ψ L 2 (D) > 0, which completes the proof. Remark 6. The condition S < 1/2 limits this sign-characterization result to scatterers of moderate strength, which are in particular within the applicability bounds of iterated Born (i.e. Neumann series) solution methods [START_REF] Kilgore | Inverse Born series for scalar waves[END_REF], while extending the corresponding result for the Born approximation case (for which S ≪ 1).

Analytical example: spherical scatterer in R 3

Topological derivative. To illustrate the foregoing developments, consider scattering by a homogeneous spherical obstacle D of unit radius and centered at the origin, so that ∂D = {x∈R 3 : |x| = 1}. Assuming illumination by an incident plane wave u i = h(•, θ) propagating along the direction θ ∈ S, which can be expanded over the set of L 2 (S)-orthonormal spherical harmonics (Y m ℓ ) ℓ∈N,m∈{-ℓ,...,ℓ} as

h(x, θ) = ∞ ℓ=0 ℓ m=-ℓ 4πi ℓ j ℓ (k|x|)Y m ℓ (x)Y m ℓ (θ) (49) 
by virtue of the Jacobi-Anger identity and the Legendre addition theorem (see e.g. eqs. 10.60.7 and 14.30.9 in [START_REF] Olver | NIST handbook of mathematical functions[END_REF]). The total field u in D and the scattered field v in R 3 \D that together solve the forward scattering problem (1a-c) can be similarly expanded as

u(x, θ) = ∞ ℓ=0 ℓ m=-ℓ u m ℓ (θ) j ℓ (nk|x|) Y m ℓ (x) for x ∈ D, θ ∈ S, v(x, θ) = ∞ ℓ=0 ℓ m=-ℓ v m ℓ (θ) h ℓ (k|x|) Y m ℓ (x) for x ∈ R 3 \D, θ ∈ S,
where n = √ 1 + q, j ℓ and h ℓ denote respectively the pth-order spherical Bessel and Hankel functions of the first kind. On using the transmission conditions u = u i + v and n∂ |x| u = ∂ |x| (u i + v) on ∂D and the L 2 (S)-orthonormality of spherical harmonics, the solution for v in R d \D is found to be given by

v(x, θ) = 4π ∞ ℓ=0 ℓ m=-ℓ i ℓ Λ ℓ (q, k) h ℓ (k|x|) Y m ℓ (x)Y m ℓ (θ), (50) 
with the coefficients Λ ℓ (q, k) given by

Λ ℓ (q, k) = j ℓ (nk)j ′ ℓ (k) -nj ′ ℓ (nk)j ℓ (k) nj ′ ℓ (nk)h ℓ (k) -j ℓ (nk)h ′ ℓ (k) (f ′
denoting the derivative of f with respect to its argument). Note that Λ ℓ (q, k) is nonsingular, as the denominator nj ′ ℓ (nk)h ℓ (k)j ℓ (nk)h ′ ℓ (k) can be shown to be nonzero for any k ∈ R + and ℓ ∈ N (see e.g. [START_REF] Guzina | On the multi-frequency obstacle reconstruction via the linear sampling method[END_REF]). Using equation ( 50) and Theorem 2.15 of [START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF], the scattered far-field pattern generated by a plane wave impinging on the unit penetrable ball centered at the origin is thus given by

v ∞ (x, θ) = 16π 2 ik ∞ ℓ=0 Λ ℓ (q, k) Y m ℓ (x)Y m ℓ (θ).
Then, since the spherical harmonics Y m ℓ constitute an orthonormal system for L 2 (S), one concludes from definition [START_REF] Kirsch | The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF] that the eigenvalues of the far-field operator F are given by

λ m ℓ = 16π 2 ik Λ ℓ (q, k) for ℓ ∈ N, m ∈ {-ℓ, . . . , ℓ} (51) 
with the associated eigenfunctions Ψ m ℓ ≡ Y m ℓ , counting multiplicity. Note that eq. ( 48) implies that Λ ℓ satisfy |Λ ℓ | 2 + Re[Λ ℓ ] = 0 for any ℓ ∈ N. The latter identity is also easily checked directly from definition (50) of Λ ℓ and the fact that j ℓ = Re[h ℓ ]. Finally, on applying the Jacobi-Anger expansion (49) to Φ ∞ z (x) = h(z, x), using again the orthonormality of the Y m ℓ and invoking the identity m=ℓ m=-ℓ Y m ℓ (ẑ)Y m ℓ (ẑ) = (2ℓ + 1)/4π (a special case of the Legendre addition theorem), the topological derivative T S is found from (45) to be given by

T S (z) = -64π 3 k q ⋆ |D| ∞ ℓ=0 (2ℓ + 1)Im[Λ ℓ (q, k)] j ℓ (k|z|) 2 . ( 52 
)
One can show from well-known limiting forms of the spherical Bessel functions (see e.g. [START_REF] Olver | NIST handbook of mathematical functions[END_REF], Chap. 10) that the coefficients Λ ℓ (q, k) admit the low-frequency expansion

Λ ℓ (q, k) = iq k 2ℓ+3 (2ℓ + 1)!!(2ℓ + 3)!! 1 + O(k 2 )
(where n!! = 1 × 3 × . . . n for any odd integer n) and the large-order expansion

Λ ℓ (q, k) = iq k 3 16ℓ 3 ek 2ℓ 2ℓ 1 + O(ℓ -1 ) .
Both limiting cases are consistent with the sign heuristic of the topological derivative.

Results. This section provides some numerical results illustrating the behavior of the topological derivative (52) with q ⋆ = q. For convenience of presentation, a normalization defined by

T (z) = max z (|T (z)|) -1 T (z), (53) 
is applied to T = T S , and the rescaled version T S is plotted for each example as a function of the distance |z| ∈ [0; 4] to the center of D.

The first example assumes q = 10 -4 and k = 10, i.e. is well within the Born approximation. Figure 1a shows the sharp decrease of |Λ ℓ | as ℓ increases, which justifies the approximate evaluation of the infinite series [START_REF] Challa | Inverse scattering by point-like scatterers in the foldy regime[END_REF] at an appropriate truncation level ℓ 0 (the examples of this section required ℓ 0 = 120 at most). The largest negative values of T S occur inside D, as expected from the analysis of Section 3.3 (Fig. 1b).

In the next two examples (Figures 2 and3), the parameters q and k are chosen so that the configurations correspond to limit cases in terms of the validity of the Born approximation. The eigenvalue sequences {Λ ℓ }, plotted in the complex plane on Figs. 2a and 3a (using colored dots, the color scale indicating the value of their order ℓ), are seen to accumulate at the origin in accordance with their large-order behavior, and also to lie on a circle as predicted by [START_REF] Ammari | A statistical approach to optimal target detection and localization in the presence of noise[END_REF]. However, the behavior of T S in these two cases is clearly different. In the first case, where q = 1.5 10 -2 > 0 (Fig. 2), one has Im[Λ ℓ ] > 0 for all ℓ ∈ N, which ensures that T S (z) < 0 for all z ∈ R 3 since sign(q ⋆ q) = 1; moreover, Fig. 2b shows that sign(q ⋆ q) = 1 attains pronounced negative values for |z| < 1, i.e. inside D. In the second case, where q = 8 10 -2 , Fig. 3a shows that the sequence {Im[Λ ℓ ]}, and thus {Re[λ ℓ ]}, has sign changes. Moreover, T S (z), while being predominantly negative inside D (and hence acceptably consistent with the original sign heuristic), also has sign changes. In both cases, | T S (z)| decays as predicted away from D.

Validity of the sign heuristic. The decay of |T S (z)| away from D is characterized by [START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF] and [START_REF] Pinçon | Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors[END_REF], respectively, for the Born approximation and the full scattering model, with the interpretation of the sign of T S (z) remaining an open question in the latter case when Proposition 7 does not apply. Nonetheless, as emphasized by [START_REF] Brühl | A direct impedance tomography algorithm for locating small inhomogeneities[END_REF], the sign heuristic of the method is satisfied whenever Re(λ ℓ ) all have the same sign, and may also be satisfied in other cases. If available measurements are sufficient for constructing the operator F , its eigenvalues are computable from the available data and their signs checkable. Moreover, as illustrated by the previously shown numerical results, satisfactory reconstructions are still achievable in cases where sign[Re(λ ℓ )] is not constant (as in Fig. 3).

To investigate further the sign heuristic on the present analytical example, the average sign S defined as a function of q and k by

S (q, k) = 1 ℓ max ℓmax ℓ=0 sign(Im[Λ ℓ (q, k)]) (54) 
with the truncation parameter ℓ max (q, k) < 200 set such that Im[Λ ℓ (q, k)] < 10 -20 for all ℓ > ℓ max , is computed. One has -1 ≤ S (q, k) ≤ 1 by construction, with S (q, k) = 1 indicating perfect verification of the sign heuristic. The function S is plotted in Figure 4, with the validity limits of the Born approximation in the high-and low-frequency regimes (as defined by ( 73) and ( 74)) indicated by dashed lines and the configurations corresponding to Figures 123indicated by symbols. This plot indicates that S (q, k) = 1 in a parameter region outside that defined by Proposition 7 (and hence also beyond the Born approximation), in which the validity of the sign heuristic is thus corroborated empirically.

Numerical examples in R 2

In this section, numerical results corresponding to the identification of a set of homogeneous scattering obstacles (i.e q is piecewise-constant and D = supp(q -1)) embedded in R 2 are presented. The forward full scattering model is implemented via a numerical solution of the Lippmann-Schwinger integral equation ( 6). The discretization method proposed in [START_REF] Vainikko | Fast solvers of the Lippmann-Schwinger equation[END_REF] is used, with the discretization length h adjusted to the wavelength according to h = λ/10 = π/5k. Given a set of N = 60 plane waves with k = 2 and equally-spaced incident directions θ j on S (with θ j = (cos(2π(j -1)/N ), sin(2π(j -1)/N )) for j = 1, . . . , N ), synthetic measurements of the scattered far-field pattern ( 9) are generated for each configuration considered in order to compute the corresponding far-field operator [START_REF] Kirsch | The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF]. The topological derivative (42b) is then computed and its rescaled counterpart ( 53) is finally plotted (see Figures 5, 6 with the negative values of T S (z) closest to -1 occurring in both cases in or near D. In particular, the two unknown obstacles are well resolved in Figure 5 (right). On Figure 6, the scatterer D considered has two homogeneous components characterized by q 1 = 0.1 and q 2 = -0.1, and T S is computed with q ⋆ = q 1 . The locations and supports of the obstacles are well identified. Moreover, T S (z) changes its sign from one object to the other as expected from the analysis of Secs. 3.3 and 3.4, with its most pronounced negative values occurring in the support of the scatterer for which sign(q ⋆ q) = 1. Finally, the identification of two objects with contrasts q 1 , q 2 of the same sign is shown in Figure 7 for three values q 2 /q 1 = 0.01, 0.025, 0.05 of the contrast ratio (with q 1 = 0.1 in all cases). The results suggest that the best reconstructions are achieved when q 1 and q 2 have similar values.
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Inverse scattering by point-like obstacles

Direct scattering problem and topological derivative

The analysis developed in Section 3 can be carried over to small, point-like scatterers embedded in a homogeneous background medium. Such configurations define a simple, yet insightful, framework for further comparison with some of the sampling methods mentioned in Section 1. In this context, the topological derivative is closely related to a broader class of asymptotic methods [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF] where geometrical information on small targets is recovered using asymptotic expansions of the forward solution. Such asymptotic analyses have been used in a number of studies for providing mathematical justifications to several imaging methodologies, in particular time-reversal and DORT [START_REF] Hazard | Selective acoustic focusing using time-harmonic reversal mirrors[END_REF][START_REF] Pinçon | Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors[END_REF][START_REF] Burkard | Far-field model for time reversal and application to selective focusing on small dielectric inhomogeneities[END_REF], MUSIC-type algorithms [START_REF] Brühl | A direct impedance tomography algorithm for locating small inhomogeneities[END_REF][START_REF] Ammari | MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions[END_REF][START_REF] Iakovleva | Multi-static response matrix of a 3-d inclusion in a half space and MUSIC imaging[END_REF] and reverse-time migration [START_REF] Ammari | A statistical approach to optimal target detection and localization in the presence of noise[END_REF]. 3)), the corresponding scattered field reduces to sums of asymptotic formulae [START_REF] Prada | Eigenmodes of the time reversal operator: A solution to selective focusing in multiple target media[END_REF] with z replaced by y m and ε by δ, i.e.:

Born approximation

v(x, θ) = M m=1 Q m k 2 u i (y m , θ)Φ(x, y m ) + o(δ d ), (55) 
where Q m := δ d |D m |q m is the reflectivity of the m-th obstacle, while the kernel A(x, θ) of the far-field operator is given by

A(x, θ) = A 0 (x, θ) + o(δ d ) = M m=1 A 0 m (x, θ) + o(δ d ), (56) 
where, using [START_REF] Eschenauer | Bubble method for topology and shape optimization of structures[END_REF],

A 0 m (x, θ) is given by A 0 m (x, θ) = k 2 Q m Φ ∞ ym (θ)Φ ∞ ym (x).
In particular, the kernel A 0 (x, θ) thus defined is seen to be degenerate, of finite rank at most M . The leading-order small-scatterer asymptotic model ( 55) is a Born approximation in that it neglects multiple scattering and the far field is explicitly given in terms of the incident field at the obstacle locations y m .

For each point-like obstacle, define the Herglotz operator

H m : L 2 (S) → C, with adjoint H ⋆ m : C → L 2 (S)
, by

H m g := S h(y m , θ)g(θ) dS θ , H ⋆ m f (x) := h(y m , -x)f (57) 
and let H :

L 2 (S) → C M , with adjoint H ⋆ : C M → L 2 (S)
, collect all H m , i.e.

Hg := H 1 g, . . . , H M g T , H ⋆ f (x) = M m=1 H ⋆ m f m (x) f = {f 1 , . . . , f M } T ∈ C M (58)
Then, using (56), the far-field operator [START_REF] Kirsch | The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF] has the expansion and factorization

F = F 0 + o(δ d ), F 0 = H ⋆ T b H (59) 
with

T b = k 2 diag(Q 1 , . . . , Q M ) ∈ C M,M
. Substituting (59) into (26b), the topological derivative T S is then found (using Lemma 1 for the second equality) to be given by

T b S (z) = -k 2 q ⋆ |D|Re (HΦ ∞ z ) ⋆ T b HΦ ∞ z = -k 4 q ⋆ |D| M m=1 Q m ζ 2 0 (z -y m ). (60) 
The magnitude |T b S (z)| of T b S hence (i) peaks at each location y m and (ii) has a O(dist(z, D δ ) 1-d ) decay away from D δ . In addition, similarly to Section 3.3, one has sign[T b S (y m )] = -sign(q ⋆ Q m ) if either M = 1 or all reflectivities Q m have the same sign; moreover, a counterpart to Corollary 1 can easily be established from (60), to show that sign[T b S (y m )] = -sign(q ⋆ Q m ) also holds when the scatterers are well separated (i.e. for large enough ka). As a result, T b S (z) permits a satisfactory identification of the locations y m of a set of well-separated point-like scatterers.

In addition, the far-field operator F 0 is known (as a special case of [START_REF] Burkard | Far-field model for time reversal and application to selective focusing on small dielectric inhomogeneities[END_REF], Theorem 4.7) to be such that

F 0 h(y m , •) = 4πk 2 Q m h(y m , •) + o((ka) -1 ).
Moreover, the M functions h(y m , •) are linearly independent ( [START_REF] Burkard | Far-field model for time reversal and application to selective focusing on small dielectric inhomogeneities[END_REF], Proposition 13). Since the rank of F 0 is at most M , the eigensystem (λ ℓ , Ψ ℓ ) ℓ≥1 of F 0 is approximately (in the sense of the above expansion) such that λ m := 4πk 2 Q m are its only nonzero eigenvalues, with corresponding eigenfunctions Ψ m := h(y m , •). The topological derivative T b [Ψ m ] corresponding to the illumination of D δ with the single incident field HΨ m is, by virtue of (28a) and using

(Ψ m , Φ ∞ z ) L 2 (D) = ζ 0 (y m -z), given by T b [Ψ m ](z) = -|D|k 2 q ⋆ λ m (Ψ m , Φ ∞ z ) L 2 (D) 2 = -4π|D|k 4 q ⋆ Q m ζ 2 0 (y m -z). (61) 
Hence, T b [Ψ m ](z) is seen to focus selectively on the obstacle D δ m . Moreover, T b S (z) given by ( 60) is such that

4πT b S (z) = M m=1 T b [Ψ m ](z),
consistently with the fact that the HΨ m are the only incident fields that produce nonzero far-field patterns when scattered by D δ .

Multiple scattering using the Foldy-Lax model

Again assuming here illumination by the incident plane wave u i = h(•, θ), the Foldy-Lax model [START_REF] Foldy | The multiple scattering of waves[END_REF][START_REF] Lax | Multiple scattering of waves[END_REF][START_REF] Devaney | Time-reversal-based imaging and inverse scattering of multiply scattering point targets[END_REF][START_REF] Challa | Inverse scattering by point-like scatterers in the foldy regime[END_REF] accounts for multiple scattering in an approximate way, by assuming the scattered field v(•; θ) = u -u i (•; θ) to be given in terms of its Foldy-Lax approximation v FL :

v(x, θ) ≈ v FL (x, θ), v FL (x, θ) := M m=1 Q m k 2 u FL (y m , θ)Φ(x, y m ), (62) 
where Q m are the obstacle reflectivities and u FL (y m , θ) are determined for given θ by enforcing the self-consistency conditions

u FL (y m , θ) = u i (y m , θ) + M n=1 n =m k 2 Q n u FL (y n , θ)Φ(y m , y n ), (m = 1, . . . , M ). ( 63 
)
On introducing the matrix S ∈ C M ×M and the vector-valued functions u i , u FL : L 2 (S) → (L 2 (S)) M defined componentwise by

S mn = (1 -δ mn )Φ(y m , y n ) (m, n = 1, . . . , M ), u i m (θ) = h(y m , θ), u FL m (θ) = u FL (y m , θ) (m = 1, . . . , M ), (64) 
where δ nm is the Kronecker symbol, the self-consistency conditions (63) for given incidence direction θ ∈ S written in matrix form reads (I M -ST b )u FL (θ) = u i (θ), with I M denoting the M ×M identity matrix and

T b = k 2 diag(Q 1 , . . . , Q M ).
With these notations, the far-field pattern associated with the Foldy-Lax model ( 62) is given by

v FL,∞ (x, θ) = H ⋆ T b (I M -ST b ) -1 u i (θ) (x). (65) 
The following result then holds:

Lemma 4. The far-field operator F FL , defined by [START_REF] Kirsch | The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[END_REF] with kernel v FL,∞ given by (65), has the factorization

F FL = H ⋆ T FL H, (66) 
where the Herglotz operator H is defined by (58) and the matrix T FL ∈ C M ×M is defined by

T FL = T b (I M -ST b ) -1 = T -1 b -S -1 , with T b = k 2 diag(Q 1 , . . . , Q M )
and S given by (64).

Proof. Definition (58) of H implies that

Hg = S u i (θ)g(θ) dS θ
Evaluating F FL g for some density g ∈ L 2 (S) using (65) and the above identity, one thus finds

F FL g(x) = S v FL,∞ (x, θ)g(θ) dS θ = H ⋆ T FL Hg(x)
Substituting (66) into (26b), the topological derivative of ( 16) with data v ∞ obs ≡ v FL,∞ resulting from the Foldy-Lax model (62) is then found to be given by

T FL S (z) = -k 2 q ⋆ |D|Re (HΦ ∞ z ) ⋆ T HΦ ∞ z . (67) 
Assume that all obstacle reflectivities have the same sign, and let σ = sign(Q 1 ) = . . . = sign(Q M ). Define the matrices T z ∈ C M , the topological derivative T FL S (z) can then be recast in the form T FL S (z) = -k 2 q ⋆ σ|D|Re Ψ ⋆ z (I -S) -1 Ψ z Then, the following counterpart of Proposition 7 holds: Proposition 8. If Q 1 , . . . , Q m are such that (i) sign(Q 1 ) = . . . = sign(Q M ) = σ and (ii) S < 1/2 (where • is the matrix norm induced by the 2-norm in C M ), then sign(T FL S (z)) = -σsign(q ⋆ ). Proof. The proof is essentially identical to that of Proposition 7, with operator S replaced with matrix S and norm definitions adjusted accordingly.

The case of discrete far-field measurements

The developments of Sections 4.2 and 4.3 can be repeated for the case where discrete far-field measurements at N angular locations x = θ n ∈ S are available for a discrete set of incident plane waves propagating along the same directions θ n , instead of continuous measurements for a continuous set of incidence directions. The main modifications consist in setting discrete counterparts of the Herglotz operator H and the far-field operator F . The former is the matrix H ∈ C M ×N such that H mn := h(y m , θ n ). The latter is the matrix F b ∈ C N ×N (for the Born appproximation) or F FL ∈ C N ×N (for the Foldy-Lax model), respectively defined by

F b ℓn = v b,∞ (θ ℓ , θ n ) with v b,∞
given by (56) and

F FL ℓn = v FL,∞ (θ ℓ , θ n ) with v FL,∞
given by (65); F b or F FL are known as multi-static response matrices. Cost functionals ( 16) and ( 17) are then accordingly replaced by appropriate finite sums. Defining the vector

Φ ∞ z ∈ C N by (Φ ∞ z ) n = Φ ∞ z (θ n ) = h(z, -θ n )
, the counterparts of ( 60) and (61) are

T b S (z) = -|D|k 2 q ⋆ (HΦ ∞ z ) T T b HΦ ∞ z , T b [Ψ m ](z) = -|D|k 2 q ⋆ λ m Ψ T m Φ ∞ z 2 (68) 
(with

λ m = k 2 Q m Φ ∞ ym 2 ∈ R and Ψ m = Φ ∞ ym -1 Φ ∞ ym ) while the counterpart of (67) is T FL S (z) = -|D|k 2 q ⋆ Re (HΦ ∞ z ) T T FL HΦ ∞ z . (69) 
Conclusions similar to those reached in Sections 4.2 and 4.3 hold, including Proposition 8, except for the fact that the rate of decay of HΦ ∞ z as dist(z, D M ) is not known in general (i.e. for arbitrary finite sets of directions θ n ); it is expected to be slower than dist(z, D M ) -1 in general, and to decrease with N .

Numerical examples in R 2

In this section, numerical results concerning the identification of point-like scatterers in R 2 are presented. The forward solution consists of the multi-static response matrix F FL associated with the Foldy-Lax model (see Sec. 4.4). A collection of M = 7 point obstacles, with randomly chosen locations y m ∈ R 2 and reflectivities Q m ∈ R (the latter satisfying the constraint Q m ∈ [-1+10 -3 , 1-10 -3 ]), is illuminated using N = 60 incident plane waves with wave number k = 2 and incidence directions θ n equally spaced on the unit circle S. The indicator function T FL S defined by ( 69) is then plotted, after rescaling according to [START_REF] Chew | Waves and fields in inhomogeneous media[END_REF], over the sampling region z ∈ [-10; 10]× [-10; 10].

Results on two such distributions of scatterers, indicated by small dots colored according to a scale indicating the value of their contrast Q m , are presented in Figures 8 and9. The two figures differ by the choice of the contrast q ⋆ of the probing inhomogeneity, which was set to q ⋆ = 0.5 for Figure 8 and to q ⋆ = -0.5 for Figure 9. The function T FL S reaches extremal values at the locations of the scatterers having largest absolute reflectivities |Q m |, with the corresponding extrema being negative (resp. positive) at those locations where q ⋆ Q m > 0 (resp. q ⋆ Q m < 0) in accordance with the sign heuristic of the method.

Discussion

Far-field vs near-field settings

The chosen far-field configuration plays an important role in the results of this article. In this context, the incident plane wave h(z, •) and the far-field pattern Φ ∞ z = h(z, •) of Φ(z, •) are, remarkably, mutually conjugated, leading to expression (26b) of T S where Φ ∞ z appears on both sides of the L 2 (S) inner product. This in turn implies that T S is expressed in terms of a weighted sum of the squared moduli of the projections of Φ ∞ z onto the eigenfunctions of F , see [START_REF] Brühl | A direct impedance tomography algorithm for locating small inhomogeneities[END_REF]. In contrast, the near-field asymptotics (20) of v ε,z involves the fundamental solution Φ(•, z), which has no particular relationship with an incident plane wave u i . To extend above-described symmetry in the formulation of T (z) to near-field cases, one has to consider illumination by point sources, rather than plane waves, since the incident field is then also expressed in terms of Φ.

Format of the cost functional

This study has concentrated on the topological derivative of cost functionals of leastsquares type. The concept of topological derivative is however not restricted to this particular choice. Indeed, the concept of topological derivative originates from topological optimization, where numerous formats of objective functions are used. Considering for instance a generalization of the cost functional [START_REF] Devaney | Time reversal imaging of obscured targets from multistatic data[END_REF] where the misfit between the trial far-field v ∞ ⋆ and its measured value v ∞ is evaluated using a distance function ϕ, the cost functional is now defined as

J (D ⋆ , q ⋆ ) := S ϕ v ∞ ⋆ (x) -v ∞ (x) dS x. (70) 
Then advantage can be taken of an adjoint field-based formulation as it allows a generic closed-form expression of the corresponding topological derivative (see e.g. [START_REF] Bonnet | Inverse acoustic scattering by small-obstacle expansion of a misfit function[END_REF][START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF]). Indeed, the asymptotic equality (19) associated with J defined by (70) takes the form

η(ε)T (z) ∼ ε→0 Re S ϕ ′ -v ∞ (x) v ∞ ε,z (x) dS x ,
(where the derivative ϕ ′ of the real-valued density ϕ(z) = φ Re(z), Im(z) is defined as ϕ ′ (z) = ∂ 1 -i∂ 2 φ Re(z), Im(z) ). Invoking the asymptotics [START_REF] Prada | Decomposition of the time reversal operator: Application to detection and selective focusing on two scatterers[END_REF] and defining the adjoint field û by

û(z) := S ϕ ′ -v ∞ (x) h(z, -x) dS x. (71) 
(û hence being a solution of the Helmholtz equation in R d ), the topological derivative of (70) can finally be recast as

T (z) = |D|k 2 q ⋆ Re û(z) u i (z) . (72) 
Applying this approach to generalizations of cost functionals J [g] and J S obtained by replacing | • | 2 with ϕ(•) in ( 16) and ( 17), one similarly obtains

T S (z) = |D|k 2 q ⋆ Re S û(z, θ)h(z, θ) dS θ , T [g](z) = |D|k 2 q ⋆ Re û(z) Hg(z) ,
where û is defined by (71) with v ∞ (x) respectively replaced by Hg(x) and A(x, θ).

Expression (72) thus represents the generic formulation of the topological derivative of a cost functional of the form (70). Its usefulness comes from the fact that the information about the experiment, i.e. the measurements themselves and the format of the misfit function, are encapsulated in the definition of the adjoint field. It also helps in conferring flexibility to the concept of topological derivative in terms of (i) the nature and quantity of available measurements exploitable, and (ii) the available choices of cost functionals. In practice, numerical experiments on other, more complex, problems [START_REF] Bellis | A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data[END_REF] indicate that the number of sources and observations can be substantially reduced while inducing only moderate degradations on the reconstructions.

Validity of the Born approximation

Since the most comprehensive justification of the topological derivative for scatterer identification was obtained under Born approximation conditions (Secs. 3.3 and 4.2), it is important to specify its domain of validity, which is dictated by the requirement ST b ≪ 1 (with S and T b as defined in Sec. 2). This issue is discussed in e.g. Sec. 8.10.1 of [START_REF] Chew | Waves and fields in inhomogeneous media[END_REF], where ST b ≪ 1 is translated into the following conditions on k, q, |D| using dimensional analysis (with |D| denoting the d-dimensional volume of D ⊂ R d ):

k 2 |D| 2 d max D |q| ≪ 1, (73) 
in the low-frequency, long-wavelength limit (i.e. if k|D| 1/d ≪ 1), and

k|D| 1 d max D |q| ≪ 1. ( 74 
)
in the high-frequency, short-wavelength limit (i.e. if k|D| 1/d ≫ 1). The numerical results of Section 3.5 are consistent with the above considerations. Since k = 10 (Fig. 1) or k = 100 (Figs. 2 and3) and |D| = 4π/3, all three cases can be considered as shortwavelength situations. Given the respective values of q used, the Born approximation is reasonable in the first case, but not in the other two, as materialized in Fig. 4.

Relationships with other qualitative sampling methods

In this section, the commonalities of the topological derivative approach with some of the qualitative sampling methods among the most prominent examples mentioned in Section 1 are discussed. The far-field operator (or its discrete counterpart, the multistatic response matrix), synthesize the measurements and thus the available information on the unknown scattering object(s) that are accessible in a given excitation/observation setting. The central questions thus concern the extraction from F of these informations, i.e. the reconstruction of the geometry D of the obstacle and the characterization of its material contrast q. The so-called sampling methods [START_REF] Cakoni | Qualitative methods in inverse scattering theory[END_REF] for inverse scattering are based on the construction of indicator functions that depend on a sampling point z covering a domain of interest in R d , and which aim at providing only qualitative informations on the scatterer(s) location and material parameters, but in a computationally efficient framework. These techniques depart from customary, and costlier, iterative minimization approaches, which aim at quantitative reconstructions.

For an overall discussion about the specific features of the topological derivative approach reference can be made to [START_REF] Bellis | A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data[END_REF].

Time reversal and DORT. As discussed in [START_REF] Dominguez | Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection[END_REF], the topological derivative in the time-domain involves time reversal in that the adjoint solution is defined in terms of an excitation that involves time-reversed measurement residuals. For the same reason, the frequency-domain topological derivatives [START_REF] Jackowska-Strumillo | Topological optimization and inverse problems[END_REF] or [START_REF] Bonnet | Sounding of finite solid bodies by way of topological derivative[END_REF] involve the conjugated counterpart of the scattered field measurements. Moreover, a more precise connection can be made between the topological derivative approach and the DORT method [START_REF] Prada | Eigenmodes of the time reversal operator: A solution to selective focusing in multiple target media[END_REF]. The latter aims at identifying M point-like scatterers by exploiting the eigensystem of the time-reversal operator F ⋆ F , which is known to be given (since F is normal) by (|λ ℓ | 2 , Ψ ℓ ) ℓ∈N (conventionally numbered so that |λ 1 | ≥ |λ 2 | ≥ . . .) in terms of the eigensystem (λ ℓ , Ψ ℓ ) ℓ∈N of F . More precisely, λ 1 , . . . , λ M are the only nonzero eigenvalues, and the incident field u i := HΨ m peaks at y m , i.e. focuses on the m-th scatterer (see [START_REF] Pinçon | Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors[END_REF][START_REF] Burkard | Far-field model for time reversal and application to selective focusing on small dielectric inhomogeneities[END_REF] for a mathematical justification).

The topological derivative T [Ψ ℓ ] associated with the same incident fields u i := HΨ ℓ is in fact found to have similar focusing properties, for point-like as well as extended scatterers, and whether or not the Born approximation is used. Indeed, the magnitude of T [Ψ ℓ ](z), given by (28b), [START_REF] Ammari | MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions[END_REF], (61) according to the situation, consistently exhibits a O(dist(z, D) 1-d ) decay away from D. This decay, observed for a single, selective probing wave, is (i) identical to that experienced by the topological derivative |T S (z)| combining all possible directions of probing incidence, and (ii) sharper to that of |T [θ](z)| corresponding to illumination by a single (or finitely many) plane waves (see Remark 5).

MUSIC. The MUSIC algorithm has been originally introduced in inverse scattering problems to detect point-like scatterers satisfying the Born approximation (i.e. within the setting of Sec. 4.2). It is based on the characterization z ∈ {y 1 , . . . , y M } ⇐⇒ Φ ∞ z ∈ R(H ⋆ ), which, using that R(F 0 F 0⋆ ) = R(F 0 ) = R(H ⋆ ), leads to computing I MUSIC (z) := 1/ P N Φ ∞ z (75) (with the projection P N = I-P onto the noise subspace defined in terms of the projection P onto R(F 0 F 0⋆ )) and finding the locations z = y 1 , . . . , y M at which I MUSIC (z) has peaks.

The projection P Φ ∞ z is found by means of a straightforward finite-dimensional least-squares minimization of Φ ∞ z -H ⋆ β 2 L 2 (S) with respect to β ∈ C M (with H defined by (58)) to be given by

P Φ ∞ z (x) = H ⋆ G -1 HΦ ∞ z (x) (x ∈ S), with G ∈ R M ×M , G mn = S h(y m , θ)h(y n , θ) dS θ = ζ 2 0 (y m -y n ).
Noting that HΦ ∞ z = {ζ 0 (y 1 -z), . . . , ζ 0 (y M -z)} T ∈ R M , the above result implies that P Φ ∞ z 2

L 2 (S) = (HΦ ∞ z ) T G -1 HΦ ∞ z . For well-separated obstacles, i.e. ka ≫ 1 with a as defined in Sec. 4.2, one has G = 4πI + O((ka) -2 ), implying that P Φ ∞ z 2

L 2 (S) = (4π) -1 |HΦ ∞ z | 2 + O((ka) -2 ), i.e. that P Φ ∞ z L 2 (S) is approximately given by the 2-norm of HΦ ∞ z . One moreover observes that the topological derivative T S (z) for the same situation is given (up to a sign change and a multiplicative constant) by the weighted 2-norm |HΦ ∞ z | T b of the same vector, see (60). Comparing T S (z) and I MUSIC (z), the former is thus seen to exploit (a distorted version of) the projection of Φ ∞ z onto the so-called signal subspace R(F ), whereas the latter is based on the reciprocal of the projection of Φ ∞ z onto the noise subspace.

Linear sampling and factorization methods. The indicator functions I LSM (z) (for the linear sampling method), I FM (z) (for the factorization method) and T S are respectively given, in terms of the orthonormal system (λ ℓ , Ψ ℓ ) ℓ∈N of F (see [START_REF] Burkard | Far-field model for time reversal and application to selective focusing on small dielectric inhomogeneities[END_REF]), by

I LSM (z) = ℓ∈N |λ ℓ | |λ ℓ | 2 + ǫ Φ ∞ z , Ψ ℓ L 2 (S) 2 -1 , I FM (z) = ℓ∈N 1 |λ ℓ | Φ ∞ z , Ψ ℓ L 2 (S) 2 -1 , T S (z) = -|D|k 2 q ⋆ ℓ∈N Re[λ ℓ ] Φ ∞ z , Ψ ℓ L 2 (S) 2 
(with (45) repeated for convenience), where ǫ in I LSM (z) is a Tikhonov regularization parameter used in approximately solving for g z the equation F g z = Φ ∞ z (which is illposed since F is compact), while I FM (z) expresses that Φ ∞ z ∈ R((F ⋆ F ) 1/4 ). All three approaches exploit the eigenvectors spanning the range of the far-field operator F , using the Green's function Φ ∞ z as an available test function. An issue of practical importance concerns the effect of measurement noise or background fluctuations on the available data F [START_REF] Bellis | A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data[END_REF][START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF]. The perturbation induced by imperfect data to the evaluation of T S is linear in the data noise for the least-squares cost functional [START_REF] Devaney | Time reversal imaging of obscured targets from multistatic data[END_REF], and is more generally confined to the perturbation undergone by the adjoint solution û in expression (72), which is bilinear in (u i , û). On the other hand, both I LSM and I FM involve the reciprocals of the eigenvalues λ ℓ , which makes their evaluation potentially sensitive to inaccuracies in the smallest eigenvalues. Moreover, the computation of I LSM (z) requires solving an ill-posed equation. Hence the evaluation of I LSM (z) or I FM (z) is expected to be more sensitive to noise in F than that of T S (z).

Orthogonality sampling method. Owing to the relation [START_REF] Brühl | A direct impedance tomography algorithm for locating small inhomogeneities[END_REF], the topological derivative is conceptually comparable to the indicator function arising from the orthogonality sampling approach. The latter, recently introduced in [START_REF] Potthast | A study on orthogonality sampling[END_REF] and discussed in [START_REF] Griesmaier | Multi-frequency orthogonality sampling for inverse obstacle scattering problems[END_REF], has been found to perform satisfactorily; its full mathematical justification is still open. No further insight into the topological derivative approach has so far been gained from this apparent analogy.

Conclusion

In this article, the analysis of the topological derivative approach of inverse scattering problems by inhomogeneous acoustic media has been conducted to assess the reconstruction provided by the topological derivatives of L 2 cost functionals quantifying the misfit between measured and predicted far-field patterns. The particular structure of such misfit functions lead to imaging functionals in a form remarkably tractable in terms of analysis and comparison with other well-established qualitative and sampling methods. The sign heuristic of the method has been justified under either the Born approximation (i.e. extended inhomogeneities with weak contrast or well-separated point-like scatterers) or full-scattering models limited to moderately strong scatterers. While there is probably scope for enlarging the class of "permitted" scatterers through a more-refined analysis, a justification of the heuristic reasoning underpinning the application of the topological derivative is not expected to be achievable for arbitrarily strong scatterers. Moreover, in view of numerical evidence in some strong-scatterer regimes, e.g. high-frequency configurations where the topological derivative is observed to highlight the obstacle boundary, there may be a need to define and justify another heuristic or interpretation suitable for such situations.

If the analysis that has been carried out in this article applies to this, restricting yet widely-used, definition of the cost functional, this formulation has enabled to shed a new light on the mathematical foundations of the topological derivative approach of inverse scattering problems. One notes that the study [START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF] is also conducted for a least-squares measurement misfit functional.

This study represents a step towards establishing a mathematical basis supporting the topological derivative for inverse scattering and understanding its links with other sampling approaches. Extensions of this work will address other types of inverse scattering problems, e.g. involving mass density contrasts, and the case of near-field measurements.

  Proposition 3 show that z → |T b [g](z)| and z → |T b S (z)| already permit a qualitative identification of D. The sign heuristic usually underlying TD-based scatterer identification, which plays no role in Proposition 3, is now studied.
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 4 Let the function χ be defined by χ(x) = ζ 2 0 (x) for all x ∈ R d , with ζ 0 as in Lemma 1. The topological derivative T b

  is defined by T ϕ = (T -1 b -S) -1 ϕ in terms of the operators S : L 2 (D) → L 2 (D) and T b : L 2 (D) → L 2 (D) appearing in (6).
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 1 Figure 1. Unit spherical obstacle with q = 10 -4 and k = 10.
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 2 Figure2. Identification of a unit spherical obstacle (q = 1.5 10 -2 , k = 100).
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 3 Figure 3. Identification of a unit spherical obstacle (q = 8 10 -2 , k = 100).
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 75 Figure5. Identification of an inhomogeneous medium (dashed contour) with one (left) or two (right) components characterized by q = 0.1 and using q ⋆ = 0.1.
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 26 Figure6. Identification of two scatterers respectively characterized by q 1 = 0.1 (lower left) and q 2 = -0.1 (upper right), using q ⋆ = 0.1.

Figure 7 .

 7 Figure 7. Identification of two scatterers characterized by q 1 = 0.1 (lower left) and q 2 = {0.01; 0.025; 0.05} (upper right) and using q ⋆ = 0.1.

  Let D = D δ denote a set of M point-like scatterers characterized by a common scaling size parameter δ > 0, i.e. D m ≡ D δ m := y m + δD m with centers y m ∈ R d , normalized shapes D m ⊂ R d and real-valued constant contrasts q m , m = 1, . . . , M . Besides, let a := min 1≤m<n≤M |y m -y n | denote the minimal distance between the scatterers. Assuming illumination by the incident plane wave u i = h(•, θ) (see (

1 / 2 b

 12 = kdiag( |Q 1 |, . . . , |Q M |) ∈ C M ×M , so that one has T b = σ(T 1/2 b ) 2 , and S = σT 1/2 b ST 1/2 b . Setting Ψ z := T 1/2 b HΦ ∞
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 829 Figure 8. Identification of point-like obstacles using T FL S (with q ⋆ = 0.5)