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The instability of Ekman boundary layer ¯ow is studied inside a rotating annular cavity with radial through¯ow, which is a
relevant geometry of the air cooling system in turbines. The ¯ow is computed by direct numerical simulation using a time-dependent

three-dimensional Navier±Stokes solver based on a pseudo-spectral method. The ¯uid entering the annulus at the inner section then
develops into a rotating geostrophic core ¯anked above and below by two nonlinear Ekman boundary layers and exits at the outer
section. In this study, the rotation rate of the cavity is ®xed at a given high value, corresponding to an Ekman number

E � 2:24 � 10ÿ3. When the through¯ow is weak, the motion is steady and the boundary layer ¯ow is well described by Ekman's 
analytical solution. On increasing the mass ¯ow rate, the ¯ow becomes unsteady and perturbations appear in the form of counter-
rotating pairs of vortices adjacent to upper and lower surfaces of the cavity. Multiple stable solutions, involving circular and spiral
waves with di�erent numbers of arms, are obtained at ®xed mass ¯ow rate. The wavenumber and frequency of both circular and
spiral waves are determined to be characteristic of the type II viscous Ekman layer instability.

1. Introduction

The investigation of rotating viscous ¯ows near walls has
been the topic of many experimental, theoretical and numeri-
cal studies, motivated both by a fundamental geophysical in-
terest (see Hide, 1968; Greenspan, 1969) and by applications to
technological devices and their improvement (see Owen and
Rogers, 1989, 1995). These applications have motivated stud-
ies in simple generic geometries and con®ned con®gurations
that model actual complex situations. They concern a wide
range of ¯ows driven by the di�erential rotation of the walls,
by radial through¯ow, and also by heat transfer from the
walls. Whereas the three-dimensional ¯ow in an enclosed ro-
tor±stator con®guration has been recently studied by Serre
et al. (1999a,b), the present investigation considers a cavity (of
internal radius, a, and external radius, b) in which both disks
are rotating at the same speed and there is superposed a ra-
dially outward through¯ow. This con®guration is highly con-
®ned by walls on two sides and the two remaining ones are the
entrance and exit sections of the forced ¯ow. This situation
signi®cantly models certain ¯ows inside the rotating cavity of
gas turbine engines. Although a large number of their features
are also relevant to geophysical ¯ows in the earth's atmo-

sphere, the problem is entirely governed by engineering pur-
poses. In air-cooled gas turbine engines, the cooling air is
extracted from the HP compressor stages and is carried along a
channel in order to cool the nozzle guide vanes, the turbine
blades and the turbine disks to which the blades are attached.
In certain types of engines, the air may be injected radially
between two corotating compressor disks. A characteristic of
these ¯ows is the coexistence of adjacent coupled ¯ow regions
that are radically di�erent in terms of the ¯ow properties and
of the length scales, as is the case for Ekman layers neigh-
boring a geostrophic core region.

The ®rst contributions to the ®eld were theoretical and
concerned the steady laminar ¯ow of an incompressible vis-
cous ¯uid driven by an in®nite rotating disk studied by Von
Karman (1921), who determined approximate analytical so-
lutions that exhibited a thin boundary layer phenomenon. The
length scale of this thin layer was clearly related to the rotation
rate by Cochran (1934). The extension to con®nement of iso-
thermal laminar ¯ow by two rotating disks has been studied
analytically by Hide (1968) and Barcilon and Pedlosky (1967),
and numerically by Chew (1984). The laminar ¯ow structure in
this con®guration, involving a source mass ¯ux at the entrance
section, can be divided into four zones: an inner source region,
two separated Ekman layers, an outer sink layer, and an in-
terior inviscid core (Owen and Pincombe, 1980; Owen et al.,
1985). Hide (1968) gave asymptotic solutions for the velocity
distribution in the four regions by matching the linear Ekman
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layer solutions to the boundary layer solutions for the source
and the sink. He also gave estimates for the radial extent of the
source region and of the sink layer. The axisymmetric solution
is composed of a geostrophic core and two Ekman layers on
the upper and lower walls; the ¯ow strength in the geostrophic
core is related to the radial mass ¯ux through the cavity, and
the boundary layers are given by a well-known analytical so-
lution (see, for example, Greenspan, 1969). The numerical
studies of source±sink ¯ows in a rotating annulus by Bennetts
and Jackson (1974) con®rm that the basic steady ¯ow is well
approximated by the analytical solution of Hide (1968), when
the mass ¯ow rate Cw is small, but as the ¯ow rate increases,
the linear solution becomes increasingly less accurate.

Various studies have delineated two generic forms of in-
stability that develop in Ekman layers adjacent to rotating
disks and that play an important role in the transition mech-
anism. They are referred to as either type II and type I insta-
bilities or, respectively, type A and type B instabilities. The
type I instability is associated with the presence of unstable
in¯ection points in the velocity pro®les normal to the disk
plane, whereas Lilly (1966) showed with a linear stability
analysis that the type II instability, appearing at lower values
of the critical Reynolds number and with a larger wavelength,
is related to the combined e�ects of the Coriolis forces and
viscosity. This Reynolds number is usually de®ned as
Re � v�gd=m, where v

�
g is the dimensional geostrophic azimuthal

velocity, m the kinematic viscosity of the ¯uid, and d � �m=X�1=2

is the characteristic boundary layer thickness in which X is the
rotation rate of the plate. The waves associated with these
types I and II instabilities are intrinsically di�erent. Empirical
relationships for the critical parameters were given by Tatro
and Moll�o-Christensen (1967) in the case of a radial in¯ow
over the rotating plate, but one of these relations concerning
the type I instability has been criticized by Cesaroli (1975) who
suggested that these waves were only the result of disturbances
induced by the measurement probe. The relations between the
critical parameters for type II waves are approximately
�Rec�

II � 56:3� 58:4Ro and, for type I instability �Rec�
I �

124:5� 3:66Ro, with the Rossby number Ro de®ned as
Ro � v�g=�Xr

��, where r� is the distance from the axis of rota-
tion. Both instabilities have the form of either annular or spiral
vortices located in the Ekman boundary layer. However, the
types I and II vortices propagate in opposite directions and,
consequently, the angle between the geostrophic velocity
and the phase velocity of these waves have opposite sign; that
angle lies between 0° and ÿ20° for the type I waves and be-

tween 10° and 15° for the type II waves. These instabilities
have been observed in the source±sink con®gurations by Faller
(1963), Caldwell and Van Atta (1970) and in other kinds of
rotating ¯ows involving a B�odewadt layer by Savas (1987) and
Wilkinson and Malik (1987), and more recently by Gauthier
et al. (1999) and Schouveiler et al. (1999), and also in von
K�arm�an boundary layer ¯ows by Faller (1991) and Lingwood
(1996). In Serre et al. (1999b), we report numerical investiga-
tions of the types I and II instabilities in an enclosed rotor±
stator system, where annular and three-dimensional spiral
patterns are found near the rotating and stationary walls.

In previous numerical investigations of ¯ows involving
Ekman boundary-layer instabilities, as in Marlatt and Biringen
(1995), the curvature of the ¯ow ®eld was generally assumed to
be negligible. However, this condition is satis®ed only locally
at large radii, where the stability analysis of Lilly (1966) is
valid. The Rossby number Ro characterizes the e�ect of the
nonlinear terms, which arise through the e�ect of the curva-
ture. In the limit Ro ! 0, the wavelength of the vortices is
independent of the radius and the wave front is a straight line
normal to the ¯ow. In Crespo del Arco et al. (1996), a pseudo-
spectral numerical method was used to obtain axisymmetric
unsteady solutions that arise in an annular con®guration
chosen to mimic the experiments of Owen et al. (1985), which
models situations of practical interest. Thus, the curvature
e�ects were included and oscillatory ¯ow regimes were com-
puted. These arise in the rotating cavity when the radial
through¯ow at the inlet is di�erent to the Ekman layer solu-
tion. In the numerical simulations, at short distances from the
axis, the inner velocity pro®le was chosen as a parabolic
Poiseuille type pro®le in which case an entrance region devel-
ops which limits the radial displacement of the vortices. In
such situations, Crespo del Arco et al. (1996) reported a
transition to an oscillatory and a nonperiodic regime via a
complex bifurcation scenario. In the unstable ¯ow, six pairs of
counter-rotating circular vortices, propagating radially out-
ward, are found in the Ekman boundary layers. Their wave-
length of about 24

��������
m=X

p
and the frequency of about 7:4X are

in good agreement with experimental results for similar values
of Re and Ro as given by Caldwell and Van Atta (1970) and
Weidman (1976). Experimental results with a smaller radii of
curvature have shown circular waves and also types I and II
spiral waves, Weidman (1976), Wilkinson and Malik (1987),
Savas (1987) and, more recently, Schouveiler et al. (1999).
Their wavelength, orientation angle and critical Reynolds
number are given in Table 1. A review of Ekman boundary

Table 1

Experimental and theoretical data in source-sink rotating ¯ows

Reference Wave type Ro Rec k=d w vw=vg

Measurements

Tatro and Moll�o-Christensen (1967)a I ) 124:5� 7:32Ro 11.8 15° 0.034

Tatro and Moll�o-Christensen (1967) II ) 56:3� 116:8Ro 27:8� 2 0° to )8° 0.16

Caldwell and Van Atta (1970) II ) 56:7� 3 ) ) )

Weidman (1976) II ) 60 20:4� 2:4 ÿ1° to ÿ7° )

Theory

Faller and Kaylor (1966) I 0 118 11 10° to 12° 0.33

Faller and Kaylor (1966) II 0 55 24 ÿ15° 0.5

Lilly (1966) I 0 110 11.9 8° 0.094

Lilly (1966) II 0 55 21 ÿ10° 0.57

Marlatt and Biringen (1995) II 0 150 23 ÿ10° 0.296

Two-dimensional numerical simulations

Crespo del Arco et al. (1996) II 0:4 < Ro < 0:2 74 29±26 0° 0.28

aThese results have been criticized by Cesaroli (1975), who proved that these waves were induced by the measurement probe.
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layer instabilities is available in the paper of Faller (1991) and
a wide range of relevant nonlinear phenomena and instabilities
within rotating ¯ows are also reported by Hop®nger and
Linden (1990).

In Crespo del Arco et al. (1996), we have con®rmed and
analyzed the axisymmetric instability that prevails at Rm � 5
(Rm is a characteristic curvature parameter, Rm � �a� b�=DR)
and the supercritical conditions as derived from Lilly's theo-
retical analysis valid in the limit of Ro ! 0. The purpose of the
present study is to extend the analysis of the oscillatory tran-
sition to the regime of three-dimensional spiral patterns. The
study uses a three-dimensional direct numerical simulation of
the spatial and temporal modes that develop as a consequence
of the boundary-layer instability in a rotating annular cavity.
The con®guration is subjected to a forced radial out¯ow
originating at the inner cylindrical section. The ¯ow is assumed
to be isothermal and incompressible. High spatial resolution is
a requisite to describe accurately the Ekman layers, especially
for the numerical study of time-dependent motions. Spectral
methods have been successfully applied to compute complex
time-dependent ¯ows (Canuto et al., 1988). We have used a
spectral collocated Chebyshev method in the radial and axial
directions and a Fourier±Galerkin azimuthally.

Our numerical simulations emphasize time-dependent pat-
terns in a rotating frame of reference: axisymmetric and three-
dimensional patterns, composed of circular rolls or spiral arms
developing in the Ekman boundary layers. These structures are
discussed and shown to be similar to the characteristic type II
viscous instability. In the present con®guration, multiple stable
solutions can be obtained, all having similar wavelengths, re-
vealing a problem of pattern selection. This corresponds to the
intransitivity phenomenon observed during the study of
baroclinic waves in di�erentially heated rotating annulii
(Fowlis and Hide, 1965; Hignett et al., 1985). Circular waves
are determined numerically but they are shown to be possibly
very sensitive to the superposition of an azimuthal disturbance
depending on the radius and on the modes of perturbation.

2. Formulation of the problem

The geometrical con®guration is shown in Fig. 1. The radii
of the annular cavity are a and b, with a < b, and the cavity
height is 2h. The geometrical parameters are the characteristic
radius of curvature, de®ned as Rm � �a� b�=DR, and the as-
pect ratio L � DR=�2h�, where DR � bÿ a.

The values of Rm � 5 and 10 are chosen in order to keep
curvature e�ects reasonably low. Indeed, for more signi®cant
curvature e�ects �Rm � 1:22, Ro � 0:36�, we have shown
(Crespo del Arco et al., 1996) that the transition originates
from an inertial instability in the entrance region that excited
the Ekman layers. It was shown that this external perturbation

provoked sub-critical modes of instability in the layers. These
modes subsequently vanished over the characteristic spin-
down time (Weidman, 1976) for Cw close to the critical value.
For larger Cw, the combination of the two oscillatory behav-
iors was shown to be at the origin of a quasi-periodic behavior
that precedes the transition to nonperiodic ¯ow. In the present
paper, the distance to the axis is increased and the relevance to
the Ekman layer instability is studied, while considering di-
rectly an Ekman layer pro®le at the entrance and at the outlet
of the rotating cavity. Thus, the curvature terms remain small
and the Ekman pro®les constitute a good estimate of the basic
¯ow inside the cavity; this will be considered later in Section 5.

The aspect ratio of the cavity, L � 3:37, is taken so that the
Ekman layer thickness is su�ciently small with respect to the
height, yet allow for an extended geostrophic core. The length
DR of the cavity is chosen so that a large number of instability
wavelengths can form between the entrance and exit sections
and also to constitute a good compromise with respect to the
computational cost. Moreover, L � 3:37 is a relevant value for
application to technological devices (Owen and Rogers, 1995)
and for comparison with the fundamental laboratory experi-
ments.

The cavity is rotating with uniform angular velocity
X � Xez; ez being the unit vector in the vertical direction. The
scales for the dimensionless variables of space, time and ve-
locity are �h;Xÿ1;Xb�, respectively. The dimensionless spatial
variables are denoted �r; z� and have been normalized to
�ÿ1; 1� � �ÿ1; 1�, a requirement for the use of Chebyshev
polynomials. The normalized variables are denoted �r; z� with
r � r=Lÿ Rm and z � z.

An important dimensionless parameter is the Ekman
number. It is de®ned as E � m=X�2h�2 and characterizes the
ratio d=h, where d � �m=X�1=2 is the constant Ekman layer
thickness and h is the half-height of the cavity. For su�ciently
small values of E, the stability of both Ekman layers can be
considered independently as in the ¯ow over a single disk. As
shown by fundamental analyses in the single in®nite disk
problem, the relevant parameter governing the onset of
instability is the local Reynolds number, Re � v�gd=m, where v�g
is the geostrophic velocity (see Section 5). Since the cavity
begins at a ®nite distance a from the axis, we also have at our
disposal a local Rossby number, de®ned by Ro � v�g=Xr

�,
where r� is the dimensional radial coordinate. The mass ¯ow
rate, Q, is made dimensionless according to Cw � Q=mb:

The ¯ow is governed by the three-dimensional, incom-
pressible Navier±Stokes equations, written in a rotating frame
of reference, in the velocity V � �u; v;w� and pressure p for-
mulation
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Fig. 1. Geometry and coordinate system.
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The boundary conditions are rigid walls at z � �1 and Ekman
boundary layer pro®les ((5.2) and (5.3)) are considered as in-
¯ow and out¯ow conditions at r � L�Rm � 1�, respectively (see
Section 5).

3. Numerical method

The solution method is based on a pseudo-spectral
Chebyshev±Fourier method (see Canuto et al., 1988). The
choice takes into account the adequacy of the properties of
Chebyshev orthogonal polynomial expansions and, in partic-
ular, of the exponential convergence, referred to as spectral
accuracy (Gottlieb and Orszag, 1977). Moreover, the use of the
Gauss±Lobatto collocation points, corresponding to the ex-
trema of the Chebyshev polynomials of higher degree, N and
M in the radial and axial directions, respectively, directly en-
sures high accuracy of the solution inside the very thin wall
layers.

The di�erential equations are exactly satis®ed at the Gauss±
Lobatto collocation points, �ri; zj� 2 �ÿ1; 1� � �ÿ1; 1�

ri � cos
ip

N

� �
; zj � cos

jp

M

� �
;

�i � 0; . . . ;N ; j � 0; . . . ;M�:

The approximation of any ¯ow variable W � �u; v;w; p� and its
derivatives is derived from the truncated series representation

WNMK�r; z; h; t�

�
XK=2ÿ1

p�K=2

XN

n�0

XM

m�0

bWnmp�t�Tn�r�Tm�z�e
iph

for ÿ 16 r; z6 1; 06 h6 2p

o
qWNMK

orq
�ri; zj; hk ; t� �

XN

g�0

dr
�q�
ig WNMK�rg; zj; hk ; t�;

o
qWNMK

ozq
�ri; zj; hk ; t� �

XM

n�0

dz
�q�
jn WNMK�ri; zn; hk ; t�;

where dr
�q�
ij and dz

�q�
ij correspond to the coe�cients of the matrix

of ®rst and second derivatives (q � 1; 2) and where
hk � 2pk=K, k � 0 . . . ;K ÿ 1. An expansion of these coe�-
cients based on sine functions (Rothman, 1991) is used to re-
duce the round-o� error. Tn and Tm are the Chebyshev
polynomials and bWnmp are the spectral coe�cients de®ned by

bWnmp�t� �
1

K

1

c0n

1

c0m

XKÿ1

k�0

XN

i�0

XM

j�0

�
1

cic
0
j

W�ri; zj; hk ; t�Tn�ri�Tm�zj�e
ÿiphk

with c0 � cN � c00 � c0M � 2 and cn � c0m � 1 for n � 1, N ÿ 1
and m � 1, M ÿ 1. The unknowns W�rn; zm; hk� are required to
be real in physical space. The physical conditions are explicitly
taken into account at the boundaries.

The time scheme is semi-implicit and second-order accu-
rate. It corresponds to a combination of a second-order
backward di�erentiation formula for the di�usive term and the
Adams±Bashforth scheme for the nonlinear terms (see Vanel
et al., 1986). The velocity±pressure coupling is performed with an
e�cient projection algorithm developed in Hugues and Ran-
driamampianina (1998) (see Hugues, 1998). It corresponds to
an improved version of the approach proposed by Goda (1979)
and implemented by Gresho and Sani (1987) to ®nite elements
and by Raspo (1996) to three-dimensional spectral approxi-
mation. It consists of introducing a correct predictor for the
pressure, directly derived from the Navier±Stokes equations,
which provides an appropriate consistent pressure ®eld with a
divergence-free velocity. This procedure allows a possible
temporal evolution of the normal gradient of pressure at the
boundaries, known to be the main drawbacks of the initial
projection scheme. Moreover, this modi®ed algorithm is
shown to reduce the slip-velocity on the boundaries by one
order of magnitude (compared to that of the temporal scheme)
and it improves the incompressibility condition without the
need of a staggered grids for the velocity and the pressure. At
each time step, the solution of the Navier±Stokes equations
reduces to a solution of Helmholtz and Poisson type equations
in the Fourier space. A direct solver for these equations is used,
based on a complete matrix diagonalization technique pro-
posed by Haldenwang et al. (1984); for this con®guration the
matrices of radial and axial operators are diagonalizable with
real eigenvalues.

Note that an extension of this numerical method in the case
involving the axis (r � 0) is proposed elsewhere in Serre and
Pulicani (2000).

4. Numerical details

Computations were performed with spatial resolutions of
N �M � K � 48� 48� 48 to 48� 48� 128, where N and M
are the number of Chebyshev polynomials in the axial and
radial directions and K the number of the Fourier modes used
in the azimuthal expansion. The former axisymmetric study in
a rotating annular cavity of Crespo del Arco et al. (1996) in-
dicates that a spatial resolution of 48� 48 in �r; z� for the
considered geometrical (Rm; L) and physical (E;Cw� parame-
ters, constitutes a good compromise between accuracy and
computational cost. The time step used in the computations is
governed by the spatial resolution in �r; z�, Dt � 4:0� 10ÿ3.
The time considered for each solution was sized on the largest
characteristic time in rotating ¯ows (Greenspan, 1969), the
viscous time tv � Eÿ1 ��450 in present cases�; over this very
large time scale, the viscous di�usion has already a�ected the
entire core of the cavity and the small residual inertial oscil-
lations are strongly damped.

Convergence to steady state is assumed to be achieved when
the convergence rate becomes smaller than a relevant value
that is taken in our study as jVn�1 ÿ Vnj=dt6 10ÿ5, where V is
the velocity vector, and the superscripts n� 1 and n corre-
spond to the time stages �n� 1�dt and ndt. The solution
strategy then consists of initializing the computation at larger
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Cw with the solution formerly obtained at a lower value of Cw,
the rotation rate being constant (E � 2:24� 10ÿ3).

5. Basic ¯ow

The basic ¯ow solution is stationary and axisymmetric and
corresponds to the Ekman layer ¯ow. The meridianal velocity
®eld of the basic solution is displayed in Fig. 2(a) for 0 < z6 1
and for Cw � 200: The radially outward ¯ows that develop
parallel to the walls dominate the weak reverse ¯ows observed
at the edge of the boundary layers bordering the geostrophic
core; details of the structure of the radial velocity pro®le at
mid-section are given displayed in Fig. 3(a). For large values of
the mass ¯ow rate Cw, vortex structures are superimposed on
each layer close to the disks; see Fig. 2(b) computed for
Cw � 530 and plotted for ÿ16 z6 0 . At Rm � 5, the solution
remains steady and axisymmetric below Cw � 460 at
E � 2:24� 10ÿ3 and the Ekman boundary layer ¯ow is stable.
For this type of ¯ow, the Coriolis force dominates with respect
to inertial and centrifugal forces near the walls (E � 1 and
Ro � 1�. Then, in a frame of reference rotating with the walls
at angular velocity X, the Navier±Stokes equations can be
approximated by (Greenspan, 1969)

ÿ�vÿ vg� � 4E
o
2u

oz2
; �5:1�

u � 4E
o
2v

oz2

with the boundary conditions u � v � 0 at z � �1 and u ! 0,
v ! vg when z ! 0: The isothermal ¯ow organizes itself sym-
metrically and parallel Ekman layer ¯ows form on the two
disks with the same mass ¯ow rate. Solutions across the height
of the cavity can be derived from Eq. (5.1) with the above
boundary conditions. The axial velocity is w � 0 (parallel ¯ow
assumption) and the radial and azimuthal components are,
respectively,

u � vgfexp�ÿEÿ1=2�z� 1�� sin�ÿEÿ1=2�z� 1��

ÿ exp�Eÿ1=2�zÿ 1�� sin�Eÿ1=2�zÿ 1��g; �5:2�

v � ÿvgf1ÿ exp�ÿEÿ1=2�z� 1�� cos�ÿEÿ1=2�z� 1��

ÿ exp�Eÿ1=2�zÿ 1�� cos�Eÿ1=2�zÿ 1��g; �5:3�

where vg is a function of the radius and corresponds to the
dimensionless azimuthal velocity of the inviscid geostrophic
¯ow between the two viscous Ekman layers (Hide, 1968) vg �

CwE
1=2

2pL�Rm � r�
: �5:4�

In the numerical solution at Cw � 200, the predominant
meridianal ¯ow appears in these two Ekman layers (see the
radial velocity pro®le in Fig. 3(a)); outside these Ekman layers,
in the geostrophic core, the Coriolis force balances the pressure
gradient and the ¯ow is predominantly azimuthal. In this ge-
ostrophic region, both the radial and the axial velocities are
small and the ¯ow rotates inside the cavity at a slower rate
than the walls (see the azimuthal velocity pro®le in the rotating
frame of reference, Fig. 3(b)). The thicknesses of the Ekman
layers are referred to as d and the azimuthal core velocity is
denoted the geostrophic velocity vg (see Hide, 1968, for theo-
retical results).

The solutions (5.2) and (5.3) used as in¯ow (at r �
L�Rm ÿ 1�� and out¯ow (at r � L�Rm � 1�) boundary condi-
tions appear as natural boundary conditions at this distance
from the axis (RmP 5� for the considered rotation rate
(E � 2:24� 10ÿ3�. For larger values of the mass ¯ow rate Cw,
this solution also represents a good average approximation of

Fig. 2. Display of the velocity ®eld �u;w� in the meridianal plane �r; z�
in the cavity L � 3:37, Rm � 5; and at E � 2:24� 10ÿ3: Two zones are

emphasized: one below near the wall and the second in the core, where

the velocity is displayed with a factor 16. The vortices are emphasized

by paths of markers introduced in the near entry region at left. (a) In

the upper half part, 0 < z6 1; steady basic ¯ow solution for Cw � 200;

reference scale is umax � 0:0394: (b) In the lower part, ÿ16 z6 0, un-

stable ¯ow solution for Cw � 530; reference scale is umax � 0:0560.

Fig. 3. Basic ¯ow solution at Cw � 200, E � 2:24� 10ÿ3; z-pro®les of

the velocity at the middle section of the cavity r � LRm �r � 0�,

L � 3:37, Rm � 5. Characteristic length and velocity scales (refer to

Hide, 1968). (a) Radial component of the velocity, u; (b) azimuthal

component of the velocity, v.
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the velocity ®eld in the whole cavity. For example, the geos-
trophic velocity varies similarly to Eq. (5.4) and this expression
underestimates by less than only 5% the actual geostrophic
velocity numerically obtained inside the cavity, L�Rm ÿ 1�
< r < L�Rm � 1�, at Cw � 530; the time-averaged geostrophic
velocity is about vg � 0:243, while the value from the analytical
solution (5.4) is vg � 0:238. Moreover, we note that there is no
evidence of inertial e�ects at the entrance and exit regions, as
was analytically determined elsewhere by Hide (1968) and
simulated by Crespo del Arco et al. (1996).

6. Results and analysis

The results presented in this section were obtained for
an aspect ratio L � 3:37, a constant rotation rate,
E � 2:24� 10ÿ3; and a mass ¯ow rate Cw between 460 and
600 in order to be in a range of local parameter values,
�Re;Ro�; characteristic of the type II instability. Using the
zero-order solution for the azimuthal velocity (5.4), the Rey-
nolds and Rossby numbers at a given position r 2 �ÿ1; 1�,
are Re � Cw�Rm � 1�=�2p�Rm � r�� and Ro � CwE

1=2�Rm � 1�=
2pL�Rm � r�2:

In order to identify and study the spatial structure of the
instabilities, which develop in each of the two boundary layers,
one uses the axial velocity component, which is nearly zero in
the Ekman layer ¯ow and constitutes a very sensitive marker
to local disturbances. The dynamical behavior was investigated
by noting the time history of the variables �u; v;w; p� in
the Ekman layers and in the geostrophic region at two prin-
cipal locations: �r1; z1; h1� � �0; 0:98; p=4� and �r2; z2; h2� �
�0; 0; p=4� for �r; z; h� 2 �ÿ1; 1� � �ÿ1; 1� � �0; 2p�. Some rele-
vant experimental and numerical results together with results
of a stability analysis are listed in Table 1.

6.1. Axisymmetric patterns

The initial condition is the computed solution of the time-
dependent Navier±Stokes equations at Cw � 460 and
E � 2:24� 10ÿ3. This stable solution is axisymmetric and
similar to the solution displayed in Fig. 2(a) (above, 0 < z6 1
for Cw � 200�. When increasing the mass ¯ow rate, Cw � 530,
a Hopf bifurcation is exhibited to a periodic oscillatory solu-
tion and the ¯ow is still axisymmetric (Fig. 4). After a transient
time t � 4 (which is about tE=3; where tE is the characteristic
Ekman time, tE � h=�mX�1=2 (Greenspan, 1969), the frequency
of the oscillation plotted in Fig. 4(b) is r � 7:4, where r is
scaled with the rotation rate X). We obtain good agreement
between the computed value of r and the frequency reported
from experiments by Caldwell and Van Atta (1970), far from
the critical Reynolds number and for Ro 6� 0. For Re in the
range of 1106Re6 250, these authors notice a linear depen-
dence of the frequency, 76 r6 12. Herein, the values of the
Reynolds and Rossby numbers are given using the computed
velocity at the center of the cavity, in this case, Re � 102 and
Ro � 0:29.

Results of the numerical solution displayed in Fig. 4(a)
exhibit six pairs of counter-rotating axisymmetric rolls in the
Ekman layer traveling radially outward with phase velocity vw
of about vw=vg � 0:28. The contour-lines of the axial velocity
in Fig. 4(a) emphasize the de¯ection to the parallel ¯ow in the
Ekman layers. The structures of limited magnitude superim-
pose to both the Ekman layers (where the parallel ¯ow is ra-
dial) and the geostrophic core (corresponding to solid body
rotation) extending to the center of the cavity. However, the
pattern only displays the ¯ow disturbance and the ¯ow zones
remain the same than in the steady ¯ow.

In Fig. 2(a), the velocity vector ®eld is divided into two
zones: the near wall, where the main ¯ow is concentrated under
the form of the Ekman layers and where the maximum ve-
locities are located; the rest of the cavity, where the ¯ow is very
weak in the meridian plane. The length scale for the velocity
vector refers to the maximum in the Ekman parallel ¯ow
pro®le. The velocity vectors in the geostrophic region are
magni®ed by a factor of 16. Then, these velocity vectors dis-
played in the core with a same magnitude, indeed correspond
to a velocity smaller by a factor of 16 with respect to the ones
in the Ekman layer. We note that the instability mainly locates
at the border between the Ekman layer and the geostrophic
core: the disturbances are of small amplitude but we can isolate
their expansion by injecting adequately the particles in the
interesting zone before tracking them as markers of the in-
stability structures. The vortices localization is emphasized by
using particle paths originating from the entrance region
bordering the wall region and the core.

The wavelength in the radial direction is de®ned as
kr � DR=nr, nr being the number of pairs of vortices along the
radius (nr � 6); the wavelength is sized in terms of the scale
length of the Ekman layer, d, as is usual in the literature. The
wavelength is roughly constant at about kr � 24d, slightly
decreasing from 26d to 23d between the entrance and the exit
sections.

These results are similar to the axisymmetric solution ob-
tained in two dimensions in an earlier paper by Crespo del

Fig. 4. Axisymmetric instability at Cw � 530, E � 2:24� 10ÿ3 and at

Rm � 5: Characteristic wavelength k; phase velocity vW, and frequency

r � 2p=T : (a) Instantaneous iso-lines of the axial velocity component

in the meridianal ¯ow �r; z;p=4�: Visualisation of six pairs of counter-

rotating vortices, at t � 250 , N �M � K � 48� 48� 48. (b) Time

history of the azimuthal component of the velocity v in

�r; z; h� � �0; 0:95;p=4�: Periodic behavior with r � 7:4. The major

disturbances (inner circles) are separated from the weaker disturbances

(outer circles) extending in the core, by a blank zone.
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Arco et al., 1996 (see Table 1) with a di�erent numerical
method (streamline-vorticity formulation) at Cw � 467 and
E � 2:24� 10ÿ3: Moreover, good agreement with the theo-
retical results at Ro � 0 is obtained (see Table 1). To our
knowledge, this axisymmetric mode of instability has never
been noticed in experimental studies of the Ekman layer in
which mainly spiral structures are obtained. Nevertheless, our
solution is quite similar to the experimental results in the
B�odewadt layer on a stationary disk. Savas (1987) was the ®rst
to observe, in an enclosed rotor±stator cavity, traveling cir-
cular waves during impulsive spin-down to rest, 256Re6 125;
with a frequency of r � 5. He observed nine pairs of rolls with
an average radial wavelength of kr � 20d.

The range of the parameters �kr; r; vW� is characteristic of
the axisymmetric mode of the type II Ekman boundary-layer
instability.

6.2. Three-dimensional spiral patterns

The rolls that progress in the form of rings in the axisym-
metric solution, now constitute spiral expanding outwards
inside the cavity. The orientation of the wave front is measured
by the angle e with respect to the azimuthal direction. It is
de®ned positive when it is rolled up towards the axis of the disk
in the rotation direction.

Due to the high level of accuracy of the spectral solution
(the round-o� errors and hence the numerical noise are very
small) and due to the cost of CPU time, the transition to three-
dimensional patterns was not actually carried out over very
large time intervals, but the process was accelerated by con-
sidering ``arti®cial'' initial disturbances. This axisymmetric
¯ow was perturbed by superimposing a disturbance at a given
instant to the azimuthal velocity of general form av sin�ph�
where p is an arbitrary number corresponding to an azimuthal
wavelength and a the amplitude growth rate. The disturbance
is introduced near the entrance section. The divergence free
constraint is satis®ed after a few preliminary iterations. In
addition, the same results have been obtained after perturbing
similarly the two other velocity components. Disturbances of
di�erent amplitude rates are shown to give exactly the same
spiral ¯ows but the transient time to reach the stable state
noticeably depends on a. We have estimated the transitory
time by perturbing the same axisymmetric nonlinear Ekman
solution with various amplitude rates a � 0:008; 0.02 and 0.05.
The results give a dependency of this transitory time with a
growth rate which behaves roughly as aÿ1=3. The signi®cant
time histories of the axial velocity component inside the Ek-
man layer are shown in Figs. 5(a)±(c) for Cw � 530,
E � 2:24� 10ÿ3 for the three values of the amplitude rate a.

In previous work, Hugues et al. (1998), we already observed
that the radial component of the wave number in spiral pat-
terns remains exactly the same as in the circular patterns; six
pairs of rolls travel outwards, near both disks. However, in
these structures an azimuthal component also arises. The azi-
muthal wavelength is de®ned as kh � 2pr=n, n being the
number of spiral arms over 2p. The general wavelength of the
spiral patterns can be de®ned by k; as k � �2pr=n�j sin ej.

Fig. 6 shows multiple solutions of spiral instability patterns
at the ®xed parameter values Cw � 530; E � 2:24� 10ÿ3 and
Rm � 5: The multiplicity appears in the di�erent numbers of
spiral arms following the periodicity of the disturbances,
nP p; pPDR=kr�� 6� as shown in Fig. 6(d). These solutions,
for example the ones displayed in Figs. 6(a)±(c), are stable to
further disturbances with p 6� n: The characteristics of the
stable solutions are given at the center of the cavity in Table 2.
The angle e between the geostrophic and the phase velocity, is
taken at the center of the cavity, r � LRm; and is negative in
each case. The wavelength of the spiral waves varies slightly

with the number of spiral arms and is about 25d at r � LRm;
diminishing with the radial location; for n � 6, k decreases in
the range of 19:76 k=d6 29:5: All the solutions are periodic
with a frequency slightly larger than for the axisymmetric so-
lution. A second transient frequency modulates the time signal
and its value is estimated between r ' 0:4 and 1:7, depending
on the periodicity of the initial disturbance, p. During the in-
tegration time (over about one viscous time), the modulation
signi®cantly damps and has almost disappeared at the end of
the simulation. The modulation is interpreted to be a result of
the inertial waves excited by the disturbances at the initial time.
We display the dispersion relation r � r�n� in Fig. 7; the an-
gular frequency is shown to increase with the number of arms,
i.e., r / n.

In Figs. 8(a)±(c), we present a three-dimensional display of
the w iso-surfaces after projection on a rectangular reference
frame, which exhibits the expansion of 6±12 spiral arms,
n � 6; 8; 12, over p radians in the azimuthal direction, that is
over half of the domain. In order to emphasize the vortex
structures, we have graphically displayed various points of
view that illustrate the inclination with respect to the azimuthal
direction.

The phase velocity of circular waves behaves as 1=r (Crespo
del Arco et al., 1996). The spiral wave fronts propagate in the
azimuthal direction with a dimensionless angular velocity
x � r nÿ1. As the radial component of the phase velocity
varies as A=r (A is a constant), the velocity of the wave front is
�vwr

; vwh
� � A=r;xr� �: A generic equation of the wave front can

easily be derived from the condition of colinearity between the
displacement of the instability and the phase velocity. The
polar equation is derived as r2 � 2Axÿ1�h� bi� where bi is a
constant which depends on the number of spiral arms. In the
numerical solutions, we obtained six pairs of vortices that
expand radially following a number of spiral arms which is
greater or equal to six (refer to Fig. 6(d)). Each spiral arm
originates at the inner radius, r � L�Rm ÿ 1�, and terminates at
r � L�Rm � 1� through an angle of 2p for six arms, of 3p=4 for
eight arms (see Figs. 6(a) and (b)) and more generally, of 12p=n
with n arms, nP 6. Using these results we determine the
constant A and the wave front can then be expressed as

r2 �
nLRm

3p
h

�
�
2pi

n

�
: �6:1�

The angle of the wave front with the geostrophic velocity thus
varies as rÿ2 following:

tan e � ÿ
vr

vh
� ÿ

nRm

6p�Rm � r�2

and is given in Table 2 at the center of the cavity, r � LRm. The
dimensionless phase velocity vw=vg is nearly independent of the
radial coordinate for the range of r-values considered.

These three-dimensional spiral patterns have been observed
in the experiments of the Ekman layer (see the review in Faller,
1991; Crespo del Arco et al., 1996). The characteristic pa-
rameters are in good agreement with those obtained in the
relevant experiments (see Table 1). Caldwell and Van Atta
(1970) and Faller and Kaylor (1966) found in experiments
similar structures that they referred to as type II instabilities of
the Ekman layer. Faller and Kaylor (1966) observed spiral
arms for a critical Reynolds number Re � 70 (while our value
is Re � 85� with a wavelength close to those obtained in the
present computations, in the range of 226 k=d6 33, decreas-
ing with radial location and with spiral angles in the range
ÿ20°6 e6 5°. Moreover, the present results are quite similar
to those given by the stability analyses for Ro � 0 in the case of
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an in®nite disk. Faller (1991) obtained an instability charac-
terized by spiral arms of wavelength k � 20:1 and forming an
angle e � ÿ23:1°. We conclude, therefore, that the spiral
structure of the computed rotor layer shows the same
characteristics as the type II viscous instability of the Ekman
layer.

6.3. Curvature e�ects

Spiral waves have been found in spin-down experiments at
intermediate radii of curvature. At large radii, the wave front is

nearly ¯at and travels following a direction which makes a
constant angle with the geostrophic velocity. In order to pro-
vide a perspective on the fact that spiral waves are a result of
the radius of curvature (smaller values of the radius corre-
spond to large values of the Rossby number), we have com-
puted the solution for lower curvature e�ects considering a
curvature parameter Rm � 10: The dimensionless mass ¯ow
rate is Cw � 600 that corresponds to local values of Re in the
range 95:56Re6 105 for Rm � 10; which are very close to
the case Rm � 5 �84:46Re6 126:5�. At the center of the cavity
the Rossby number is equal to Ro � 0:15; that is twice smaller

Fig. 5. Time history of the axial velocity component in �r; z; h� � �0; 0:95; p=4� at E � 2:24� 10ÿ3: Ampli®cation of azimuthal disturbance (p � 12)

on the nonlinear Ekman solution at Cw � 530 and at small radius Rm � 5: (a) a � 0:002 , (b) a � 0:02, (c) e � 0:05. (d) Damping of the disturbance

(p � 3) on the oscillatory axisymmetric solution at Cw � 600 and at large radius Rm � 10; for a larger magnitude rate a � 0:1.
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than Ro � 0:29 at Rm � 5 (the linear solution corresponds to
Ro � 0).

The numerical solution is still axisymmetric, with six pairs
of counter-rotating rolls, similar to the axisymmetric solutions
obtained using Rm � 5: The solution is oscillatory in time with
frequency r � 7:6, with wavelength k � 24d. We have dis-
turbed this axisymmetric solution with periodic disturbances
of p � 3; 6; 14 and with magnitudes a up to 0:1. For both p � 3
and p � 6, the amplitude decays (see Fig. 5(d)) and the ®nal
stable solution are the same axisymmetric oscillatory solution.

Unlike the original results for Rm � 5, the same perturbations,
p � 3 and 6, provoked the rise of spiral patterns with 12 and 6
arms, respectively. However, the spiral wave solution with 14
arms remains a stable solution at both Rm � 5 and 10, both
obtained from a p � 14 disturbance after simulation times of
250 and 150, respectively.

Fig. 6. Three-dimensional displays of instantaneous iso-surface of

the axial velocity component, for 0 < z6 1, projected in a plane

�r; h�; 06 h6p; at t � 250; N �M � K � 48� 48� 64, for Cw � 530,

E � 2:24� 10ÿ3 and at Rm � 5. The cavity rotates in the anti-clockwise

direction. (a) Spiral patterns of the instability with six arms, and ve-

locity ®eld in the geostrophic region �r; z � 0; h�. (b) Spiral patterns

with eight arms. (c) Spiral patterns with 12 arms. (d) Response of the

system to disturbance. Minimal number of pairs of arms,

nPDR=kr ��6�; multiple solutions from various disturbances of pe-

riodicity varying from 2 to 14.

Fig. 7. Dispersion relation r � r�n� for Cw � 530, E � 2:24� 10ÿ3

and at Rm � 5.

Fig. 8. Three-dimensional displays of instantaneous iso-surface of the

axial velocity component in a cartesian reference frame, 06 h6p:

Visualization of the six pairs of counter-rotating vortices in the me-

ridianal plane �r; z�; at t � 250; N �M � K � 48� 48� 64, for

Cw � 530, E � 2:24� 10ÿ3 and at Rm � 5. (a) Spiral patterns with six

arms. (b) Spiral patterns with eight arms. (c) Spiral patterns with 12

arms.
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The spiral (and also the axisymmetric) waves can be char-
acterized by the azimuthal component of the wavelength kh.
From the Rm � 5 �p � 6� and the Rm � 10 �p � 14� results,
there exists an upper bound on the wavelength as the minimal
number of arms increases roughly linearly with r. This maxi-
mum wavelength does not change greatly in the range of the
curvature parameter Rm. The axisymmetric solution is stable
with respect to disturbances of azimuthal wavelengths, kh,
larger than roughly 5.3p, but it is unstable to azimuthal
wavelengths smaller than 5.3p.

7. Discussion

Using Ekman layer pro®les as boundary conditions at the
source and at the sink in a rotating cavity at high rotation rate
�E � 2:24� 10ÿ3� and with two moderate curvature parame-
ters, Rm � 5 and 10, we have numerically investigated the type

II Ekman layer instability using a three-dimensional Cheby-
shev±Fourier pseudo-spectral method. Below Cw � 460,
Rm � 5, corresponding to 73:26Re6 110, the solution re-
mains steady and axisymmetric, composed of two Ekman
layers close to the rotating walls separated by a geostrophic
region with solid body rotation. When the mass ¯ow rate is
increased to Cw � 530 at Rm � 5 for which 84:46Re6 126:5
and to Cw � 600 at Rm � 10 for which 95:56Re6 105, the
results of the numerical simulations reveal an oscillatory mo-
tion with frequencies in the range 7:46 r6 10:24 associated
with an axisymmetric mode of instability in the Ekman
boundary layer. The circular patterns exhibited in Fig. 9(a) are
similar to those obtained in experiments by Wilkinson and
Malik (1987), Savas (1987), Schouveiler et al. (1999) and
Weidman (1976) in the case of a B�odewadt boundary layer,
and are shown to be sensitive to the superposition of distur-
bances. We notice that this axisymmetric mode of instability
has never been observed in experimental studies of the Ekman
layer formed in an annular geometry with radial through¯ow.

Three-dimensional spiral structures also appear in the an-
nular domain close to the rotating disks (Fig. 9(b)). From an
analysis of our numerical results, we propose a generic equa-
tion (6.1) for the position of the wave front, depending on the
curvature parameter Rm.

Moreover, we demonstrate that the circular wave instability
develops at di�erent radii of curvature and can remain stable
with respect to the large wavelength of the azimuthal distur-
bances. In this study, the transition from axisymmetric to
spiral rolls has not been observed without any initial distur-
bance, at least in the time of computation (about tv) employed
which we assume is su�ciently large. This means that for the
same parameters, (Rm;Re;Ro), there are multiple nonlinear
stable solutions, all stable to in®nitesimal disturbances and

Fig. 9. Three-dimensional displays of instantaneous iso-surface of the axial velocity component in the annular domain. At t � 250;

N �M � K � 48� 48� 64, for Cw � 530, E � 2:24� 10ÿ3 and at Rm � 5. (a) Circular patterns of the axisymmetric instability. (b) Spiral arms

(n � 12) of the three-dimensional instability. The cavity rotates in the anti-clockwise direction.

Table 2

Parameters of the three-dimensional solutions obtained with di�erent

disturbances �sin ph� from the axisymmetric solution for Cw � 533 and

E � 2:24� 10ÿ3. All the instability structures have the same radial

wavelength (six vortices in the radial direction).

Number of arms, n p r w vw=vg

Axisymmetric ± 7.4 0° 0:28

6 3,6 8.55 ÿ3:64° 0:32
7 7 8.73 ÿ4:25° 0:32

8 2,4,8 8.98 ÿ4:85° 0:33

12 4,12 9.86 ÿ7:26° 0:36
14 14 10.24 ÿ8:45° 0:38
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appearing with di�erent initial conditions. However, we have
observed that the spiral patterns, once formed, do remain
stable to further disturbances.

Di�erent experimental observations have mentioned the
existence of multiple stable solutions in rotating con®ned
¯ows, known as the intransitivity phenomenon (Fowlis and
Hide, 1965; Hignett et al., 1985). These studies were devoted to
baroclinic waves in di�erentially heated rotating annulii. Both

authors mentioned that such a behavior occurs during the
transition from axisymmetric to three-dimensional ¯ows be-
fore unique wave ¯ow solution establishes. Hignett et al.
(1985) have also carried out numerical investigations of these
¯ows and obtained multiple three-dimensional solutions by
introducing perturbations on the temperature ®eld in axisym-
metric solutions, similarly to the present process. The phe-
nomenology of the situation with multiple solutions presents
also some similarities with the stability (Busse) balloon in the
Rayleigh±B�enard convection, which contains regions of stable
solutions in a space of parameter (Ra; Pr; k) bounded by vari-
ous possible instabilities (see Cross and Hobenberg, 1993). In
particular, the onset of a kh 6� 0 wavelength is similar to the
zigzag instability, which is a universal instability associated
with low Prandtl number nonlinear convection in weakly
con®ned systems. Experiments in stationary convection show
that for the zigzag instability (or for other phase instabilities)
the wave vector selection originates from defects (dislocation,
grain boundaries etc.) or from ®nite perturbations using
thermal printing (Cross and Hobenberg, 1993), quite similar to
our ®nite perturbations of the axisymmetric solution. The
analogous space of parameters in the present system would be
�Re;Ro; k�. Thus, the large values of the Rossby number in our
¯ow may be analogous to lower Prandtl number situations in
the Rayleigh±B�enard convection.

The characteristics of the computed ring and spiral insta-
bilities are plotted in Figs. 10(a)±(c), together with the exper-
imental, theoretical and numerical results reported in Table 1.
The dashed regions correspond to zones, where the ¯ow
characteristics vary, e.g., the local value Re between the entry
and exit sections and also the multiple inclination angles of the
spiral in both the experiments and our computations. For
the instability results plotted in Fig. 10(a) we ®nd that over the
considered Re range, the types I and II instabilities are well
determined as kI6 12 and 206 kII6 30, respectively. We note
that the wavelengths of the three-dimensional instability re-
main roughly invariant over the range of Re considered for the
spiral patterns and for the di�erent numbers of spiral arms.
For the ring patterns, the wavelength kr slightly varies with r
between the entrance and the exit sections. The inclination
angle e displayed in Fig. 10(b) are positive in the range
5°6 eI6 15° for the type I instability and negative in the range
ÿ15°6 eII6 0° for the type II instability. The phase velocities
vW (plotted in Fig. 10(c)) shows that the type I instability is well
determined by vW6 0:1 (except for the single measurement of
Faller and Kaylor, 1966). For the type II instability, vW varies
over the range 0:156 vW6 0:60. We note that our computed
results are always well identi®ed in the region of the charac-
teristic parameters, where experiments and theoretical results
have located the type II instability. Analysis of the three in-
stability parameters given in Figs. 10(a)±(c) supports our
opinion that the present time-dependent solutions indeed
correspond to a type II Ekman layer instability.

Recent measurements by Lingwood (1995, 1996) have
demonstrated that the type II Ekman layer instability is a
convective instability and not an absolute instability. We in-
tend to more precisely analyze this feature in some forth-
coming numerical investigations.
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