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The instability of Ekman boundary layer flow is studied inside a rotating annular cavity with radial throughflow, which is a
relevant geometry of the air cooling system in turbines. The flow is computed by direct numerical simulation using a time-dependent
three-dimensional Navier—Stokes solver based on a pseudo-spectral method. The fluid entering the annulus at the inner section then
develops into a rotating geostrophic core flanked above and below by two nonlinear Ekman boundary layers and exits at the outer
section. In this study, the rotation rate of the cavity is fixed at a given high value, corresponding to an Ekman number
E =2.24 x 1073. When the throughflow is weak, the motion is steady and the boundary layer flow is well described by Ekman’s
analytical solution. On increasing the mass flow rate, the flow becomes unsteady and perturbations appear in the form of counter-
rotating pairs of vortices adjacent to upper and lower surfaces of the cavity. Multiple stable solutions, involving circular and spiral
waves with different numbers of arms, are obtained at fixed mass flow rate. The wavenumber and frequency of both circular and
spiral waves are determined to be characteristic of the type II viscous Ekman layer instability.

1. Introduction

The investigation of rotating viscous flows near walls has
been the topic of many experimental, theoretical and numeri-
cal studies, motivated both by a fundamental geophysical in-
terest (see Hide, 1968; Greenspan, 1969) and by applications to
technological devices and their improvement (see Owen and
Rogers, 1989, 1995). These applications have motivated stud-
ies in simple generic geometries and confined configurations
that model actual complex situations. They concern a wide
range of flows driven by the differential rotation of the walls,
by radial throughflow, and also by heat transfer from the
walls. Whereas the three-dimensional flow in an enclosed ro-
tor—stator configuration has been recently studied by Serre
et al. (1999a,b), the present investigation considers a cavity (of
internal radius, @, and external radius, ) in which both disks
are rotating at the same speed and there is superposed a ra-
dially outward throughflow. This configuration is highly con-
fined by walls on two sides and the two remaining ones are the
entrance and exit sections of the forced flow. This situation
significantly models certain flows inside the rotating cavity of
gas turbine engines. Although a large number of their features
are also relevant to geophysical flows in the earth’s atmo-
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sphere, the problem is entirely governed by engineering pur-
poses. In air-cooled gas turbine engines, the cooling air is
extracted from the HP compressor stages and is carried along a
channel in order to cool the nozzle guide vanes, the turbine
blades and the turbine disks to which the blades are attached.
In certain types of engines, the air may be injected radially
between two corotating compressor disks. A characteristic of
these flows is the coexistence of adjacent coupled flow regions
that are radically different in terms of the flow properties and
of the length scales, as is the case for Ekman layers neigh-
boring a geostrophic core region.

The first contributions to the field were theoretical and
concerned the steady laminar flow of an incompressible vis-
cous fluid driven by an infinite rotating disk studied by Von
Karman (1921), who determined approximate analytical so-
lutions that exhibited a thin boundary layer phenomenon. The
length scale of this thin layer was clearly related to the rotation
rate by Cochran (1934). The extension to confinement of iso-
thermal laminar flow by two rotating disks has been studied
analytically by Hide (1968) and Barcilon and Pedlosky (1967),
and numerically by Chew (1984). The laminar flow structure in
this configuration, involving a source mass flux at the entrance
section, can be divided into four zones: an inner source region,
two separated Ekman layers, an outer sink layer, and an in-
terior inviscid core (Owen and Pincombe, 1980; Owen et al.,
1985). Hide (1968) gave asymptotic solutions for the velocity
distribution in the four regions by matching the linear Ekman



layer solutions to the boundary layer solutions for the source
and the sink. He also gave estimates for the radial extent of the
source region and of the sink layer. The axisymmetric solution
is composed of a geostrophic core and two Ekman layers on
the upper and lower walls; the flow strength in the geostrophic
core is related to the radial mass flux through the cavity, and
the boundary layers are given by a well-known analytical so-
lution (see, for example, Greenspan, 1969). The numerical
studies of source—sink flows in a rotating annulus by Bennetts
and Jackson (1974) confirm that the basic steady flow is well
approximated by the analytical solution of Hide (1968), when
the mass flow rate C,, is small, but as the flow rate increases,
the linear solution becomes increasingly less accurate.
Various studies have delineated two generic forms of in-
stability that develop in Ekman layers adjacent to rotating
disks and that play an important role in the transition mech-
anism. They are referred to as either type II and type I insta-
bilities or, respectively, type A and type B instabilities. The
type I instability is associated with the presence of unstable
inflection points in the velocity profiles normal to the disk
plane, whereas Lilly (1966) showed with a linear stability
analysis that the type II instability, appearing at lower values
of the critical Reynolds number and with a larger wavelength,
is related to the combined effects of the Coriolis forces and
viscosity. This Reynolds number is usually defined as
Re = v,0/v, where v, is the dimensional geostrophic lemuthal
Ve1001ty, v the kinematic viscosity of the fluid, and 6 = (v/. Q)'?
is the characteristic boundary layer thickness in which Q is the
rotation rate of the plate. The waves associated with these
types I and II instabilities are intrinsically different. Empirical
relationships for the critical parameters were given by Tatro
and Mollo-Christensen (1967) in the case of a radial inflow
over the rotating plate, but one of these relations concerning
the type I instability has been criticized by Cesaroli (1975) who
suggested that these waves were only the result of disturbances
induced by the measurement probe. The relations between the
critical parameters for type II waves are approx1mately
(Re.)" = 56.3 + 58.4Ro and, for type 1 instability (Re.)' =
124.5 4+ 3.66Ro, with the Rossby number Ro defined as
Ro = v;/(Qr"), where r* is the distance from the axis of rota-
tion. Both instabilities have the form of either annular or spiral
vortices located in the Ekman boundary layer. However, the
types I and II vortices propagate in opposite directions and,
consequently, the angle between the geostrophic velocity
and the phase velocity of these waves have opposite sign; that
angle lies between 0° and —20° for the type I waves and be-

Table 1
Experimental and theoretical data in source-sink rotating flows

tween 10° and 15° for the type II waves. These instabilities
have been observed in the source-sink configurations by Faller
(1963), Caldwell and Van Atta (1970) and in other kinds of
rotating flows involving a Bodewadt layer by Savas (1987) and
Wilkinson and Malik (1987), and more recently by Gauthier
et al. (1999) and Schouveiler et al. (1999), and also in von
Kdrman boundary layer flows by Faller (1991) and Lingwood
(1996). In Serre et al. (1999b), we report numerical investiga-
tions of the types I and II instabilities in an enclosed rotor—
stator system, where annular and three-dimensional spiral
patterns are found near the rotating and stationary walls.

In previous numerical investigations of flows involving
Ekman boundary-layer instabilities, as in Marlatt and Biringen
(1995), the curvature of the flow field was generally assumed to
be negligible. However, this condition is satisfied only locally
at large radii, where the stability analysis of Lilly (1966) is
valid. The Rossby number Ro characterizes the effect of the
nonlinear terms, which arise through the effect of the curva-
ture. In the limit Ro — 0, the wavelength of the vortices is
independent of the radius and the wave front is a straight line
normal to the flow. In Crespo del Arco et al. (1996), a pseudo-
spectral numerical method was used to obtain axisymmetric
unsteady solutions that arise in an annular configuration
chosen to mimic the experiments of Owen et al. (1985), which
models situations of practical interest. Thus, the curvature
effects were included and oscillatory flow regimes were com-
puted. These arise in the rotating cavity when the radial
throughflow at the inlet is different to the Ekman layer solu-
tion. In the numerical simulations, at short distances from the
axis, the inner velocity profile was chosen as a parabolic
Poiseuille type profile in which case an entrance region devel-
ops which limits the radial displacement of the vortices. In
such situations, Crespo del Arco et al. (1996) reported a
transition to an oscillatory and a nonperiodic regime via a
complex bifurcation scenario. In the unstable flow, six pairs of
counter-rotating circular vortices, propagating radially out-
ward, are found in the Ekman boundary layers. Their wave-
length of about 24,/v/Q and the frequency of about 7.4Q are
in good agreement with experimental results for similar values
of Re and Ro as given by Caldwell and Van Atta (1970) and
Weidman (1976). Experimental results with a smaller radii of
curvature have shown circular waves and also types I and II
spiral waves, Weidman (1976), Wilkinson and Malik (1987),
Savas (1987) and, more recently, Schouveiler et al. (1999).
Their wavelength, orientation angle and critical Reynolds
number are given in Table 1. A review of Ekman boundary

Reference Wave type Ro Re. /0 V] vy Vg
Measurements
Tatro and Moll6-Christensen (1967)* I - 124.5 + 7.32Ro 11.8 15° 0.034

Tatro and Mollo-Christensen (1967) I - 56.3 4+ 116.8Ro 27.8+2 0° to —8° 0.16
Caldwell and Van Atta (1970) 11 - 56.7+3 - - -
Weidman (1976) II - 60 204+2.4 —1°to —-7° -
Theory

Faller and Kaylor (1966) 1 0 118 11 10° to 12° 0.33
Faller and Kaylor (1966) 11 0 55 24 —15° 0.5
Lilly (1966) I 0 110 11.9 8° 0.094
Lilly (1966) 11 0 55 21 —10° 0.57
Marlatt and Biringen (1995) I 0 150 23 —10° 0.296
Two-dimensional numerical simulations

Crespo del Arco et al. (1996) II 04 <Ro<02 74 29-26 0° 0.28

#These results have been criticized by Cesaroli (1975), who proved that these waves were induced by the measurement probe.



layer instabilities is available in the paper of Faller (1991) and
a wide range of relevant nonlinear phenomena and instabilities
within rotating flows are also reported by Hopfinger and
Linden (1990).

In Crespo del Arco et al. (1996), we have confirmed and
analyzed the axisymmetric instability that prevails at R, =5
(Rn 1s a characteristic curvature parameter, R, = (a + b)/AR)
and the supercritical conditions as derived from Lilly’s theo-
retical analysis valid in the limit of Ro — 0. The purpose of the
present study is to extend the analysis of the oscillatory tran-
sition to the regime of three-dimensional spiral patterns. The
study uses a three-dimensional direct numerical simulation of
the spatial and temporal modes that develop as a consequence
of the boundary-layer instability in a rotating annular cavity.
The configuration is subjected to a forced radial outflow
originating at the inner cylindrical section. The flow is assumed
to be isothermal and incompressible. High spatial resolution is
a requisite to describe accurately the Ekman layers, especially
for the numerical study of time-dependent motions. Spectral
methods have been successfully applied to compute complex
time-dependent flows (Canuto et al., 1988). We have used a
spectral collocated Chebyshev method in the radial and axial
directions and a Fourier—Galerkin azimuthally.

Our numerical simulations emphasize time-dependent pat-
terns in a rotating frame of reference: axisymmetric and three-
dimensional patterns, composed of circular rolls or spiral arms
developing in the Ekman boundary layers. These structures are
discussed and shown to be similar to the characteristic type II
viscous instability. In the present configuration, multiple stable
solutions can be obtained, all having similar wavelengths, re-
vealing a problem of pattern selection. This corresponds to the
intransitivity phenomenon observed during the study of
baroclinic waves in differentially heated rotating annulii
(Fowlis and Hide, 1965; Hignett et al., 1985). Circular waves
are determined numerically but they are shown to be possibly
very sensitive to the superposition of an azimuthal disturbance
depending on the radius and on the modes of perturbation.

2. Formulation of the problem

The geometrical configuration is shown in Fig. 1. The radii
of the annular cavity are ¢ and b, with a < b, and the cavity
height is 24. The geometrical parameters are the characteristic
radius of curvature, defined as R, = (a + b)/AR, and the as-
pect ratio L = AR/(2h), where AR = b — a.

The values of R, =5 and 10 are chosen in order to keep
curvature effects reasonably low. Indeed, for more significant
curvature effects (R, =1.22, Ro =0.36), we have shown
(Crespo del Arco et al., 1996) that the transition originates
from an inertial instability in the entrance region that excited
the Ekman layers. It was shown that this external perturbation

2h

Fig. 1. Geometry and coordinate system.

provoked sub-critical modes of instability in the layers. These
modes subsequently vanished over the characteristic spin-
down time (Weidman, 1976) for C,, close to the critical value.
For larger Cy, the combination of the two oscillatory behav-
iors was shown to be at the origin of a quasi-periodic behavior
that precedes the transition to nonperiodic flow. In the present
paper, the distance to the axis is increased and the relevance to
the Ekman layer instability is studied, while considering di-
rectly an Ekman layer profile at the entrance and at the outlet
of the rotating cavity. Thus, the curvature terms remain small
and the Ekman profiles constitute a good estimate of the basic
flow inside the cavity; this will be considered later in Section 5.

The aspect ratio of the cavity, L = 3.37, is taken so that the
Ekman layer thickness is sufficiently small with respect to the
height, yet allow for an extended geostrophic core. The length
AR of the cavity is chosen so that a large number of instability
wavelengths can form between the entrance and exit sections
and also to constitute a good compromise with respect to the
computational cost. Moreover, L = 3.37 is a relevant value for
application to technological devices (Owen and Rogers, 1995)
and for comparison with the fundamental laboratory experi-
ments.

The cavity is rotating with uniform angular velocity
Q = Qe_, e, being the unit vector in the vertical direction. The
scales for the dimensionless variables of space, time and ve-
locity are [k, Q"' Qb], respectively. The dimensionless spatial
variables are denoted (7,z) and have been normalized to
[-1,1] x [-1,1], a requirement for the use of Chebyshev
polynomials. The normalized variables are denoted (r,z) with
r=7/L—R, and z =72

An important dimensionless parameter is the Ekman
number. It is defined as E = v/Q(2h)* and characterizes the
ratio §/h, where § = (v/Q)"* is the constant Ekman layer
thickness and / is the half-height of the cavity. For sufficiently
small values of E, the stability of both Ekman layers can be
considered independently as in the flow over a single disk. As
shown by fundamental analyses in the single infinite disk
problem, the relevant parameter governing the onset of
instability is the local Reynolds number, Re = v;5/v, where v;
is the geostrophic velocity (see Section 5). Since the cavity
begins at a finite distance « from the axis, we also have at our
disposal a local Rossby number, defined by Ro = v;/Qr",
where 7* is the dimensional radial coordinate. The mass flow
rate, Q, is made dimensionless according to C,, = Q/vb.

The flow is governed by the three-dimensional, incom-
pressible Navier—Stokes equations, written in a rotating frame
of reference, in the velocity V = (u,v,w) and pressure p for-
mulation
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and the cylindrical Laplacian operator is
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The boundary conditions are rigid walls at z = +1 and Ekman
boundary layer profiles ((5.2) and (5.3)) are considered as in-
flow and outflow conditions at 7 = L(R,, £ 1), respectively (see
Section 5).

3. Numerical method

The solution method is based on a pseudo-spectral
Chebyshev—Fourier method (see Canuto et al., 1988). The
choice takes into account the adequacy of the properties of
Chebyshev orthogonal polynomial expansions and, in partic-
ular, of the exponential convergence, referred to as spectral
accuracy (Gottlieb and Orszag, 1977). Moreover, the use of the
Gauss—-Lobatto collocation points, corresponding to the ex-
trema of the Chebyshev polynomials of higher degree, N and
M in the radial and axial directions, respectively, directly en-
sures high accuracy of the solution inside the very thin wall
layers.

The differential equations are exactly satisfied at the Gauss—
Lobatto collocation points, (r;,z;) € [-1,1] x [-1,1]

in Jjr
rp=cos| — |, zj=cos|— |,
N M

(i=0,...,N, j=0,....M).

The approximation of any flow variable ¥ = (u, v, w, p) and its
derivatives is derived from the truncated series representation
'PNMK(V7 Z, 97 t)

K/2-1 N M

=2

p=K/2 n=0 m=
for —1<r, z<1, 0<0<2n
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where drfjf”and dzgj” correspond to the coefficients of the matrix
of first and second derivatives (¢ =1,2) and where
Or =2nk/K, k=0...,K —1. An expansion of these coeffi-
cients based on sine functions (Rothman, 1991) is used to re-
duce the round-off error. 7, and 7, are the Chebyshev
polynomials and ¥,,, are the spectral coefficients defined by

N 11 1 k&1 v M
Vomp(t) = = — —
1 )
x — W(r;,z;, 06, )T, (1) T, (z-)e"pok
Cl'C/-

with g =cy=cy=cj,=2and ¢, =c,=1forn=1, N -1
and m = 1, M — 1. The unknowns ¥(r,,z,, 0;) are required to
be real in physical space. The physical conditions are explicitly
taken into account at the boundaries.

The time scheme is semi-implicit and second-order accu-
rate. It corresponds to a combination of a second-order
backward differentiation formula for the diffusive term and the
Adams-Bashforth scheme for the nonlinear terms (see Vanel
et al., 1986). The velocity—pressure coupling is performed with an
efficient projection algorithm developed in Hugues and Ran-
driamampianina (1998) (see Hugues, 1998). It corresponds to
an improved version of the approach proposed by Goda (1979)
and implemented by Gresho and Sani (1987) to finite elements
and by Raspo (1996) to three-dimensional spectral approxi-
mation. It consists of introducing a correct predictor for the
pressure, directly derived from the Navier—Stokes equations,
which provides an appropriate consistent pressure field with a
divergence-free velocity. This procedure allows a possible
temporal evolution of the normal gradient of pressure at the
boundaries, known to be the main drawbacks of the initial
projection scheme. Moreover, this modified algorithm is
shown to reduce the slip-velocity on the boundaries by one
order of magnitude (compared to that of the temporal scheme)
and it improves the incompressibility condition without the
need of a staggered grids for the velocity and the pressure. At
each time step, the solution of the Navier—Stokes equations
reduces to a solution of Helmholtz and Poisson type equations
in the Fourier space. A direct solver for these equations is used,
based on a complete matrix diagonalization technique pro-
posed by Haldenwang et al. (1984); for this configuration the
matrices of radial and axial operators are diagonalizable with
real eigenvalues.

Note that an extension of this numerical method in the case
involving the axis (7 = 0) is proposed elsewhere in Serre and
Pulicani (2000).

4. Numerical details

Computations were performed with spatial resolutions of
N XM x K =48 x 48 x 48 to 48 x 48 x 128, where N and M
are the number of Chebyshev polynomials in the axial and
radial directions and K the number of the Fourier modes used
in the azimuthal expansion. The former axisymmetric study in
a rotating annular cavity of Crespo del Arco et al. (1996) in-
dicates that a spatial resolution of 48 x 48 in (r,z) for the
considered geometrical (Ry,L) and physical (£, C,) parame-
ters, constitutes a good compromise between accuracy and
computational cost. The time step used in the computations is
governed by the spatial resolution in (7,z), At = 4.0 x 1073,
The time considered for each solution was sized on the largest
characteristic time in rotating flows (Greenspan, 1969), the
viscous time #, = E~! (2450 in present cases); over this very
large time scale, the viscous diffusion has already affected the
entire core of the cavity and the small residual inertial oscil-
lations are strongly damped.

Convergence to steady state is assumed to be achieved when
the convergence rate becomes smaller than a relevant value
that is taken in our study as [V"*' — V"|/6t < 10~°, where V is
the velocity vector, and the superscripts n+ 1 and n corre-
spond to the time stages (n+ 1)0¢ and ndr. The solution
strategy then consists of initializing the computation at larger



C,, with the solution formerly obtained at a lower value of C,,
the rotation rate being constant (E = 2.24 x 1073).

5. Basic flow

The basic flow solution is stationary and axisymmetric and
corresponds to the Ekman layer flow. The meridianal velocity
field of the basic solution is displayed in Fig. 2(a) for 0 < z<1
and for Cy = 200. The radially outward flows that develop
parallel to the walls dominate the weak reverse flows observed
at the edge of the boundary layers bordering the geostrophic
core; details of the structure of the radial velocity profile at
mid-section are given displayed in Fig. 3(a). For large values of
the mass flow rate Cy,, vortex structures are superimposed on
each layer close to the disks; see Fig. 2(b) computed for
Cy = 530 and plotted for —1<z<0 . At R,, = 5, the solution
remains steady and axisymmetric below C, =460 at
E =2.24 x 107? and the Ekman boundary layer flow is stable.
For this type of flow, the Coriolis force dominates with respect
to inertial and centrifugal forces near the walls (E < 1 and
Ro < 1). Then, in a frame of reference rotating with the walls
at angular velocity Q, the Navier-Stokes equations can be
approximated by (Greenspan, 1969)

du
v
u= 4E@

with the boundary conditions u =v=0atz=+1 and u — 0,
v — vy, When z — 0. The isothermal flow organizes itself sym-
metrically and parallel Ekman layer flows form on the two
disks with the same mass flow rate. Solutions across the height
of the cavity can be derived from Eq. (5.1) with the above
boundary conditions. The axial velocity is w = 0 (parallel flow
assumption) and the radial and azimuthal components are,
respectively,

u = vy {exp[—E "2 (z+ 1)]sin[~E"/*(z + 1)]
—explE V2 (z— 1)]sin[E~V2(z — 1))}, (5.2)

v=—v{l —exp[~E2(z+ 1)] cos|-E~ 2 (z + 1)]
—explE"?(z — 1)] cos|E~2(z — 1)]}, (5.3)

where v, is a function of the radius and corresponds to the
dimensionless azimuthal velocity of the inviscid geostrophic
flow between the two viscous Ekman layers (Hide, 1968)

umax=0.0394 Cw=200 (a)

Fig. 2. Display of the velocity field (u,w) in the meridianal plane (r,z)
in the cavity L = 3.37, R, = 5, and at £ = 2.24 x 1073, Two zones are
emphasized: one below near the wall and the second in the core, where
the velocity is displayed with a factor 16. The vortices are emphasized
by paths of markers introduced in the near entry region at left. (a) In
the upper half part, 0 < z< 1, steady basic flow solution for C, = 200;
reference scale is up.x = 0.0394. (b) In the lower part, —1 <z<0, un-
stable flow solution for C,, = 530; reference scale is ., = 0.0560.
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Fig. 3. Basic flow solution at C,, = 200, E = 2.24 x 1073; z-profiles of
the velocity at the middle section of the cavity 7= LR, (r=0),
L =3.37, R, =5. Characteristic length and velocity scales (refer to
Hide, 1968). (a) Radial component of the velocity, u; (b) azimuthal
component of the velocity, v.
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In the numerical solution at C, = 200, the predominant
meridianal flow appears in these two Ekman layers (see the
radial velocity profile in Fig. 3(a)); outside these Ekman layers,
in the geostrophic core, the Coriolis force balances the pressure
gradient and the flow is predominantly azimuthal. In this ge-
ostrophic region, both the radial and the axial velocities are
small and the flow rotates inside the cavity at a slower rate
than the walls (see the azimuthal velocity profile in the rotating
frame of reference, Fig. 3(b)). The thicknesses of the Ekman
layers are referred to as 6 and the azimuthal core velocity is
denoted the geostrophic velocity v, (see Hide, 1968, for theo-
retical results).

The solutions (5.2) and (5.3) used as inflow (at 7=
L(Ry, — 1)) and outflow (at 7 = L(Ry, + 1)) boundary condi-
tions appear as natural boundary conditions at this distance
from the axis (R, =>5) for the considered rotation rate
(E = 2.24 x 107%). For larger values of the mass flow rate C,,
this solution also represents a good average approximation of



the velocity field in the whole cavity. For example, the geos-
trophic velocity varies similarly to Eq. (5.4) and this expression
underestimates by less than only 5% the actual geostrophic
velocity numerically obtained inside the cavity, L(R, — 1)
<7< L(Rn+1), at C, = 530; the time-averaged geostrophic
velocity is about v, = 0.243, while the value from the analytical
solution (5.4) is v, = 0.238. Moreover, we note that there is no
evidence of inertial effects at the entrance and exit regions, as
was analytically determined elsewhere by Hide (1968) and
simulated by Crespo del Arco et al. (1996).

6. Results and analysis

The results presented in this section were obtained for
an aspect ratio L =3.37, a constant rotation rate,
E =224 x1073, and a mass flow rate C, between 460 and
600 in order to be in a range of local parameter values,
(Re,Ro), characteristic of the type II instability. Using the
zero-order solution for the azimuthal velocity (5.4), the Rey-
nolds and Rossby numbers at a given position r € [—1;1],
are Re = Cy (R + 1)/[2n(Ry +7)] and Ro = CyE'* (R + 1)/
2nL(Ry 4 1)°.

In order to identify and study the spatial structure of the
instabilities, which develop in each of the two boundary layers,
one uses the axial velocity component, which is nearly zero in
the Ekman layer flow and constitutes a very sensitive marker
to local disturbances. The dynamical behavior was investigated
by noting the time history of the variables (u,v,w,p) in
the Ekman layers and in the geostrophic region at two prin-
cipal locations: (ry,z;,0;) =(0,0.98,7/4) and (r2,z,0,) =
(0,0,m/4) for (r,z,0) € [-1;1] x [=1;1] x [0;2n]. Some rele-
vant experimental and numerical results together with results
of a stability analysis are listed in Table 1.

6.1. Axisymmetric patterns

The initial condition is the computed solution of the time-
dependent Navier-Stokes equations at C, =460 and
E =224 x1073. This stable solution is axisymmetric and
similar to the solution displayed in Fig. 2(a) (above, 0 < z<1
for Cy = 200). When increasing the mass flow rate, C, = 530,
a Hopf bifurcation is exhibited to a periodic oscillatory solu-
tion and the flow is still axisymmetric (Fig. 4). After a transient
time ¢ = 4 (which is about #;/3, where # is the characteristic
Ekman time, 5 = &/ (vQ)l/ 2 (Greenspan, 1969), the frequency
of the oscillation plotted in Fig. 4(b) is 0 = 7.4, where ¢ is
scaled with the rotation rate Q). We obtain good agreement
between the computed value of ¢ and the frequency reported
from experiments by Caldwell and Van Atta (1970), far from
the critical Reynolds number and for Ro # 0. For Re in the
range of 110 < Re <250, these authors notice a linear depen-
dence of the frequency, 7 < ¢ < 12. Herein, the values of the
Reynolds and Rossby numbers are given using the computed
velocity at the center of the cavity, in this case, Re = 102 and
Ro =10.29.

Results of the numerical solution displayed in Fig. 4(a)
exhibit six pairs of counter-rotating axisymmetric rolls in the
Ekman layer traveling radially outward with phase velocity vy,
of about v, /v, = 0.28. The contour-lines of the axial velocity
in Fig. 4(a) emphasize the deflection to the parallel flow in the
Ekman layers. The structures of limited magnitude superim-
pose to both the Ekman layers (where the parallel flow is ra-
dial) and the geostrophic core (corresponding to solid body
rotation) extending to the center of the cavity. However, the
pattern only displays the flow disturbance and the flow zones
remain the same than in the steady flow.
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Fig. 4. Axisymmetric instability at C, = 530, E = 2.24 x 10~ and at
R, = 5. Characteristic wavelength A, phase velocity vy, and frequency
o =2n/T. (a) Instantaneous iso-lines of the axial velocity component
in the meridianal flow (r,z, n/4). Visualisation of six pairs of counter-
rotating vortices, at t =250 , N x M x K =48 x 48 x 48. (b) Time
history of the azimuthal component of the velocity v in
(r,z,0) = (0,0.95,7/4). Periodic behavior with ¢ =7.4. The major
disturbances (inner circles) are separated from the weaker disturbances
(outer circles) extending in the core, by a blank zone.

In Fig. 2(a), the velocity vector field is divided into two
zones: the near wall, where the main flow is concentrated under
the form of the Ekman layers and where the maximum ve-
locities are located; the rest of the cavity, where the flow is very
weak in the meridian plane. The length scale for the velocity
vector refers to the maximum in the Ekman parallel flow
profile. The velocity vectors in the geostrophic region are
magnified by a factor of 16. Then, these velocity vectors dis-
played in the core with a same magnitude, indeed correspond
to a velocity smaller by a factor of 16 with respect to the ones
in the Ekman layer. We note that the instability mainly locates
at the border between the Ekman layer and the geostrophic
core: the disturbances are of small amplitude but we can isolate
their expansion by injecting adequately the particles in the
interesting zone before tracking them as markers of the in-
stability structures. The vortices localization is emphasized by
using particle paths originating from the entrance region
bordering the wall region and the core.

The wavelength in the radial direction is defined as
2y = AR/ny, n, being the number of pairs of vortices along the
radius (n, = 6); the wavelength is sized in terms of the scale
length of the Ekman layer, §, as is usual in the literature. The
wavelength is roughly constant at about 1, = 246, slightly
decreasing from 260 to 230 between the entrance and the exit
sections.

These results are similar to the axisymmetric solution ob-
tained in two dimensions in an earlier paper by Crespo del



Arco et al., 1996 (see Table 1) with a different numerical
method (streamline-vorticity formulation) at C, =467 and
E =2.24 x 1073. Moreover, good agreement with the theo-
retical results at Ro =0 is obtained (see Table 1). To our
knowledge, this axisymmetric mode of instability has never
been noticed in experimental studies of the Ekman layer in
which mainly spiral structures are obtained. Nevertheless, our
solution is quite similar to the experimental results in the
Bodewadt layer on a stationary disk. Savas (1987) was the first
to observe, in an enclosed rotor—stator cavity, traveling cir-
cular waves during impulsive spin-down to rest, 25 < Re < 125,
with a frequency of ¢ = 5. He observed nine pairs of rolls with
an average radial wavelength of 1, = 204.

The range of the parameters (4, g, vy) is characteristic of
the axisymmetric mode of the type II Ekman boundary-layer
instability.

6.2. Three-dimensional spiral patterns

The rolls that progress in the form of rings in the axisym-
metric solution, now constitute spiral expanding outwards
inside the cavity. The orientation of the wave front is measured
by the angle ¢ with respect to the azimuthal direction. It is
defined positive when it is rolled up towards the axis of the disk
in the rotation direction.

Due to the high level of accuracy of the spectral solution
(the round-off errors and hence the numerical noise are very
small) and due to the cost of CPU time, the transition to three-
dimensional patterns was not actually carried out over very
large time intervals, but the process was accelerated by con-
sidering “artificial” initial disturbances. This axisymmetric
flow was perturbed by superimposing a disturbance at a given
instant to the azimuthal velocity of general form owsin(pf)
where p is an arbitrary number corresponding to an azimuthal
wavelength and o the amplitude growth rate. The disturbance
is introduced near the entrance section. The divergence free
constraint is satisfied after a few preliminary iterations. In
addition, the same results have been obtained after perturbing
similarly the two other velocity components. Disturbances of
different amplitude rates are shown to give exactly the same
spiral flows but the transient time to reach the stable state
noticeably depends on «. We have estimated the transitory
time by perturbing the same axisymmetric nonlinear Ekman
solution with various amplitude rates o = 0.008, 0.02 and 0.05.
The results give a dependency of this transitory time with a
growth rate which behaves roughly as o~'/3. The significant
time histories of the axial velocity component inside the Ek-
man layer are shown in Figs. 5(a)-(c) for C, = 530,
E = 2.24 x 1073 for the three values of the amplitude rate o.

In previous work, Hugues et al. (1998), we already observed
that the radial component of the wave number in spiral pat-
terns remains exactly the same as in the circular patterns; six
pairs of rolls travel outwards, near both disks. However, in
these structures an azimuthal component also arises. The azi-
muthal wavelength is defined as Ay =2n7/n, n being the
number of spiral arms over 2. The general wavelength of the
spiral patterns can be defined by 1, as A = (2a7/n)|sin¢|.

Fig. 6 shows multiple solutions of spiral instability patterns
at the fixed parameter values C,, = 530, E = 2.24 x 1073 and
R, = 5. The multiplicity appears in the different numbers of
spiral arms following the periodicity of the disturbances,
n=p,p = AR/.(~ 6) as shown in Fig. 6(d). These solutions,
for example the ones displayed in Figs. 6(a)—(c), are stable to
further disturbances with p # n. The characteristics of the
stable solutions are given at the center of the cavity in Table 2.
The angle ¢ between the geostrophic and the phase velocity, is
taken at the center of the cavity, 7 = LR, and is negative in
each case. The wavelength of the spiral waves varies slightly

with the number of spiral arms and is about 256 at 7 = LRy,
diminishing with the radial location; for n = 6, 4 decreases in
the range of 19.7<1/0<29.5. All the solutions are periodic
with a frequency slightly larger than for the axisymmetric so-
lution. A second transient frequency modulates the time signal
and its value is estimated between o ~ 0.4 and 1.7, depending
on the periodicity of the initial disturbance, p. During the in-
tegration time (over about one viscous time), the modulation
significantly damps and has almost disappeared at the end of
the simulation. The modulation is interpreted to be a result of
the inertial waves excited by the disturbances at the initial time.
We display the dispersion relation ¢ = o(n) in Fig. 7; the an-
gular frequency is shown to increase with the number of arms,
ie., 0 xn.

In Figs. 8(a)—(c), we present a three-dimensional display of
the w iso-surfaces after projection on a rectangular reference
frame, which exhibits the expansion of 6-12 spiral arms,
n=6,8,12, over r radians in the azimuthal direction, that is
over half of the domain. In order to emphasize the vortex
structures, we have graphically displayed various points of
view that illustrate the inclination with respect to the azimuthal
direction.

The phase velocity of circular waves behaves as 1/7 (Crespo
del Arco et al., 1996). The spiral wave fronts propagate in the
azimuthal direction with a dimensionless angular velocity
® =0 n~'. As the radial component of the phase velocity
varies as A/7 (A is a constant), the velocity of the wave front is
(vy,,vy,) = (4/F,oF). A generic equation of the wave front can
easily be derived from the condition of colinearity between the
displacement of the instability and the phase velocity. The
polar equation is derived as 7 = 24w~'(0 + B,) where B; is a
constant which depends on the number of spiral arms. In the
numerical solutions, we obtained six pairs of vortices that
expand radially following a number of spiral arms which is
greater or equal to six (refer to Fig. 6(d)). Each spiral arm
originates at the inner radius, 7 = L(Ry,, — 1), and terminates at
7 = L(Ry + 1) through an angle of 2 for six arms, of 3n/4 for
eight arms (see Figs. 6(a) and (b)) and more generally, of 121t/n
with n arms, n > 6. Using these results we determine the
constant 4 and the wave front can then be expressed as

o _ nLRy (0+@)_ 6.1)

3n n

The angle of the wave front with the geostrophic velocity thus
varies as 72 following:

Ur nRy,
tang=—-——=—-————
vy 6n(Ry +7)

and is given in Table 2 at the center of the cavity, 7 = LR,,. The
dimensionless phase velocity vy /v, is nearly independent of the
radial coordinate for the range of r-values considered.

These three-dimensional spiral patterns have been observed
in the experiments of the Ekman layer (see the review in Faller,
1991; Crespo del Arco et al., 1996). The characteristic pa-
rameters are in good agreement with those obtained in the
relevant experiments (see Table 1). Caldwell and Van Atta
(1970) and Faller and Kaylor (1966) found in experiments
similar structures that they referred to as type II instabilities of
the Ekman layer. Faller and Kaylor (1966) observed spiral
arms for a critical Reynolds number Re =~ 70 (while our value
is Re = 85) with a wavelength close to those obtained in the
present computations, in the range of 22 < 1/6 < 33, decreas-
ing with radial location and with spiral angles in the range
—20° < &< 5° Moreover, the present results are quite similar
to those given by the stability analyses for Ro = 0 in the case of
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Fig. 6. Three-dimensional displays of instantaneous iso-surface of
the axial velocity component, for 0 <z<1, projected in a plane
(r,0), 0<O<m att =250, N x M x K =48 x 48 x 64, for C,, = 530,
E =2.24 x 1073 and at R, = 5. The cavity rotates in the anti-clockwise
direction. (a) Spiral patterns of the instability with six arms, and ve-
locity field in the geostrophic region (r,z = 0,0). (b) Spiral patterns
with eight arms. (c) Spiral patterns with 12 arms. (d) Response of the
system to disturbance. Minimal number of pairs of arms,
n = AR/ (=6); multiple solutions from various disturbances of pe-
riodicity varying from 2 to 14.

than Ro = 0.29 at R, = 5 (the linear solution corresponds to
Ro = 0).

The numerical solution is still axisymmetric, with six pairs
of counter-rotating rolls, similar to the axisymmetric solutions
obtained using R,, = 5. The solution is oscillatory in time with
frequency o = 7.6, with wavelength A =240. We have dis-
turbed this axisymmetric solution with periodic disturbances
of p = 3,6, 14 and with magnitudes « up to 0.1. For both p = 3
and p = 6, the amplitude decays (see Fig. 5(d)) and the final
stable solution are the same axisymmetric oscillatory solution.
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Fig. 7. Dispersion relation ¢ = a(n) for Cy, =530, E =224 x 1073
and at R, = 5.

(© 0

Fig. 8. Three-dimensional displays of instantaneous iso-surface of the
axial velocity component in a cartesian reference frame, 0 <0< .
Visualization of the six pairs of counter-rotating vortices in the me-
ridianal plane (r,z); at =250, N x M x K =48 x 48 x 64, for
Cy = 530, E=2.24 x 1073 and at R, = 5. (a) Spiral patterns with six
arms. (b) Spiral patterns with eight arms. (c) Spiral patterns with 12
arms.

Unlike the original results for R, = 5, the same perturbations,
p = 3 and 6, provoked the rise of spiral patterns with 12 and 6
arms, respectively. However, the spiral wave solution with 14
arms remains a stable solution at both R, = 5 and 10, both
obtained from a p = 14 disturbance after simulation times of
250 and 150, respectively.



Table 2

Parameters of the three-dimensional solutions obtained with different
disturbances (sin p0) from the axisymmetric solution for C,, = 533 and
E =224 x 1073, All the instability structures have the same radial
wavelength (six vortices in the radial direction).

Number of arms, n p a v Oy /Uy
Axisymmetric - 7.4 0° 0.28
6 3,6 8.55 —3.64° 0.32
7 7 8.73 —4.25° 0.32
8 2,48 8.98 —4.85° 0.33
12 4,12 9.86 —7.26° 0.36
14 14 10.24 —8.45° 0.38

The spiral (and also the axisymmetric) waves can be char-
acterized by the azimuthal component of the wavelength /.
From the R, =5 (p=6) and the R, = 10 (p = 14) results,
there exists an upper bound on the wavelength as the minimal
number of arms increases roughly linearly with 7. This maxi-
mum wavelength does not change greatly in the range of the
curvature parameter R,,. The axisymmetric solution is stable
with respect to disturbances of azimuthal wavelengths, Ay,
larger than roughly 5.3m, but it is unstable to azimuthal
wavelengths smaller than 5.3m.

7. Discussion

Using Ekman layer profiles as boundary conditions at the
source and at the sink in a rotating cavity at high rotation rate
(E =224 x 107%) and with two moderate curvature parame-
ters, R, = 5 and 10, we have numerically investigated the type

(a)

IT Ekman layer instability using a three-dimensional Cheby-
shev—Fourier pseudo-spectral method. Below C,, = 460,
R, =5, corresponding to 73.2<Re< 110, the solution re-
mains steady and axisymmetric, composed of two Ekman
layers close to the rotating walls separated by a geostrophic
region with solid body rotation. When the mass flow rate is
increased to C,, = 530 at R, = 5 for which 84.4 <Re<126.5
and to C, = 600 at R, = 10 for which 95.5 <Re< 105, the
results of the numerical simulations reveal an oscillatory mo-
tion with frequencies in the range 7.4 < ¢ < 10.24 associated
with an axisymmetric mode of instability in the Ekman
boundary layer. The circular patterns exhibited in Fig. 9(a) are
similar to those obtained in experiments by Wilkinson and
Malik (1987), Savas (1987), Schouveiler et al. (1999) and
Weidman (1976) in the case of a Bodewadt boundary layer,
and are shown to be sensitive to the superposition of distur-
bances. We notice that this axisymmetric mode of instability
has never been observed in experimental studies of the Ekman
layer formed in an annular geometry with radial throughflow.

Three-dimensional spiral structures also appear in the an-
nular domain close to the rotating disks (Fig. 9(b)). From an
analysis of our numerical results, we propose a generic equa-
tion (6.1) for the position of the wave front, depending on the
curvature parameter R,.

Moreover, we demonstrate that the circular wave instability
develops at different radii of curvature and can remain stable
with respect to the large wavelength of the azimuthal distur-
bances. In this study, the transition from axisymmetric to
spiral rolls has not been observed without any initial distur-
bance, at least in the time of computation (about ¢,) employed
which we assume is sufficiently large. This means that for the
same parameters, (R, Re,Ro), there are multiple nonlinear
stable solutions, all stable to infinitesimal disturbances and

Fig. 9. Three-dimensional displays of instantaneous iso-surface of the axial velocity component in the annular domain. At ¢= 250,
N x M x K =48 x 48 x 64, for C, = 530, E =2.24 x 10~* and at R, = 5. (a) Circular patterns of the axisymmetric instability. (b) Spiral arms
(n = 12) of the three-dimensional instability. The cavity rotates in the anti-clockwise direction.
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Fig. 10. Characteristic parameters of type I and type II instabilities
from Tables 1 and 2 vs local Reynolds number, Re; experimental,
theoretical and numerical values of: (a) the wavelength, 4, (b) the in-
clination angle, ¢, (c) the phase velocity, vy. Dashed zones represent the
variation of the parameters with Re and the multiple spiral patterns.

appearing with different initial conditions. However, we have
observed that the spiral patterns, once formed, do remain
stable to further disturbances.

Different experimental observations have mentioned the
existence of multiple stable solutions in rotating confined
flows, known as the intransitivity phenomenon (Fowlis and
Hide, 1965; Hignett et al., 1985). These studies were devoted to
baroclinic waves in differentially heated rotating annulii. Both
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authors mentioned that such a behavior occurs during the
transition from axisymmetric to three-dimensional flows be-
fore unique wave flow solution establishes. Hignett et al.
(1985) have also carried out numerical investigations of these
flows and obtained multiple three-dimensional solutions by
introducing perturbations on the temperature field in axisym-
metric solutions, similarly to the present process. The phe-
nomenology of the situation with multiple solutions presents
also some similarities with the stability (Busse) balloon in the
Rayleigh-Bénard convection, which contains regions of stable
solutions in a space of parameter (Ra, Pr, ) bounded by vari-
ous possible instabilities (see Cross and Hobenberg, 1993). In
particular, the onset of a 4y # 0 wavelength is similar to the
zigzag instability, which is a universal instability associated
with low Prandtl number nonlinear convection in weakly
confined systems. Experiments in stationary convection show
that for the zigzag instability (or for other phase instabilities)
the wave vector selection originates from defects (dislocation,
grain boundaries etc.) or from finite perturbations using
thermal printing (Cross and Hobenberg, 1993), quite similar to
our finite perturbations of the axisymmetric solution. The
analogous space of parameters in the present system would be
(Re, Ro, ). Thus, the large values of the Rossby number in our
flow may be analogous to lower Prandtl number situations in
the Rayleigh-Bénard convection.

The characteristics of the computed ring and spiral insta-
bilities are plotted in Figs. 10(a)—(c), together with the exper-
imental, theoretical and numerical results reported in Table 1.
The dashed regions correspond to zones, where the flow
characteristics vary, e.g., the local value Re between the entry
and exit sections and also the multiple inclination angles of the
spiral in both the experiments and our computations. For
the instability results plotted in Fig. 10(a) we find that over the
considered Re range, the types I and II instabilities are well
determined as 4; < 12 and 20 <y < 30, respectively. We note
that the wavelengths of the three-dimensional instability re-
main roughly invariant over the range of Re considered for the
spiral patterns and for the different numbers of spiral arms.
For the ring patterns, the wavelength 4, slightly varies with 7
between the entrance and the exit sections. The inclination
angle ¢ displayed in Fig. 10(b) are positive in the range
5° < g < 15° for the type I instability and negative in the range
—15° < ¢ < 0° for the type II instability. The phase velocities
vy (plotted in Fig. 10(c)) shows that the type I instability is well
determined by vy < 0.1 (except for the single measurement of
Faller and Kaylor, 1966). For the type II instability, vy varies
over the range 0.15 < vy <0.60. We note that our computed
results are always well identified in the region of the charac-
teristic parameters, where experiments and theoretical results
have located the type II instability. Analysis of the three in-
stability parameters given in Figs. 10(a)—(c) supports our
opinion that the present time-dependent solutions indeed
correspond to a type Il Ekman layer instability.

Recent measurements by Lingwood (1995, 1996) have
demonstrated that the type II Ekman layer instability is a
convective instability and not an absolute instability. We in-
tend to more precisely analyze this feature in some forth-
coming numerical investigations.
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