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Abstract. This paper deals with a sub-critical Keller-Segel equation. Start-
ing from the stochastic particle system associated with it, we show well-
posedness results and the propagation of chaos property. More precisely, we
show that the empirical measure of the system tends towards the unique solu-
tion of the limit equation as the number of particles goes to infinity.
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1. Introduction and main results

The subject of this paper is the convergence of a stochastic particle system to a
non linear and non local equation which can be seen as a sub-critical version of the
classical Keller-Segel equation.

1.1. The sub-critical Keller-Segel Equation. Consider the equation:

(1.1)
∂ft(x)

∂t
= χ∇x · ((K ∗ ft)(x))ft(x)) +△xft(x),

where f : R+ ×R
2 → R and χ > 0. The force field kernel K : R2 → R

2 comes from
an attractive potential Φ : R2 → R and is defined by

K(x) :=
x

|x|α+1
= −∇

(
1

α− 1
|x|1−α

)

︸ ︷︷ ︸

Φ(x)

, α ∈ (0, 1).(1.2)

The standard Keller-Segel equation correspond to the critical caseK(x) = x/|x|2
(i.e., more singular at x = 0) and it describes a model of chemotaxis, i.e., the move-
ment of cells (usually bacteria or amoebae) which are attracted by some chemical
substance that they product. This equation has been first introduced by Keller and
Segel in [16, 17]. Blanchet-Dolbeault-Perthame showed in [4] some nice results on
existence of global weak solutions if the parameter χ (which is the sensitivity of
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the bacteria to the chemo-attractant) is smaller than 8π/M where M is the initial
mass (here M will always be 1 since we will deal with probability measures). For
more details on the subject, see [13, 14].

1.2. The particle system. We consider the following system of particles

∀i = 1, ..., N, X i,N
t = X i,N

0 − χ

N

N∑

j=1,j 6=i

∫ t

0

K(X i,N
s −Xj,N

s )ds+
√
2Bi

t ,(1.3)

where (Bi)i=1,...,N is an independent family of 2D standard Brownian motions and
K is defined in (1.2). We will show in the sequel that there is propagation of chaos
to the solution of the following nonlinear S.D.E linked with (1.1) (see the next
paragraph)

Xt = X0 − χ

∫ t

0

∫

R2

K(Xs − x)fs(dx)ds +
√
2Bt,(1.4)

where ft = L(Xt).

1.3. Weak solution for the P.D.E. For any Polish space E, we denote by P(E)
the set of all probability measures on E which we endow with the topology of weak
convergence defined by duality against functions of Cb(E). We give the notion of
weak solution that we use in this paper.

Definition 1.1. We say that f = (ft)t≥0 ∈ C([0,∞),P(R2)) is a weak solution to
(1.1) if

(1.5) ∀T > 0,

∫ T

0

∫

R2

∫

R2

|K(x− y)| fs(dx) fs(dy) ds <∞,

and if for all ϕ ∈ C2
b (R

2), all t ≥ 0,

∫

R2

ϕ(x)ft(dx) =

∫

R2

ϕ(x)f0(dx) +

∫ t

0

∫

R2

△xϕ(x)fs(dx) ds

− χ

∫ t

0

∫

R2

∫

R2

K(x− y) · ∇xϕ(x)fs(dy)fs(dx) ds.(1.6)

Remark 1.2. We can see easily that if (Xt)t≥0 is a solution to (1.4), then setting
ft = L(Xt) for any t ≥ 0, (ft)t≥0 is a weak solution of (1.1) in the sense of
Definition 1.1 provided it satisfies (1.5). Indeed, by Itô’s formula, we find that for
ϕ ∈ C2

b (R
2),

ϕ(Xt) =ϕ(X0)− χ

∫ t

0

∇xϕ(Xs) ·
∫

R2

K(Xs − y)fs(dy) ds

+

∫ t

0

√
2∇xϕ(Xs) · dBs +

∫ t

0

△xϕ(Xs)ds.

Taking expectations, we get (1.6).
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1.4. Notation and propagation of chaos. For N ≥ 2, we denote by Psym(EN )
the set of symmetric probability measures on EN , i.e. the set of probability mea-
sures which are laws of exchangeable EN -valued random variables.

We consider for any F ∈ Psym((R2)N ) with a density (a finite moment of positive
order is also required in order to define the entropy) the Boltzmann entropy and
the Fisher information which are defined by

H(F ) :=
1

N

∫

(R2)N
F (x) logF (x)dx and I(F ) :=

1

N

∫

(R2)N

|∇F (x)|2
F (x)

dx.

We also define (xi ∈ R
2 stands for the i-th coordinate of x ∈ (R2)N ), for k ≥ 0,

Mk(F ) :=
1

N

∫

(R2)N

N∑

i=1

|xi|kF (dx).

Observe that we proceed to the normalization by 1/N in order to have, for any
f ∈ P(R2),

H(f⊗N) = H(f), I(f⊗N ) = I(f) and Mk(f
⊗N ) =Mk(f).

We introduce the space P1(R
2) := {f ∈ P(R2), M1(f) < ∞} and we recall the

definition of the Wasserstein distance: if f, g ∈ P1(R
2),

W1(f, g) = inf
{∫

R2×R2

|x− y|R(dx, dy)
}

,

where the infimum is taken over all probability measures R on R
2 × R

2 with f for
first marginal and g for second marginal. It is known that the infimum is reached.
See e.g. Villani [23] for many details on the subject.

We now define the notion of propagation of chaos.

Definition 1.3. LetX be some E-valued random variable. A sequence (XN
1 , ..., X

N
N )

of exchangeable E-valued random variables is said to be X-chaotic if one of the three
following equivalent conditions is satisfied:
(i) (XN

1 , X
N
2 ) goes in law to 2 independent copies of X as N → +∞;

(ii) for all j ≥ 1, (XN
1 , ..., X

N
j ) goes in law to j independent copies of X as

N → +∞;

(iii) the empirical measure µN
XN := 1

N

∑N
i=1 δXN

i
∈ P(E) goes in law to the constant

L(X) as N → +∞.

We refer to [21] for the equivalence of the three conditions or [12, Theorem 1.2]
where the equivalence is established in a quantitative way.

Propagation of chaos in the sense of Sznitman holds for a system of N exchange-

able particles evolving in time if when the initial conditions (X1,N
0 , ..., XN,N

0 ) are

X0-chaotic, the trajectories ((X1,N
t )t≥0, ..., (X

N,N
t )t≥0) are (Xt)t≥0-chaotic, where

(Xt)t≥0 is the (unique) solution of the expected (one-particle) limit model.
We finally recall a stronger (see [12]) sense of chaos introduced by Kac in [15]

and formalized recently in [6]: the entropic chaos.

Definition 1.4. Let f be some probability measure on E. A sequence (FN ) of
symmetric probability measures on EN is said to be entropically f -chaotic if

FN
1 → f weakly in P(E) and H(FN) → H(f) as N → ∞,

where FN
1 stands for the first marginal of FN .
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We can observe that since the entropy is lower semi continuous (so that H(f) ≤
lim infN H(FN)) and is convex, the entropic chaos (which requires limN H(FN) =
H(f)) is a stronger notion of convergence which implies that for all j ≥ 1, the
density of the law of (XN

1 , ..., X
N
j ) goes to f⊗j strongly in L1 as N → ∞ (see [3]).

1.5. Main results. We first give a result of existence and uniqueness for (1.1).

Theorem 1.5. Let α ∈ (0, 1). Assume that f0 ∈ P1(R
2) is such that H(f0) <∞.

(i) There exists a unique weak solution f to (1.1) such that

(1.7) f ∈ L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)) for some p >

2

1− α
.

(ii) This solution furthermore satisfies that for all T > 0,

(1.8)

∫ T

0

I(fs)ds <∞,

for any q ∈ [1, 2) and for all T > 0,

(1.9) ∇xf ∈ L2q/(3q−2)(0, T ;Lq(R2)),

for any p ≥ 1,

(1.10) f ∈ C([0,∞);L1(R2)) ∩ C((0,∞);Lp(R2)),

and that for any β ∈ C1(R) ∩W 2,∞
loc (R) such that β′′ is piecewise continuous and

vanishes outside a compact set,

∂tβ(f) =χ (K ∗ f) · ∇x(β(f)) +△xβ(f)(1.11)

− β′′(f)|∇xf |2 + χβ′(fs)fs(∇x ·K ∗ fs),

on [0,∞)× R
2 in the distributional sense.

We denote by FN
0 the law of (X i,N

0 )i=1,...,N . We assume that for some f0 ∈
P(R2),







FN
0 ∈ Psym((R2)N ) is f0 − chaotic;

sup
N≥2

M1(F
N
0 ) <∞, sup

N≥2
H(FN

0 ) <∞.(1.12)

Observe that this condition is satisfied if the random variables (X i,N
0 )i=1,...,N are

i.i.d. with law f0 ∈ P1(R
2) such that H(f0) < ∞. The next result states the

well-posedness for the particle system (1.3).

Theorem 1.6. Let α ∈ (0, 1).
(i) Let N ≥ 2 be fixed and assume that M1(F

N
0 ) <∞ and H(FN

0 ) <∞. There ex-

ists a unique strong solution (X i,N
t )t≥0,i=1,...,N to (1.3). Furthermore, the particles

a.s. never collapse i.e. it holds that a.s., for any t ≥ 0 and i 6= j, X i,N
t 6= Xj,N

t .
(ii) Assume (1.12). If for all t ≥ 0, we denote by FN

t ∈ Psym((R2)N ) the law of

(X i,N
t )i=1,...,N , then there exist a constant C depending on χ, supN≥2H(FN

0 ) and

supN≥2M1(F
N
0 ) such that for all t ≥ 0 and N ≥ 2

H(FN
t ) ≤ C(1 + t), M1(F

N
t ) ≤ C(1 + t),

∫ t

0

I(FN
s )ds ≤ C(1 + t).
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Furthermore for any T > 0,

E

[

sup
t∈[0,T ]

|X1,N
t |

]

≤ C(1 + T ).(1.13)

We also have

H(FN
t ) +

∫ t

0

I(FN
s )ds ≤ H(FN

0 ) +
χ

N2

∑

i6=j

∫ t

0

E
[
divK(X i,N

s −Xj,N
s )

]
ds.(1.14)

We next state a well-posedness result for the nonlinear S.D.E. (1.4).

Theorem 1.7. Let α ∈ (0, 1) and f0 ∈ P1(R
2) such that H(f0) <∞. There exists

a unique strong solution (Xt)t≥0 to (1.4) such that for some p > 2/(1− α),

(ft)t≥0 ∈ L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)),(1.15)

where ft is the law of Xt. Furthermore, (ft)t≥0 is the unique solution to (1.1) given
in Theorem 1.5.

We finally give the result about propagation of chaos.

Theorem 1.8. Let α ∈ (0, 1). Assume (1.12). For each N ≥ 2, consider the

unique solution (X i,N
t )i=1,...,N,t≥0 to (1.3). Let (Xt)t≥0 be the unique solution to

(1.4).

(i) The sequence (X i,N
t )i=1,...,N,t≥0 is (Xt)t≥0-chaotic. In particular, the empirical

measure QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
goes in law to L((Xt)t≥0) in P(C((0,∞),R2)).

(ii) Assume furthermore that limN H(FN
0 ) = H(f0). For all t ≥ 0, the sequence

(X i,N
t )i=1,...,N is then Xt-entropically chaotic. In particular, for any j ≥ 1 and any

t ≥ 0, denoting by FN
tj the density of the law of (X1,N

t , ..., Xj,N
t ), it holds that

lim
N→∞

||FN
tj − f⊗j

t ||L1((R2)j) = 0.

We can observe that the condition limN H(FN
0 ) = H(f0) is satisfied if the ran-

dom variables (X i,N
0 )i=1,...,N are i.i.d. with law f0 such that H(f0) <∞.

1.6. Comments. This paper is some kind of adaptation of the work of Fournier-
Hauray-Mischler in [9] where they show the propagation of chaos of some particle
system for the 2D viscous vortex model. We use the same methods for a sub-
critical Keller-Segel equation. The proofs are thus sometimes very similar to those
in [9] but there are some differences due to the facts that i) there are no circulation
parameter (MN

i in [9]): this simplify the situation since we thus deal with solutions
which are probabilities and ii) the kernel is not the same: it is not divergence-free
and we thus have to deal with some additional terms in our computations. We can
also notice that due to this fact, we have no already known result for the existence
and uniqueness of the particle system that we consider.

The proof of Theorem 1.5 follows the ideas of renormalisation solutions to a PDE
introduced by Di Perna and Lions in [7] and developed since then. The key point is
to be able to find good a priori estimates which allow us to approximate the weak
solutions by regular functions, i.e., to use Ck functions instead of L1. Then, using
these estimates, one can pass to the limit and go back to the initial problem. One
can further see that the uniqueness result is proved based on coupling methods and
the Wasserstein distance. This will allow us to use more general initial conditions
than we could use in a strictly deterministic framework.
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The proof of existence and uniqueness for the particle system (1.3) (Theorem
1.6) use some nice arguments. Like for S.D.Es with locally Lipschitz coefficients,
we show existence and uniqueness up to an explosion time and the interesting part
of the proof is to show that this explosion time is infinite a.s.

To our knowledge, there is no other work that give a convergence result of some
particle system for a chemotaxis model with a singular kernel K and without cutoff
parameter. In [20], Stevens studies a particle system with two kinds of particles
corresponding to bacteria and chemical substance. She shows convergence of the
system for smooth initial data (lying in C3

b (R
d)) and for regular kernels (continu-

ously differentiable and bounded together with their derivatives). In [11], Haskovec
and Schmeiser consider a kernel with a cutoff parameter Kǫ(x) =

x
|x|(|x|+ǫ) . They

get some well-posedness result for the particle system and they show the weak
convergence of subsequences due to a tightness result (observe that here we have
propagation of chaos and also entropic chaos). In a recent work [5], Calvez and Cor-
rias work on some one-dimensional Keller-Segel model. They study a dynamical
particle system for which they give a global existence result under some assump-
tions on the initial distribution of the particles that prevents collisions. They also
give two blow-up criteria for the particle system they do not state a convergence
result for this system.

Finally, it is important to notice that the present method can not be directly
adapted for the standard case α = 1 because in this last situation the entropy and
the Fisher information are not controlled.

1.7. Plan of the paper. In the next section, we give some preliminary results. In
Section 3, we establish the well-posedness of the particle system (1.3). In Section 4,
we prove the tightness of the particle system and we show that any limit point
belongs to the set of solutions to the nonlinear S.D.E. (1.4). In Section 5, we show
that the P.D.E. (1.1) and the nonlinear S.D.E. (1.4) are well-posed and we show
the propagation of chaos. Finally, in the last section, we improve the regularity
of the solution, give some renormalization results for the solution to (1.1) and we
conclude with the entropic chaos.

2. Preliminaries

In this section, we recall some lemmas stated in [9] and [12] and we state a result
on the regularity of the kernel K defined in (1.2). The first result tells us that pairs
of particles which law have finite Fisher information cannot be too close.

Lemma 2.1. ([9, Lemma 3.3]) Consider F ∈ P(R2 ×R
2) with finite Fisher infor-

mation and (X1, X2) a random variable with law F . Then for any γ ∈ (0, 2) and
any β > γ/2 there exists Cγ,β so that

E[|X1 −X2|−γ ] =

∫

R2×R2

F (x1, x2)

|x1 − x2|γ
dx1dx2 ≤ Cγ,β(I(F )

β + 1).

In the next lemma, we see that the Fisher information of the marginals of some
F ∈ Psym((R2)N ) is smaller than the Fisher information of F .

Lemma 2.2. ([12, Lemma 3.7]) For any F ∈ Psym((R2)N ) and 1 ≤ l ≤ N ,
I(Fl) ≤ I(F ), where Fl ∈ Psym((R2)l) denotes the marginal probability of F on the
l-th block of variables.
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The following lemma allows us to control from below the entropy of some F ∈
Pk((R

2)N ) by its moment of order k for any k > 0.

Lemma 2.3. ([9, Lemma 3.1]) For any k, λ ∈ (0,∞), there is a constant Ck,λ ∈ R

such that for any N ≥ 1, any F ∈ Pk((R
2)N ),

H(F ) ≥ −Ck,λ − λMk(F ).

The next result tells us that a probability measure on R
2 with finite Fisher

information belongs to Lp for any p ≥ 1 and its derivatives, to Lq for any q ∈ [1.2).

Lemma 2.4. ([9, Lemma 3.2]) For any f ∈ P(R2) with finite Fisher information,
there holds

∀p ∈ [1,∞), ‖f‖Lp(R2) ≤ CpI(f)
1−1/p,

∀q ∈ [1, 2), ‖∇xf‖Lq(R2) ≤ CqI(f)
3/2−1/q.

We end this section with the following result on K.

Lemma 2.5. Let α ∈ (0, 1). There exists a constant Cα such that for all x, y ∈ R
2

|K(x)−K(y)| ≤ Cα|x− y|
( 1

|x|α+1
+

1

|y|α+1

)

.

Proof. We have

|K(x)−K(y)| =
∣
∣
∣x
( 1

|x|α+1
− 1

|y|α+1

)

+
x− y

|y|α+1

∣
∣
∣

≤ |x||x − y|(α+ 1)max
( 1

|x|α+2
,

1

|y|α+2

)

+
|x− y|
|y|α+1

.

By symmetry, we also have

|K(x)−K(y)| ≤ |y||x− y|(α+ 1)max
( 1

|x|α+2
,

1

|y|α+2

)

+
|x− y|
|x|α+1

.

So we deduce that

|K(x)−K(y)| ≤ |x− y|
[

(α+ 1)min(|x|, |y|)max
( 1

|x|α+2
,

1

|y|α+2

)

+
1

|x|α+1
+

1

|y|α+1

]

≤ |x− y|
[

(α+ 1)
1

min(|x|, |y|)α+1
+

1

|x|α+1
+

1

|y|α+1

]

≤ 2(α+ 2)|x− y|
( 1

|x|α+1
+

1

|y|α+1

)

.

which concludes the proof. �

3. Well-posedness for the system of particles

Let’s now introduce another particle system with a regularized kernel. We set,
for ǫ ∈ (0, 1),

Kǫ(x) =
x

max(|x|, ǫ)α+1
,(3.1)
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which obviously satisfies |Kǫ(x)−Kǫ(y)| ≤ Cα,ǫ|x−y| and we consider the following
system of S.D.E.s

∀i = 1, ..., N, X i,N,ǫ
t = X i,N

0 − χ

N

N∑

j=1,j 6=i

∫ t

0

Kǫ(X
i,N,ǫ
s −Xj,N,ǫ

s )ds+
√
2Bi

t ,

(3.2)

for which strong existence and uniqueness thus holds.
The following result will be useful for the proof of Theorem 1.6. Its proof is very

similar to the proof of [9, Proposition 5.1].

Proposition 3.1. Let α ∈ (0, 1).
(i) Let N ≥ 2 be fixed. Assume that M1(F

N
0 ) <∞ and H(FN

0 ) <∞. For all t ≥ 0,

we denote by FN,ǫ
t ∈ Psym((R2)N ) the law of (X i,N,ǫ

t )i=1,...,N . Then

H(FN,ǫ
t ) =H(FN

0 ) +
χ

N2

∑

i6=j

∫ t

0

∫

(R2)N
divKǫ(xi − xj)F

N,ǫ
s (x)dsdx(3.3)

−
∫ t

0

I(FN,ǫ
s )ds.

(ii) There exists a constant C which depends on χ, H(FN
0 ) and M1(F

N
0 ) such that

for all t ≥ 0 and N ≥ 2,

H(FN,ǫ
t ) ≤ C(1 + t), M1(F

N,ǫ
t ) ≤ C(1 + t),

∫ t

0

I(FN,ǫ
s )ds ≤ C(1 + t).(3.4)

Furthermore,

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C(1 + T ).(3.5)

Proof. Let ϕ ∈ C2
b ((R

2)N ), and t ≥ 0 be fixed. Using Itô’s formula, we compute

the expectation of ϕ(X1,N,ǫ
t , ..., XN,N,ǫ

t ) and get (recall that xi ∈ R
2 stands for the

i-th coordinate of x ∈ (R2)N )

d

dt

∫

(R2)N
ϕ(x)FN,ǫ

t (dx) =− χ

N

∫

(R2)N

∑

i6=j

Kǫ(xi − xj) · ∇xi
ϕ(x)FN,ǫ

t (dx)(3.6)

+

∫

(R2)N
△xϕ(x)F

N,ǫ
t (dx).

We deduce that FN,ǫ is a weak solution to

∂tF
N,ǫ
t (x) =

χ

N

∑

i6=j

divxi
(FN,ǫ

t (x)Kǫ(xi − xj)) +△xF
N,ǫ
t (x).(3.7)

We are now able to compute the evolution of the entropy.

d

dt
H(FN,ǫ

t ) =
1

N

∫

(R2)N
∂tF

N,ǫ
t (x)(1 + logFN,ǫ

t (x))dx

=
χ

N2

∑

i6=j

∫

(R2)N
divxi

(FN,ǫ
t (x)Kǫ(xi − xj))(1 + logFN,ǫ

t (x))dx

+
1

N

∫

(R2)N
△xF

N,ǫ
t (x)(1 + logFN,ǫ

t (x))dx.
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Performing some integrations by parts, we get

d

dt
H(FN,ǫ

t ) = − χ

N2

∑

i6=j

∫

(R2)N
Kǫ(xi − xj) · ∇xi

FN,ǫ
t (x)dx − I(FN,ǫ

t )

=
χ

N2

∑

i6=j

∫

(R2)N
divKǫ(xi − xj)F

N,ǫ
t (x)dx − I(FN,ǫ

t ),

and (3.3) follows. Using that div Kǫ(x) = 1−α
|x|α+1 1{|x|≥ǫ} + 2

ǫα+1 1{|x|<ǫ} ≤ 2
|x|α+1

and the exchangeability of the particles, we get

d

dt
H(FN,ǫ

t ) ≤ 2χ

N2

∑

i6=j

∫

(R2)N

FN,ǫ
t (x)

|xi − xj |α+1
dx− I(FN,ǫ

t )

≤ 2χ

∫

(R2)N

FN,ǫ
t (x)

|x1 − x2|α+1
dx− I(FN,ǫ

t ).

Since α ∈ (0, 1), we can use Lemma 2.1 with γ = α+1 and β such that α+1
2 < β < 1,

which gives

∫

(R2)N

FN,ǫ
t (x)dx

|x1 − x2|α+1
≤ C(I(FN,ǫ

t2 )β + 1),

where FN,ǫ
t2 is the two-marginal of FN,ǫ

t . By Lemma 2.2, we have I(FN,ǫ
t2 ) ≤ I(FN,ǫ

t ).
Using that Cxβ ≤ C + x

6χ (changing the value of the constant C), we thus get

d

dt
H(FN,ǫ

t ) ≤ C − 2

3
I(FN,ǫ

t ),

and thus

H(FN,ǫ
t ) +

2

3

∫ t

0

I(FN,ǫ
s )ds ≤ H(FN

0 ) + Ct.(3.8)

We now compute M1(F
N,ǫ
t ). We first observe that

M1(F
N,ǫ
t ) =

1

N

∫

(R2)N

N∑

i=1

|xi|FN,ǫ
t (dx) = E[|X1,N,ǫ

t |],

since the particles are exchangeable. We will need to control E[sup[0,T ] |X1,N,ǫ
t |] in

the sequel. We have

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C
(

E[|X1
0 |] + E

[

sup
[0,T ]

|B1
t |
]

(3.9)

+ E

[

sup
t∈[0,T ]

∣
∣
∣
1

N

∑

j 6=1

∫ t

0

Kǫ(X
1,N,ǫ
s −Xj,N,ǫ

s )ds
∣
∣
∣

])

≤ C
(

E[|X1
0 |] + T +

1

N

∑

j 6=1

∫ T

0

E[|Kǫ(X
1,N,ǫ
s −Xj,N,ǫ

s )|]ds
)

≤ C
(

E[|X1
0 |] + T +

∫ T

0

E

[ 1

|X1,N,ǫ
s −X2,N,ǫ

s |α
]

ds
)

.
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Using Lemma 2.1 with γ = α and β such that α
2 < β < 1 and recalling that

I(FN,ǫ
t2 ) ≤ I(FN,ǫ

t ), we get

M1(F
N,ǫ
t ) ≤ C

(

M1(F
N
0 ) + T +

∫ t

0

I(FN,ǫ
t )βds

)

(3.10)

≤ C
(

M1(F
N
0 ) + T

)

+
1

3

∫ t

0

I(FN,ǫ
t )ds,

where we used that Cxβ ≤ C + x
3 (changing the value of C). Summing (3.8) and

(3.10), we thus find

H(FN,ǫ
t ) +M1(F

N,ǫ
t ) +

1

3

∫ t

0

I(FN,ǫ
s )ds ≤ H(FN

0 ) + Ct+ C(1 +M1(F
N
0 )).

Since the quantitiesM1 and I are positive, we immediately get H(FN,ǫ
t ) ≤ C(1+t).

Using Lemma 2.3, we have H(FN,ǫ
t ) ≥ −C −M1(F

N,ǫ
t )/2, so that

M1(F
N,ǫ
t ) +

1

3

∫ t

0

I(FN,ǫ
s )ds ≤ C(1 + t) +M1(F

N,ǫ
t )/2.

Using again the positivity of M1 and I, we easily get (3.4). Coming back to (3.9),
we finally observe that

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C
(

E[|X1
0 |] + T +

∫ T

0

I(FN,ǫ
s )ds

)

≤ C(1 + E[|X1
0 |] + T ),

which gives (3.5) and concludes the proof. �

We can now give the proof of existence and uniqueness for the particle system
(1.3).

Proof of Theorem 1.6. Like in [22], the key point of the proof is to show
that particles of the system (1.3) a.s. never collide. We divide the proof in three
steps. The first step consists in showing that a.s. there are no collisions between
particles for the system (3.2). In the second step, we deduce that the particles of
the system (1.3) also never collide, which ensures global existence and uniqueness
for (1.3). In the last step, we establish the estimates about the entropy, Fisher
information and the first moment. We fix N ≥ 2 and for all ǫ ∈ (0, 1), we consider

(X i,N,ǫ
t )i=1,...,N,t≥0 the unique solution to (3.2).

Step 1. Let τǫ := inf{t ≥ 0, ∃i 6= j, |X i,N,ǫ
t −Xj,N,ǫ

t | ≤ ǫ}. The aim of this step
is to prove that limǫ→0 P[τǫ < T ] = 0 for all T > 0. We fix T > 0 and introduce

Sǫ
t :=

1

N2

∑

i6=j

log |X i,N,ǫ
t −Xj,N,ǫ

t |.(3.11)
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For any A > 1, we have

P[τǫ < T ] ≤ P

[

inf
[0,T ]

Sǫ
t∧τǫ ≤ Sǫ

τǫ

]

(3.12)

≤ P[∃i, ∃t ∈ [0, T ], |X i,N,ǫ
t | > A]

+ P

[

∀i, ∀t ∈ [0, T ], |X i,N,ǫ
t | ≤ A, inf

[0,T ]
Sǫ
t∧τǫ ≤ Sǫ

τǫ

]

≤
NE

[

sup[0,T ] |X1,N,ǫ
t |

]

A
+ P

[

inf
[0,T ]

Sǫ
t∧τǫ ≤

log ǫ

N2
+ log 2A

]

≤ C(1 + T )N

A
+ P

[

inf
[0,T ]

Sǫ
t∧τǫ ≤

log ǫ

N2
+ log 2A

]

,

where we used (3.5). We thus want to compute P

[

inf [0,T ] S
ǫ
t∧τǫ ≤ −M

]

for all

(large) M > 0. Using Itô’s formula, that Kǫ(x) = K(x) for any |x| ≥ ǫ (see (3.1))
and that △(log |x|) = 0 on {x ∈ R

2, |x| > ǫ}, we have

log |X i,N,ǫ
t∧τǫ −Xj,N,ǫ

t∧τǫ | = log |X i,N
0 −Xj,N

0 |+M i,j,ǫ
t∧τǫ

− χ

N

∫ t∧τǫ

0

[ ∑

k 6=i,j

(

K(X i,N,ǫ
s −Xk,N,ǫ

s )−K(Xj,N,ǫ
s −Xk,N,ǫ

s )
)

+ 2K(X i,N,ǫ
s −Xj,N,ǫ

s )
]

.
X i,N,ǫ

s −Xj,N,ǫ
s

|X i,N,ǫ
s −Xj,N,ǫ

s |2
ds

=: log |X i,N
0 −Xj,N

0 |+M i,j,ǫ
t∧τǫ +Ri,j,ǫ

t∧τǫ ,

where M i,j,ǫ
t is a martingale. Setting S0 := 1

N2

∑

i6=j log |X
i,N
0 − Xj,N

0 |, M ǫ
t :=

1
N2

∑

i6=j M
i,j,ǫ
t∧τǫ and Rǫ

t :=
1
N2

∑

i6=j R
i,j,ǫ
t∧τǫ , we thus have

Sǫ
t∧τǫ = S0 +M ǫ

t +Rǫ
t ,

so that

P( inf
[0,T ]

Sǫ
t∧τǫ ≤ −M) ≤ P(S0 ≤ −M/3) + P( inf

[0,T ]
M ǫ

t ≤ −M/3)(3.13)

+ P( inf
[0,T ]

Rǫ
t ≤ −M/3).

Using exchangeability and that |K(x)| = |x|−α, we clearly have for some constant
C independent of N and ǫ,

E[sup
[0,T ]

|Rǫ
t |] ≤ Cχ

∫ T

0

E

[ 1

|X1,N,ǫ
s −X2,N,ǫ

s |α+1

]

ds

≤ Cχ

∫ T

0

(1 + I(FN,ǫ
s2 ))ds

≤ C(1 + T ),(3.14)

where we used Lemma 2.1, the fact that I(FN,ǫ
t2 ) ≤ I(FN,ǫ

t ) by Lemma 2.2, and
finally Proposition 3.1. We thus get

P( inf
[0,T ]

Rǫ
t ≤ −M/3) ≤ P(sup

[0,T ]

|Rǫ
t | ≥M/3) ≤ C(1 + T )

M
.(3.15)
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We now want to compute P(inf [0,T ]M
ǫ
t ≤ −M/3). Using that log |x| ≤ |x|, we have

Sǫ
t ≤ 1

N2

∑

i6=j

(|X i,N,ǫ
t |+ |Xj,N,ǫ

t |) ≤ 2

N

∑

i

|X i,N,ǫ
t |.

Consequently,

M ǫ
t ≤ Sǫ

t∧τǫ + sup
s∈[0,T ]

|Rǫ
s| − S0

≤ 2

N

∑

i

sup
s∈[0,T ]

|X i,N,ǫ
s |+ sup

s∈[0,T ]

|Rǫ
s| − S0 =: Kǫ − S0 =: Zǫ.

We have

P( inf
[0,T ]

M ǫ
t ≤ −M/3) ≤ P(Zǫ ≥

√

M/3) + P( inf
[0,T ]

M ǫ
t ≤ −M/3, Zǫ <

√

M/3).

(3.16)

Since (M ǫ
t )t≥0 is a continuous local martingale, there exists a Brownian Motion β

such that M ǫ
t = β<Mǫ>t

. For x ∈ R, we set σx := inf{t ≥ 0, βt = x}. Using that
sup[0,T ]M

ǫ
t ≤ Zǫ a.s.,

P( inf
[0,T ]

M ǫ
t ≤ −M/3, Zǫ <

√

M/3) ≤ P( inf
[0,T ]

M ǫ
t ≤ −M/3, sup

[0,T ]

M ǫ
t <

√

M/3)

≤ P(σ−M/3 ≤ σ√
M/3

)

=

√

M/3

M/3 +
√

M/3
≤

√

3

M
,(3.17)

by classical results on the Brownian Motion. Using (3.5) and (3.14), we get that
E[Kǫ] ≤ C(1 + T ) where C does not depend on ǫ. So using the Markov inequality,

P(Zǫ ≥
√

M/3) = P(Kǫ − S0 ≥
√

M/3)

≤ P(Kǫ ≥
√

M/12) + P(−S0 ≥
√

M/12)

≤ C(1 + T )√
M

+ P(−S0 ≥
√

M/12).(3.18)

Gathering (3.16), (3.17) and (3.18), we find that

P( inf
[0,T ]

M ǫ
t ≤ −M/3) ≤ C(1 + T )√

M
+ P(−S0 ≥

√

M/12).(3.19)

Coming back to (3.12) and (3.13), using (3.15) and (3.19) withM = − log ǫ
N2 − log 2A,

we finally get that for any ǫ ∈ (0, 1), any A > 1 such that log ǫ
N2 + log 2A < 0,

P(τǫ < T ) ≤ C(1 + T )N

A
+ P

(

S0 ≤
( log ǫ

N2
+ log 2A

)
/3

)

+
C(1 + T )

− log ǫ
N2 − log 2A

+
C(1 + T )

√
− log ǫ
N2 − log 2A

+ P

(

S0 ≤ −
√
(
− log ǫ

N2
− log 2A

)
/12

)

.
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Observe finally that S0 > −∞ a.s. (because FN
0 has a density since H(FN

0 ) <∞)
so that limM→+∞ P(S0 < −M) = 0. Letting ǫ → 0 in the above formula, we get
that for all A > 1,

lim sup
ǫ

P(τǫ < T ) ≤ C(1 + T )N

A
.

It only remains to make A go to ∞ to conclude this step.
Step 2. Since K is Lipschitz-continuous outside 0, classical arguments give ex-

istence and uniqueness of a solution to (1.3) until the explosion time τ = inf{t ≥
0, ∃i 6= j,X i,N

t = Xj,N
t }. We can observe that since Kǫ(x) = K(x) for any

|x| ≥ ǫ, (X i,N,ǫ)i=1,...,N is solution to (1.3) on [0, τǫ] so that for any i = 1, ..., N ,

X i,N
t = X i,N,ǫ

t on [0, τǫ]. We thus have τǫ < τ for any ǫ ∈ (0, 1) a.s. so that, using
Step 1, we have for any T > 0

P(τ < T ) ≤ P(τǫ < T ) −→
ǫ→0

0.

Thus τ = ∞ a.s. which proves global existence and uniqueness for (1.3).
Step 3. Using that the functionals H , I and M1 are lower semi-continuous and

Proposition 3.1, we have

H(FN
t ) ≤ lim inf

ǫ
H(FN,ǫ

t ) ≤ C(1 + t),

∫ t

0

I(FN
s )ds ≤ lim inf

ǫ

∫ t

0

I(FN,ǫ
s )ds ≤ C(1 + t),(3.20)

and

M1(F
N
t ) ≤ lim inf

ǫ
M1(F

N,ǫ
t ) ≤ C(1 + t).

Using the Fatou lemma and (3.5), we get

E

[

sup
[0,T ]

|X1,N
t |

]

≤ lim inf
ǫ

E

[

sup
[0,T ]

|X1,N,ǫ
t |

]

≤ C(1 + T ),

and (1.13) is proved. It remains to prove (1.14). Using again that the functionals
H and I are lower semi-continuous and using (3.3), we get

H(FN
t ) +

∫ t

0

I(FN
s )ds ≤ lim inf

ǫ

[

H(FN,ǫ
t ) +

∫ t

0

I(FN,ǫ
s )ds

]

≤ H(FN
0 ) + lim inf

ǫ

χ

N2

∫ t

0

∑

i6=j

E[divKǫ(X
i,N,ǫ
s −Xj,N,ǫ

s )]ds.

By exchangeability, it suffices to prove that, as ǫ→ 0,

Dǫ :=

∫ t

0

E[divKǫ(X
1,N,ǫ
s −X2,N,ǫ

s )]ds→
∫ t

0

E[divK(X1,N
s −X2,N

s )]ds =: D.

By Step 2, we have X i,N
s = X i,N,ǫ

s for any i and s ≤ τǫ and thus recalling that
Kǫ(x) = K(x) for any |x| ≥ ǫ, we get that a.s. for any s < τǫ

divKǫ(X
1,N,ǫ
s −X2,N,ǫ

s ) = divK(X1,N,ǫ
s −X2,N,ǫ

s ) = divK(X1,N
s −X2,N

s ).

So using that divK(x) ≤ 2|x|−α−1 and divKǫ(x) ≤ 2|x|−α−1, we get

|D −Dǫ| ≤ C

∫ t

0

E

[

1{τǫ<s}

( 1

|X1,N,ǫ
s −X2,N,ǫ

s |α+1
+

1

|X1,N
s −X2,N

s |α+1

)]

ds.
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Let a ∈
(

0, 1−α
1+α

)

(in order to have (1 + a)(α + 1) < 2). Using first the Hölder

inequality with p = 1+ a and q such that 1/p+1/q = 1, and then Lemma 2.1 with
β = 1, we get

|D −Dǫ| ≤ C

∫ t

0

P(τǫ < s)1/qE
[( 1

|X1,N,ǫ
s −X2,N,ǫ

s |(α+1)(1+a)

+
1

|X1,N
s −X2,N

s |(α+1)(1+a)

)]1/p

ds

≤ CP(τǫ < t)1/q
∫ t

0

[1 + I(FN,ǫ
s ) + I(FN

s )]ds

≤ C(1 + t)P(τǫ < t)1/q,

by (3.4) and (3.20). This tends to 0 as ǫ→ 0 by Step1 and concludes the proof. �

4. Convergence of the particle system

We start this section with a tightness result for the particle system (1.3).

Lemma 4.1. Let α ∈ (0, 1). Assume (1.12). For each N ≥ 2, let (X i,N
t )i=1,...,N

be the unique solution to (1.3) and QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
.

(i) The family {L((X1,N
t )t≥0), N ≥ 2} is tight in P(C([0,∞),R2)).

(ii) The family {L(QN ), N ≥ 2} is tight in P(P(C([0,∞),R2))).

Proof. Since the system is exchangeable, we deduce (ii) from (i) by [21, Propo-
sition 2.2]. Let’s prove (i). Let thus η > 0 and T > 0 be fixed. To prove the

tightness of {L((X1,N
t )t≥0), N ≥ 2} in P(C([0,∞),R2)), we have to find a compact

subset Kη,T of C([0, T ],R2) such that supN P[(X1,N
t )t∈[0,T ]) /∈ Kη,T ] ≤ η. We first

set ZT := sup0<s<t<T

√
2|B1

t − B1
s |/|t − s|1/3. This random variable is a.s. finite

since the paths of a Brownian motion are a.s. Hölder continuous with index 1/3.
We can also notice that the law of ZT does not depend on N . Using the Hölder
inequality with p = 3 and q = 3/2, we get that for all 0 < s < t < T ,

∣
∣
∣
χ

N

N∑

j=2

∫ t

s

K(X1,N
u −Xj,N

u )du
∣
∣
∣ ≤ χ

N

N∑

j=2

∫ t

s

du

|X1,N
u −Xj,N

u |α

≤ χ

N
(t− s)1/3

N∑

j=2

( ∫ T

0

du

|X1,N
u −Xj,N

u |3α/2
)2/3

≤ (t− s)1/3
(

χ+
χ

N

N∑

j=2

∫ T

0

du

|X1,N
u −Xj,N

u |3α/2
)

=: (t− s)1/3UN
T .
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Using Lemma 2.1 with γ = 3α/2 and β = 1, the exchangeability of the system of
particles, and denoting by FN

u2 the two-marginal of FN
u , we have

E(UN
T ) = χ+ χ

N − 1

N

∫ T

0

E

( 1

|X1,N
u −X2,N

u |3α/2
)

du ≤ χ+ C

∫ T

0

(1 + I(FN
u2))du

≤ χ+ C

∫ T

0

(1 + I(FN
u ))du

≤ C(1 + T ),

where we used that I(FN
t2 ) ≤ I(FN,ǫ

t ) by Lemma 2.2 and Theorem 1.6. We thus
have supN≥2 E(U

N
T ) < ∞. Furthermore, ZT is also a.s. finite so that we can find

R > 0 such that P(ZT + UN
T > R) ≤ η/2 for all N ≥ 2. Recalling (1.12), we can

also find a > 0 such that supN≥2 P(X
1,N
0 > a) ≤ η/2. We now consider

Kη,T := {f ∈ C([0, T ],R2), |f(0)| ≤ a, |f(t)− f(s)| ≤ R(t− s)1/3 ∀0 < s < t < T },
which is a compact subset of C([0, T ],R2) by Ascoli’s theorem. Observing that for

all 0 < s < t < T , |X1,N
t −X1,N

s | ≤ (ZT + UN
t )(t− s)1/3, we get

P[(X1,N
t )t∈[0,T ] /∈ Kη,T ] ≤ P(|X1,N

0 | > a) + P(ZT + UN
T > R) ≤ η,

which concludes the proof. �

We define S as the set of all probability measures f ∈ P(C([0,∞),R2)) such
that f is the law of (Xt)t≥0 solution to (1.4) satisfying (setting ft = L(Xt))

∀T > 0,

∫ T

0

I(fs)ds <∞ and sup
[0,T ]

M1(fs) <∞.(4.1)

Observe that by Lemma 2.4, (4.1) implies (1.7).

Proposition 4.2. Let α ∈ (0, 1) and assume (1.12). For each N ≥ 2, let (X i,N
0 )i=1,...,N

be FN
0 -distributed and consider the solution (X i,N

t )i=1,...,N,t≥0 to (1.3). Assume

that there is a subsequence of QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
going in law to some

P(C([0,∞),R2))-valued random variable Q. Then Q a.s. belongs to S.
Proof. We consider a (not relabelled) subsequence of QN going in law to some

Q and we introduce the identity map ψ : C([0,∞);R2) → C([0,∞);R2). Using the
arguments of [9, Proposition 6.1], we have to prove that Q a.s. satisfies

(a) Q ◦ (ψ(0))−1 = f0;
(b) setting Qt = Q ◦ (ψ(t))−1, (Qt)t≥0 satisfies (4.1);
(c) for all 0 < t0 < . . . < tk < s < t, ϕ1, . . . , ϕk ∈ Cb(R

2), ϕ ∈ C2
b (R

2),
F(Q) = 0 where, for f ∈ P(C([0,∞),R2)),

F(f) :=

∫∫

f(dγ)f(dγ̃)ϕ1(γt1) . . . ϕk(γtk)

[

ϕ(γt)− ϕ(γs) + χ

∫ t

s

∇xϕ(γu) ·K(γu − γ̃u) du−
∫ t

s

△xϕ(γu)du

]

.

For simplicity, we split the proof in many steps.
Step 1. By assumption (1.12), we have that FN

0 is f0-chaotic which implies that
QN

0 = QN ◦ ψ(0)−1 goes weakly to f0 in law, and, since f0 is deterministic, also in
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probability. Hence Q0 = f0 a.s. and thus f ◦ψ(0)−1 = f0. Thus Q a.s. satisfies (a).

Step 2. Since 1
N

∑N
i=1 δXi,N

t
goes weakly to Qt, for all j ≥ 1, FN

tj goes weakly

to πtj , where πt := L(Qt) and πtj :=
∫

P(R2) f
⊗jπt(df). We can thus apply [12,

Theorem 5.7] (and then the Fatou Lemma) to get

E

[ ∫ T

0

I(Qs)ds
]

=

∫ T

0

E[I(Qs)]ds ≤
∫ T

0

lim inf
N

I(FN
s ) ds

≤ lim inf
N

∫ T

0

I(FN
s ) ds,

which is finite by Theorem 1.6. We conclude that
∫ T

0
I(Qs)ds < ∞ a.s. We also

have, using the Fatou lemma and the exchangeability of the particles,

E

[

sup
[0,T ]

M1(Qt)
]

≤ E

[

lim inf
N

sup
[0,T ]

M1(QN
t )

]

≤ lim inf
N

E

[

sup
[0,T ]

1

N

N∑

i=1

|X i,N
t |

]

≤ lim inf
N

E

[

sup
[0,T ]

|X1,N
t |

]

≤ C(1 + T ),

by (1.13), so that sup[0,T ]M1(Qt) <∞ a.s. Consequently, Q a.s. satisfies (b).

Step 3.1. Using Itô’s formula

Oi
t :=ϕ(X

i,N
s ) +

χ

N

∑

j 6=i

∫ t

0

∇xϕ(X
i,N
s )) ·K(X i,N

s −Xj,N
s ))ds−

∫ t

0

△xϕ(X
i,N
s )ds

=ϕ(X i,N
0 ) +

√
2

∫ t

0

∇xϕ(X
i,N
s ) · dBi

s.

But, using the last equality, we see that

F(QN ) =
1

N

N∑

i=1

ϕ1(X
i,N
t1 ) . . . ϕk(X

i,N
tk

)[Oi
t −Oi

s]

=

√
2

N

N∑

i=1

ϕ1(X
i,N
t1 ) . . . ϕk(X

i,N
tk )

∫ t

s

∇xϕ(X
i,N
u ) · dBi

u.

From there, and thanks to the independence of the Brownian motions we conclude
that (recall that the functions ϕ1, ..., ϕk,∇xϕ are bounded)

E
[
(F(QN ))2

]
≤ CF

N
.

Step 3.2. We also introduce the regularized version of F . For ε ∈ (0, 1), we
define Fε replacing K by Kε defined by (3.1). Since f 7→ Fε(f) is continuous and
bounded from P(C([0,∞);R2)) to R and since QN goes in law to Q, we deduce
that for any ε ∈ (0, 1),

E[|Fε(Q)|] = lim
N

E[|Fε(QN )|].
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Step 3.3. Using that all the functions and their derivatives involved in F are
bounded and that |Kε(x)−K(x)| ≤ |x|−α

10≤|x|≤ε, we get

|F(f)−Fε(f)| ≤χCF

∫∫∫ t

0

|γ(u)− γ̃(u)|−α
10<|γ(u)−γ̃(u)|<ε du f(dγ)f(dγ̃)

≤CFε
3/2−α

∫∫∫ t

0

|γ(u)− γ̃(u)|−3/2
1γ(u) 6=γ̃(u)du f(dγ)f(dγ̃).

Thus,

|F(QN )−Fε(QN )| ≤ CFε
3/2−α

N2

∑

i6=j

∫ t

0

|X i,N
u −Xj,N

u |−3/2 du,

and by exchangeability

E
[
|F(QN )−Fε(QN )|

]
≤ CFε

3/2−α

∫ t

0

E

[

|X1,N
u −X2,N

u |−3/2
]

du.

Using Lemma 2.1 with γ = 3/2 and β = 1 and denoting by FN
u2 the two-marginal

of FN
u , we have

E
[
|F(QN )−Fε(QN )|

]
≤ CFε

3/2−α

∫ t

0

I(FN
u2) du.

Using that I(FN
t2 ) ≤ I(FN

t ) by Lemma 2.2 and Theorem 1.6 we conclude that

E
[
|F(QN )−Fε(QN )|

]
≤ CFε

3/2−α.

Step 3.4. Now we see that

|F(Q)−Fε(Q)| ≤CFε
3/2−α

∫ t

0

∫

R2

∫

R2

|x− y|−3/2Qs(dx)Qs(dy) ds.

Step 2 says that (4.1) holds true for Qs, then thanks to Lemma 2.4 we get that
a.s., ∇xQs ∈ L2q/(3q−2)(0, T ;Lq(R2)) for all q ∈ [1, 2). Then using [9, Lemma 3.5]
for γ = 3/2 we deduce that a.s.

lim
ε→0

|F(Q)−Fε(Q)| = 0.

Step 3.5. Using Steps 3.1, 3.2 and 3.3, we finally observe, using the same argu-
ments as in [9, Proposition 6.1, Step 4.5 ], that

E[|F(Q)| ∧ 1] ≤ CFε
3/2−α + E[|F(Q)−Fε(Q)| ∧ 1],

so that F(Q) = 0 a.s. by Step 3.4 thanks to dominated convergence and Q a.s.
satisfies (c) which concludes the proof. �

5. Well-posedness and propagation of chaos

We start this section with the proof of existence and uniqueness for the nonlinear
S.D.E. (1.4). We will use that for γ ∈ (−2, 0), for q ∈ (2/(2 + γ),∞] and for any
h ∈ P(R2) ∩ Lq(R2),

sup
v∈R2

∫

R2

h(v∗)|v − v∗|γdv∗ ≤ sup
v∈R2

∫

|v∗−v|<1

h(v∗)|v − v∗|γdv∗

+ sup
v∈R2

∫

|v∗−v|≥1

h(v∗)dv∗

≤ Cγ,q||h||Lq(R2) + 1,(5.1)
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where

Cγ,q =
[ ∫

|v∗|≤1

|v∗|γq/(q−1)dv∗

](q−1)/q

<∞,

since by assumption γq/(q − 1) > −2.
Proof of Theorem 1.7. The existence in law follows from Proposition 4.2 and

Lemma 4.1 (see the comment after (4.1)). We now prove pathwise uniqueness which
will also imply the strong existence. To this aim, we consider (Xt)t≥0 and (Yt)t≥0

two solutions of (1.4) such that, setting fs := L(Xs) and gs := L(Ys), (ft)t≥0 and
(gt)t≥0 are in L

∞
loc([0,∞),P1(R

2))∩L1
loc([0,∞);Lp(R2)) for some p > 2

1−α . For any

s > 0, we consider the probability measure Rs on R
2 × R

2 with first (respectively
second) marginal equal to fs (resp. gs) such that

W1(fs, gs) =

∫

R2×R2

|x− y|Rs(dx, dy).

We have

Xt − Yt = −χ
(∫ t

0

∫

R2

K(Xs − x)fs(dx)ds −
∫ t

0

∫

R2

K(Ys − y)gs(dy)ds
)

= −χ
∫ t

0

∫

R2×R2

[K(Xs − x)−K(Ys − x)]Rs(dx, dy).

Using Lemma 2.5 and recalling that L(Xt) = ft, L(Yt) = gt, and that Rt has
marginals ft and gt, this gives

E[sup
[0,T ]

|Xt − Yt|] ≤ Cαχ

∫ T

0

∫

R2×R2

E

[

(|Xs − Ys|+ |x− y|)
( 1

|Xs − x|α+1

+
1

|Ys − y|α+1

)]

Rs(dx, dy)ds

≤ Cαχ

∫ T

0

E

[

|Xs − Ys|
(∫

R2

1

|Xs − x|α+1
fs(dx)

+

∫

R2

1

|Ys − y|α+1
gs(dy)

)]

ds

+ Cαχ

∫ T

0

∫

R2×R2

|x− y|E
[ 1

|Xs − x|α+1

+
1

|Ys − y|α+1

]

Rs(dx, dy)ds.

Using (5.1), we thus have, since
∫

R2×R2 |x−y|Rs(dx, dy) = W1(fs, gs) ≤ E[|Xs−Ys|]
by definition of W1,

E[sup
[0,T ]

|Xt − Yt|] ≤ C

∫ T

0

E[|Xs − Ys|](1 + ||fs||Lp + ||gs||Lp)ds

+ C

∫ T

0

∫

R2×R2

|x− y|(1 + ||fs||Lp + ||gs||Lp)Rs(dx, dy)ds

≤ C

∫ T

0

E[|Xs − Ys|](1 + ||fs + gs||Lp)ds.

By Grönwall’s Lemma, we thus get E(sup[0,T ] |Xt−Yt|) = 0 and pathwise uniqueness
is proved. �
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The following lemma is useful for the uniqueness of (1.1).

Lemma 5.1. Let p > 2/(1−α) and consider a weak solution (ft)t≥0 to (1.1) lying
in L∞

loc([0,∞),P1(R
2)) ∩ L1

loc([0,∞);Lp(R2)). Assume that for some h = (ht)t≥0

lying in L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)), for all ϕ ∈ C2

c (R
2), all t ≥ 0,

∫

R2

ϕ(x)ht(dx) =

∫

R2

ϕ(x)f0(dx) +

∫ t

0

∫

R2

△xϕ(x)hs(dx) ds(5.2)

− χ

∫ t

0

∫

R2

∫

R2

K(x− y) · ∇xϕ(x)fs(dy)hs(dx) ds.

Then h = f .

Proof. For any ϕ ∈ C2
c (R

2) and any t ≥ 0, we set

Atϕ(x) = △xϕ(x) − χ

∫

R2

K(x− y) · ∇xϕ(x)ft(dy).

We will prove that for any µ ∈ P1(R
2), there exists at most one h lying in

L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)) such that for all t ≥ 0, ϕ ∈ C2

c (R
2),

∫

R2

ϕ(x)ht(dx) =

∫

R2

ϕ(x)µ(dx) +

∫ t

0

∫

R2

Asϕ(x)hs(dx)ds.(5.3)

This will conclude the proof since f and h solve this equation with µ = f0 by
assumption.

Step 1. Let µ ∈ P1(R
2). A continuous adapted R

2-valued process (Xt)t≥0 on
some filtered probability space (Ω,F , (Ft)t≥0, P ) is said to solve the martingale

problem MP ((At)≥0, µ) if P ◦ X−1
0 = µ and if for all ϕ ∈ C2

c (R
2), (Mϕ

t )t≥0 is a
(Ω,F , (Ft)t≥0, P )-martingale, where

Mϕ
t = ϕ(Xt)−

∫ t

0

Asϕ(Xs)ds.

Using Bhatt-Karandikar [1, Theorem 5.2] (see also Remark 3.1 in [1]), uniqueness
for (5.3) holds if
(i) there exists a countable subset (ϕk)k≥1 ⊂ C2

c such that for all t ≥ 0, the
closure (for the bounded pointwise convergence) of {(ϕk,Atϕk), k ≥ 1} contains
{(ϕ,Atϕ), ϕ ∈ C2

c },
(ii) for each x0 ∈ R

2, there exists a solution to MP ((At)≥0, δx0
),

(iii) for each x0 ∈ R
2, uniqueness (in law) holds for MP ((At)≥0, δx0

).

Step 2. We first prove (i). Consider thus some countable (ϕk)k≥1 ⊂ C2
c dense

in C2
c , in the sense that for ψ ∈ C2

c , there exists a subsequence ϕkn
such that

limn→∞(||ψ−ϕkn
||∞ + ||ψ′ −ϕ′

kn
||∞ + ||ψ′′ −ϕ′′

kn
||∞) = 0. We then have to prove

that, for t ≥ 0,
(a) Atϕkn

(x) tends to Atψ(x) for all x ∈ R
2,

(b)supn ||Atϕkn
||∞ <∞.

Let x ∈ R
2. By Lemma 2.5, we have

|Atϕkn
(x)−Atψ(x)| ≤ ||ψ′′ − ϕ′′

kn
||∞ + χ||ψ′ − ϕ′

kn
||∞

∫

R2

1

|x− y|α ft(dy) → 0,



20 DAVID GODINHO, CRISTOBAL QUININAO

since
∫

R2

1
|x−y|α ft(dy) ≤ C(1 + ||ft||Lp) by (5.1). For (b), we can observe that

setting A := supn(||ϕkn
||∞ + ||ϕk′

n
||∞ + ||ϕ′′

kn
||∞)

|Atϕkn
| ≤ A+ χA

∫

R2

1

|x− y|α ft(dy) ≤ A+ CA(1 + ||ft||Lp),

which concludes this step.

Step 3. Using classical arguments, we observe that a process (Xt)t≥0 is a solution
to MP ((At)≥0, δx0

) if and only if there exists, on a possibly enlarged probability
space, a (Ft)t≥0-Brownian motion (Bt)t≥0 such that

Xt = x0 − χ

∫ t

0

∫

R2

K(Xs − x)fs(dx)ds +
√
2Bt.(5.4)

It thus suffices to prove existence and uniqueness in law for solutions to (5.4) to get
(ii) and (iii).

Step 4. The proof of (pathwise) uniqueness for (5.4) is very similar with the
proof of uniqueness for (1.4) which has already been done and we leave it to the
reader.

Step 5. It remains to check (ii) to conclude. We thus have to prove the existence
of a solution to (5.4). To this aim, we use a Picard iteration. We thus consider the
constant process X0

t = x0 and define recursively

Xn+1
t = x0 − χ

∫ t

0

∫

R2

K(Xn
s − x)fs(dx)ds +

√
2Bt.

Using the same kind of arguments as in the proof of Theorem 1.7, we get

E(sup
[0,T ]

|Xn+1
t −Xn

t |) ≤ C

∫ T

0

E[|Xn
s −Xn−1

s |](1 + ||fs||Lp)ds.

Since
∫ T

0 (1 + ||fs||Lp)ds < ∞, we classically deduce that
∑

n E(sup[0,T ] |Xn+1
t −

Xn
t |) < ∞, so that there is a continuous adapted process (Xt)t≥0 such that for all

T > 0, limn E
[
sup[0,T ] |Xt −Xn

t |
]
= 0. This L1 convergence implies that (Xt)t≥0

is solution to (5.4), which concludes the proof. �

The following result ensures that uniqueness holds for (1.1).

Theorem 5.2. Let f0 and g0 be two probability measures with finite first moment.
Let (ft)t≥0 and (gt)t≥0 be two solutions to (1.1) lying in L∞

loc([0,∞),P1(R
2)) ∩

L1
loc([0,∞);Lp(R2)) for some p > 2/(1 − α) starting from f0 and g0 respectively.

Then

W1(ft, gt) ≤ W1(f0, g0) exp
(

C

∫ t

0

(1 + ||fs + gs||Lp)ds
)

.

Proof. Let thus p > 2/(1 − α), (ft)t≥0 and (gt)t≥0 be two solutions to (1.1)
lying in L∞

loc([0,∞),P1(R
2))∩L1

loc([0,∞);Lp(R2)). For any s ≥ 0, we consider the
probability measure Rs on R

2 ×R
2 with first (respectively second) marginal equal

to fs (resp. gs) such that

W1(fs, gs) =

∫

R2×R2

|x− y|Rs(dx, dy),
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and we consider (X0, Y0) with law R0. We finally set

Xt = X0 − χ

∫ t

0

∫

R2

K(Xs − x)fs(dx)ds +
√
2Bt,

Yt = Y0 − χ

∫ t

0

∫

R2

K(Ys − x)gs(dx)ds +
√
2Bt.

Using Itô’s formula, we see that h defined by ht := L(Xt) satisfies (5.2) and Lemma
5.1 ensures us that L(Xt) = ft. Similarly, we also have L(Yt) = gt. Using the same
arguments as in the proof of Theorem 1.7, we easily get

E(|Xt − Yt|) ≤ E[|X0 − Y0|] + C

∫ t

0

E[|Xs − Ys|](1 + ||fs + gs||Lp)ds.

Using the Grönwall’s Lemma and recalling that E[|X0 − Y0|] = W1(f0, g0), we get

E(|Xt − Yt|) ≤ W1(f0, g0) exp
(

C

∫ t

0

(1 + ||fs + gs||Lp)ds
)

,

which concludes the proof since W1(ft, gt) ≤ E(|Xt − Yt|). �

We can now give the proof of our well-posedness result for (1.1).
Proof of Theorem 1.5 (i). The existence follows by Theorem 1.7. Indeed

consider (Xt)t≥0 the unique solution of (1.4) with initial law f0 and set for t ≥ 0
ft := L(Xt). Thanks to the Remark 1.2, ft is a weak solution to (1.1) in the sense
given by Definition 1.1 and (1.15) is exactly (1.7).

For uniqueness, consider two weak solutions (ft)t≥0 and (gt)t≥0 of (1.1) satisfying
(1.7) with the same initial condition f0 ∈ P1(R

2). Then Theorem 5.2 ensures that
W1(ft, gt) = 0 for any t ≥ 0 which concludes the proof. �

We end this section with the proof of our propagation of chaos result.

Proof of Theorem 1.8 (i). We consider QN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
. By Lemma

4.1, the family {L(QN ), N ≥ 2} is tight in P(P(C([0,∞),R2))). Furthermore, by
proposition 4.2, any limit point of QN belongs a.s. to the set of all probability
measures f ∈ P(C([0,∞),R2) such that f is the law of a solution to (1.4) satisfying
(1.9). But by Theorem 1.7, this set is reduced to L((Xt)t≥0) =: f . We thus deduce
that QN goes in law to f as N → ∞ which concludes the proof of (i).

6. Renormalization and entropic chaos

In this section, we first deal with the renormalization which will give us the dis-
sipation of entropy for the solution to (1.1). From this, we will be able to show the
entropic chaos for the system (1.3), which will conclude this paper.

Proof of Theorem 1.5 (ii). We adapt the ideas used in [9] for the 2D vortex
model to our case, which in particular has a non divergence free kernel. We split
the proof in four steps plus a Step 0 which is nothing but direct results of what we
have already done. We consider the unique weak solution f = (ft)t≥0 of (1.1). In
step 1 we deal with the necessary estimates on K ∗ f and ∇ · (K ∗ f) to regularize
f . In step 2 we show the convergence of a regular version of f towards f . In step 3,
we improve the regularity of the solution using a well-known bootstrap argument.
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Finally, in step 4 we prove the renormalization property.

We first observe that by construction, f satisfies (1.8). Indeed, for any t ≥ 0,
we considered ft as the law of Xt, where (Xt)t≥0 is the unique solution to (1.4),
obtained by Proposition 4.2 and Lemma 4.1, so that (4.1) (which englobes (1.8)) is
satisfied.

Step 0. Direct Estimates. We start by noticing that Lemma 2.4 and (1.8) implies
directly (1.9) and also that for any p ∈ [1,∞) and all T > 0,

(6.1) f ∈ Lp/(p−1)(0, T ;Lp(R2)).

Step 1. First Estimates. The aim of this step is to prove that for any q > 2/α
and all T > 0:

(6.2) (K ∗ f) ∈ L2q/(αq−2)(0, T ;Lq(R2)),

and

(6.3) ∇x · (K ∗ f) = K ∗ (∇x · f) ∈ L2q/(q(1+α)−2)(0, T ;Lq(R2)).

Let us remember the Hardy-Littlewood-Sobolev inequality in 2D: for 1 ≤ p <
2/(2− α),

∥
∥
∥
∥

∫

R2

f(y)

| · −y|2−(2−α)
dy

∥
∥
∥
∥
2p/(2−(2−α)p

≤ Cα,p‖f‖p.

Using (6.1) we get that for any p ∈ (1, 2/(2− α)) and all T > 0,

(K ∗ f) ∈ Lp/(p−1)(0, T ;L2p/(2−(2−α)p)(R2)),

and under the change of variables q = 2p/(2− (2− α)p) we easily deduce (6.2).
Similarly, but using (1.9) instead of (6.1), we get that for any p ∈ (1, 2/(2− α))

and all T > 0,

∇x · (K ∗ f) ∈ L2p/(3p−2)(0, T ;L2p/(2−(2−α)p)(R2)),

applying the same change of variables q = 2p/(2− (2− α)p) we get (6.3).

Step 2. Continuity. Consider T > 0 fixed. For q > 2/α we have that 2q/(q(1 +
α)− 2) < q/(q− 1), then using (6.1) with p = q/(q− 1) > 1, and (6.3), we get that
f ∇x · (K ∗ f) belongs to L1(0, T ;L1(R2)). The following lemma follows directly:

Lemma 6.1. Consider a mollifier sequence (ρn) on R
2 and introduce the mollified

function fn
t := ft ∗ ρn. Clearly, fn

t ∈ C([0,∞), L1(R2)). For all T > 0, there exists
rn ∈ L1(0, T ;L1

loc(R
2)) that goes to 0 when n→ ∞, and such that

(6.4) ∂tf
n − χ∇x · ((K ∗ f)fn)−△xf

n = rn.

Remark 6.2. The proof of the previous lemma is a modification of [7, Lemma
II.1.(ii) and Remark 4]. In fact, for all T > 0, f ∈ L∞(0, T ;L1(R2)) and for any
p > 2/α, (K ∗ f) ∈ L1(0, T ;Lp(R2)). That suffices for the existence of rn given by

rn := χ
[(
∇ · ((K ∗ f)f)

)
∗ ρn −∇ ·

(
(K ∗ f)fn

)]
,

which goes to 0 if n→ ∞ in L1(0, T ;L1
loc(R

2)).
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As a consequence of Lemma 6.1, the chain rule applied to the smooth fn reads

∂tβ(f
n) =χ [(K ∗ f) · ∇xβ(f

n) + β′(fn)fn∇x · (K ∗ f)](6.5)

+△xβ(f
n)− β′′(fn)|∇xf

n|2 + β′(fn)rn,

for any β ∈ C1(R) ∩W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes

outside of a compact set. Since the equation (6.4) with (K ∗f) fixed is linear in fn,
the difference fn,k := fn−fk satisfies (6.4) with rn replaced by rn,k := rn−rk → 0
in L1(0, T ;L1

loc(R
2)) and then also (6.5) (with again fn and rn changed in fn,k and

rn,k).
Now, choosing β(s) = β1(s) where β1(s) = s2/2 for |s| ≤ 1 and β1(s) = |s|− 1/2

for |s| ≥ 1. It is clear that β ∈ C1(R), that β′, β′′ ∈ L∞(R) and that the second
derivative has compact support. For any non-negative ψ ∈ C2

c (R
2), we obtain

d

dt

∫

R2

β1(f
n,k(t, x))ψ(x) dx

=

∫

R2

χ
[
(K ∗ f) · ∇xβ1(f

n,k) + β′
1(f

n,k)fn,k∇x · (K ∗ f)
]
ψ(x) dx

+

∫

R2

[
△xβ1(f

n,k)− β′′
1 (f

n,k)|∇xf
n,k|2 + β′

1(f
n,k)rn,k

]
ψ(x) dx

≤
∫

R2

∣
∣rn,k(t, x)

∣
∣ψ(x) dx +

∫

R2

β1(f
n,k)△xψ dx

+ χ

∫

R2

|fn,k ∇x · (K ∗ f)|ψ(x) dx− χ

∫

R2

β1(f
n,k)∇x ·

(
(K ∗ f)ψ(x)

)
dx,

where we have used that |β′
1| ≤ 1 and that β′′

1 ≥ 0. We know that f0 ∈ L1(R2) then
fn,k(0) → 0 in L1(R2), also that rn,k → 0 in L1(0, T ;L1

loc(R
2)). It is not difficult

to see that β1(f
n,k)(K ∗ f) → 0 in L1(0, T ;L1

loc(R
2)), (because β1 is sub-linear,

and for all 0 < α < 1 there is q := p/(p − 1) > 2/α, then using (6.1) and (6.2):
fn,k → 0 in Lp/(p−1)(0, T ;Lp(R2)), and (K ∗ f) ∈ Lq/(q−1)(0, T ;Lq(R2))).

The same arguments apply to β1(f
n,k)∇x · (K ∗ f) and |fn,k ∇x · (K ∗ f)|, and

then both goes to 0 as n, k → ∞ in L1(0, T ;L1
loc(R

2)). Finally, we get

sup
t∈[0,T ]

∫

R2

β1(f
n,k(t, x))ψ(x) dx −−−−−→

n,k→∞
0.

Since ψ is arbitrary, we deduce that there exists f̄ ∈ C([0,∞);L1
loc(R

2)) so that
fn → f̄ in C([0,∞);L1

loc(R
2)) with the topology of the uniform convergence on any

compact subset in time. Together with the convergence fn → f in C([0,∞);P(R2))
we get that f = f̄ . We end this Step by concluding that, with the same convention
for the notion of convergence on [0,∞): fn → f in C([0,∞);L1(R2)).



24 DAVID GODINHO, CRISTOBAL QUININAO

Step 3. Additional estimates. From (6.5), we know that for all 0 < t0 < t1, all
ψ ∈ C2

c (R
2),
∫

R2

β(fn
t1)ψ(x) dx +

∫ t1

t0

∫

R2

β′′(fn
s )|∇xf

n
s |2ψ(x) dx ds(6.6)

=

∫

R2

β(fn
t0)ψ(x) dx +

∫ t1

t0

∫

R2

β′(fn
s )r

nψ(x) dx ds

+

∫ t1

t0

∫

R2

β(fn
s )

[
△xψ(x) − χ (K ∗ f)∇xψ(x)

]
dx ds

+ χ

∫ t1

t0

∫

R2

[
β′(fn

s )f
n
s − β(fn

s )
]
ψ(x)∇x · (K ∗ f) dx ds.

Let us choose 0 ≤ ψ ∈ C2
c (R

2) and β ∈ C1(R) ∩W 2,∞
loc (R) convex such that β′′ is

non-negative and vanishes outside of a compact set (notice that, there is a constant
C > 0 such that sβ′(s) ≤ Cβ(s)). We can pass to the limit as n → ∞ (for details
see Step 2) to get

∫

R2

β(ft1)ψ(x) dx ≤
∫

R2

β(ft0)ψ(x) dx

+

∫ t1

t0

∫

R2

β(fs) [△xψ(x)− χ(K ∗ f)∇xψ(x)] dx ds

+ χ

∫ t1

t0

∫

R2

[−β(fs) + β′(fs)fs]ψ(x)∇x · (K ∗ f) dx ds.

It is not hard to deduce, by approximating ψ ≡ 1 by a well-chosen sequence ψR

that
∫

R2

β(ft1) dx ≤
∫

R2

β(ft0) dx+ χ

∫ t1

t0

∫

R2

[−β(fs) + β′(fs)fs] ∇x · (K ∗ f) dx ds.

whenever β is admissible.

Now we deal with the regularity in space of (1.10). Let us start by noticing that
taking p > 2/(1− α):

(6.7) ∇x(K ∗ f)(x) =
∫

R2

(1 − α)f(y)

|x− y|1+α
dy,

so that using (5.1),
∫ T

0

‖∇x(K ∗ fs)‖L∞(R2) ≤ C(α, p)

∫ T

0

(
‖fs‖Lp(R2) + 1

)
<∞,

and due to the fact that sβ′(s) ≤ Cβ(s), we get
∫

R2

β(ft1) dx ≤
∫

R2

β(fn
t0) dx

+(C + 1)χ

∫ t1

t0

‖∇x(K ∗ f)(x)‖L∞(R2)

∫

R2

β(fs) dx ds.

Then Grönwall’s lemma implies that for all 0 < t0 < t1 < T ,
∫

R2

β(ft1) dx ≤ C(α, T )

∫

R2

β(fn
t0) dx.
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Finally letting β(s) → |s|q/q, we get that for all q ≥ 1 and all 0 < t0 < t1 < T ,

(6.8) ‖f(t1, ·)‖Lq(R2) ≤ C(q, α, T )‖f(t0, ·)‖Lq(R2).

Coming back to (6.6) and using βM (s) = s2/2 for |s| ≤ 1 and βM (s) = M |s| −
M2/2 for |s| ≥M , we have

∫

R2

βM (fn
t1)ψ dx+

∫ t1

t0

∫

R2

1|fs|≤M |∇xf
n
s |2ψ dxds

=

∫

R2

βM (fn
t0)ψ dx +

∫ t1

t0

∫

R2

β′
M (fn

s )r
nψ(x) dx ds

∫ t1

t0

∫

R2

βM (fn
s )(K ∗ w)

[
△ψ(x)− χ∇xψ(x)

]
dx ds

+χ

∫ t1

t0

∫

R2

[
β′
M (fn

s )f
n
s − βM (fn

s )
]
ψ(x)∇x · (K ∗ f) dx ds,

similarly as above we first make n → ∞, then we approximate ψ ≡ 1 by a well-
chosen sequence ψR and make R → ∞, and finally make the limit M → ∞ to find
that for every T ≥ t1 ≥ t0 ≥ 0:

∫

R2

|ft1 |2 dx+

∫ t1

t0

∫

R2

|∇xfs|2 dx ds

≤
∫

R2

|ft0 |2 dx+ χ

∫ t1

t0

‖∇x(K ∗ f)(x)‖L∞(R2)

∫

R2

|fs|2 dx ds.

We conclude, using (6.8), that for all 0 < t0 < T and any q ∈ [1,∞):

(6.9) f ∈ L∞(t0, T ;L
q(R2)) and ∇xf ∈ L2((t0, T )× R

2).

To get the continuity in time of (1.10), we need to improve even more the es-
timates on f which will be achieved using a bootstrap argument. First, fixing
p > 2/(2− α) we notice that for all t0 > 0

‖K ∗ ft‖L∞ ≤ C(p)(1 + ‖ft‖Lp) ⇒ K ∗ ft ∈ L∞(t0, T ;L
∞(R2)),

and thanks to (6.7) and (6.9):

‖∇x(K ∗ ft)‖L∞ ≤ C(p)(1 + ‖ft‖Lp) ⇒ ∇x(K ∗ ft) ∈ L∞(t0, T ;L
∞(R2)),

we thus have

∂tf −△xf =
[
χf ∇x · (K ∗ f) + (K ∗ f) · ∇xf

]
∈ L2((t0, T )× R

2),

and [2, Theorem X.11] provides the maximal regularity in L2 spaces for the heat
equation, in other words: for all t0 > 0

f ∈ L∞(t0, T ;H
1(R2)) ∩ L2(t0, T ;H

2(R2).

Remark 6.3. We emphasize that the previous bound is true for all t0. In fact,
when ft0 ∈ H1(R2), the maximal regularity implies the above bound in the time
interval [t0,∞). But thanks to (6.9), we can find t0 arbitrary close to 0 such that
ft0/2 ∈ H1(R2), then we get the conclusion.
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Using now the interpolation inequality, there exists a constant C > 0 such that

‖∇xf‖L3(R2) ≤ C‖D2f‖2/3L2(R2)‖f‖
1/3
L2(R2),

which implies
∫ T

t0

‖∇xf‖3L3(R2) ds ≤ C

∫ T

t0

‖D2f‖2L2(R2)‖f‖L2(R2) <∞.

Thanks to the previous calculus and again [2, Theorem X.12] we conclude that
∂tf,∇xf ∈ L3((t0, T ) × R

2) and then the Morrey’s inequality implies that for all
t0 > 0

f ∈ C0((t0, T )× R
2),

all together allow us to deduce that

f ∈ C([0, T );L1(R2)) ∩ C((0, T );L2(R2)).

We can go even further iterating this argument, using the interpolation inequality
and the Sobolev inequality, to deduce that ∇xf ∈ Lp((t0, T )×R

2) for any 1 < p <
∞, [χf ∇x · (K ∗ f) + (K ∗ f) · ∇xf ] ∈ Lp((t0, T ) × R

2) for all t0 > 0. Then the
maximal regularity of the heat equation in Lp spaces (see [2, Theorem X.12]) implies
that for all t0 > 0

∂tf,∇xf ∈ Lp((t0, T )× R
2),

and then using again the Morrey’s inequality: f ∈ C0,α((t0, T ) × R
2) for any

0 < α < 1, and any t0 > 0. All together allow us to conclude (1.10).

Step 4. Renormalization. To end the proof we show (1.11). Let thus β ∈
C1(R) ∩ W 2,∞

loc (R) sub-linear, such that β′′ is piecewise continuous and vanishes
outside of a compact set. Thanks to (6.9), we can pass to the limit in the similar
identity as (6.6) obtained for time dependent test functions ψ ∈ C2

c ([0,∞)×R
2) to

get
∫ ∞

t0

∫

R2

β′′(fs)|∇xfs|2ψs dx ds =

∫

R2

β(ft0)ψt0 dx(6.10)

− χ

∫ ∞

t0

∫

R2

ψs(x)∇x · (K ∗ f)
(
fsβ

′(fs)− β(fs)
)
dx ds

+

∫ ∞

t0

∫

R2

β(fs)
(
△xψs(x)− (K ∗ f)∇xψs(x) + ∂tψs(x)

)
dx ds.

In the case ψ ≥ 0 and β′′ ≥ 0 we can pass to the limit t0 → 0 thanks to mo-
notonous convergence in the first term, the continuity property obtained in Step
2 in the second term, and the monotonous convergence in the other terms (recall
that sβ′(s) ≤ β(s), β is sub-linear and |f |(1 + |K ∗ f | + |∇ · (K ∗ f)|) belongs to
L1(0, T ;L1(R2) thanks to (6.2) and (6.3)). We get

∫ ∞

0

∫

R2

β′′(fs)|∇xfs|2ψs dx ds =

∫

R2

β(f0)ψt0 dx(6.11)

+

∫ ∞

0

∫

R2

β(fs) [△xψs − χ∇x((K ∗ f) · ψs) + ∂tψs] dx ds

+ χ

∫ ∞

0

∫

R2

β′(fs)fsψs(x)∇x · (K ∗ f) dx ds,
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and the bound given by (6.11) implies directly that we can pass to the limit t0 → 0
in the general case for ψ in (6.10) which is nothing but (1.11) in the distributional
sense. �

We now give a useful lemma for the entropic chaos.

Lemma 6.4. Let α ∈ (0, 1) and f0 ∈ P1(R
2) such that H(f0) <∞. Let (ft)t≥0 be

the unique solution of (1.1) satisfying (1.7). Then

(6.12) H(ft) +

∫ t

0

I(fs)ds = H(f0) + χ(1− α)

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α+1
ds.

Proof. For m > 1, let us take βm ∈ C1(R) ∩W 2,∞
loc (R) given by

βm(s) =







s log(s) + (1− s)/m for m−1 ≤ s ≤ m,

βm(m−) + β′
m(m−)(s−m) for s > m,

βm(m−1
+ ) + β′

m(m−1
+ )

(
s−m−1)

)
for s < m−1,

so that βm(s) ≤ Cs and βm → s log(s) for any s > 0.
Since βm is admissible (in the sense of Theorem 1.5), then using (1.11) we get

that for any ψ ∈ C∞
c (R2),

∫

βm(ft)ψ dx−
∫

βm(f0)ψ dx =χ

∫ t

0

∫

∇x · (K ∗ f)
(
fβ′

m(f)− βm(f)
)
ψ dxds

+

∫ t

0

∫

βm(f)
(
△xψ − χ(K ∗ f) · ∇xψ

)
dx ds

−
∫ t

0

∫

β′′
m(f)|∇xf |2ψ dxds,

using that β′′
m(s) is non-negative, that βm growths linearly at +∞ and that (fs)s≥0

is non-negative we can make ψ → 1 to get

∫

βm(ft) dx −
∫

βm(f0) dx =χ

∫ t

0

∫

∇x · (K ∗ f)
(
fβ′

m(f)− βm(f)
)
dx ds

−
∫ t

0

∫

β′′
m(f)|∇xf |2 dx ds.

In fact, the first and the second terms converge thanks to monotonous convergence
and that |βm(s)| ≤ C|s|. The third term is a consequence of the monotonous con-
vergence, that β′

m(s) is bounded, and that f ∇ · (K ∗ f) (resp. |f(K ∗ f)| for the
fourth term) is integrable by (6.3) (resp. (6.2)). The last term is a consequence of
(4.1).

Finally, we notice that in the interval (0, 1] the function −βm increases to
−s log(s) while in the interval [1,∞), βm(s) increases to s log(s). Thanks to the
monotonous convergence we can make m → ∞ and using the integrability of all
the limits we get (6.12). �

It remains to conclude with the proof of the entropic chaos.
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Proof of Theorem 1.8 (ii). We only have to prove that for each t ≥ 0, H(FN
t )

tends to H(ft). To this aim, we first show that for any t ≥ 0

L := lim sup
N

[

H(FN
t ) +

∫ t

0

I(FN
s )ds

]

≤ H(ft) +

∫ t

0

I(fs)ds.(6.13)

Let t ≥ 0 be fixed. Using (1.14) and recalling that H(FN
0 ) → H(f0) by assumption,

we have

L ≤ H(f0) + lim sup
N

χ(1− α)

N2

∑

i6=j

∫ t

0

E

[ 1

|X i,N
s −Xj,N

s |α+1

]

ds,

so that using that H(ft) +
∫ t

0
I(fs)ds = H(f0) + χ(1 − α)

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)
|x−y|α+1 ds

by Lemma 6.4, we only have to prove that

lim
N→∞

1

N2

∫ t

0

E

[∑

i6=j

1

|X i,N
s −Xj,N

s |α+1

]

ds =

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α+1
ds.

By exchangeability, it suffices to prove that, as N → ∞,

DN :=

∫ t

0

E

[ 1

|X1,N
s −X2,N

s |α+1

]

ds→
∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α+1
ds =: D.

For any ǫ > 0, we have

|D −DN | ≤ |D −Dǫ|+ |Dǫ −DN,ǫ|+ |DN,ǫ −DN |,

where DN,ǫ =
∫ t

0
E

[
1

(|X1,N
s −X2,N

s |∨ǫ)α+1

]

ds and Dǫ =
∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)
(|x−y|∨ǫ)α+1ds. Us-

ing that for any ǫ > 0 fixed, the function (x, y) 7→ (|x − y| ∨ ǫ)−α−1 is bounded
continuous and that L(X1,N

s , X2,N
s ) goes weakly to fs ⊗ fs for any s ≥ 0, we have

limN E

[
1

(|X1,N
s −X2,N

s |∨ǫ)α+1

]

=
∫

R2

∫

R2

fs(dx)fs(dy)
(|x−y|∨ǫ)α+1 . By dominated convergence, we

thus get that limN |Dǫ −DN,ǫ| = 0. We thus have

lim sup
N

|D −DN | ≤ |D −Dǫ|+ lim sup
N

|DN,ǫ −DN | ∀ǫ > 0.

Let α̃ be such that α+ 1 < α̃ < 2. We have

|D −Dǫ| ≤ 2

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α+1
1{|x−y|<ǫ}ds

≤ 2ǫα̃−α−1

∫ t

0

∫

R2

∫

R2

fs(dx)fs(dy)

|x− y|α̃ ds

≤ Cǫα̃−α−1

∫ t

0

(1 + I(fs))ds ≤ C(1 + t)ǫα̃−α−1,

by Lemma 2.1 (applied with F = fs⊗fs, for which I(Fs) = I(fs)) and (1.8). Using
the same arguments, we also have for any N ≥ 2,

|DN,ǫ −DN | ≤ Cǫα̃−α−1

∫ t

0

(1 + I(FN
s ))ds ≤ C(1 + t)ǫα̃−α−1.

We thus get that lim supN |D −DN | = 0 and (6.13) is proved.
Using [12, Theorem 3.4 and Theorem 5.7], we have

lim inf
N

H(FN
t ) ≥ H(ft) and lim inf

N

∫ t

0

I(FN
s )ds ≥

∫ t

0

I(fs)ds.(6.14)
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Using (6.13) and (6.14), we easily conclude that

lim
N
H(FN

t ) = H(ft) and lim
N

∫ t

0

I(FN
s )ds =

∫ t

0

I(fs)ds,

which concludes the proof. �
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