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Optimal Location of a Mobile Sensor
Continuum for Environmental Monitoring
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Abstract: In this paper, a nonlinear conservation law is proposed for the goal of optimal
location of a mobile sensor continuum. The monitoring of pollution on a 2D domain is used
throughout the paper to illustrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Research on sensors networks is a very attractive field
due to the potential ability of such networks to monitor
or track distributed environmental phenomena (weather,
seismic events, wildfires, air, soil or river pollution ...)
Nowadays monitoring systems are mostly based on static
networks of sensors, Ghanem (2004). However the use
of mobile sensors can potentially provide more versatil-
ity in collecting distributed information. An additional
advantage of mobile sensor networks is their exploration
capability in hazardous environments.

In most of the existing approaches, the navigation of mo-
bile sensors for environmental monitoring exploits ad hoc
systematic exploration techniques by using concentration
gradient and flow direction to track plums to their source,
Cortes (2004); Trincavelli (2008); Zarzhitsky (2005). How-
ever in the infinite-dimensional framework, we can mention
a different approach in Demetriou (2011); Ucinski (2005)
whose goal is to derive a stable distributed parameter state
observer by using measurements from some mobile sensors
which have also to be controlled to satisfy this goal.

In Georges (2013), the use of an observability index based
on the so-called observability gramian of a reduced model
of the PDE governing pollution is proposed. The objective
is mainly to get an optimal configuration of the sensors
suitable to enhance the performance of state observers de-
signed for estimation or prediction of the distributed pollu-
tion dynamics. In Georges (2013), a navigation strategy of
a mobile sensor network is proposed which maximizes the
observability index while providing a optimal configura-
tion of the sensors under sensor interdistance constraints,
thanks to a gradient search. The main goal of this paper is
to extend this approach by moving from individual mobile
sensors (microscopic approach) to mobile sensor swarms
represented by some continua (macroscopic approach) (see
Ha (2008), Canizo (2012), Colombo (2012), Albi (2012)),
which only requires a rather simple numerical simulation.

Even if the attention here is paid to advection-diffusion
PDEs, many applications are available, which are not lim-
ited to the case of advection-diffusion PDEs: Monitoring

of pollution advection-diffusion in 1D or 2D hydraulic
systems coupled to Saint-Venant (shallow water) equa-
tions (rivers, lakes, estuaries or seas), underseas pollution
monitoring, 2D or 3D air pollution monitoring, seismic
monitoring, or monitoring of large infrastructures in civil
engineering (dams for instance), for some important ex-
amples.

The organization of the paper is now as follows. In section
2, some background is provided on advection-diffusion
PDE for pollution modeling. Section 3 is devoted to the
definition of an observability index derived from the notion
of observability gramian. In section 4, a nonlinear conser-
vation law is derived for the goal of optimal sensor location.
In section 5, an illustrative example is proposed. Finally
the paper ends with some conclusions and perspectives.

2. THE ADVECTION-DIFFUSION PDE FOR
POLLUTION MODELING

Pollution dispersion (without chemical reaction) may be
well modeled (see Tirabassi (1989) and Zannetti (1990)
for instance, in the case of air pollution) on a domain Ω
by an advection-diffusion partial differential equation of
the form:

∂z

∂t
(x, t) + U(x, t) · ∇z(x, t) = K4z(x, t) +D(x, t)S(t)(1)

where x ∈ Ω ⊂ RN , with N = 1, 2 or 3, z(x, t) is
the concentration of a chemical species (the pollutant),
U(x, t) is a vector of flow velocities which is supposed to
be known (through measurements or computation of other
PDEs, such as the Saint-Venant equations governing the
dynamics of open-channel hydraulic systems or meteoro-
logical models in the case of air pollution), K is a constant
diffusion coefficient which is supposed to be known, and
D(x, t) is the operator defining how the source of pollutant
S(t) acts in the domain Ω. ∇ and 4 stand for the gradient
and the Laplacian respectively. ” · ” denotes the standard
scalar product in R2.

Some initial conditions z(x, t = 0) = z0(x) and some
boundary conditions on the domain boundary ∂Ω have to



be provided. In this paper and without restriction, some
Dirichlet boundary conditions will be considered:

z(x, t) = zbc(x, t), ∀x ∈ ∂Ω. (2)

3. AN OBSERVABILITY INDEX BASED ON THE
OBSERVABILITY GRAMIAN

3.1 Some background on observability function and gramian

For finite-dimensional systems, the so-called ”transient
observability function” is defined as (Brockett (1970))

Lo(X,T ) =
1

2

∫ T

0

‖y(t)‖2dt, x(0) = X, (3)

that is the output energy generated by any initial state
X ∈ Rn in the time interval [0, T ]. Lo may be rewritten as

Lo(X,T ) =
1

2
XT

(∫ T

0

ΦT (t, 0)C(t)TC(t)Φ(t, 0)dt

)
X,

(4)

with
dΦ(t, τ)

dt
= A(t)Φ(t, τ), Φ(t, t) = Id, if we con-

sider some continuous-time time-varying linear systems
described in state-space form by

ẋ=A(t)x (5)

y =C(t)x (6)

where x ∈ Rn and y ∈ Rp. We assume that the system is
at least detectable.

A necessary and sufficient condition for observability (resp.
detectability) of the pair (C(t), A(t)) is that there exists
∀t ∈ [0, T ], a positive definite (resp. non negative definite)
symmetric matrix W (t), solution to the following differen-
tial Lyapunov equation:

−Ẇ (t) +AT (t)W (t) +W (t)A(t) =−CT (t)C(t),

W (0) = 0, (7)

so-called ”observability gramian” matrix, such that

Lo(X,T ) =
1

2
XTW (T )X. (8)

In the case of time-invariant asymptotically stable observ-
able (resp. detectable) linear systems defined by the pair
(C,A), Lo is finite when T → +∞ and limT→+∞W (T ) =
W̄ . W̄ is obtained as the unique positive definite (resp.
non negative definite) solution to the Lyapunov problem:

ATW +WA = −CTC. (9)

It follows that W (T ) or W̄ can be used as a measure of
the observability degree of the system, since the singular
values of W or W̄ represent the sensitivity of output y to
each component of any initial state x(0) = X.

Since our goal is to maximize the observability of a
physical phenomenon, we seek for maximizing a norm of
the observability gramian Georges (2013); for instance, the

trace of the gramian that is the sum of the singular values
of the gramian:

Io(0, T ) = trace(W (T )), (10)

where Io will be denoted as the transient observability
index, while Iao = Io(0,+∞) = trace(W̄ ) will be denoted
as the asymptotic observability index in what follows.

The extension of the gramian notion to infinite-dimen-
sional systems has been performed (see Curtain (1995),
p. 154-156) for linear infinite-dimensional operators, act-
ing as infinitesimal generators of a C0-semigroup. If we
consider the the system defined in abstract form by

ż(t) = Az(t) (11)

y(t) = Cz(t), (12)

where A is the infinitesimal generator of a C0-semigroup
T (t) on a Hilbert space Z, and C is an output linear
and bounded operator from Z to a Hilbert space Y , the
pair (A,C) is said to be approximately observable on [0, T ]
(for some finite T > 0), if the so-called observability
map of (A,C) on [0, T ], which is the bounded linear map
CT : Z → L2([0, T ];Y ) defined by

CT z = CT (.)z (13)

is such that ker CT = {0}. Furthermore the observability
gramian of (A,C), which is defined by the following linear
self-adjoint operator

WT = C∗C, (14)

is such that WT > 0.

Similarly for exponentially stable systems and for T →
+∞, the observability gramian W∞ is the unique self-
adjoint solution to the Lyapunov operator equation for
any z1, z2 ∈ D(A∗)

< W∞z1, Az2 > + < Az1,W
∞z2 >= − < Cz1, Cz2 >,

(15)

where < ., . > is the associated inner product.

Finding an explicit solution to this Lyapunov equation
is not possible in general, except for Riesz-spectral op-
erators, whose eigenvalues and eigenfunctions are known
explicitely (for instance, the heat equation, see Liu (2010)).
In Vaidya (2011), an approximate solution WT is per-
formed in the case of an advection PDE. In this paper, we
will not follow this way. In order to derive the observability
index for our advection-diffusion problem, an approximate
finite-dimensional model is proposed in the next section,
thanks to a Galerkin method, before deriving the here-
proposed observability index on the basis of this projected
model.

3.2 A reduced-order model based on a Galerkin method

As in Georges (2013), a Galerkin weighted-residual method
(known for providing accurate solutions, see Fletcher
(1984)) is proposed with the goal of deriving a reduced-
order finite-dimensional model of the ADPDE, which does
not rely on a spatial grid, while ensuring some regularity
properties.



It consists in seeking an approximate za(x, t) of (1)-(2) as a
linear combination of N basis functions φi(x), i = 1, ..., N
in a N -dimensional subspace:

za(x, t) =

N∑
i=1

zi(t)φi(x), (16)

where the zi(t)’s are the coordinates in the function basis.

The problem consists now in introducing (16) in both (1)
and (2) to derive two residuals:

R(x, t) =
∂za
∂t

(x, t) + U(x, t) · ∇za(x, t)

−K4za(x, t)−D(x, t)S(t), ∀x ∈ Ω, (17)

R̄(x, t) = za(x, t)− zbc(x, t), ∀x ∈ ∂Ω. (18)

The problem is to render these residuals smaller as possible
(ideally equal to zero). In order to get this result, a solution
will consist in computing za(x, t) such that both R and R̄
are orthogonal to each basis function φi(x):∫

Ω

R(x, t)φj(x)dΩ = 0, j = 1, ..., N (19)∫
∂Ω

R̄(x, t)φj(x)d∂Ω = 0. (20)

These orthogonality conditions can be also simplified as:∫
Ω

R(x, t)φj(x)dΩ + γ

∫
∂Ω

R̄(x, t)φj(x)d∂Ω = 0, (21)

j = 1, ..., N,

where γ is a real weighting coefficient non equal to zero.

As in Georges (2013)) we used a function basis obtained
apart from Legendre’s orthogonal polynomials. In the case
of 1D problems defined on a domain Ω = [−1,+1], Legen-
dre’s polynomials are given by the sequence {Li(x)}i≥0

(i+ 1)Li+1(x) = (2i+ 1)xLi(x)− iLi−1(x),

L0(x) = 1, L1(x) = x, (22)

which are orthogonal on [−1,+1] with unitary weight:∫ 1

−1

Li(x)Lj(x)dx = 0, ∀i, j, i 6= j (23)

and ∫ 1

−1

Li(x)Li(x)dx =
2

2i+ 1
, ∀i ≥ 0. (24)

In the 2D case (using spatial coordinates x = (x1, x2)), we
get

φk(x1, x2) = Li(x1)× Lj(x2), k = i+ (j − 1)N,

i, j = 1, ..., N. (25)

Using this function basis leads to a linear dynamical sys-
tem expressed in the coordinates za(t) = (z1

a(t), ...., zNa (t))T :

Eża(t) = A(t)za(t) +B(t)S(t) + F (t), za(0) = z0
a,(26)

where the matrices E (which is diagonal, thanks to basis
orthogonality), A and the vectors B and F have elements
defined as follows:

Eii =

∫
Ω

φi(x)φi(x)dΩ, (27)

Eij =

∫
Ω

φi(x)φj(x)dΩ = 0, ∀i, j, i 6= j (28)

Aij(t) =

∫
Ω

[−U(x, t) · ∇φi(x) +K4φi(x)]φj(x)dΩ

+γ

∫
∂Ω

φi(x)φj(x)d∂Ω(29)

Bj(t) =

∫
Ω

D(x, t)φj(x)dΩ (30)

and

Fj(t) = −γ
∫
∂Ω

zbc(x, t)φj(x)d∂Ω (31)

and where the initial state vector z0
a is computed as the

solution of the linear system∫
Ω

[za(x, 0)− z0(x)]φj(x)dΩ

+γ

∫
∂Ω

[za(x, 0)− zbc(x, 0)]φj(x)d∂Ω = 0, (32)

j = 1, ..., N.

which is equivalent to

Gz0
a +H = 0, (33)

where G and H are defined by

Gij =

∫
Ω

φi(x)φj(x)dΩ + γ

∫
∂Ω

φi(x)φj(x)d∂Ω (34)

and

Hj = −
∫

Ω

z0(x)φj(x)dΩ− γ
∫
∂Ω

zbc(x, 0)φj(x)d∂Ω.(35)

3.3 An observability index for the reduced model of the
ADPDE

If M sensors are placed at position xi ∈ Ω, i = 1, ...,M the
resulting output energy on [0, T ] will be defined, thanks to
reduced model (26), by

Lo(Za) =
1

2
ZTa {

∫ T

0

φT (t, 0)

M∑
i=1

CT (xi)C(xi)φ(t, 0)dt}Za,

=
1

2
ZTAW (x1, ..., xM , T )ZA

=
1

2
ZTa

M∑
i=1

{
∫ T

0

φT (t, 0)CT (xi)C(xi)φ(t, 0)dt}Za,

=
1

2
ZTA

M∑
i=1

Ws(xi, T )ZA (36)

where Za is the initial state generating the output on

[0, T ], φ(., .) is defined by
dΦ(t, τ)

dt
= E−1A(t)Φ(t, τ),

Φ(t, t) = Id, C(x) is defined by



C(x) = ( φ1(x) . . . φN (x) ) , (37)

W (x1, ..., xM ) is the global observability gramian, while
Ws(xi, T ) is the elementary observability gramian associ-
ated to sensor i.

Now we use the following assumption in what follows:

Assumption: the time-varying velocity field U(x, t) is re-
placed by a mean velocity field defined over a finite time
interval [0, T ]

U(x) =
1

T

∫ T

0

U(x, t)dt. (38)

This assumption means that the velocity field U(x, t)
is available through measurements or computation over
[0, T ].

By using this assumption, matrix A of (26) is no more
time-varying and the observability index Iao can be com-
puted by considering any fixed configuration (x1, ..., xM )
of the M sensors in domain Ω. Iao = trace(W̄ (x1, ..., xM ))
where W̄ (x1, ..., xM ) is computed as solution to the follow-
ing Lyapunov equation:

HTW +WH = −
M∑
i=1

CT (xi)C(xi), (39)

whereH = E−1A is an Hurwitz matrix and Iao(x1, ..., xM ) =
trace(W̄ (x1, ..., xM )).

4. A CONSERVATION LAW FOR THE OPTIMAL
LOCATION OF A SENSOR CONTINUUM

4.1 A microscopic approach

The navigation of M mobile robots using a potential
approach is well known in the literature, see Gazi (2007),
Kowalczyk (2005) for instance. The common goal of all the
sensors is therefore to reach an optimal configuration x∗i ,
i = 1, ...,M such that the gradient of the potential P is
equal to zero, that is a solution to the necessary conditions
of the optimization problem

min
xi,i=1,...,M

P (x1, ..., xM ). (40)

In our case, the choice of the functional P is naturally
given by

P (x1, ..., xM ) = −Iao(x1, ..., xM ) (41)

since the goal is to find an optimal configuration which
maximizes the observability index.

Finally, without robot interdistance constraints, the tra-
jectory xki of each sensor i is obtained from the following
gradient descent method:

xk+1
i = xki + δ∇xiIao(xk1 , ..., xkM ), i = 1, ...,M (42)

The navigation will end when ‖xk+1 − xk‖ < εs, where εs
is a given reached precision and δ > 0 is small enough to
ensure convergence of the sequence xki , i = 1, ...,M . If the
convergence is reached, then the cluster point satisfies the
necessary optimality conditions ∇xiIao = 0. The gradient

∇xiIao(x1, ..., xM ) is defined as ∇xtrace(W̄ (x1, ..., xM )).
This ”microscopic” approach has been successfully applied
in Georges (2013). Its main drawback is obviously compu-
tational complexity when the number of mobile sensors
increases.

4.2 A macroscopic approach

Let ρM (x, t) denote the following empirical measure de-
fined by

ρM (x, t) =

M∑
i=1

δ(x− xi(t)). (43)

Then, for T → +∞ and under the mean velocity field
assumption, output energy (36) may be rewritten as

Lo(x,+∞, Za) =
1

2
ZTa (

∫
Ω

[

∫ ∞
0

eH
T t ×

CT (x)C(x)eHtdt]ρM (x, t)dΩ)Za

=
1

2
ZTA

(∫
Ω

W̄ (x)ρM (x, t)dΩ

)
ZA (44)

where W̄ (x) is solution to

HTW +WH = −CT (x)C(x). (45)

Then Iao may be expressed as follows

Iao =

∫
Ω

trace(W̄ (x))ρM (x, t)dΩ (46)

The necessary conditions for optimality (observability
maximization) are recovered from

∇xiIao = ∇xtrace(W̄ (x = xi))ρ
M (x = xi, t) = 0 (47)

where

∇xtrace(W̄ (x)) = (

N∑
i=1

W̄ ′i,i,1(x), ...,

N∑
i=1

W̄ ′i,i,dim(Ω)(x))T

and tensor W̄ ′(x)) is a third order tensor, solution to the
following tensorial equation

HT ⊗ W̄ ′ + W̄ ′ ⊗H = −CT (x)∇xC(x)

−∇xCT (x)C(x). (48)

Now let us denote ẋi(t) ≈
(xk+1
i − xki )

δ
. Equation (42) may

be recovered as follows

ẋi(t) = ∇xtrace(W̄ (x = xi)). (49)

which defines the velocity of each sensor i.

Inspired by (49) and following the same approach as in Ha
(2008), Canizo (2012) and Albi (2012) for crowd modeling,
when ρM (x, t) → ρ(x, t) for M → ∞, the following
conservation law is proposed, if the conservation of sensor
density ρ(x, t) w.r.t. time is assumed.

∂tρ(x, t) + divx(ρ(x, t)V (ρ(x, t), x)) = 0, (50)

with



V (ρ(x, t), x) = δ(1− ρ(x, t)/ρmax)∇xtrace(W̄ (x)).(51)

Mainly under the rather mild assumption ∇xtrace(W̄ (x))
is smooth, the existence and uniqueness of the solution in
L1(R2, [0, ρmax]) to Cauchy problem

∂tρ(x, t) + divx(ρ(x, t)V (ρ(x, t), x)) = 0, (52)

ρ(x, 0) = ρ0(x) (53)

is ensured (see Colombo (2012)).

4.3 Obstacle avoidance

In practice, obstacles should be often taken into account.
For that purpose, the velocity field may be modified by
adding a repulsive gradient Gi around each obstacle i,
i = 1, ..., No:

Gi(x) = αi(x− xoi )e−βi‖x−x
o
i ‖, (54)

where xoi denotes the coordinates of obstacle i, and αi, βi
are some positive coefficient. The velocity field becomes

V (ρ(x, t), x) = δ(1− ρ(x, t)/ρmax){∇xtrace(W̄ (x))

+

No∑
i=1

Gi(x)}. (55)

Again this problem has been studied in Colombo (2012)
(Nonlocal route choice) where existence and unicity of the
solution L1(R2, [0, ρmax]) holds under additional assump-
tion that the Gi’s are smooth.

4.4 Asymptotic collective behavior

The stable equilibrium behavior ρe(x) is given by

V (ρe(x, t), x) = δ(1− ρe(x, t)/ρmax){∇xtrace(W̄ (x))

+

No∑
i=1

Gi(x)} = 0. (56)

∇xtrace(W̄ (x)) +

No∑
i=1

Gi(x) = 0 corresponds to the opti-

mality condition for observability maximization or for the
trade-off between observability maximization and obstacle
avoidance in the presence of obstacles.

5. A NUMERICAL EXAMPLE

Now we consider the optimal navigation of a sensor con-
tinuum towards the equilibrium configuration satisfying
necessary conditions, on domain Ω = [0km, 1km]2. The
ADPDE parameters used in the simulation are given in
table 1, where the velocity field U = (Ux, Uy) is supposed
to be uniform over the domain and constant with respect
to time.The reduced model of the ADPDE is obtained by
using 20 Legendre polynomials in each spatial direction as
basis functions and with γ = −1e4.

The simulations was performed by using a 2D Lax-
Friedrichs integration scheme and compared to a B2Q9
Lattice Bolzmann method (see Wolfram (1986), which
provides here more accurate results with more computa-
tional efforts). Two cases are considered: navigation with

and without obstacles on the path. The initial density is

given by ρ0(x) = e‖x−xI‖
2/0.005, with xI = (0.3, 0.3). We

consider three fixed obstacles placed at (0.3, 0.4), (0.4, 0.3)
and (0.3, 0.3), with αi = 120 and βi = 40. The other
coefficients are δ = 2 and ρmax = 1. The results for the
case without obstacles are given by Fig. 1-3, while the
results with obstacles are given by Fig. 4-6. The fixed level
curves on the upper right part of the figures corresponds
to the pollution density levels at equilibrium. The results
compare well to those obtained in Georges (2013) with the
microscopic approach.

Table 1. ADPDE parameters

Ux Uy K B.C. D(x, t)

10km/h 10km/h 1 zbc(x, t) = 0 e
− ‖x‖2

2σ2 , σ = 0.01

Fig. 1. Initial configuration (t = 0) - without obstacles.

Fig. 2. Sensor density (t = 4) - without obstacles.

Fig. 3. Sensor density (t = 8) - without obstacles.

6. CONCLUSIONS AND PERSPECTIVES

A nonlinear conservation law is proposed to model the
collective behavior of a mobile sensor continuum used
for monitoring purpose. The sensor density reaches an



Fig. 4. Sensor density (t = 2) - with obstacles.

Fig. 5. Sensor density (t = 4) - with obstacles.

Fig. 6. Sensor density (t = 8) - with obstacles.

equilibrium corresponding to the necessary conditions for
optimality (observability maximization or trade-off be-
tween observability maximization and obstacle avoidance
in the presence of obstacles). Future works will be devoted
to a conservation law derivation based on the infinite-
dimensional observability gramian and the coupling with
infinite-dimensional observer design.
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