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Abstract. Complex 3D beating heart models are now available, but
their complexity makes calibration and validation very difficult tasks.
We thus propose a systematic approach of deriving simplified reduced-
dimensional models, in “0D” – typically, to represent a cardiac cavity, or
several coupled cavities – and in “1D” – to model elongated structures
such as fibers or myocytes. As illustrations of our approach, we demon-
strate model validation based on experiments performed with papillary
muscles, and calibration using patient-specific pressure-volume loops.

Complex 3D multi-physics beating heart models are now available [5], in-
cluding for patient-specific simulations based on inverse modeling approaches
[9]. However, such models are computationally intensive, and their physical and
computational complexities make their detailed validations and calibrations dif-
ficult. Preliminary calibrations of the numerous physical parameters are essential
to run meaningful simulations, and to initiate inverse modeling loops for person-
alization purposes, and it is very ineffective to perform this preliminary stage
with the full 3D model. Furthermore, when subtle modeling refinements are in-
vestigated, the complete organ is not the adequate scale to assess and validate
such fine effects, whereas detailed experiments are frequently available at a more
local scale, namely, tissue sample [7] or even myocyte [1]. This motivates our
proposed approach of systematic derivation of simplified reduced-dimensional
models, both in “0D” – typically, to represent a cardiac cavity, or several cou-
pled cavities – and in “1D” – to model elongated structures such as fibers or
myocytes. Such hierarchical models are intended for use in combination with 3D
models to provide dramatic effectiveness gains without compromising modeling
accuracy.

1 The 3D model

We consider the cardiac model proposed in [8,3], of which we now summarize
the main ingredients, also focusing on distinctions that we introduce in this work.



Sarcomere behavior We first concentrate on the behavior of the sarcomeres,
namely, the contractile units inside myofibers. Let us denote by ec the sarcomere
strain. All along the thick myosin filaments within the sarcomeres, myosin heads
can attach to special sites located on thin actin filaments, thus creating so-
called cross-bridges. For a given myosin head, we denote by s the distance to
the closest actin site scaled by a characteristic interspace distance. Following
Huxley’s description in [6], we introduce n(s, t) the fraction of heads attached
at a distance s at time t. As long as the head remains attached, its extension s
varies at the same rate as ec, hence,

∂n

∂t
+ ėc

∂n

∂s
=
(
n0(ec)− n

)
f − ng, (1)

where f and g denote binding and unbinding rates, respectively, and the strain
dependent function n0 accounts for the length-dependent fraction of recruitable
myosin heads (Frank-Starling effect) [3]. We model f and g by

f(s, t) = |u|+ 1s∈[0,1], g(s, t) = |u| − f(s, t) = |u|+ 1s/∈[0,1] + |u|− ,

where u denotes a variable reaction rate summarizing chemical activation, in-
ducing contraction or relaxation depending on whether u is positive or negative,
respectively. Relaxation being known to be load-dependent in mammalian car-
diac muscles [7], we here represent this effect by a new internal variable w(t)
obeying the first-order dynamics

αrẇ = m0(ec)− w, (2)

which has a multiplicative effect when u ≤ 0 (relaxation), namely,

u = |u(t)|+ − w |u(t)|− ,

where u(t) is an input variable independent of the sarcomere state. The stress
state in the sarcomere is then obtained by assuming simple quadratic energy for
realized cross-bridges, in the form Wm(s) = k0

2 (s+ s0)2, namely, a linear spring
of stiffness k0 and pre-strain s0. The overall stiffness and stress in the sarcomere
are thus given by

kc(t) = k0

∫
n(s, t) ds, τc(t) =

∫
W ′m(s)n(s, t) ds = k0

∫
(s+ s0)n(s, t) ds,

where we recognize the first two moments of the density function n. When inte-
grating in (1), this leads to the following closed-form dynamical system{

k̇c = −(|u|+ + w |u|−) kc + n0k0 |u|+
τ̇c = −(|u|+ + w |u|−) τc + n0σ0 |u|+ + kcėc

(3a)

(3b)

where σ0 = k0(s0 + 1/2) represents the maximum active stress.



Overall constitutive law In order to take into account the passive behavior, we use
the Hill-Maxwell rheological law [8] and combine the above contractile behavior
with a 1D series linearly-elastic element of stiffness Es along the fiber, and a 3D
viscoelastic element in parallel. This provides the additional dynamical relation

τc + µėc = Es
(e1D − ec)(1 + 2e1D)

(1 + 2ec)3
, (4)

with µ a viscous damping parameter, and e1D the strain component along the
fiber, i.e. e1D = τ1 ·e · τ1 where e denotes the Green-Lagrange strain tensor. The
parallel association then yields for the second Piola-Kirchhoff stress tensor

Σ = Σ
p

+ σ1D τ1 ⊗ τ1 − pC−1, (5)

with C the Cauchy-Green strain tensor, p a pressure-type Lagrange multiplier
accounting for material incompressibility, and

σ1D =
1 + 2ec

1 + 2e1D
(τc + µėc), Σ

p
=
∂We

∂e
(e) +

∂Wv

∂ė
(e, ė), (6)

where We and Wv denote a hyperelastic potential and a viscous pseudo-potential,
respectively. In the sequel, we will consider the specific form Wv = η

2 tr(ė)2, and
further elaborate on We.

System equilibrium The overall mechanical behavior is governed by the so-called
principle of virtual work in Lagrangian formulation∫

Ω0

ρ ÿ · y∗dΩ+

∫
Ω0

Σ : dye · y∗dΩ = −
∫
Sendo

Pv n ·F−1 · y∗dS, ∀y∗ ∈ V, (7)

where y denotes the displacements – with respect to a reference configuration
Ω0 – of deformation gradient F , y∗ the corresponding test functions, Pv the
blood pressure exerting forces on the endocardium surfaces Sendo of outward
unit normal vector n. The internal pressure Pv is coupled to the cardiac outflow
Q = −V̇ where V is the ventricular cavity volume. Inflows and outflows occur
depending on the balance of internal and external pressures summarized as [8]

− V̇ = Q = f(Pv, Par, Pat), (8)

where Par and Pat denote the arterial and atrial pressures, respectively. Finally,
the system is closed by a relation representing the external circulation, with a
so-called two-stage Windkessel model written as{

CpṖar + (Par − Pd)/Rp = Q

CdṖd + (Pd − Par)/Rp = (Pvs − Pd)/Rd
(9a)

(9b)

where Cp, Rp, Cd and Rd denote capacitances and resistances of the proximal
and distal circulations, and Pvs is a constant representing the venous system
pressure.



2 Reduced formulations

2.1 0D-formulation

R

d(a)
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ir1

ir2
R ix

L

Ftip

Fig. 1. Reduced models geometries. (a): 0D spherical model of a ventricle. (b):
1D cylindrical model of a single muscle fiber

Geometry and kinematics We define a simplified problem in which the geome-
try and the physical behavior are endowed with spherical symmetry properties.
The simplified geometry for a ventricle is given by a sphere of radius R0 and
thickness d0 in the stress-free reference configuration, see Fig.1 (a). Assuming
that the constitutive properties also exhibit spherical symmetry, the resulting
behavior under an internal pressure loading will display the same symmetry, and
the deformed configuration is then characterized by dilated radius R and shrunk
thickness d. At any given location, we denote by (ir, iφ1

, iφ2
) an orthonormal

basis, with ir radial and (iφ1
, iφ2

) orthoradial defined so that iφ1
= τ1. With the

above assumptions the displacement field with respect to the reference configu-
ration is radial, namely, given by y = y ir = (R−R0) ir, and the Cauchy-Green
strain tensor has the special form

C =

Crr 0 0
0 C 0
0 0 C

 , (10)

where C = (1 + y/R0)
2

is the dilatation in the orthoradial plane. Assuming
incompressible behavior, we have detC = 1, hence Crr = C−2. Considering a
virtual displacement y∗ = y∗ir with the above-assumed kinematic symmetry, we
find in each orthoradial direction (dye · y∗)φφ = (1 + y/R0)(y∗/R0).

Stress and equilibrium derivation Due to the relative thin-ness of the wall com-
pared to the sphere radius, classical arguments of shell theory justify that the
radial stress Σrr can be neglected compared to the orthoradial components [2].
Therefore, in the decomposition (5) the Lagrange multiplier p can be explicitly
inferred from Σrr = 0, viz.

p = C−2
(
Σ
p

)
rr
. (11)

Hence, in (7) the power of internal forces per unit volume gives

Σ : dye · y∗ =
(
1 +

y

R0

) y∗
R0

Σsph, (12)



with the combined stress quantity Σsph defined by

Σsph =
(
Σ
p

)
φ1φ1

+
(
Σ
p

)
φ2φ2

+ σ1D − 2C−3
(
Σ
p

)
rr
. (13)

The passive stress Σ
p

depends on the specific choice of the energy functionals

We and Wv, see (6). Here, we consider a hyperelastic potential of transverse
isotropic type We(J1, J2, J4), function of the classical reduced invariants of the
Cauchy-Green tensor given here by

J1 = tr
(
C
)

(detC)−1/3 = 2C + C−2

J2 = 1
2

(
tr(C)2 − tr(C2)

) (
detC

)−2/3
= C2 + 2C−1

J4 = τ1 · C · τ1(detC)−1/3 = C

In order to derive the passive stress Σ
p
, for the hyperelastic part we use the

chain rule ∂We/∂e = 2
∑
i (∂We/∂Ji)

(
∂Ji/∂C

)
, where classical expressions of

the invariant derivatives yield
∂J1
∂C = I − 1

3

(
2C + C−2

)
C−1

∂J2
∂C =

(
2C + C−2

)
I − C − 2

3

(
C2 + 2C−1

)
C−1

∂J4
∂C = iφ1

⊗ iφ1
− 1

3C C
−1

while the viscous contribution gives ∂Wv/∂(ė) = η ė. Substituting into (13) we
obtain after simplifications

Σsph = σ1D + 4
(
1− C−3

)(∂We

∂J1
+ C

∂We

∂J2

)
+ 2

∂We

∂J4
+ η Ċ

(
1 + 2C−6

)
,

where σ1D is given by (6). The other terms in (7) can be integrated directly,
hence, we obtain the following ODE for the displacement y

ρd0ÿ +
d0
R0

(
1 +

y

R0

)
Σsph = Pv

(
1 +

y

R0

)2
.

Finally, the equation (8) can be expressed as

−V̇ = 4πR2
0

(
1 +

y

R0

)2
ẏ = f

(
Pv, Par, Pat

)
,

and all the other equations of the initial 3D problem remain unchanged. Note
that our reduction approach is very general and could be applied to most other
3D cardiac models for similar validation and calibration purposes, indeed.



2.2 1D-formulation

Geometry and kinematics This one-dimensional model aims at reproducing the
behavior of an elongated structure made of myocardium, such as isolated muscle
fibers, or even single myocytes, under uniaxial traction. As a simplified geometry
we consider a circular cylinder of radius R0 and length L0 in the reference config-
uration, see Fig.1(b), and we assume that material properties accordingly enjoy
cylindrical symmetry, hence the whole behavior has this same symmetry. As an
orthonormal basis we use a first vector ix oriented along the fiber – i.e. τ1 = ix
– and we define two arbitrary equivalent directions (ir1 , ir2) in the cross section.
An external force Ftip is applied at the end of the fiber along the ix-direction,
and we seek the resulting longitudinal displacement y(x) at each point of the
fiber. Due to the incompressibility condition, the Cauchy-Green tensor takes the
special form

C =

C 0 0

0 C−
1
2 0

0 0 C−
1
2

 ,

where C = (1 + y′(x))
2

is the strain in the ix-direction.

Stress and equilibrium derivation Considering again the small thickness (di-
ameter) of the fiber and the loading in the axial direction, classical structural
mechanics justifies that the radial stresses Σrr are negligible. Like in the 0D
model reduction, this allows to compute the Lagrange multiplier p, viz.

p = C−1/2
(
Σ
p

)
rr
. (14)

The power of internal forces reduces to Σ : dye · y∗ = Σxx
(
1 + y′

)
(y∗)′, for a

virtual displacement field y∗(x) = y∗(x) ix, with the axial stress given by

Σxx =
(
Σ
p

)
xx

+ Es
e− ec

(1 + 2ec)
2 − C−3/2

(
Σ
p

)
rr
, (15)

with e = e1D = (C − 1)/2. In this case, we have for the hyperelastic stress
J1 = C + 2C−1/2, ∂J1

∂C = 1− 1
3

(
C + 2C−1/2

)
C−1

J2 = 2C1/2 + C−1, ∂J2
∂C =

(
C + 2C−1/2

)
I − C − 2

3

(
2C1/2 + C−1

)
C−1

J4 = C, ∂J4
∂C = ix⊗ ix − 1

3CC
−1

and the derivative of the viscous pseudo-potential gives ∂Wv

∂ė = η ė. Then we find

Σxx = σ1D + 2
(
1− C−3/2

)(∂We

∂J1
+ C−1/2

∂We

∂J2

)
+ 2

∂We

∂J4
+
η

2
Ċ
(
1 +

1

2
C−

9
4

)
.

Finally, in (7) we can integrate over each cross-section, which yields∫ L0

0

[
ρ ÿy∗ +Σxx

(
1 + y′

)
(y∗)′

]
dx =

Ftip
πR2

0

y∗(L).



3 Results

Fig.2 summarizes the experimental protocol considered – designed to study
the response of an isolated papillary muscle sample under loading conditions
similar to a cardiac cycle, see [7] for the details of the protocol used here. We
will demonstrate how the corresponding data can be employed for modeling val-
idation and calibration, in combination with our dimensional reduction strategy.

(a) passive

τc = 0

Ftip = Fp

Lp

(b) isometric

τc > 0

ė = 0

Fp < Ftip < Fa

(c) isotonic

τc > 0

ė 6= 0

Ftip = Fa

(d) isometric

τc → 0

ė = 0

Ftip < Fa

Fig. 2. Experimental protocol for rat papillary muscle. (a): the fiber is stretched
passively to a length Lp by a preload Fp; (b): electric stimulation induces a twitch
contraction against an afterload Fa, further displacement being prevented by a
clamp system until the force Ftip measured by the loading device reaches the
prescribed afterload; (c): the clamp is removed to allow isotonic shortening; (d):
during relaxation, the fiber elongates until it recovers the initial length Lp where
the clamp is put back.

Calibration Two data sets corresponding to two different preloads are available.
Passive equilibrium under each preload is used to calibrate the parameters of
the hyperelastic potential chosen in the form [4]

We(e) = C0 exp
(
C1

(
J1(e)− 3

)2)
+ C2 exp

(
C3

(
J4(e)− 1

)2)
.

The function n0(ec) is calibrated from the static force balance at maximum
shortening for the different afterloads. The activation u is adjusted to fit the
stress kinetics in the isometric case for the higher preload, see blue curves in
Fig.3, (a) and (c). Finally, the relaxation parameters αr and m0(ec) are adjusted
so that the relaxation paths correspond to experimental data.

Simulations Fig.3 (a)–(d) shows the dynamics of strain e and tension Ftip/A0,
as simulated by the 1D-model and compared to experimental data for the two
different preloads, while Fig.3 (e) shows the resulting Hill-type force-velocity
curves. Note that at time t = 0 the system starts with an initial stretch associated
with the preload considered. In Fig.4, we plot the results obtained with the 0D-
model when using the same physical parameters as in the 1D-simulations (except
for σ0), and geometric dimensions representative of a left ventricle. In turn, the
0D simulations can be used as a pre-calibration step for a 3D model, as will be
further demonstrated in future studies.
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Fig. 3. Dynamic response of papillary muscle twitch contraction for high (a,c)
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sign for shortening) corresponding to high (red) and low (blue) preloads. Pa-
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Fig. 4. Cardiac cycle obtained with the 0D-model. (a): Left ventricular vol-
ume. (b): Inflow (negative) and outflow (positive). (c): Ventricular (black), aor-
tic (blue), distal (red) and atrial (green) pressures. The atrial pressure is a given
function of time. (d): P-V diagram. Parameters are the same as in Fig.3 except
σ0 = 1.1.105 Pa, R0 = 0.0249 m and d0 = 5.10−3m. Additional parameters:
Cp = 25.10−10, Rp = 107, Cd = 0.18.10−7, Rd = 8.25.107, Pvs = 103 Pa.

4 Discussion and concluding remarks

We see that our 1D-model is able to most adequately reproduce single fiber
experiments, and in particular the preload dependence of the Hill force-velocity
curve, thanks to the Frank-Starling effect induced by the function n0. Although



the relaxation load dependence is well reproduced at high loading (see Fig.3
(c)), the low preload curves (see (d)) relax earlier than the experimental curves,
which will motivate further modeling refinements. We also find that the single
fiber experiments provide a most useful tool to calibrate the 1D-model, the
parameters of which can then be used in a beating heart model, as evidenced
with the 0D-model that produces realistic contraction cycles.

We have thus derived two reduced models of a full 3D formulation by only as-
suming simplified kinematics. The 1D-model successfully reproduces experiments
on isolated fibers for different preloads and afterloads, notwithstanding the fact
that the load-dependent relaxation warrants further refinement. Based on the
parameters obtained from the calibration of the 1D-model, the 0D-model repre-
senting the left ventricle produces a realistic contraction cycle. All computation
times for the reduced models are of a few seconds on a standard computer, which
makes these models useful tools to calibrate a full 3D beating heart model, and /
or to assess novel modeling ingredients based on specific experimental data. We
point out that the 0D-reduction strategy could be easily extended to account for
the behavior of 4 coupled cardiac cavities, when the corresponding calibration
data are available. Finally, these models allow simulations in nearly real time,
which can be a great asset in the context of clinical applications.
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