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Axisymmetric and three-dimensional instabilities in an Ekman boundary layer ¯ow

The instability of Ekman boundary layer ¯ow is studied inside a rotating annular cavity with radial through¯ow, which is a relevant geometry of the air cooling system in turbines. The ¯ow is computed by direct numerical simulation using a time-dependent three-dimensional Navier±Stokes solver based on a pseudo-spectral method. The ¯uid entering the annulus at the inner section then develops into a rotating geostrophic core ¯anked above and below by two nonlinear Ekman boundary layers and exits at the outer section. In this study, the rotation rate of the cavity is ®xed at a given high value, corresponding to an Ekman number E 2:24 Â 10 À3 . When the through¯ow is weak, the motion is steady and the boundary layer ¯ow is well described by Ekman's analytical solution. On increasing the mass ¯ow rate, the ¯ow becomes unsteady and perturbations appear in the form of counterrotating pairs of vortices adjacent to upper and lower surfaces of the cavity. Multiple stable solutions, involving circular and spiral waves with dierent numbers of arms, are obtained at ®xed mass ¯ow rate. The wavenumber and frequency of both circular and spiral waves are determined to be characteristic of the type II viscous Ekman layer instability.

Introduction

The investigation of rotating viscous ¯ows near walls has been the topic of many experimental, theoretical and numerical studies, motivated both by a fundamental geophysical interest (see [START_REF] Hide | On source±sink ¯ows strati®ed in a rotating annulus[END_REF][START_REF] Greenspan | The Theory of Rotating Fluids[END_REF] and by applications to technological devices and their improvement (see Owen andRogers, 1989, 1995). These applications have motivated studies in simple generic geometries and con®ned con®gurations that model actual complex situations. They concern a wide range of ¯ows driven by the dierential rotation of the walls, by radial through¯ow, and also by heat transfer from the walls. Whereas the three-dimensional ¯ow in an enclosed ro-tor±stator con®guration has been recently studied by Serre et al. (1999a,b), the present investigation considers a cavity (of internal radius, a, and external radius, b) in which both disks are rotating at the same speed and there is superposed a radially outward through¯ow. This con®guration is highly con-®ned by walls on two sides and the two remaining ones are the entrance and exit sections of the forced ¯ow. This situation signi®cantly models certain ¯ows inside the rotating cavity of gas turbine engines. Although a large number of their features are also relevant to geophysical ¯ows in the earth's atmo-sphere, the problem is entirely governed by engineering purposes. In air-cooled gas turbine engines, the cooling air is extracted from the HP compressor stages and is carried along a channel in order to cool the nozzle guide vanes, the turbine blades and the turbine disks to which the blades are attached. In certain types of engines, the air may be injected radially between two corotating compressor disks. A characteristic of these ¯ows is the coexistence of adjacent coupled ¯ow regions that are radically dierent in terms of the ¯ow properties and of the length scales, as is the case for Ekman layers neighboring a geostrophic core region.

The ®rst contributions to the ®eld were theoretical and concerned the steady laminar ¯ow of an incompressible viscous ¯uid driven by an in®nite rotating disk studied by Von [START_REF] Von Karman | Uber laminare und turbulente Reibung[END_REF], who determined approximate analytical solutions that exhibited a thin boundary layer phenomenon. The length scale of this thin layer was clearly related to the rotation rate by [START_REF] Cochran | The ¯ow due to a rotating disk[END_REF]. The extension to con®nement of isothermal laminar ¯ow by two rotating disks has been studied analytically by [START_REF] Hide | On source±sink ¯ows strati®ed in a rotating annulus[END_REF] and [START_REF] Barcilon | On the steady motions produced by a stable strati®cation in a rapidly rotating ¯uid[END_REF], and numerically by [START_REF] Chew | Numerical predictions for laminar source-sink ¯ow in a rotating cylindrical cavity[END_REF]. The laminar ¯ow structure in this con®guration, involving a source mass ¯ux at the entrance section, can be divided into four zones: an inner source region, two separated Ekman layers, an outer sink layer, and an interior inviscid core [START_REF] Owen | Velocity measurements inside a rotating cavity with a radial out¯ow of ¯uid[END_REF][START_REF] Owen | Source±sink ¯ow inside a rotating cylindrical cavity[END_REF]. [START_REF] Hide | On source±sink ¯ows strati®ed in a rotating annulus[END_REF] gave asymptotic solutions for the velocity distribution in the four regions by matching the linear Ekman layer solutions to the boundary layer solutions for the source and the sink. He also gave estimates for the radial extent of the source region and of the sink layer. The axisymmetric solution is composed of a geostrophic core and two Ekman layers on the upper and lower walls; the ¯ow strength in the geostrophic core is related to the radial mass ¯ux through the cavity, and the boundary layers are given by a well-known analytical solution (see, for example, [START_REF] Greenspan | The Theory of Rotating Fluids[END_REF]. The numerical studies of source±sink ¯ows in a rotating annulus by [START_REF] Bennetts | Source±sink ¯ows in a rotating annulus: a combined laboratory and numerical study[END_REF] con®rm that the basic steady ¯ow is well approximated by the analytical solution of [START_REF] Hide | On source±sink ¯ows strati®ed in a rotating annulus[END_REF], when the mass ¯ow rate C w is small, but as the ¯ow rate increases, the linear solution becomes increasingly less accurate.

Various studies have delineated two generic forms of instability that develop in Ekman layers adjacent to rotating disks and that play an important role in the transition mechanism. They are referred to as either type II and type I instabilities or, respectively, type A and type B instabilities. The type I instability is associated with the presence of unstable in¯ection points in the velocity pro®les normal to the disk plane, whereas [START_REF] Lilly | On the instability of Ekman boundary ¯ow[END_REF] showed with a linear stability analysis that the type II instability, appearing at lower values of the critical Reynolds number and with a larger wavelength, is related to the combined eects of the Coriolis forces and viscosity. This Reynolds number is usually de®ned as Re v à g d=m, where v à g is the dimensional geostrophic azimuthal velocity, m the kinematic viscosity of the ¯uid, and d m=X 1=2 is the characteristic boundary layer thickness in which X is the rotation rate of the plate. The waves associated with these types I and II instabilities are intrinsically dierent. Empirical relationships for the critical parameters were given by [START_REF] Tatro | Experiments on Ekman layer instability[END_REF] in the case of a radial in¯ow over the rotating plate, but one of these relations concerning the type I instability has been criticized by [START_REF] Cesaroli | Free shear layer instability due to the probes in rotating source±sink ¯ow[END_REF] who suggested that these waves were only the result of disturbances induced by the measurement probe. The relations between the critical parameters for type II waves are approximately Re c II 56:3 58:4Ro and, for type I instability Re c I 124:5 3:66Ro, with the Rossby number Ro de®ned as Ro v à g =Xr à , where r à is the distance from the axis of rotation. Both instabilities have the form of either annular or spiral vortices located in the Ekman boundary layer. However, the types I and II vortices propagate in opposite directions and, consequently, the angle between the geostrophic velocity and the phase velocity of these waves have opposite sign; that angle lies between 0°and À20°for the type I waves and be-tween 10°and 15°for the type II waves. These instabilities have been observed in the source±sink con®gurations by [START_REF] Faller | An experimental study of the instability of the laminar Ekman boundary layer[END_REF], Caldwell and Van Atta (1970) and in other kinds of rotating ¯ows involving a B odewadt layer by [START_REF] Savas | Stability of B odewadt ¯ow[END_REF] and [START_REF] Wilkinson | Stability experiments in the ¯ow over a rotating disk[END_REF], and more recently by [START_REF] Gauthier | Axisymmetric propagating vortices in the ¯ow between a stationary and a rotating disk enclosed by a cylinder[END_REF] and [START_REF] Schouveiler | Spiral and Circular waves in the ¯ow between a rotating and a stationary disk[END_REF], and also in von K arm an boundary layer ¯ows by [START_REF] Faller | Instability and transition of the disturbed ¯ow over a rotating disc[END_REF] and [START_REF] Lingwood | An experimental study of absolute instability of the rotating-disk boundary-layer ¯ow[END_REF]. In Serre et al. (1999b), we report numerical investigations of the types I and II instabilities in an enclosed rotor± stator system, where annular and three-dimensional spiral patterns are found near the rotating and stationary walls.

In previous numerical investigations of ¯ows involving Ekman boundary-layer instabilities, as in [START_REF] Marlatt | Numerical simulation of spatially evolving Ekman layer instability[END_REF], the curvature of the ¯ow ®eld was generally assumed to be negligible. However, this condition is satis®ed only locally at large radii, where the stability analysis of [START_REF] Lilly | On the instability of Ekman boundary ¯ow[END_REF] is valid. The Rossby number Ro characterizes the eect of the nonlinear terms, which arise through the eect of the curvature. In the limit Ro 3 0, the wavelength of the vortices is independent of the radius and the wave front is a straight line normal to the ¯ow. In Crespo del [START_REF] Crespo Del Arco | Spatio temporal behaviour in a rotating annulus with a source±sink ¯ow[END_REF], a pseudospectral numerical method was used to obtain axisymmetric unsteady solutions that arise in an annular con®guration chosen to mimic the experiments of [START_REF] Owen | Source±sink ¯ow inside a rotating cylindrical cavity[END_REF], which models situations of practical interest. Thus, the curvature eects were included and oscillatory ¯ow regimes were computed. These arise in the rotating cavity when the radial through¯ow at the inlet is dierent to the Ekman layer solution. In the numerical simulations, at short distances from the axis, the inner velocity pro®le was chosen as a parabolic Poiseuille type pro®le in which case an entrance region develops which limits the radial displacement of the vortices. In such situations, Crespo del [START_REF] Crespo Del Arco | Spatio temporal behaviour in a rotating annulus with a source±sink ¯ow[END_REF] reported a transition to an oscillatory and a nonperiodic regime via a complex bifurcation scenario. In the unstable ¯ow, six pairs of counter-rotating circular vortices, propagating radially outward, are found in the Ekman boundary layers. Their wavelength of about 24 m=X p and the frequency of about 7:4X are in good agreement with experimental results for similar values of Re and Ro as given by Caldwell and Van Atta (1970) and [START_REF] Weidman | On the spin-up and spin-down of a rotating ¯uid. Part 2: Measurements and stability[END_REF]. Experimental results with a smaller radii of curvature have shown circular waves and also types I and II spiral waves, [START_REF] Weidman | On the spin-up and spin-down of a rotating ¯uid. Part 2: Measurements and stability[END_REF], [START_REF] Wilkinson | Stability experiments in the ¯ow over a rotating disk[END_REF], [START_REF] Savas | Stability of B odewadt ¯ow[END_REF] and, more recently, [START_REF] Schouveiler | Spiral and Circular waves in the ¯ow between a rotating and a stationary disk[END_REF]. Their wavelength, orientation angle and critical Reynolds number are given in Table 1. A review of Ekman boundary [START_REF] Cesaroli | Free shear layer instability due to the probes in rotating source±sink ¯ow[END_REF], who proved that these waves were induced by the measurement probe.

layer instabilities is available in the paper of [START_REF] Faller | Instability and transition of the disturbed ¯ow over a rotating disc[END_REF] and a wide range of relevant nonlinear phenomena and instabilities within rotating ¯ows are also reported by [START_REF] Hop®nger | The eect of background rotation in ¯uid motion: a report on Euromech[END_REF].

In Crespo del [START_REF] Crespo Del Arco | Spatio temporal behaviour in a rotating annulus with a source±sink ¯ow[END_REF], we have con®rmed and analyzed the axisymmetric instability that prevails at R m 5 (R m is a characteristic curvature parameter, R m a b=DR) and the supercritical conditions as derived from Lilly's theoretical analysis valid in the limit of Ro 3 0. The purpose of the present study is to extend the analysis of the oscillatory transition to the regime of three-dimensional spiral patterns. The study uses a three-dimensional direct numerical simulation of the spatial and temporal modes that develop as a consequence of the boundary-layer instability in a rotating annular cavity. The con®guration is subjected to a forced radial out¯ow originating at the inner cylindrical section. The ¯ow is assumed to be isothermal and incompressible. High spatial resolution is a requisite to describe accurately the Ekman layers, especially for the numerical study of time-dependent motions. Spectral methods have been successfully applied to compute complex time-dependent ¯ows [START_REF] Canuto | Spectral Methods in Fluids Dynamics[END_REF]. We have used a spectral collocated Chebyshev method in the radial and axial directions and a Fourier±Galerkin azimuthally.

Our numerical simulations emphasize time-dependent patterns in a rotating frame of reference: axisymmetric and threedimensional patterns, composed of circular rolls or spiral arms developing in the Ekman boundary layers. These structures are discussed and shown to be similar to the characteristic type II viscous instability. In the present con®guration, multiple stable solutions can be obtained, all having similar wavelengths, revealing a problem of pattern selection. This corresponds to the intransitivity phenomenon observed during the study of baroclinic waves in dierentially heated rotating annulii [START_REF] Fowlis | Thermal convection in a rotating annulus of liquid: eect of viscosity on the transition between axisymmetric and non-axisymmetric ¯ow regimes[END_REF][START_REF] Hignett | A comparison of laboratory measurements and numerical simulations of baroclinic wave ¯ows in a rotating cylindrical annulus[END_REF]. Circular waves are determined numerically but they are shown to be possibly very sensitive to the superposition of an azimuthal disturbance depending on the radius and on the modes of perturbation.

Formulation of the problem

The geometrical con®guration is shown in Fig. 1. The radii of the annular cavity are a and b, with a < b, and the cavity height is 2h. The geometrical parameters are the characteristic radius of curvature, de®ned as R m a b=DR, and the aspect ratio L DR=2h, where DR b À a.

The values of R m 5 and 10 are chosen in order to keep curvature eects reasonably low. Indeed, for more signi®cant curvature eects R m 1:22, Ro 0:36, we have shown [START_REF] Crespo Del Arco | Spatio temporal behaviour in a rotating annulus with a source±sink ¯ow[END_REF] that the transition originates from an inertial instability in the entrance region that excited the Ekman layers. It was shown that this external perturbation provoked sub-critical modes of instability in the layers. These modes subsequently vanished over the characteristic spindown time [START_REF] Weidman | On the spin-up and spin-down of a rotating ¯uid. Part 2: Measurements and stability[END_REF] for C w close to the critical value. For larger C w , the combination of the two oscillatory behaviors was shown to be at the origin of a quasi-periodic behavior that precedes the transition to nonperiodic ¯ow. In the present paper, the distance to the axis is increased and the relevance to the Ekman layer instability is studied, while considering directly an Ekman layer pro®le at the entrance and at the outlet of the rotating cavity. Thus, the curvature terms remain small and the Ekman pro®les constitute a good estimate of the basic ¯ow inside the cavity; this will be considered later in Section 5.

The aspect ratio of the cavity, L 3:37, is taken so that the Ekman layer thickness is suciently small with respect to the height, yet allow for an extended geostrophic core. The length DR of the cavity is chosen so that a large number of instability wavelengths can form between the entrance and exit sections and also to constitute a good compromise with respect to the computational cost. Moreover, L 3:37 is a relevant value for application to technological devices [START_REF] Owen | Heat transfer in rotating disk systems[END_REF] and for comparison with the fundamental laboratory experiments.

The cavity is rotating with uniform angular velocity X Xe z ; e z being the unit vector in the vertical direction. The scales for the dimensionless variables of space, time and velocity are h; X À1 ; Xb, respectively. The dimensionless spatial variables are denoted r; z and have been normalized to À1; 1ÂÀ1; 1, a requirement for the use of Chebyshev polynomials. The normalized variables are denoted r; z with r r=L À R m and z z.

An important dimensionless parameter is the Ekman number. It is de®ned as E m=X2h 2 and characterizes the ratio d=h, where d m=X 1=2 is the constant Ekman layer thickness and h is the half-height of the cavity. For suciently small values of E, the stability of both Ekman layers can be considered independently as in the ¯ow over a single disk. As shown by fundamental analyses in the single in®nite disk problem, the relevant parameter governing the onset of instability is the local Reynolds number, Re v à g d=m, where v à g is the geostrophic velocity (see Section 5). Since the cavity begins at a ®nite distance a from the axis, we also have at our disposal a local Rossby number, de®ned by Ro v à g =Xr à , where r à is the dimensional radial coordinate. The mass ¯ow rate, Q, is made dimensionless according to C w Q=mb:

The ¯ow is governed by the three-dimensional, incompressible Navier±Stokes equations, written in a rotating frame of reference, in the velocity V u; v; w and pressure p formulation 1
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in which the advection terms are given by
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and the cylindrical Laplacian operator is
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The boundary conditions are rigid walls at z AE1 and Ekman boundary layer pro®les ((5.2) and ( 5.3)) are considered as in-¯ow and out¯ow conditions at r LR m AE 1, respectively (see Section 5).

Numerical method

The solution method is based on a pseudo-spectral Chebyshev±Fourier method (see [START_REF] Canuto | Spectral Methods in Fluids Dynamics[END_REF]. The choice takes into account the adequacy of the properties of Chebyshev orthogonal polynomial expansions and, in particular, of the exponential convergence, referred to as spectral accuracy [START_REF] Gottlieb | Numerical Analysis of Spectral Methods: Theory and Application[END_REF]. Moreover, the use of the Gauss±Lobatto collocation points, corresponding to the extrema of the Chebyshev polynomials of higher degree, N and M in the radial and axial directions, respectively, directly ensures high accuracy of the solution inside the very thin wall layers.

The dierential equations are exactly satis®ed at the Gauss± Lobatto collocation points, r i ; z j PÀ1; 1ÂÀ1; 1

r i cos ip N ; z j cos jp M ;
i 0; ...; N ; j 0; ...; M:

The approximation of any ¯ow variable W u; v; w; p and its derivatives is derived from the truncated series representation
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where dr q ij and dz q ij correspond to the coecients of the matrix of ®rst and second derivatives (q 1; 2) and where h k 2pk=K, k 0 ...; K À 1. An expansion of these coecients based on sine functions [START_REF] Rothman | Reducing round-o error in Chebyshev pseudospectral computations[END_REF] 
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for n 1, N À 1 and m 1, M À 1. The unknowns Wr n ; z m ; h k are required to be real in physical space. The physical conditions are explicitly taken into account at the boundaries.

The time scheme is semi-implicit and second-order accurate. It corresponds to a combination of a second-order backward dierentiation formula for the diusive term and the Adams±Bashforth scheme for the nonlinear terms (see [START_REF] Vanel | A pseudo-spectral solution of vorticity-streamfunction equations using the in¯uence matrix technique[END_REF]. The velocity±pressure coupling is performed with an ecient projection algorithm developed in Hugues and Randriamampianina (1998) (see [START_REF] Hugues | D eveloppement d'un algorithme de projection pour m ethodes psudo-spectrales: application a la simulation d'instabilit es tridimensionnelles dans les cavit es tournantes[END_REF]. It corresponds to an improved version of the approach proposed by [START_REF] Goda | A multistep technique with implicit dierence schemes for calculating two and three-dimensional cavity ¯ows[END_REF] and implemented by [START_REF] Gresho | On pressure boundary conditions for the incompresible Navier±Stokes equations[END_REF] to ®nite elements and by [START_REF] Raspo | [END_REF] to three-dimensional spectral approximation. It consists of introducing a correct predictor for the pressure, directly derived from the Navier±Stokes equations, which provides an appropriate consistent pressure ®eld with a divergence-free velocity. This procedure allows a possible temporal evolution of the normal gradient of pressure at the boundaries, known to be the main drawbacks of the initial projection scheme. Moreover, this modi®ed algorithm is shown to reduce the slip-velocity on the boundaries by one order of magnitude (compared to that of the temporal scheme) and it improves the incompressibility condition without the need of a staggered grids for the velocity and the pressure. At each time step, the solution of the Navier±Stokes equations reduces to a solution of Helmholtz and Poisson type equations in the Fourier space. A direct solver for these equations is used, based on a complete matrix diagonalization technique proposed by [START_REF] Haldenwang | Chebyshev 3D spectral and 2D pseudo-spectral solvers for the Helmholtz equation[END_REF]; for this con®guration the matrices of radial and axial operators are diagonalizable with real eigenvalues.

Note that an extension of this numerical method in the case involving the axis (r 0) is proposed elsewhere in [START_REF] Serre | A 3D pseudo-spectral method for convection in a rotating cylinder[END_REF].

Numerical details

Computations were performed with spatial resolutions of N Â M Â K 48 Â 48 Â 48 to 48 Â 48 Â 128, where N and M are the number of Chebyshev polynomials in the axial and radial directions and K the number of the Fourier modes used in the azimuthal expansion. The former axisymmetric study in a rotating annular cavity of Crespo del [START_REF] Crespo Del Arco | Spatio temporal behaviour in a rotating annulus with a source±sink ¯ow[END_REF] indicates that a spatial resolution of 48 Â 48 in r; z for the considered geometrical (R m ; L) and physical (E; C w parameters, constitutes a good compromise between accuracy and computational cost. The time step used in the computations is governed by the spatial resolution in r; z, Dt 4:0 Â 10 À3 . The time considered for each solution was sized on the largest characteristic time in rotating ¯ows [START_REF] Greenspan | The Theory of Rotating Fluids[END_REF], the viscous time t v E À1 450 in present cases; over this very large time scale, the viscous diusion has already aected the entire core of the cavity and the small residual inertial oscillations are strongly damped.

Convergence to steady state is assumed to be achieved when the convergence rate becomes smaller than a relevant value that is taken in our study as jV n1 À V n j=dt 6 10 À5 , where V is the velocity vector, and the superscripts n 1 and n correspond to the time stages n 1dt and ndt. The solution strategy then consists of initializing the computation at larger C w with the solution formerly obtained at a lower value of C w , the rotation rate being constant (E 2:24 Â 10 À3 ).

Basic ¯ow

The basic ¯ow solution is stationary and axisymmetric and corresponds to the Ekman layer ¯ow. The meridianal velocity ®eld of the basic solution is displayed in Fig. 2(a) for 0 < z 6 1 and for C w 200: The radially outward ¯ows that develop parallel to the walls dominate the weak reverse ¯ows observed at the edge of the boundary layers bordering the geostrophic core; details of the structure of the radial velocity pro®le at mid-section are given displayed in Fig. 3(a). For large values of the mass ¯ow rate C w , vortex structures are superimposed on each layer close to the disks; see Fig. 2(b) computed for C w 530 and plotted for À1 6 z 6 0.A tR m 5, the solution remains steady and axisymmetric below C w 460 at E 2:24 Â 10 À3 and the Ekman boundary layer ¯ow is stable. For this type of ¯ow, the Coriolis force dominates with respect to inertial and centrifugal forces near the walls (E ( 1 and Ro ( 1. Then, in a frame of reference rotating with the walls at angular velocity X, the Navier±Stokes equations can be approximated by [START_REF] Greenspan | The Theory of Rotating Fluids[END_REF])
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oz 2 with the boundary conditions u v 0a tz AE1 and u 3 0, v 3 v g when z 3 0: The isothermal ¯ow organizes itself symmetrically and parallel Ekman layer ¯ows form on the two disks with the same mass ¯ow rate. Solutions across the height of the cavity can be derived from Eq. (5.1) with the above boundary conditions. The axial velocity is w 0 (parallel ¯ow assumption) and the radial and azimuthal components are, respectively,
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where v g is a function of the radius and corresponds to the dimensionless azimuthal velocity of the inviscid geostrophic ¯ow between the two viscous Ekman layers [START_REF] Hide | On source±sink ¯ows strati®ed in a rotating annulus[END_REF])

v g C w E 1=2 2pLR m r : 5:4
In the numerical solution at C w 200, the predominant meridianal ¯ow appears in these two Ekman layers (see the radial velocity pro®le in Fig. 3(a)); outside these Ekman layers, in the geostrophic core, the Coriolis force balances the pressure gradient and the ¯ow is predominantly azimuthal. In this geostrophic region, both the radial and the axial velocities are small and the ¯ow rotates inside the cavity at a slower rate than the walls (see the azimuthal velocity pro®le in the rotating frame of reference, Fig. 3(b)). The thicknesses of the Ekman layers are referred to as d and the azimuthal core velocity is denoted the geostrophic velocity v g (see [START_REF] Hide | On source±sink ¯ows strati®ed in a rotating annulus[END_REF], for theoretical results).

The solutions (5.2) and (5.3) used as in¯ow (at r LR m À 1 and out¯ow (at r LR m 1) boundary conditions appear as natural boundary conditions at this distance from the axis (R m P 5 for the considered rotation rate (E 2:24 Â 10 À3 . For larger values of the mass ¯ow rate C w , this solution also represents a good average approximation of the velocity ®eld in the whole cavity. For example, the geostrophic velocity varies similarly to Eq. ( 5.4) and this expression underestimates by less than only 5% the actual geostrophic velocity numerically obtained inside the cavity, LR m À 1 < r < LR m 1,a tC w 530; the time-averaged geostrophic velocity is about v g 0:243, while the value from the analytical solution (5.4) is v g 0:238. Moreover, we note that there is no evidence of inertial eects at the entrance and exit regions, as was analytically determined elsewhere by [START_REF] Hide | On source±sink ¯ows strati®ed in a rotating annulus[END_REF] and simulated by Crespo del [START_REF] Crespo Del Arco | Spatio temporal behaviour in a rotating annulus with a source±sink ¯ow[END_REF].

Results and analysis

The results presented in this section were obtained for an aspect ratio L 3:37, a constant rotation rate, E 2:24 Â 10 À3 ; and a mass ¯ow rate C w between 460 and 600 in order to be in a range of local parameter values, Re; Ro; characteristic of the type II instability. Using the zero-order solution for the azimuthal velocity (5.4), the Reynolds and Rossby numbers at a given position r PÀ1; 1, are Re C w R m 1=2pR m r and Ro C w E 1=2 R m 1= 2pLR m r 2 :

In order to identify and study the spatial structure of the instabilities, which develop in each of the two boundary layers, one uses the axial velocity component, which is nearly zero in the Ekman layer ¯ow and constitutes a very sensitive marker to local disturbances. The dynamical behavior was investigated by noting the time history of the variables u; v; w; p in the Ekman layers and in the geostrophic region at two principal locations: r 1 ; z 1 ; h 1 0; 0:98; p=4 and r 2 ; z 2 ; h 2 0; 0; p=4 for r; z; hPÀ1; 1ÂÀ1; 1Â0; 2p. Some relevant experimental and numerical results together with results of a stability analysis are listed in Table 1.

Axisymmetric patterns

The initial condition is the computed solution of the timedependent Navier±Stokes equations at C w 460 and E 2:24 Â 10 À3 . This stable solution is axisymmetric and similar to the solution displayed in Fig. 2(a) (above, 0 < z 6 1 for C w 200. When increasing the mass ¯ow rate, C w 530, a Hopf bifurcation is exhibited to a periodic oscillatory solution and the ¯ow is still axisymmetric (Fig. 4). After a transient time t 4 (which is about t E =3; where t E is the characteristic Ekman time, t E h=mX 1=2 [START_REF] Greenspan | The Theory of Rotating Fluids[END_REF], the frequency of the oscillation plotted in Fig. 4(b) is r 7:4, where r is scaled with the rotation rate X). We obtain good agreement between the computed value of r and the frequency reported from experiments by Caldwell and Van Atta (1970), far from the critical Reynolds number and for Ro T 0. For Re in the range of 110 6 Re 6 250, these authors notice a linear dependence of the frequency, 7 6 r 6 12. Herein, the values of the Reynolds and Rossby numbers are given using the computed velocity at the center of the cavity, in this case, Re 102 and Ro 0:29.

Results of the numerical solution displayed in Fig. 4(a) exhibit six pairs of counter-rotating axisymmetric rolls in the Ekman layer traveling radially outward with phase velocity v w of about v w =v g 0:28. The contour-lines of the axial velocity in Fig. 4(a) emphasize the de¯ection to the parallel ¯ow in the Ekman layers. The structures of limited magnitude superimpose to both the Ekman layers (where the parallel ¯ow is radial) and the geostrophic core (corresponding to solid body rotation) extending to the center of the cavity. However, the pattern only displays the ¯ow disturbance and the ¯ow zones remain the same than in the steady ¯ow.

In Fig. 2(a), the velocity vector ®eld is divided into two zones: the near wall, where the main ¯ow is concentrated under the form of the Ekman layers and where the maximum velocities are located; the rest of the cavity, where the ¯ow is very weak in the meridian plane. The length scale for the velocity vector refers to the maximum in the Ekman parallel ¯ow pro®le. The velocity vectors in the geostrophic region are magni®ed by a factor of 16. Then, these velocity vectors displayed in the core with a same magnitude, indeed correspond to a velocity smaller by a factor of 16 with respect to the ones in the Ekman layer. We note that the instability mainly locates at the border between the Ekman layer and the geostrophic core: the disturbances are of small amplitude but we can isolate their expansion by injecting adequately the particles in the interesting zone before tracking them as markers of the instability structures. The vortices localization is emphasized by using particle paths originating from the entrance region bordering the wall region and the core.

The wavelength in the radial direction is de®ned as k r DR=n r , n r being the number of pairs of vortices along the radius (n r 6); the wavelength is sized in terms of the scale length of the Ekman layer, d, as is usual in the literature. The wavelength is roughly constant at about k r 24d, slightly decreasing from 26d to 23d between the entrance and the exit sections.

These results are similar to the axisymmetric solution obtained in two dimensions in an earlier paper by Crespo del Arco et al., 1996 (see Table 1) with a dierent numerical method (streamline-vorticity formulation) at C w 467 and E 2:24 Â 10 À3 : Moreover, good agreement with the theoretical results at Ro 0 is obtained (see Table 1). To our knowledge, this axisymmetric mode of instability has never been noticed in experimental studies of the Ekman layer in which mainly spiral structures are obtained. Nevertheless, our solution is quite similar to the experimental results in the B odewadt layer on a stationary disk. [START_REF] Savas | Stability of B odewadt ¯ow[END_REF] was the ®rst to observe, in an enclosed rotor±stator cavity, traveling circular waves during impulsive spin-down to rest, 25 6 Re 6 125; with a frequency of r 5. He observed nine pairs of rolls with an average radial wavelength of k r 20d.

The range of the parameters k r ; r; v W is characteristic of the axisymmetric mode of the type II Ekman boundary-layer instability.

Three-dimensional spiral patterns

The rolls that progress in the form of rings in the axisymmetric solution, now constitute spiral expanding outwards inside the cavity. The orientation of the wave front is measured by the angle e with respect to the azimuthal direction. It is de®ned positive when it is rolled up towards the axis of the disk in the rotation direction.

Due to the high level of accuracy of the spectral solution (the round-o errors and hence the numerical noise are very small) and due to the cost of CPU time, the transition to threedimensional patterns was not actually carried out over very large time intervals, but the process was accelerated by considering ``arti®cial'' initial disturbances. This axisymmetric ¯ow was perturbed by superimposing a disturbance at a given instant to the azimuthal velocity of general form av sinph where p is an arbitrary number corresponding to an azimuthal wavelength and a the amplitude growth rate. The disturbance is introduced near the entrance section. The divergence free constraint is satis®ed after a few preliminary iterations. In addition, the same results have been obtained after perturbing similarly the two other velocity components. Disturbances of dierent amplitude rates are shown to give exactly the same spiral ¯ows but the transient time to reach the stable state noticeably depends on a. We have estimated the transitory time by perturbing the same axisymmetric nonlinear Ekman solution with various amplitude rates a 0:008; 0.02 and 0.05. The results give a dependency of this transitory time with a growth rate which behaves roughly as a À1=3 . The signi®cant time histories of the axial velocity component inside the Ekman layer are shown in Figs. 5(a)±(c) for C w 530, E 2:24 Â 10 À3 for the three values of the amplitude rate a.

In previous work, Hugues et al. (1998), we already observed that the radial component of the wave number in spiral patterns remains exactly the same as in the circular patterns; six pairs of rolls travel outwards, near both disks. However, in these structures an azimuthal component also arises. The azimuthal wavelength is de®ned as k h 2pr=n, n being the number of spiral arms over 2p. The general wavelength of the spiral patterns can be de®ned by k; as k 2pr=nj sin ej.

Fig. 6 shows multiple solutions of spiral instability patterns at the ®xed parameter values C w 530; E 2:24 Â 10 À3 and R m 5: The multiplicity appears in the dierent numbers of spiral arms following the periodicity of the disturbances, n P p; p P DR=k r % 6 as shown in Fig. 6(d). These solutions, for example the ones displayed in Figs. 6(a)±(c), are stable to further disturbances with p T n: The characteristics of the stable solutions are given at the center of the cavity in Table 2.

The angle e between the geostrophic and the phase velocity, is taken at the center of the cavity, r LR m ; and is negative in each case. The wavelength of the spiral waves varies slightly with the number of spiral arms and is about 25d at r LR m ; diminishing with the radial location; for n 6, k decreases in the range of 19:7 6 k=d 6 29:5: All the solutions are periodic with a frequency slightly larger than for the axisymmetric solution. A second transient frequency modulates the time signal and its value is estimated between r 9 0:4 and 1:7, depending on the periodicity of the initial disturbance, p. During the integration time (over about one viscous time), the modulation signi®cantly damps and has almost disappeared at the end of the simulation. The modulation is interpreted to be a result of the inertial waves excited by the disturbances at the initial time. We display the dispersion relation r rn in Fig. 7; the angular frequency is shown to increase with the number of arms, i.e., r G n.

In Figs. 8(a)±(c), we present a three-dimensional display of the w iso-surfaces after projection on a rectangular reference frame, which exhibits the expansion of 6±12 spiral arms, n 6; 8; 12, over p radians in the azimuthal direction, that is over half of the domain. In order to emphasize the vortex structures, we have graphically displayed various points of view that illustrate the inclination with respect to the azimuthal direction.

The phase velocity of circular waves behaves as 1=r (Crespo del [START_REF] Crespo Del Arco | Spatio temporal behaviour in a rotating annulus with a source±sink ¯ow[END_REF]. The spiral wave fronts propagate in the azimuthal direction with a dimensionless angular velocity x r n À1 . As the radial component of the phase velocity varies as A=r (A is a constant), the velocity of the wave front is v w r ; v w h A=r; xr : A generic equation of the wave front can easily be derived from the condition of colinearity between the displacement of the instability and the phase velocity. The polar equation is derived as r 2 2Ax À1 h b i where b i is a constant which depends on the number of spiral arms. In the numerical solutions, we obtained six pairs of vortices that expand radially following a number of spiral arms which is greater or equal to six (refer to Fig. 6(d)). Each spiral arm originates at the inner radius, r LR m À 1, and terminates at r LR m 1 through an angle of 2p for six arms, of 3p=4 for eight arms (see Figs. 6(a) and (b)) and more generally, of 12p=n with n arms, n P 6. Using these results we determine the constant A and the wave front can then be expressed as

r 2 nLR m 3p h 2pi n : 6:1
The angle of the wave front with the geostrophic velocity thus varies as r À2 following:

tan e À v r v h À nR m 6pR m r 2
and is given in Table 2 at the center of the cavity, r LR m . The dimensionless phase velocity v w =v g is nearly independent of the radial coordinate for the range of r-values considered.

These three-dimensional spiral patterns have been observed in the experiments of the Ekman layer (see the review in [START_REF] Faller | Instability and transition of the disturbed ¯ow over a rotating disc[END_REF][START_REF] Crespo Del Arco | Spatio temporal behaviour in a rotating annulus with a source±sink ¯ow[END_REF]. The characteristic parameters are in good agreement with those obtained in the relevant experiments (see Table 1). Caldwell and Van Atta (1970) and [START_REF] Faller | Investigations of stability and transition in rotating boundary layers[END_REF] found in experiments similar structures that they referred to as type II instabilities of the Ekman layer. [START_REF] Faller | Investigations of stability and transition in rotating boundary layers[END_REF] observed spiral arms for a critical Reynolds number Re % 70 (while our value is Re 85 with a wavelength close to those obtained in the present computations, in the range of 22 6 k=d 6 33, decreasing with radial location and with spiral angles in the range À20°6 e 6 5°. Moreover, the present results are quite similar to those given by the stability analyses for Ro 0 in the case of an in®nite disk. [START_REF] Faller | Instability and transition of the disturbed ¯ow over a rotating disc[END_REF] obtained an instability characterized by spiral arms of wavelength k 20:1 and forming an angle e À23:1°. We conclude, therefore, that the spiral structure of the computed rotor layer shows the same characteristics as the type II viscous instability of the Ekman layer. The numerical solution is still axisymmetric, with six pairs of counter-rotating rolls, similar to the axisymmetric solutions obtained using R m 5: The solution is oscillatory in time with frequency r 7:6, with wavelength k 24d. We have disturbed this axisymmetric solution with periodic disturbances of p 3; 6; 14 and with magnitudes a up to 0:1. For both p 3 and p 6, the amplitude decays (see Fig. 5(d)) and the ®nal stable solution are the same axisymmetric oscillatory solution.

Unlike the original results for R m 5, the same perturbations, p 3 and 6, provoked the rise of spiral patterns with 12 and 6 arms, respectively. However, the spiral wave solution with 14 arms remains a stable solution at both R m 5 and 10, both obtained from a p 14 disturbance after simulation times of 250 and 150, respectively. The spiral (and also the axisymmetric) waves can be characterized by the azimuthal component of the wavelength k h . From the R m 5 p 6 and the R m 10 p 14 results, there exists an upper bound on the wavelength as the minimal number of arms increases roughly linearly with r. This maximum wavelength does not change greatly in the range of the curvature parameter R m . The axisymmetric solution is stable with respect to disturbances of azimuthal wavelengths, k h , larger than roughly 5.3p, but it is unstable to azimuthal wavelengths smaller than 5.3p.

Discussion

Using Ekman layer pro®les as boundary conditions at the source and at the sink in a rotating cavity at high rotation rate E 2:24 Â 10 À3 and with two moderate curvature parameters, R m 5 and 10, we have numerically investigated the type II Ekman layer instability using a three-dimensional Cheby-shev±Fourier pseudo-spectral method. Below C w 460, R m 5, corresponding to 73:2 6 Re 6 110, the solution remains steady and axisymmetric, composed of two Ekman layers close to the rotating walls separated by a geostrophic region with solid body rotation. When the mass ¯ow rate is increased to C w 530 at R m 5 for which 84:4 6 Re 6 126:5 and to C w 600 at R m 10 for which 95:5 6 Re 6 105, the results of the numerical simulations reveal an oscillatory motion with frequencies in the range 7:4 6 r 6 10:24 associated with an axisymmetric mode of instability in the Ekman boundary layer. The circular patterns exhibited in Fig. 9(a) are similar to those obtained in experiments by [START_REF] Wilkinson | Stability experiments in the ¯ow over a rotating disk[END_REF], [START_REF] Savas | Stability of B odewadt ¯ow[END_REF], [START_REF] Schouveiler | Spiral and Circular waves in the ¯ow between a rotating and a stationary disk[END_REF] and [START_REF] Weidman | On the spin-up and spin-down of a rotating ¯uid. Part 2: Measurements and stability[END_REF] in the case of a B odewadt boundary layer, and are shown to be sensitive to the superposition of disturbances. We notice that this axisymmetric mode of instability has never been observed in experimental studies of the Ekman layer formed in an annular geometry with radial through¯ow.

Three-dimensional spiral structures also appear in the annular domain close to the rotating disks (Fig. 9(b)). From an analysis of our numerical results, we propose a generic equation (6.1) for the position of the wave front, depending on the curvature parameter R m .

Moreover, we demonstrate that the circular wave instability develops at dierent radii of curvature and can remain stable with respect to the large wavelength of the azimuthal disturbances. In this study, the transition from axisymmetric to spiral rolls has not been observed without any initial disturbance, at least in the time of computation (about t v ) employed which we assume is suciently large. This means that for the same parameters, (R m ; Re; Ro), there are multiple nonlinear stable solutions, all stable to in®nitesimal disturbances and appearing with dierent initial conditions. However, we have observed that the spiral patterns, once formed, do remain stable to further disturbances. Dierent experimental observations have mentioned the existence of multiple stable solutions in rotating con®ned ¯ows, known as the intransitivity phenomenon [START_REF] Fowlis | Thermal convection in a rotating annulus of liquid: eect of viscosity on the transition between axisymmetric and non-axisymmetric ¯ow regimes[END_REF][START_REF] Hignett | A comparison of laboratory measurements and numerical simulations of baroclinic wave ¯ows in a rotating cylindrical annulus[END_REF]. These studies were devoted to baroclinic waves in dierentially heated rotating annulii. Both authors mentioned that such a behavior occurs during the transition from axisymmetric to three-dimensional ¯ows before unique wave ¯ow solution establishes. [START_REF] Hignett | A comparison of laboratory measurements and numerical simulations of baroclinic wave ¯ows in a rotating cylindrical annulus[END_REF] have also carried out numerical investigations of these ¯ows and obtained multiple three-dimensional solutions by introducing perturbations on the temperature ®eld in axisymmetric solutions, similarly to the present process. The phenomenology of the situation with multiple solutions presents also some similarities with the stability (Busse) balloon in the Rayleigh±B enard convection, which contains regions of stable solutions in a space of parameter (Ra; Pr; k) bounded by various possible instabilities (see Cross and Hobenberg, 1993). In particular, the onset of a k h T 0 wavelength is similar to the zigzag instability, which is a universal instability associated with low Prandtl number nonlinear convection in weakly con®ned systems. Experiments in stationary convection show that for the zigzag instability (or for other phase instabilities) the wave vector selection originates from defects (dislocation, grain boundaries etc.) or from ®nite perturbations using thermal printing (Cross and Hobenberg, 1993), quite similar to our ®nite perturbations of the axisymmetric solution. The analogous space of parameters in the present system would be Re; Ro; k. Thus, the large values of the Rossby number in our ¯ow may be analogous to lower Prandtl number situations in the Rayleigh±B enard convection.

The characteristics of the computed ring and spiral instabilities are plotted in Figs. 10(a)±(c), together with the experimental, theoretical and numerical results reported in Table 1. The dashed regions correspond to zones, where the ¯ow characteristics vary, e.g., the local value Re between the entry and exit sections and also the multiple inclination angles of the spiral in both the experiments and our computations. For the instability results plotted in Fig. 10(a) we ®nd that over the considered Re range, the types I and II instabilities are well determined as k I 6 12 and 20 6 k II 6 30, respectively. We note that the wavelengths of the three-dimensional instability remain roughly invariant over the range of Re considered for the spiral patterns and for the dierent numbers of spiral arms. For the ring patterns, the wavelength k r slightly varies with r between the entrance and the exit sections. The inclination angle e displayed in Fig. 10(b) are positive in the range 5°6 e I 6 15°for the type I instability and negative in the range À15°6 e II 6 0°for the type II instability. The phase velocities v W (plotted in Fig. 10(c)) shows that the type I instability is well determined by v W 6 0:1 (except for the single measurement of [START_REF] Faller | Investigations of stability and transition in rotating boundary layers[END_REF]. For the type II instability, v W varies over the range 0:15 6 v W 6 0:60. We note that our computed results are always well identi®ed in the region of the characteristic parameters, where experiments and theoretical results have located the type II instability. Analysis of the three instability parameters given in Figs. 10(a)±(c) supports our opinion that the present time-dependent solutions indeed correspond to a type II Ekman layer instability.

Recent measurements by [START_REF] Lingwood | Absolute instability of the boundary layer on a rotating disk[END_REF][START_REF] Lingwood | An experimental study of absolute instability of the rotating-disk boundary-layer ¯ow[END_REF] have demonstrated that the type II Ekman layer instability is a convective instability and not an absolute instability. We intend to more precisely analyze this feature in some forthcoming numerical investigations. out on a computer Cray C98, at the CNRS IDRIS Computing Center with support from the Scienti®c Committee. The AIP Picasso of the Minist ere des Aaires Etrang eres, the Royal Society ± CNRS Cooperative Program, the CNRS-DFG Research Program ``Numerical Simulation of Flows'' and research contracts involving DGA and SNECMA are also acknowledged. ECA acknowledges ®nancial support from DGICYT (Spain) with grants Nos. PB96-0148 and PB96-0074.
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 1 Fig. 1. Geometry and coordinate system.

  is used to reduce the round-o error. T n and T m are the Chebyshev polynomials and b W nmp are the spectral coecients de®ned by b

Fig. 2 .

 2 Fig. 2. Display of the velocity ®eld u; w in the meridianal plane r; z in the cavity L 3:37, R m 5; and at E 2:24 Â 10 À3 : Two zones are emphasized: one below near the wall and the second in the core, where the velocity is displayed with a factor 16. The vortices are emphasized by paths of markers introduced in the near entry region at left. (a) In the upper half part, 0 < z 6 1; steady basic ¯ow solution for C w 200; reference scale is u max 0:0394: (b) In the lower part, À1 6 z 6 0, unstable ¯ow solution for C w 530; reference scale is u max 0:0560.

Fig. 3 .

 3 Fig. 3. Basic ¯ow solution at C w 200, E 2:24 Â 10 À3 ; z-pro®les of the velocity at the middle section of the cavity r LR m r 0, L 3:37, R m 5. Characteristic length and velocity scales (refer to Hide, 1968). (a) Radial component of the velocity, u; (b) azimuthal component of the velocity, v.

Fig. 4 .

 4 Fig. 4. Axisymmetric instability at C w 530, E 2:24 Â 10 À3 and at R m 5: Characteristic wavelength k; phase velocity v W , and frequency r 2p=T : (a) Instantaneous iso-lines of the axial velocity component in the meridianal ¯ow r; z; p=4: Visualisation of six pairs of counterrotating vortices, at t 250 , N Â M Â K 48 Â 48 Â 48. (b) Time history of the azimuthal component of the velocity v in r; z; h0; 0:95; p=4: Periodic behavior with r 7:4. The major disturbances (inner circles) are separated from the weaker disturbances (outer circles) extending in the core, by a blank zone.

  6.3. Curvature eects Spiral waves have been found in spin-down experiments at intermediate radii of curvature. At large radii, the wave front is nearly ¯at and travels following a direction which makes a constant angle with the geostrophic velocity. In order to provide a perspective on the fact that spiral waves are a result of the radius of curvature (smaller values of the radius correspond to large values of the Rossby number), we have computed the solution for lower curvature eects considering a curvature parameter R m 10: The dimensionless mass ¯ow rate is C w 600 that corresponds to local values of Re in the range 95:5 6 Re 6 105 for R m 10; which are very close to the case R m 5 84:4 6 Re 6 126:5. At the center of the cavity the Rossby number is equal to Ro 0:15; that is twice smaller

Fig. 5 .

 5 Fig. 5. Time history of the axial velocity component in r; z; h0; 0:95; p=4 at E 2:24 Â 10 À3 : Ampli®cation of azimuthal disturbance (p 12) on the nonlinear Ekman solution at C w 530 and at small radius R m 5: (a) a 0:002 , (b) a 0:02, (c) e 0:05. (d) Damping of the disturbance (p 3) on the oscillatory axisymmetric solution at C w 600 and at large radius R m 10; for a larger magnitude rate a 0:1.
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 6 Fig. 6. Three-dimensional displays of instantaneous iso-surface of the axial velocity component, for 0 < z 6 1, projected in a plane r; h; 0 6 h 6 p;att 250; N Â M Â K 48 Â 48 Â 64, for C w 530, E 2:24 Â 10 À3 and at R m 5. The cavity rotates in the anti-clockwise direction. (a) Spiral patterns of the instability with six arms, and velocity ®eld in the geostrophic region r; z 0; h. (b) Spiral patterns with eight arms. (c) Spiral patterns with 12 arms. (d) Response of the system to disturbance. Minimal number of pairs of arms, n P DR=k r % 6; multiple solutions from various disturbances of periodicity varying from 2 to 14.

Fig. 7 .

 7 Fig. 7. Dispersion relation r rn for C w 530, E 2:24 Â 10 À3 and at R m 5.

Fig. 8 .

 8 Fig. 8. Three-dimensional displays of instantaneous iso-surface of the axial velocity component in a cartesian reference frame, 0 6 h 6 p: Visualization of the six pairs of counter-rotating vortices in the meridianal plane r; z;a tt 250; N Â M Â K 48 Â 48 Â 64, for C w 530, E 2:24 Â 10 À3 and at R m 5. (a) Spiral patterns with six arms. (b) Spiral patterns with eight arms. (c) Spiral patterns with 12 arms.

Fig. 9 .

 9 Fig. 9. Three-dimensional displays of instantaneous iso-surface of the axial velocity component in the annular domain. At t 250; N Â M Â K 48 Â 48 Â 64, for C w 530, E 2:24 Â 10 À3 and at R m 5. (a) Circular patterns of the axisymmetric instability. (b) Spiral arms (n 12) of the three-dimensional instability. The cavity rotates in the anti-clockwise direction.

  

Table 2

 2 Parameters of the three-dimensional solutions obtained with dierent disturbances sin ph from the axisymmetric solution for C w 533 and E 2:24 Â 10 À3 . All the instability structures have the same radial wavelength (six vortices in the radial direction).

	Number of arms, np	rw	v w =v g
	Axisymmetric	±	7.4	0°0:28
	6	3,6	8.55	À3:64°0:32
	7	7	8.73	À4:25°0:32
	8	2,4,8	8.98	À4:85°0:33
	12	4,12	9.86	À7:26°0:36
	14	14	10.24	À8:45°0:38
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