
HAL Id: hal-00834909
https://hal.science/hal-00834909

Submitted on 19 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainty on gringe projection technique: A
Monte-Carlo-based approach

Jérôme Molimard, Laurent Navarro

To cite this version:
Jérôme Molimard, Laurent Navarro. Uncertainty on gringe projection technique: A Monte-
Carlo-based approach. Optics and Lasers in Engineering, 2013, 51 (7), pp.840-847.
�10.1016/j.optlaseng.2013.01.023�. �hal-00834909�

https://hal.science/hal-00834909
https://hal.archives-ouvertes.fr


1 

 1 

Uncertainty on fringe projection technique: a Monte-Carlo-based approach 1 

Jérôme Molimard, Laurent Navarro 2 

 LCG, UMR 5146,  3 

École Nationale Supérieure des Mines, CIS-EMSE, CNRS, Saint-Étienne, France 4 

 5 

Abstract 6 

Error estimation on optical full field techniques (OFFT) is millstone in the diffusion of OFFT. 7 

The present work describes a generic way to estimate overall error in fringe projection, either 8 

due to random sources (phase error, basically related to the quality of the camera and of the 9 

fringe extraction algorithm) or the bias (calibration errors). Here, a high level calibration 10 

procedure based on pinhole model has been implemented. This model compensates for the 11 

divergence effects of both the video-projector and the camera. The work is based on a Monte 12 

Carlo procedure. So far, the complete models of the calibration procedure and of a reference 13 

experiment are necessary.  Here, the reference experiment consists in multiple step out-of-14 

plane displacement of a plane surface. Main conclusions of this work are: 1/ the uncertainties 15 

in the calibration procedure lead to a global rotation of the plane, 2/ the overall error has been 16 

calculated in two situations; the overall error ranges from 104 µm down to 10 µm, 3/ the main 17 

error source is the phase error even if errors due to the calibration are not always negligible. 18 

 19 

Keywords: Fringe projection; Uncertainty analysis; Monte Carlo error propagation 20 

1.  Introduction 21 

Optical full field techniques (OFFT) are nowadays common tools in university laboratories. 22 
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Anyway, the confidence on the result obtained is poorly described, and error estimation on 1 

OFFT is millstone in their diffusion in industrial world. Usually, the measuring chain is 2 

complex, implying optical elements, numerical processing (correlation, phase extraction ...) 3 

and post-processing (derivation, filtering …). A lot of work has been carried out in order to 4 

improve and/or characterize each element of the measuring chain, in particular for image 5 

correlation [1] [2] or phase extraction [3]. Again, some experimental work gives a global sight 6 

on errors, see for example [4] or [5]. Some work also was done in order to reduce phase errors 7 

(see for example [6]). Anyway, overall measurement error still never has been achieved, in 8 

particular because of the difficulties to integrate different error sources, among them errors 9 

due calibration procedure. Prediction through error model is not straightforward and usually 10 

cannot be achieved using standard error propagation rules. Previous works show the 11 

efficiency of Monte-Carlo based procedure on specific element of the measuring chain. 12 

Description of the error on phase extraction has been provided by Cordero [7]; post-13 

processing derivation has been investigated in the same way [8]. Beside these two general 14 

purpose works, a study on 3D ESPI leads to an optimal position of illumination vectors [9]. 15 

Anyway, no global prediction approach has been carried out to the best of our knowledge. 16 

Among the different OFFTs, fringe projection is one of the more spread, since its first 17 

development [10~12]. Basically, the method renders a shape [5] or a shape variation [13]. 18 

Coupled with a 2D correlation system, it can be extended to the measurement of any 19 

displacement of a non-flat surface [14, 15, 16]. Since it is a non-contacting method, a lot of 20 

applications are developed or under development in health engineering (see for example [17, 21 

18, 19]). 22 

The present work describes a generic way to estimate overall error in fringe projection, either 23 

due to random sources (phase error, basically related to the quality of the camera and of the 24 

fringe extraction algorithm) or the bias (calibration errors). Here, a high level calibration 25 
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procedure based on pinhole model has been implemented [18]. This model compensates for 1 

the divergence effects of both the video-projector and the camera. The Monte Carlo procedure 2 

requires  complete models of the calibration procedure and of the reference experiment. Here, 3 

the reference experiment consists in multiple steps out-of-plane displacement of a plane 4 

surface. In order to give boundary values to the overall error, two different situations are 5 

investigated: the first one is common macroscopic fringe projection set-up. The second one is 6 

a microscopic set-up, optimized for random noise for example considering a larger set of 7 

images in the phase extraction.  8 

The paper presents first the Monte-Carlo procedure; then, the specific fringe projection 9 

approach is described. Last, the implementation for a given set of experimental conditions is 10 

developed, results are analyzed. 11 

 12 

2.  Monte Carlo based uncertainty approach 13 

The uncertainty associated with the result of a measurement is a parameter that characterizes 14 

the dispersion of values that can reasonably be attributed to the measurand. Operationally, the 15 

dispersion of values of some quantity Q is described by a probability density function (PDF), 16 

f(Q). The domain of the PDF consists of all possible values of Q, and its range is in the 17 

interval (0,1). If the PDF is known, the estimate of Q is obtained by evaluating the expected 18 

value and its standard uncertainty is taken to be equal to the standard deviation [25]. 19 

Although obtaining the most appropriate PDF for a particular application is not 20 

straightforward, if the measurand Q is related to a set of other quantities   P= (P1…PnP)
T

 21 

through a measurement model Q= M (  P) , linear or weakly non-linear, the standard 22 

uncertainty of Q can be expressed in terms of the standard uncertainties of the input quantities 23 
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( )
PnPP �1  by using the so-called law of propagation of uncertainties (LPU) [25, 26]. Instead 1 

of the LPU, a Monte Carlo-based technique [22-24] can be applied to linear as well as to 2 

nonlinear models, on independent or co-varying error sources.  3 

The Monte Carlo-based technique requires first assigning Probability Density Functions 4 

(PDFs) to each input quantity. Next, a computer algorithm is set up to generate an input 5 

vector   p1= (p1…pnP)
T

; each element pj of this vector is generated according to the specific 6 

PDF assigned to the corresponding quantity Pj . By applying the generated vector   p1  to the 7 

model Q= M (  P) , the corresponding output value q1 can be computed. If the simulating 8 

process is repeated N times (N >>1), the outcome is a series of indications (q1…qN )t  whose 9 

frequency distribution allows us to identify the PDF of Q, f(q). Then, irrespective of the form 10 

of this PDF, the estimate qe and its associated standard uncertainty u(qe)  can be calculated 11 

by 12 

 qe=
1
N
�
l= 1

N

ql  (1) 13 

and 14 

 u(qe)=( 1
(N− 1)�l = 1

N

(ql− qe)
2)

1/2

 (2) 15 

Knowledge of each element of the   P  vector, in particular the uncertainty level and the PDF  16 

shape, directly derives from the experimental knowledge. So far, a good understanding of the 17 

whole set-up and procedure is necessary. Here, we suppose that each error source is 18 

independent; anyway, cross-dependent inputs are possible. 19 

3.  The pin-hole Model 20 

The classical pin-hole model characterizes the geometrical relationship between a point in 3D 21 
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space and its projection on a plane behind another plane in which an aperture was performed. 1 

This aperture is supposed to be a point (hence the name pinhole). The figure 1 illustrates the 2 

principle of the pin-hole model in two dimensions, as the 3D extrapolation is quite simple. 3 

O is the aperture and Y is the plane in which the aperture was performed, P is the point in 4 

3D space, xp and yp its coordinate. Q is the projection ofP in the projection planeY ' , 5 

f and yq are its coordinates. Then, the simple equationyq= − f
yp

xp
describes the relationship 6 

between a pointP in 3D space and its projectionQ in 2D plane. The dotted line is called the 7 

projection line. This model is generally used in shape / displacement measurement systems to 8 

account for perspective effects, either for fringe projection [18] [27] or stereo-correlation [28]. 9 

Note anyway that the following work takes into account perspective effects with an 10 

assumption of negligible distortions. In the same way, the optical model does not take into 11 

account off-axis arrangement that should be found in many video-projectors. These two points 12 

can be considered as the main limitations of the presented work; anyway, the material used in 13 

the following is chosen under these hypothesis: dedicated low-distortion lenses, and an in line 14 

video-projector. 15 

 16 

4.  3D surface implementation 17 

4.1.  PRINCIPLE OF FRINGE PROJECTION 18 

The fringe projection method has already been described by many authors [13, 16, 17, 21]. 19 

The physical principle is straightforward: a periodic pattern is projected on an object; the light 20 

is diffused by the object and captured by a CCD video-camera. The deformation of the 21 

fringes, recorded as phase maps, has a known dependency to the shape of the illuminated 22 
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object.  1 

Since the fringe projection technique uses the light diffused by an object in order to measure 2 

its shape or shape variation, a surface preparation consisting usually in a white paint is 3 

sometimes useful. Moreover, in order to observe out-of-plane displacements, the angle 4 

between the projected fringes and the observed diffused light must not be null (fig. 3). Light 5 

intensities on an object illuminated by a set of fringes can be described by a periodic function 6 

I li, with a perturbation � corresponding to the object shape: 7 

 8 

 I li (x , y)= I 0(x , y)[1+� (x , y)× cos( 2�
p(x , y)

y+� (x , y))] (3) 9 

This equation involves an average intensity I0 and a contrast �. These values should be 10 

constant over the whole map, but some low-frequency variations due to illumination 11 

inhomogeneity or diffusivity changes on top of the surface can occur. Consequently, both 12 

average intensity and contrast have to be considered as local quantities and can be denoted 13 

I0(x,y) and �(x,y). The pitch, p is the distance between two light peaks on a flat surface i.e. a 14 

period of the cosine function in the ideal case. Again, due to perspective effects in particular, 15 

this pitch can change over the map, but this variation can be known either using a model or a 16 

calibration procedure. Last, the object is responsible for a phase shift ϕ = ϕ(x,y) at each point 17 

of the field, as expressed by: 18 

 19 

 � (x , y)= 2�× tan�(x , y)
p(x , y)

z(x , y)  (4) 20 

 21 

In this expression, the sensitivity characterized by the slope of the linear relationship between 22 
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ϕ(x,y) and z(x,y), can be adjusted by modifying the pitch p or the angle � between the CCD 1 

video-camera and the video-projector. Again, it has to be noted that the sensitivity can vary 2 

locally. In particular, the video projector and the CCD camera commonly use divergent lens. 3 

Since the sensitivity usually varies within the measuring area, a more complete model has to 4 

be used; here, the pin-hole model is chosen because it is simple and therefore open to 5 

interpretation. 6 

4.2.  APPLICATION OF THE PIN-HOLE MODEL 7 

The classical pin-hole model is well adapted to such a configuration. Parameters of the model 8 

are: 9 

•  the camera magnification along the vertical axis (�CCD) and along the horizontal axis 10 

CCD

CCD

�

�
, 11 

•  the distance between the CCD camera and the reference plane (h0),  12 

•  the distance between the video-projector and the reference plane (hp),  13 

•  the distance between the video-projector focal point and the CCD camera axis (d).  14 

 15 

Measuring all these parameters is difficult in practice and an inverse calibration is more 16 

adapted. Here, the calibration is based on the known rotation of a reference plane [18].  17 

 18 

Now, application of the pin-hole model gives the following set of equations: 19 

 20 
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z(r , s)=
hpho[(2� f php– Pt d �)

�CCD
�CCD

× r − Pt(d2+hp
2)� (r , s)]

h0[(2� f php – Pt d�)d+ Pt (d2+hp
2)� (r , s)]− hp[2� f php– Pt d � (r , s)]

�CCD
�CCD

× r
 1 

 x( r , s)=
z( r ,s)+h0

h0

�CCD
�CCD

× r  (5) 2 

 y(r , s)=
z( r ,s)+h0

h0

� CCD× s  3 

The point A(x, y, z) is known for any position in the object plane, referred by the coordinates 4 

M(r, s). Note that x and y coordinates don't correspond to the (�CCD
�CCD

× r , �CCD× s)
t

because 5 

of the perspective effect on the camera. 6 

4.3.  PHASE EXTRACTION 7 

Extraction of the phase from intensity map(s) requires either spatial or temporal phase shifting 8 

techniques. The Photomecanix software, developed in the laboratory, has genuine 9 

implementation of both techniques, as prescribed by Surrel [29]. The choice only depends on 10 

the situation: if temporal effects are expected, spatial phase shifting is more appropriate, 11 

because it only requires one image [30]. If not, temporal phase shifting technique should be 12 

preferred for its higher spatial resolution [13]. Only this method is briefly described here.  13 

A set of n×q fringe patterns with a known phase shift q/2� is projected successively on the 14 

surface, first and last fringe pattern being shifted by a n×2�, n�� phase. Then, the intensity 15 

variation at each point (i.e. each camera pixel) corresponds to a sine wave function with an 16 

initial phase shift. The phase is evaluated using the Fourier Transform:  17 

 18 
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 � (r , s)= arctan2�(�k = 1

nq

{sin(k�
2�
q )I k (r , s)}

�
k = 1

n q

{cos(k�
2�
q )I k(r , s)}) (6) 1 

 2 

This implementation is based on a sine-wave variation of the projected light. Actually, the 3 

video-projector or the camera has a non-linear response; so far, the recorded signal exhibits 4 

some harmonics due to this non-linearity. Surrel has proved that the implementation he 5 

proposed minimizes the harmonics effect [29]; in practice, harmonics might have amplitude 6 

similar to the random noise, and do not present a specific and significant error source: in the 7 

error propagation model, these two effects will be represented by the same parameter. Indeed, 8 

some recent works tend to minimize these harmonics effects, see for example [6]. 9 

Metrological performances of the shape measurement set-up are interesting compared to the 10 

classical stereovision technique: the spatial resolution is 1 pixel (8 to 156 µm, depending on 11 

the field of view), and the typical resolution ranges from � = 0.5 to 1 hundredth of fringe, i.e. 12 

3 µm at best. This capacity is very important for high frequency phenomena monitoring: skin 13 

submitted to mechanical load [17, 19], cuticle sleeves [20], … 14 

 15 

5.  Experimental set-up and performances 16 

5.1.  OPTICAL TEST-RIG 17 

The optical set-up for 3D measurement is a classical fringe projection set-up, with a pocket-18 

projector 3M MPRO 110 of 640×480 pixels resolution and an 8 bits CCD camera Imaging 19 
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Source of 1280×960 pixels resolution. This solution is adapted to fields of investigation from 1 

10×7 mm2 to 200×150 mm2 (see figure 2). 2 

The system uses a low-distortion lens (Linos, 0.3× f/8). The evaluation of the distortion using 3 

Bouquet algorithm [31] shows that the error related to this parameter is very low (less than 4 

10-4). In the following, this error will not be considered for the sake of simplicity. The 5 

selected video-projector has no lens offset. Such an offset would result in a vertical 6 

translation of the optical axis; a global uncertainty range for the vertical translation is 7 

proposed hereafter.  8 

5.2.  CALIBRATION PROCEDURE 9 

The calibration procedure is divided into two steps: first, the phase map of a plane 10 

perpendicular to the camera axis is taken. Second, the plane is rotated along the vertical axis, 11 

and a second phase map is recorded. Even if the method is straightforward, some hypothesis 12 

should be fulfilled: video-projector and camera axis should converge on a single point, this 13 

point being on the rotation axis; rotation axis should be perpendicular to the plane defined by 14 

the camera axis and the video-projector axis, and parallel to the fringes (Figure 2).  15 

A complete strategy has been established to fulfill these requirements: the camera and the 16 

video-projector are mounted on translation and rotation stages, allowing fine adjustments. The 17 

camera is set in a Galilean frame of reference using a spirit level. The reference plane is put at  18 

the desired distance; the position perpendicular to the camera is obtained using spirit level and 19 

distance measurement using reference points on the camera and on the plane. Last, the video-20 

projector position is adjusted using a projected cross and a reference cross inserted in the  21 

image (Figure 4). The centers of the cross materialize the optical axis respectively of video-22 

projector and of the camera, and both centers have to be superposed. The vertical and 23 
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horizontal lines make visible the horizontal and the vertical axis of each frame of reference. 1 

Again, these lines have to be superposed. 2 

This implementation is verified after completing a first calibration by analyzing the shape of 3 

each plane: at the reference position, the tilting of the plane can be evaluated. After rotation, 4 

the difference between the two positions indicates the verticality of the rotation axis and its 5 

position compared to the camera frame of reference. The implementation is independent of 6 

the position of the rotation axis, but it is better to center it in order to obtain a symmetric 7 

calibrated volume. Finally, it is then possible to have an experimental estimate of the plane 8 

tilting, and rotation axis; the calibration is validated if the tilting of the plane or the rotation 9 

axis is lower than 1/10th of millimeter, this value being a minimum adjustable value 10 

considering the set-up. 11 

Last, the phase quality can be estimated by comparing the theoretical phase surface to the 12 

experimental one. In the particular case shown Figure 5/a, the phase error is strongly affected 13 

by harmonics due to a non-sinusoidal fringe intensity shape. This situation is usually rejected, 14 

and illumination is more carefully tuned, but it is a didactic example to show the fringe 15 

correction implemented: because the phase error due to harmonics is deterministic, it can be 16 

compensated using a look-up table, see Figure 5/b. In this last situation, the main part of the 17 

phase error is cancelled, with some low-frequency fluctuations related to the reference 18 

surface. Now, an analysis on the error distribution (Figure 5/c and 5/d) shows that the phase 19 

error can be modeled as a random Gaussian distribution at a global level. Moment normality 20 

tests are positive for each situation; residue normality test is positive only for the corrected 21 

phase map. 22 

Note that the system has to be calibrated after each geometrical change in the configuration, 23 

but not before each new experiment. 24 
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5.3.  SHAPE MEASUREMENT 1 

A reference experimental test has been specially designed: it consists of a sphere cut in a 2 

plate. The system has a standard macroscopic design, with no special optimization for this 3 

specimen. Result is presented Figure 6. 4 

The depression in the plate has been estimated using least square approximations of a sphere 5 

and of a plate. The deepness is defined by the length between the lower sphere point and its 6 

projection on the plate. Because of averaging effects due to the high number of measurement 7 

points, this value becomes almost insensitive to noise. It has been measured to 2.10 mm and 8 

the sphere radius to 15.17 mm.  High frequency component of the experimental field is used 9 

to estimate random phase noise. Its standard deviation is representative of the common values 10 

encountered in the laboratory (43 µm). A comparison between the results obtained for the 11 

sphere deepness and a dial indicator is given Table 1. The dial indicator has a resolution of 10 12 

µm, so a difference in height has a resolution of 14 µm. Difference between fringe projection 13 

and the dial indicator is 107 µm. This value can be related to some systematic errors, in 14 

particular due to the calibration procedure, but also errors during the measurements using the 15 

dial indicator. 16 

 17 

6.  Measurement models and error analysis  18 

6.1.  SIMULATED CONDITIONS 19 

Calibration of the system is realized with the help of a white rectangular plate (figure 2). 20 

Calibration procedure used in this document is based on the following simplifying  21 

assumptions: 22 
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1- each optical axis converges in the middle of the plate, 1 

2- plate rotation axis is located at the surface of this plate, passing through the convergence 2 

axis, 3 

3- plate rotation is perpendicular to the optical axis planes, 4 

4- rotation angle is perfectly defined. 5 

Of course, in real conditions, these assumptions are not completely true, and errors on these 6 

assumptions should be taken into account in order to evaluate the global uncertainty level on 7 

the fringe projection process. Other error sources are related to the intensity measurement and 8 

the phase extraction [7]. These errors are summarized as a random error on the phase 9 

measurement. Last, camera lens distortion is not added to the model because it should become 10 

too complex regarding the influence of the optical arrangement on the out-of-plane 11 

information (z) (see paragraph 5. ). 12 

Within the Monte-Carlo framework, it is necessary to model the optical system, including its 13 

possible defects, and to give a probability density function (PDF) for each error source. In 14 

order to achieve such a goal, the approach will take into account the whole calibration 15 

procedure, giving an estimate of the calibration parameters and, later, on the z(x, y) function. 16 

The measuring system model implemented for this Monte-Carlo approach will consider the 17 

following uncertainties: the position of the reference plane, a random additive phase noise, an 18 

error on apparent pixel size, and an error on the rotation value.  19 

In order to have a good comparison on the different situations, some experimental data are 20 

necessary to give a ground truth. A reference situation, corresponding to the laboratory 21 

practice is defined. The field of view is 68×54 mm2 and the sensitivity set to 5 mm per fringe. 22 

Resolution is supposed to be 1/100th fringe, i.e. 50 µm. Corresponding geometrical data are 23 
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given in Table 2; the input positioning error is set to 2 mm for each geometrical parameter, 1 

corresponding to a relative error around 1% (see Table 2). All calibration data – including 2 

PDFs – are summarized in Table 3. The values are evaluated from laboratory experience. 3 

Study will be held 1/ considering independently each error source 2/ using independent 4 

sources all together. Each case study uses 40 random samples, giving a compromise between 5 

calculation time and precision. 6 

 7 

6.2.  SHAPE UNCERTAINTY  8 

In order to evaluate the influence of calibration procedure on shape reconstruction, a very 9 

simple test is proposed: it consists in reconstructing the z = 0 mm plane, translating it and 10 

reconstructing it at the position z = 1 mm and z = 2 mm. The exact shape is completely 11 

known, the shape variation as well. 12 

 13 

Analysis of the results is based first on the bias i.e. the mismatch between the mean and the 14 

expected value. Figure 7 shows the bias on the reconstruction of plane z = 0 mm for different 15 

rotation angle, in absence of any kind of uncertainty (reference), with each uncertainty source 16 

(rotation angle, reference plane angle, reference plane translation, magnification) and with the 17 

conjunction of all the uncertainty sources (denoted “Total”). Results show that the mean 18 

position is very close to the theoretical one in any conditions: bias error is found to be close to 19 

2×10-7 mm.  It is worth noting that the global error is lower than certain individual errors. 20 

This shows compensation effects between the different error sources. Surprisingly, the global 21 

error level seems to be independent of the rotation angle. Addition test cases up to 15° show 22 

the same trends; this value is a high limit regarding the practical difficulties on using such 23 
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angles. Figure 8 indicates that the standard deviation is considerably higher (3×10-4 m).  1 

The values estimated on the z = 1 mm and z = 2 mm planes are the same. The shape variation 2 

has a better quality anyway: the order of magnitude of the bias is the same, but the standard 3 

deviation is significantly lower (7×10-5 mm). A simple explanation can be proposed: when 4 

performing a differential measurement, the same calibration coefficients are used, and some 5 

compensation effects exist. The analysis of reconstructed maps clearly shows that the standard 6 

deviation amplitude on shape maps is due to a deterministic effect: the position of the plane is 7 

rotated in space, or, in other words, the position of the virtual reference plane is erroneous. 8 

This problem should be considered in many cases as a minor problem.  9 

 10 

Now, it is interesting to quantify how the calibration errors may induce a reconstruction error 11 

independently from the reference plane absolute position. Because the tests are pure 12 

translation, the reconstruction error can be simply defined as the difference between the 13 

current reconstructed shape and the plane fitting the field in the least square error assumption. 14 

The reconstruction error is divided into two contributions: a high frequency one, representing 15 

a random error, mainly related to the phase error, and a low-frequency one, related to 16 

calibration uncertainties. This latter might be approximated by a quadratic function, and 17 

results in an erroneous curvature. In the following, the calibration uncertainties will only be 18 

characterized by a standard deviation. Calibration uncertainties represent 15 µm and the 19 

random noise 50 µm in the studied case (P = 66 %). As a consequence, the calibration seems 20 

sufficiently efficient, and efforts have to be put on the random phase noise. The total error on 21 

the instrument is in this situation 104 µm (P = 95 %).  22 

Last, a second test-case has been studied, corresponding to a high-sensitivity set-up: the field 23 

of view has been decreased to 41×31 mm2; the fringe density has been set to a maximum 24 

value, considering both the camera and the video-projector resolution (8 pixels per fringe). 25 
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Global geometry is the same, even if optical elements are supposed to be ten times closer. 1 

Rotation angles are identical as before (see Tables 4 and 5). Last, the random noise level has 2 

been decreased, considering that for high sensitivity results, a quasi-static situation may be 3 

achieved and that a higher number of pictures should be taken. Noise level has been set to a 4 

reasonable minimum value of 0.5 % of fringe. In this situation, mean sensitivity is 0.6 5 

mm/fringe. The same trends are observed in this configuration, but the scale itself is 6 

decreased. Random error is 3 µm, and bias due to mispositioning is 4 µm (P = 66 %). In this 7 

situation, the total error on the instrument is estimated to be 10 µm (P = 95 %). 8 

It is worth noting that the two overall error values (10 µm and 104 µm) correspond to the 9 

experience in the laboratory, as illustrated in section 5.3. . Error is mainly determined by the 10 

random error (phase error) and by the set-up sensitivity. With a high sensitivity set-up (second 11 

case), the random error becomes small enough so that the calibration error becomes 12 

significant. 13 

 14 

7.  Summary and conclusions  15 

Error estimation on optical full field techniques (OFFT) is millstone in the diffusion of OFFT. 16 

The present work describes a generic way to estimate overall error in fringe projection, either 17 

due to random sources (phase error, basically related to the quality of the camera and of the 18 

fringe extraction algorithm) or the bias (calibration errors). Here, a high level calibration 19 

procedure based on pinhole model has been implemented. This model compensates for the 20 

divergence effects of both the video-projector and the camera.  21 

The work is based on a Monte Carlo procedure. So far, the complete models of the calibration 22 

procedure and of a reference experiment are necessary. Here, the reference experiment 23 

consists in multiple step out-of-plane displacements of a plane surface. Using this very simple 24 
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test, it is possible to observe that: 1 

1- The uncertainties in the calibration procedure lead to a global rotation of the plane ; this 2 

means that a surface is reconstructed in a frame of reference slightly different from the global 3 

frame of reference of the experimental set-up. As a matter of fact, a variation between a 4 

reference position and a stressed one becomes independent of this parameter. 5 

2- The overall error has been calculated in two situations: a macroscopic one, with standard 6 

noise level, and a microscopic one, with a lower -but still realistic- noise level. The overall 7 

error ranges from 104 µm down to 10 µm. 8 

3- The main error source is the phase error at a macroscopic level and at a microscopic level, 9 

even if in this latter, errors due to the calibration are not negligible any more. 10 

 11 

Results are calibration-dependent: using another calibration procedure might lead to a 12 

different error distribution between calibration error and phase error. Anyway, as a generic 13 

tool, the Monte-Carlo procedure has to be considered. 14 

Finally, the aim of such a tool is to give some quantitative data on the overall uncertainty; this 15 

work can be easily used to determine before experiments the performance of a fringe 16 

projection set-up. So far, it has been proved here to be efficient to find some interesting 17 

features at a microscopic level. 18 

 19 
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 Value Resolution 

Dial indicator 1.93 mm 14 µm 

Fringe projection 2.1 mm 43 µm 

Table 1. Reference shape measurement: overall uncertainties of a fringe projection set-

up. 

 1 
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 1 

 Pt/fp (m/m) hp (mm) h0 (mm) d (mm) 

Reference value 5.1×10-3 - 474 - 340 341 

Uncertainty 7×10-4 2 2 2 

Error type B B B B 

Table 2. Geometrical parameters and uncertainties (macroscopic scale). 
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 1 

Parameters PDF Nominal 

value 

½ length or 

standard 

deviation 

Error type 

Calibration parameters     

 � uniform 2.1 ° to 4.2 ° 0.14 ° B 

 �CCD gaussian 53 µm 0.06 µm B 

 �CCD gaussian 1 0.017 B 

Reference plane mispositionning     

 �1, �2, �3 gaussian 0 3 ' B 

 x1, x2, x3 gaussian 0 0.25 mm B 

Phase dispersion     

 �� gaussian 0 10-2 × 2� A 

Table 3. Calibration parameters and uncertainties (macroscopic scale). 

 2 
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 1 

 Pt/fp (m/m) hp (mm) h0 (mm) d (mm) 

Reference value 5.1×10-3 -285 -197 205 

Uncertainty 1×10-3 1 1 1 

Error type B B B B 

Table 4. Geometrical parameters and uncertainties (microscopic scale). 
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 1 

Parameters PDF Nominal 

value 

½ length or 

standard 

deviation 

Error type 

Calibration parameters     

 � uniform 2.1 ° to 4.2 ° 0.14 ° B 

 �CCD gaussian 32 µm 0.036 µm B 

 �CCD gaussian 1 0.017 B 

Reference plane mispositionning     

 �1, �2, �3 gaussian 0 2 ' B 

 x1, x2, x3 gaussian 0 0.16 mm B 

Phase dispersion     

 �� gaussian 0 0.5×10-2×2� A 

Table 5. Calibration parameters and uncertainties (microscopic scale). 
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 1 

Figure 1: Illustration of the pin-hole model. 2 
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 1 

 

Figure 2. Optical set-up and calibration test-rig. 
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 1 

Figure 3. Fringe projection basic principle. 2 
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Figure 4. Fringe projection calibration. 
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Figure 5. Phase map error. a/ without correction b/ after correction c/ PDF of row map 

(� = 0.3×10-2 ×2�) d/ PDF of corrected map (� = 0.2×10-2 ×2�). 
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Figure 6. Reconstruction of a reference sphere-in-plate. 
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 1 

Figure 7. Bias on plane z = 0 mm. 2 
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Figure 8. Random error on plane z = 0 mm. 2 
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