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ABSTRACT 

The Poiseuille-Rayleigh-Bénard problem, involving the onset of thermoconvective 

structures in channels heated from below, was the subject of many theoretical, numerical and 

knowledge, this problem was never studied for supercritical fluids. The objective of this 

paper is to study the influence of the specific properties of such fluids on thermoconvective 

instability phenomena compared with those observed in the perfect gas case. The effect of the 

distance to the critical point is also investigated. The numerical approach used is based on the 

Navier-Stokes equations in the framework of the low Mach number approximation. 
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NOMENCLATURE 

 

a [-] Energy parameter in the equation of state 

b [-] Covolume in the equation of state 

CP  [J/(kg.K)] Isobaric specific heat 

CV  [J/(kg.K)] Isochoric specific heat 

 [m/s2] Gravity constant 

 [m] Channel height 

 [m] Channel length 

 [Pa] pressure  

 [J/(kg.K)] Perfect gas constant 

 [s] Time  

 [K] Temperature 

 [m/s] Velocity component in the x-direction 

 [m/s] Velocity component in the y-direction 

 [m] Cartesian axis direction  

 [m] Cartesian axis direction  

Special characters 

 [-] Soave function in the equation of state 

 [K-1] Thermal expansion coefficient 
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 [-] Dimensionless time step 

 [K] Temperature increase 

 [-] 

Dimensionless proximity to the critical point, 

i c cT T T  

 [W/(m.K)] Thermal conductivity 

 [Pa.s] Dynamic viscosity 

 [kg/m3] Density  

 [Pa-1] Isothermal compressibility 

 [-] Acentric factor  

 [-] Computational domain 

 [-] Boundary of the computational domain 

 [-] Specific heats ratio 

Subscripts 

b  Background property 

c  Critical property 

dyn  Dynamic part 

hyd  Hydrostatic part 

i  Initial value 

mean  Mean value 

ref  Reference value 

th  Thermodynamic part 

0  Value for the perfect gas 
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1. INTRODUCTION 

Poiseuille-Rayleigh-Bénard (PRB) flows are mixed convection flows in horizontal 

channels heated from below. When the Rayleigh number exceeds a critical value, 

thermoconvective structures develop in the channel. This paper focuses on these thermal 

instabilities in the case of fluids near their gas-liquid critical point. More precisely, a 

supercritical fluid (SCF) is a fluid for which temperature and pressure are larger than those of 

the critical point. In this zone of the phase diagram, the physical properties of the fluid 

(density, viscosity, diffusivity) are intermediate between those of liquids and gases. 

Moreover, they are very sensitive to temperature and pressure variations. These tunable 

properties motivated the use of SCF in many industrial applications, such as supercritical 

fluid extraction (Reverchon and De Marco, 2006), particle generation (Cocero et al., 2009), in 

particular in pharmaceutical industry, and preparation of metallic films using supercritical 

fluid deposition (Erkey, 2009).  

The instability onset and the development of the associated patterns in PRB flows were 

extensively studied for incompressible fluids and perfect gas from many years because the 

PRB configuration is relevant for several technological processes such as the cooling of 

microelectronic equipments (Incropera, 1988) or the growth of thin crystal films from 

chemical vapor deposition (CVD) (Evans and Greif, 1989; Evans and Greif, 1991; Evans and 

Greif, 1993; Spall, 1996). A detailed review of various studies reported in literature was 

performed by Nicolas (2002). These studies showed that when the base flow becomes 

unstable, two kinds of thermoconvective structures may appear: transversal rolls at low 

Reynolds number (about Re<10) and longitudinal rolls at higher Reynolds number. The 

transversal rolls axes are perpendicular to the mean flow direction and these patterns can be 

considered as a quasi two-dimensional structure, whereas the longitudinal rolls axes are 

parallel to the mean flow and the three velocity components are excited. Results of linear 
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stability analysis for incompressible flows showed that the transversal rolls are due to a 

convective or an absolute instability depending on the value of the Rayleigh number (Müller 

et al., 1992; Carrière and Monkewitz, 1999). When the flow is convectively unstable, the 

initial perturbation locally grows, it moves downstream and it finally leaves the system. 

Hence, the rolls cross the channel during time and the flow becomes stable again once they 

moved away. On the other hand, in the case of absolute instability, the initial perturbation 

locally grows but it also expands in the whole system so that the rolls appear throughout the 

channel all the time although they move downstream: when a roll moves away, another one is 

locally generated in its place by the perturbation. The convective or absolute nature of the 

instability depends on the value of the Rayleigh number Ra, as is shown by the stability 

diagram in the plane Ra-Re (Fig. 1). The critical Rayleigh numbers for the onset of 

convective instability, Rac1, and for the onset of absolute instability, Rac2, are computed from 

the formulae of Müller et al. (1992) for a Prandtl number Pr=0.6567 (corresponding to the 

value for CO2 as a perfect gas). It can be seen that they both increase with the Reynolds 

number. On the other hand, Carrière and Monkewitz (1999) showed that the longitudinal rolls 

can only be convectively unstable and that the critical Rayleigh number is independent of Re 

and Ra. These theoretical predictions were confirmed by experiments.  

m was never studied for fluids near their 

liquid-gas critical point while it is relevant for supercritical fluid deposition processes and it 

can be expected that the fluid response to the bottom boundary heating may be quite different 

in this special zone of the phase diagram. Indeed, as was already said, near the critical point, 

thermodynamic properties, such as density, and transport coefficients exhibit large variations 

with temperature and pressure. More precisely, on the critical isochore, several properties, 

such as isothermal compressibility, thermal expansion coefficient, specific heats or thermal 

conductivity, diverge as the critical temperature is approached, while other properties, such as 
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thermal diffusivity, tend to zero. These critical behaviors cause some peculiar phenomena in 

supercritical fluids, such as a fast heat transport by thermoacoustic effects (also called Piston 

effect) (Onuki et al., 1990; Boukari, 1990; Zappoli et al., 1990). Natural convection in SCF 

was extensively studied in the past decade (Zappoli et al., 1996; Chiwata and Onuki, 2001; 

Amiroudine et al., 2001; Furukawa and Onuki, 2002; Furukawa et al., 2003; Amiroudine and 

Zappoli, 2003; Raspo et al., 2004; Accary et al., 2004; Accary et al., 2005a; Accary et al., 

2005b; Gorbunov et al., 2007), especially in the Rayleigh-Bénard configuration (Amiroudine 

et al., 2001; Furukawa and Onuki, 2002; Furukawa et al., 2003; Amiroudine and Zappoli, 

2003; Raspo et al., 2004; Accary et al., 2004; Accary et al., 2005a; Accary et al., 2005b; 

Gorbunov et al., 2007). These works showed, in particular, that the adiabatic temperature 

gradient, which is generally relevant only at large length scale, like for the study of 

atmospheric flows, must be taken into account for the convection onset in supercritical fluids 

in cavities of a few millimeters in height. We can therefore suppose that the specific 

properties of SCF may also modify the instability onset in the PRB configuration.  

In the present paper, the stability of a supercritical fluid, modeled by the Peng-Robinson 

equation of state, in the PRB configuration is investigated using 2D direct numerical 

simulations. The first section is devoted to the mathematical formulation of the treated 

problem, namely the Navier-Stokes equations in the framework of the low Mach number 

approximation and the boundary conditions. Then, the numerical method, based on a 

Chebyshev collocation approximation, is described in details. Results obtained for a 

Reynolds number equal to 50.57 in a channel of height H  presented in the third 

section. First, we studied the influence of the temperature increase on the onset and the 

development of convection for a fluid set at 1K above its critical temperature. The relation 

between the Rayleigh number and the instability characteristics is thus investigated. In a 
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second part, we are focusing on the influence of the proximity to the critical point on the 

instability onset. 

 

2. PHYSICAL PROBLEM AND MODELLING 

The physical model consists of a 2D channel of height =1mm, with an aspect ratio 

=10 or 15. The carried fluid is supercritical CO2 subject to gravity. Initially, the fluid is 

at a uniform temperature slightly above the critical temperature, Ti (1+ )Tc  (with <<1), 

and at a mean density equal to the critical density c , and it flows through the channel 

according to a Poiseuille profile. Then, the temperature of the bottom wall is gradually 

increased up to Tch =Ti +  (with  ranging from about ten to some hundreds milliKelvin) 

from a distance  from inlet (see Fig. 2). 

The supercritical fluid is modeled by the Peng-Robinson equation of state. This equation 

implicitly accounts for the divergence of the thermal expansion coefficient , of the 

isothermal compressibility  and of the specific heat at constant pressure CP  near the liquid-

gas critical point. The divergence of the thermal conductivity  is modelled by the formula 

0.5
[1 1 ]b cT T . The physical parameters of CO2 were used: Tc =304.13K, 

c 467.8kg.m-3, b 0.04412W.m-1.K-1, =0.75. 

The evolution of the flow is governed by the time-dependent 2D Navier-Stokes equations 

coupled with the energy and the Peng-Robinson equations. These equations are solved in the 

framework of the low Mach number approximation (Paolucci, 1982): the pressure  is thus 

split into a thermodynamic part, Pth , which is constant in space and appears in the energy 

equation and in the equation of state, and a dynamic part, Pdyn , involved in the momentum 

equation. However, the basic approximation of Paolucci (1982) is modified as proposed in 

Accary et al. (2005c) to account for the stratification of the fluid near the critical point since 
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Ma2/Fr (where Ma and Fr are respectively the Mach and the Froud numbers) is not in 

O(Ma2). We chose as characteristic variables Tc  for temperature, c  for density, c c  for 

pressure (with 188.92J.kg-1.K-1 the perfect gas constant),  for length, refU g T H  

for velocity (with  the Earth gravity), refH U  for time and b  for thermal conductivity. 

The specific heat at constant volume CV  and the dynamic viscosity  were fixed to their 

background values, CVb 472.313J.kg-1.K-1 and b =3.2702×10-5Pa.s. The dimensionless 

governing equations are therefore:  

 

. 0
t

V  (1) 

1 1
. .

3
dyn i y

Pr
P

t Ra Fr

V
V V V V e  (2) 

0
0

0

. 1 . .
T P Pr

T T T
t T Pr Ra

V V  (3) 

2

2 2

 

1 1 2
th hyd

a TT
P P

b b b
 (4) 

 

with a and b the dimensionless energy parameter and covolume respectively and  the Soave 

function defined by:  

2

1.487422  , 0.253076 ,  1 1a b T m T  

where m is computed from the acentric factor  ( =0.225 for CO2) by the formula 

20.37464 1.54226 0.26992m . 
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In Eqs. (1)-(4), Phyd is the hydrostatic pressure introduced by the modification of the Low 

Mach number approximation (Accary et al., 2005c), ey is the unit vector in the y-direction and 

0 and Pr0 are respectively the specific heats ratio and the Prandtl number for the perfect gas 

( 0=1.4, Pr0=0.6567). The other dimensionless numbers introduced are the Prandtl number 

Pr, the Rayleigh number Ra, the Mach number Ma and the Froud number Fr which are 

defined by:  

22 3

0

 , =  ,  , 
ref refP b c P

b b b c

U UC g C T H
Pr Ra Ma Fr

g HR T
. 

 

In the above formula, the physical parameters  and CP are calculated for the initial state 

(Ti i  from the equation of state. The initial condition for the dimensionless variables in 

=[0, ]×[0,1] is:  

2
, 1.5 1 2 1   ,  , 0i i

Pr
u x y Re y v x y

Ra
 (5) 

where Re is the Reynolds number defined by c mean bRe U H , with mean the mean 

velocity at inlet,  

, 1iT x y  (6) 

and, as it was proposed in Accary et al. (2005c), the stratification of the fluid is taken into 

account leading to the initial condition for density and pressure:  

2

2
2,   

1

K y

i K

e
x y K

e
 (7) 

 ,i thi hydP x y P P y  (8) 

with 
2

2 0 1 2 2
21

2 11
,  

1 1 2

ia b TMa
K K

K Fr b b b
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and:  

2

2
1 22

 1
  ,  1

1 1 2 1

K y
i

thi hyd K

a T e
P P y K K

b b b e
 

 

Equations (1)-(4) are solved with the following boundary conditions:  

- On the channel walls, the no-slip condition is prescribed for the velocity. The top wall (y=1) 

is kept at the initial temperature Ti. On the bottom heated wall (y=0), in order to avoid a 

discontinuity of the temperature profile, the following boundary condition is imposed for 

0 x :  

,0, 2 2 2 18 2iT x t T T th x th th th  (9) 

This boundary condition allows a continuous transition between the cold entry zone for 0  

x 1 and the hot zone for 1  x . 

- At the channel inlet (x=0), temperature is kept at its initial value Ti and a parabolic profile is 

imposed for velocity:  

2

0, , 1

0, , 1.5 1 2 1   ,  0, , 0

iT y t T

Pr
u y t Re y v y t

Ra

 (10) 

- At the channel outlet (x= ), an Orlanski type boundary condition is prescribed for all 

the variables:  

0   for  , , .
Pr

Re T u v
t Ra x

 (11) 
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3. NUMERICAL METHOD 

3.1.  Time scheme and space approximation 

Equations (1)-(4) are discretized in time with a second order semi-implicit scheme: the 

convective terms are evaluated by an Adams-Bashforth scheme, a second order backward 

Euler scheme is used for the discretization of time derivatives and the diffusive terms as the 

energy source term .T P T V  are implicitly treated. The outlet boundary condition 

(11) is also discretized using the same second order scheme, leading to a Dirichlet boundary 

condition for the variables at the current time step n+1.  

The space approximation is performed using a Chebyshev-collocation method with Gauss-

Lobatto points. For the computation of the convective terms, the derivatives are calculated in 

the spectral space and the products are performed in the physical one; the connection between 

the spectral and the physical spaces is realized through a FFT algorithm. On the other hand, 

the spectral differentiation matrices are used for the derivatives in the diffusive terms. 

 

3.2.  Numerical algorithm 

At a given time step, the discretized equations are coupled because of the implicit 

treatment of the energy source term involving .V. This term must be implicitly evaluated 

for supercritical fluids. However, it is possible to completely uncouple the solution of the 

energy equation and the computation of the dynamic field by calculating the velocity 

divergence from the sole knowledge of the thermodynamic variables (Ouazzani and 

Garrabos, 2007; Raspo and Ouazzani, 2009). The procedure consists in taking the total 

derivative of the equation of state (4) written in the form F(Pth )=0. Then, using the energy 

equation (3) and the continuity equation (1), the following formula is obtained for the 

velocity divergence:  
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0

,

0
,,

1
.

.

1

th

thth

th

0 P

th

PT P

dP Pr F
T

dt Pr Ra T

PF T F

T T

V  (12) 

 

with:    
2 2

,

1 1

1 1 2
thP

F a d

T b dTb b
 , 

2

2 2
2 2,

2  1

1 1 2thT P

a T bF T

b b b

 ,   

2

2 21 2

th
th hyd

P d
T P P a T

T dT b b
 . 

In the case of an open system, as the one considered here, the thermodynamic pressure Pth is 

also constant in time. Therefore, the time derivative dPth/dt disappears in Eq. (12). Otherwise, 

this derivative can be evaluated using a second order backward Euler scheme as in Raspo and 

Ouazzani (2009).  

Thanks to Eq. (12), the discretized equations are solved in two successive steps: first, the 

thermodynamic variables are computed through an iterative algorithm (Ouazzani and 

Garrabos, 2007; Raspo and Ouazzani, 2009) and then the Navier-Stokes equations are solved 

using the modified projection method developed in Hugues and Randriamampianina (1998) 

and extended to variable density flows. The two steps are described in detail below. 

 

- 1st step: Computation of ( .V) 

At time step n+1, the discretized energy equation can be written as a Helmholtz equation 

with coefficients involving n+1 and n+1. In order to take advantage of the efficiency of the 

full diagonalization technique developed for the solution of Helmholtz problems with time-
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independent coefficients (Haldenwang et al., 1984), the density and the thermal conductivity 

are split into a constant part, namely their value at t=0, and a time-dependent part. So, the 

terms involving the time-dependent parts are treated as source terms and the discretized 

energy equation can be written as a Helmholtz equation with constant coefficients. The 

complete diagonalization of the Helmholtz operator with constant coefficients is performed 

once for all in a preprocessing stage. Then, at each time step, the solution of the Helmholtz 

problem is reduced to matrix products, leading to a very efficient solution technique on 

supercomputers.  

More precisely, the computation of T,  and .V is performed through the following 

iterative algorithm:  

1. The variables Tk-1, k-1 and ( .V)k-1 are initialized at their values at the previous time step 

n; 

2. The temperature Tk is obtained by the solution of the Helmholtz equation:  

1
1 1 10 0

1 1
11 1

0

, 1

3 3 
.

2 2

4
1 .

2

.

k
k k k k k

i i i i
0 0

k n n
kk kth

n n

Pr T Pr
T T T

Pr Ra t t Pr Ra

P T T
T V

T t

AB TV

 

with the boundary conditions of the problem. In the above equation, t is the time-step and 

the notation AB(.) means an Adams-Bashforth evaluation of the quantity:  

, 1 12
n n n nAB  

3. The thermal conductivity k is updated; 

4. The density k is computed from the equation of state (4); 

5. The velocity divergence ( .V)k is computed by Eq. (12).  
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The steps 2 to 5 are repeated until convergence is achieved on temperature and density. The 

convergence criterion used is Max <10-11, with Res =Max(( k- k-1)/ k-1) for 

 and the maximum number of iterations is fixed to 150.  

 

- 2nd step: Computation of (V, Pdyn) 

When starting the solution of the Navier-Stokes equations, temperature, density and 

velocity divergence at the current time step n+1 are known. It is therefore possible to use a 

projection-type algorithm such as those developed for the solution of incompressible Navier-

Stokes equations, with some modifications. In this work, we have used the modified 

projection method proposed by Hugues and Randriamampianina (1998) and analysed in 

details in Raspo et al. (2002). It was shown in particular that the modification introduced by 

Hugues and Randriamampianina, namely the computation of a preliminary pressure, 

improves the accuracy on pressure and allows to reduce the slip velocity compared to other 

projection methods (Raspo et al., 2002). The modified projection method consists in solving 

the Navier-Stokes equations by three successive steps as follows:  

 Computation of a preliminary pressure 

First, a preliminary pressure 
1n

dynP  is computed from a Poisson equation derived from the 

discretized momentum equation (2):  

1
, 1 11 1 1

y

1 1
1

4 1 1
. . .

2 3

3 3 4
.

2 2

n n
n n nn n n

dyn i

n n n
n

Pr
P AB

t Ra Fr

Pr

Ra t t

V V
V V V e

V

 

Neumann boundary conditions are obtained by the normal projection of the momentum 

equation (2) on the boundary: 
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1 1 1
, 1 11

, 11

3 4 4
n. . .

2 3

1

n n n n
n n ndyn n

n nn
i y

P Pr
AB

n t Ra

Pr
AB

Fr Ra

W V V
V V V

e V

 

where Wn+1 represents the velocity boundary condition at time step n+1. At the channel 

outlet, the discretization of Eq. (11) leads to:  

1
1 2 4

3 2

nn n
n t Pr

Re
t Ra x

V V V
W  

 

 Computation of a predicted velocity V* 

The predicted velocity field V* is computed implicitly from the momentum equation with the 

gradient of the preliminary pressure instead of that of the actual pressure 1n
dynP . The predicted 

velocity therefore satisfies the following problem:  

 

* 1
, 1 11 1 *

1

* 1

3 4 1
. .

2 3   in 
1

     

           on 

n n
n n nn n

dyn

n
i y

n

Pr Pr
AB P

t Ra Ra

Fr

V V V
V V V V

e

V W

 

Here again, we have to solve Helmholtz equations with coefficients involving n+1 for each 

velocity component. As for the energy equation, the density n+1 is split into a constant part 

and a time-dependent part and Helmholtz equations with constant coefficients are solved 

iteratively for velocity components. The convergence is achieved when Max(Resu, Resv) 

<10-13. This criterion is fulfilled after 3 or 4 iterations.  
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 Correction step 

The converged velocity field V* is then corrected by taking into account the pressure gradient 

at the current time step n+1 so that the final velocity field satisfies the continuity equation 

(1). This correction is performed through the solution of the following Poisson problem for 

the intermediate variable 1 12 3n n
dyn dynt P P : 

1 1
1 * 3 4

.      in 
2

0    on 

n n n
n

t

n

V
 

It must be noted that the above Poisson-Neumann problem must fulfill a compatibility 

condition to be solvable. Because of the inhomogeneous Dirichlet condition for the predicted 

velocity V* at the channel outlet, this compatibility condition is not fulfilled. A 

renormalization of V* at the outlet boundary was therefore performed before the solution of 

the Poisson-Neumann problem as proposed in Le and Moin (1994).  

 

The actual velocity field and pressure at the current time step n+1 are finally calculated in 

 by the formulae:  

1 *

1

1n

n
V V  , 1 1 3

2

n n
dyn dynP P

t
.  

 

4. RESULTS AND DISCUSSION 

Simulations were performed for a Reynolds number Re=50.57. The passage from the 

cold entry zone to the heated zone of the channel induces a perturbation of the flow. If the 

flow is stable, this perturbation decreases as it moves downstream and it leaves the system. 

On the other hand, when the flow is unstable, this perturbation grows and it gives rise to 
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thermoconvective patterns. Instantaneous temperature fields at several times are presented in 

order to show the spatio-temporal evolution of these structures.  

First, the fluid was set at 1K above its critical temperature, which corresponds to a 

dimensionless distance to the critical point 3.288×10-3, and several values of the bottom 

wall heating were considered. These results were obtained in a channel with an aspect ratio 

=10. Then, the influence of the proximity to the critical point was investigated in order 

to study the effect of the Prandtl number variations on the thermoconvective instability. In 

this case, in order to track further the different structures in the channel, we increased the 

aspect ratio to =15.  

 

4.1. Thermoconvective instabilities at 1K from the critical point 

Computations were carried out for ranging from 0.02K up to 0.1K. Because of the 

divergence of the thermal expansion coefficient  and of the isobaric specific heat Cp  near 

the critical point, these small temperature increases induce large Rayleigh numbers ranging 

from 1.05×106 to 5.23×106 . Figure 3 shows the temperature fields at different calculation 

times for several values of . In all the cases, instability appears in the form of thermal 

plumes which develop on the hot boundary layer. These structures are similar to those 

previously obtained for a supercritical fluid in the Rayleigh-Bénard configuration 

(Amiroudine et al., 2001; Chiwata and Onuki, 2001; Furukawa and Onuki, 2002; Furukawa 

et al., 2003; Amiroudine and Zappoli, 2003; Raspo et al., 2004; Accary et al., 2004; Accary et 

al., 2005a; Accary et al., 2005b). However, in a closed cavity, the bottom wall heating 

induces a piston effect that homogeneously increases the bulk temperature and that gives rise 

to a second unstable thermal boundary layer on the top cold wall. This is not the case in an 

open channel as it can be seen in Fig. 3. The couple ,ins inst x  (where inst  is the time 

corresponding to the beginning of the isotherms deformation and insx  the axial position of the 
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first plume) which characterizes the instability onset is respectively (4 1.22s), (3 , 

0.71s), (1 , 0.33s) for 0.02K, 0.04K and 0.1K. So the thermoconvective instability 

appears earlier and closer to the beginning of the heated zone when the Rayleigh number is 

increased. Furthermore, as the heating increases, the disturbances grow faster and the thermal 

plumes are larger.  

Figure 3 also shows that the number and the development of the thermoconvective 

structures are different according to the value of . While instability appears in the form of 

one or some plumes which move downstream during time for about 10-2K (cases A and 

B), many structures develop in the whole channel for the largest heating (case C). In addition, 

in this last case, as the structures move downstream, new thermal plumes continuously appear 

near the beginning of the heated zone. This time evolution of the patterns may indicate that 

the structures are due to a convective instability in cases A and B and to an absolute 

instability in case C. Indeed, according to the previous studies for incompressible fluids, 

when the flow is convectively unstable, the initial perturbation locally grows, it moves 

downstream and it finally leaves the system. Hence, the thermoconvective structures cross the 

channel during time and the flow becomes stable again once they moved away. On the other 

hand, in the case of absolute instability, the initial perturbation locally grows but it also 

expands in the whole system so that the thermoconvective structures appear throughout the 

channel all the time although they move downstream: when a structure moves away, another 

one is locally generated in its place by the perturbation. However, results reported in 

literature for incompressible fluids showed that longitudinal rolls can never be absolutely 

unstable (Carrière and Monkewitz, 1999). Therefore, if the patterns in Fig. 3C are due to an 

absolute instability, they are likely transversal rolls. Further simulations are necessary to 

confirm this assumption. Several tests are possible in order to identify the type of the patterns 

that we obtain. First of all, transversal rolls are quasi two-dimensional structures whereas 
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longitudinal rolls are three-dimensional ones. Three-dimensional numerical simulations 

would therefore allow the precise identification of the structures. Another difference between 

transversal and longitudinal rolls concerns the instability thresholds: the critical Rayleigh 

number depends on the Reynolds and Prandtl numbers for t  for 

the latter. Therefore, the study of the influence of the Reynolds and Prandtl numbers on the 

critical value of Ra for the convective instability onset should allow to check our assumption.  

 

4.2. Influence of the distance to the critical point on the thermoconvective 

instability 

To determine the type of the structures obtained, we studied the influence of the Prandtl 

number on the instability threshold by varying the distance to the critical point. Indeed, the 

divergence of the thermal expansion coefficient and of the isobaric specific heat near this 

point leads to strong variations of the Prandtl number as is shown in table 1. The fluid is 

initially set at 5K above the critical temperature (the dimensionless distance to the critical 

point is then 1.644×10-2) instead of 1K. As a consequence, the Prandtl number becomes 5 

times smaller. If the thermoconvective patterns observed are transversal rolls, this decrease 

must modify the threshold for convective instability. Indeed, linear stability analysis for 

incompressible fluids showed that the critical Rayleigh number for the onset of convectively 

unstable transversal rolls strongly depends on the value of the Prandtl number as is shown in 

Fig. 4. In this figure, the critical Rayleigh number Rac1 for convective instability onset was 

computed from the formula of Müller et al. (1992) for the two values of the Prandtl number 

Pr=31.72 and Pr=6.28. It can be seen that, for a same value of the Reynolds number, 

convective instability appears for smaller values of Ra as the Prandtl number decreases. We 

restricted the stability diagram to the range of small Reynolds numbers since the formula of 

Müller et al. was established using this assumption and experiments showed that transversal 
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rolls are only obtained for small values of Re for incompressible fluids and perfect gas. 

Nevertheless, the above results of linear stability analysis cannot be directly applied to our 

case since they were obtained with the assumption of incompressibility and constant physical 

properties, which is totally false for supercritical fluids.  

Simulations were performed for a temperature increase 0.27K, corresponding to a 

Rayleigh number Ra=5.23×105. Because of the strong decrease of the thermal expansion 

coefficient and of the isobaric specific heat as the distance to the critical point increases (see 

table 1), the Rayleigh number is much smaller than the smallest value that we considered at 

1K from Tc (case A). Figure 5 shows the temperature fields obtained at two calculation times. 

It reveals that the thermoconvective structures develop much faster compared to case A of 

Fig. 3 and that they are also much larger. Results obtained in section 4.1 for Ti =Tc +1K 

showed that, when the flow is unstable, the disturbances grow faster and the thermal plumes 

are larger as Ra increases. Therefore, the fast and strong growth of the perturbations in Fig.5 

means that the value Ra=5.23×105 is much larger than the critical value Rac1 of the instability 

threshold for Pr=6.28. Two conclusions can be drawn from these results:  

- first, contrary to what can be expected, the flow is convectively unstable for smaller values 

of Ra when moving away from the critical point. This is due to the decrease of the Prandtl 

number;  

- secondly, the threshold of convective instability depends on the Prandtl number, since it 

depends on the distance to the critical point. Therefore, according to the previous studies 

(Müller et al., 1992; Carrière and Monkewitz, 1999), this result confirms that the 

thermoconvective structures observed are likely transversal rolls, since the critical Rayleigh 

number for longitudinal rolls is independent of Pr. However, experiments on incompressible 

fluids and perfect gas showed that transversal rolls only exist for small values of Re (Re<10). 

Therefore, the present results would indicate that, in a supercritical fluid, the transition 
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between transversal rolls and longitudinal rolls occurs for larger Reynolds numbers than for 

perfect gas or incompressible fluids.  

 

5. CONCLUSION  

In this paper, the Poiseuille-Rayleigh-Bénard problem for a supercritical fluid, modeled by 

the Peng-Robinson equation of state, was studied for a Reynolds number Re=50.57. The 

temperature fields obtained in a channel of height =1mm revealed the existence of 

thermoconvective instabilities appearing in the form of thermal plumes, similar to those 

previously observed in supercritical fluids in the Rayleigh-Bénard configuration (Chiwata 

and Onuki, 2001; Amiroudine et al., 2001; Furukawa and Onuki, 2002; Furukawa et al., 

2003; Amiroudine and Zappoli, 2003; Raspo et al., 2004; Accary et al., 2004; Accary et al., 

2005a; Accary et al., 2005b). These thermal plumes develop on the hot boundary layer and 

then move downstream during time. Thus, contrary to the perfect gas case, for which the 

convective structures occupy the whole height of the channel, instability develops here on the 

fine thermal boundary layer along the heated zone. The temporal evolution of the patterns 

indicates that the instability is convective or absolute depending on the value of the Rayleigh 

number. As a consequence, since longitudinal rolls can never be absolutely unstable (Carrière 

and Monkewitz, 1999), the thermoconvective structures obtained are likely transversal rolls.  

Moreover, the results obtained at different distances from the critical point showed that the 

critical Rayleigh number for the convective instability threshold depends on the Prandtl 

number. This variation of the critical Rayleigh number with the Prandtl number is also 

characteristic of transversal rolls according to previous studies (Müller et al., 1992; Carrière 

and Monkewitz, 1999).  

Obviously, the results presented here are preliminary results and further simulations are 

necessary to confirm the type of structures that we obtained. In particular, simulations will be 
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performed to determine the convective instability threshold for various values of the 

Reynolds number as well as the Reynolds number for the transition between transversal rolls 

and longitudinal rolls. Three-dimensional computations will also be carried out.  
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Figure captions 

 

Figure 1: Linear stability diagram of the PRB flow for incompressible fluids showing the 

two instability thresholds for transversal rolls (established from formulae given by Müller et 

al. (1992) for Pr=0.6567). The basic flow is stable below the threshold of linear stability 

(Ra<Rac1), transversal rolls are convectively unstable for Rac1<Ra<Rac2 and absolutely 

unstable for Ra>Rac2. 

Figure 2: Channel geometry with top and bottom thermal boundary conditions. 

Figure 3: Temperature fields for Ti =Tc +1K (Pr=31.72) and several values of Ra. 

Figure 4: Linear stability diagram of the PRB flow for incompressible fluids showing the 

instability threshold for convectively unstable transversal rolls (established from the formula 

given by Müller et al. (1992)) for two values of the Prandtl number Pr. The critical Rayleigh 

number Rac1 for the onset of convective instability increases with Pr.  

Figure 5: Temperature field for Ti =Tc +5K (Pr=6.28) and Ra=5.23×105. 

 

 

Table titles 

Table 1: Thermodynamic properties and Prandtl number at 1K and 5K above the critical 

point. 
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Table 1 

 

 

 

 (K)i cT T  (K-1) Cp (J/kg/K) Pr 

1 0.82199 42803.48 31.72 

5 0.15334 8478.77 6.28 

 

 

 

 



Published in Computational Thermal Sciences, 5(2), pp. 107-118, 2013. DOI:10.1615/ComputThermalScien.2013006169 

 1

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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