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Optimal Location of Mobile Sensors for Environmental Monitoring

Didier Georges

Abstract—This paper is devoted to the optimal location
of a mobile sensor network for environmental monitoring
applications. Effective pollution monitoring in the atmosphere
or in hydraulic systems (rivers, lakes or seas) with a limited
number of sensors is a very challenging issue. In this paper, we
will only consider physical phenomena governed by the so-called
advection-diffusion partial-differential equation (ADPDE). The
paper goal is to derive a simple potential-based navigation
strategy ensuring the optimal location of a mobile sensor
network. The optimal location of the sensors is determined
through the maximization of an observability index based
on the observability gramian of the ADPDE derived from a
spectral method. The application to the control of a 20-sensor
network applied to a 2D air pollution model demonstrates the
effectiveness of the proposed approach. We can also emphasize
the fact that the here-proposed methodology can be easily
applied to the optimal location of static sensors.

I. INTRODUCTION

Sensors networks are now well recognized for their poten-
tial ability to monitor or track distributed environmental phe-
nomena (weather, seismic events, wildfires, air, soil or river
pollution ...) Presently, monitoring systems are mostly based
on static networks of sensors which have to be optimally
located [11]. A natural extension of sensor networks is the
use of mobile sensors, which can potentially provide more
versatility in collecting distributed information. An additional
advantage of mobile sensor networks is their exploration
capability in hazardous environments.

Most of the existing approaches used in environmental
monitoring exploit ad hoc systematic exploration techniques
by using concentration gradient and flow direction to track
plums to their source [2], [15], [19]. However in the infinite-
dimensional framework, we can mention research works [3],
[4], [5] whose main goal is to derive a stable distributed
parameter state observer by using measurements from some
mobile sensors which have also to be controlled to satisfy
this goal. Rather that using statistical field reconstruction
methods (see [12] for instance), the use of an observability
index based on the so-called observability gramian of a
reduced model of the PDE is proposed. The objective is
mainly to get an optimal configuration of the sensors suitable
to enhance the performance of state observers designed
for estimation or prediction of the distributed pollution
dynamics, including the derivation of the pollution source
location. Then a navigation strategy of a mobile sensor
network is proposed which maximizes the observability
index while providing a optimal configuration of the sensors
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under sensor interdistance constraints. However we will not
discuss the issue of designing appropriate state observers
for environmental monitoring capable of taking advantage of
the optimal sensor location procedure. The field of potential
applications of the here-proposed approach is very large
and is not limited to the case of advection-diffusion PDEs
: Monitoring of pollution advection-diffusion in 1D or 2D
hydraulic systems coupled to Saint-Venant equations (rivers,
lakes, estuaries or seas), underseas pollution monitoring,
2D or 3D air pollution monitoring, seismic monitoring, or
monitoring of large infrastructures in civil engineering (dams
for instance), for some important examples. Reference [16]
provides a deep insight on environmental monotoring of such
systems.

The organization of the paper is now as follows. In section
II, we introduce the advection-diffusion problem that we
will consider, together with a spectral method leading to a
reduced model in finite dimensions. Section III is devoted
to the derivation of the optimal location problem based on
the notion of observability gramian. The navigation strategy
of a team of mobile sensors is then presented in section IV.
Simulations results are presented in section V followed by
some conclusions in section VL.

II. POLLUTION MODELING
A. The advection-diffusion PDE

Pollution dispersion (without chemical reaction) may be
well modeled (see [14] and [18] for instance, in the case
of air pollution) on a domain © by an advection-diffusion
partial differential equation of the form:

% (x,8) +U(x,1).Vz(x,t) = KAz(x,t) + D(x,£)S(¢) (D

where x € Q C RY, with N = 1,2 or 3, z(x,t) is the con-
centration of a chemical species (the pollutant), U (x,t) is
a vector of flow velocities which is supposed to be known
(through measurements or computation of other PDEs, such
as the Saint-Venant equations governing the dynamics of
open-channel hydraulic systems or meteorological models
in the case of air pollution), K is a constant diffusion
coefficient which is supposed to be known, and D(x,t) is the
operator defining how the source of pollutant S(¢) acts in the
domain Q. V and A stand for the gradient and the Laplacian
respectively. ”.”” denotes the standard scalar product in R2.

Some initial conditions z(x,# = 0) = zp(x) and some
boundary conditions on the domain boundary JdQ have to
be provided. In this paper and without restriction, some
Dirichlet boundary conditions will be considered:

z2(x,1) = zpe(x,1), Vx € IQ. (2)



B. A reduced-order model based on a spectral method

Rather than using a standard finite-difference method
based on some spatial-grid dependent approximate solutions,
which will lead to differentiability issues in the derivation of
the mobile sensor control strategy, a spectral method (known
for providing accurate solutions [7]) is proposed with the
goal of deriving a reduced-order finite-dimensional model of
the ADPDE, which does not rely on a spatial grid.

It consists in seeking an approximate z,(x,7) of (1)-(2) as
a linear combination of N basis functions ¢;(x), i=1,....N
in a N-dimensional subspace:

N
za(x,1) =Y zi(1)i(x), 3)
i=1

where the z;(¢)’s are the coordinates in the function basis.
The problem consists now in introducing (3) in both (1)
and (2) to derive two residuals:

R(x,t) = %Z: (x,8) + U(x,1).Vzq(x,1)
KAz (x,t) —D(x,0)S(t), Vx € Q,  (4)
R(xvt) = Za(xat)_zbc('x7t>7 Vx € 9Q. (5)

The problem is now to render these residuals smaller as
possible (ideally equal to zero). In order to get this result, a
solution will consist in computing z,(x,7) such that both R
and R are orthogonal to each basis function ¢;(x):

/g;R(x,z)qb,(x)dQ — 0, j=1,..N (6

/(9 R(x,0)6 ()09

0. 7

These orthogonality conditions can be also simplified as:
/Q R(x,1)0;(x)dQ+ 7 /a K¢ (0402 =0.  ®

j=1,..,N,

where 7 is any real coefficient non equal to zero.
By introducing the expression of each residual, we get

/ [3;a (x,8) + U (x,1).Vza(x,1) — K Azq(x,1)
o ot
X —D(x,1)S()]¢;(x)dQ
+7/89[Za(x,t)—Zbc(x,t)}(])j(x)daQ:O’ )
j=1,..,N.

Since all the operators are linear, the orthogonality conditions
(9) leads to the solution of a linear dynamical system
expressed in the coordinates z,(t) = (z}(t),...., 2N (t))T:

Ezo(t) = A(t)za(t) + B(1)S(t) + F(t), za(0) =23, (10)

where the matrices E, A and the vectors B and F have
elements defined as follows:

By = [ 0ix)6,(1d (in

A1) = [[[U(0). Vo) + K]0, (1)
[ _oWomao  a2)

B(1) = /Q D(x,1);(x)d (13)

and

Fi(t) = —Y/BQZbc(x,t)d)j(x)dBQ (14)

0

and where the initial state vector z,

solution of the linear system

| al.0) =00l (a2

is computed as the

—I—Y/aQ[za(x,O) — Zpe(x,0)]9(x)doQ =0, (15)
j=1,...,N.
which is equivalent to
G2 +H =0, (16)
where G and H are defined by
G = | ix)9;(vde
+y /{9 6109;(x)400 (17)
and
Hy =~ [ 20(09;(x)a0
fy/(mz;,c(x,om(x)dasz. (18)

This approach is very well known as the Garlerkin weighted-
residual method.

If the basis functions ¢;(x)’s are chosen to be orthogonal
on the domain Q :

Ey= [ 0:00,(0)d2=0, ¥i., i # ]

then E is a diagonal matrix which can be easily inverted.
It also follows that the problem is better numerically condi-
tioned.

For example, in the case of 1D problems defined on a
domain Q = [—1,+1], Legendre’s polynomials given by the
sequence {L;(x)};>0

(i + 1)L,’+1 (x) = (21 + 1>XL,'()C> —ilL;_ (x)7

19)

Lo(x) =1, Li(x) =x, (20)
which are orthogonal on [—1,+1] with unitary weight:
1
[ LLdr=0.vi.j, i ] @
-1
and
3| 2
Li(x)L; =—— Vi> 22
/71 () Li(¥)dx = 22 Vi 2 0, (22)

can be used instead of the conventional polynomial approx-
imants ¢;(x) = x".



For multidimensional problems, the basis functions can be
defined as products in each dimension. For instance, in the
2D case (using spatial coordinates (x,y)), we get

O (x,y) = Li(x) X Lj(y), k= i+ (j=1)N,

i,j=1,..,N. (23)

This is precisely the choice of basis functions made for the
air pollution application presented in this paper.

Some remarks.

« Of course, many other basis functions can be used, such
as wavelets, which are known to exhibit very nice multi-
resolution properties.

« 7 has to be chosen in order to ensure that A is Hurwitz.
If the basis functions are chosen such that the boundary
conditions (2) are satisfied, Y is equal to zero.

« It can be interesting to introduce a weak formulation of
the Laplacian operator (using Green’s formula):

/Au.de:—/Vu.Vde—i—/ Vuvn,doQ (24)
Q Q 0Q

in order to reduce the continuity conditions on the basis
functions. In this case, the A;;’s become

/Q [0 (x5,1).V ()0 (x)
/a V60500
v [ 09 doe

« The infinite-dimensional problem (1)-(2) is known to be
exponentially stable.

Ait) =

+

(25)

III. AN OBSERVABILITY-BASED POTENTIAL
FUNCTIONAL FOR MOBILE SENSOR
NAVIGATION

A. Some background on observability function and gramian

We start this section with some background on observabil-
ity function [1].

We consider some continuous-time time-varying linear
systems described in state-space form by

(26)
27)

X = A(t)x

y = Cl)x
where x € R" and y € RP. We assume that the system is at
least detectable.

The so-called “transient observability function” is defined
as

T
L(X.T) =5 [ Ib0)lfdr, x0) =,

that is the output energy generated by any initial state X € R"
in the time interval [0,7]. L, may be rewritten as

(28)

L, 1) = 2X7{ [ 7 (,0)C() €)@, 00dr}X, @9

dd(t,7)

with =A)D(t,7), D(t,1) = 1.

A necessary and sufficient condition for observability
(resp. detectability) of the pair (C(r),A(r)) is that there exists
Vt € [0,T], a positive definite (resp. non negative definite)
symmetric matrix W (), solution to the following differential
Lyapunov equation:

W) +AT(OW () +W()A(L) = —CT(1)C(r),

w(0) = 0, (30)

so-called “observability gramian” matrix, such that

L,(X,T) = %XTW(T)X. (31)

In the case of time-invariant asymptotically stable observ-
able (resp. detectable) linear systems defined by the pair
(C,A), L, is finite when T — +oo and limy_, 1 W(T) = W.
W is obtained as the unique positive definite (resp. non
negative definite) solution to the Lyapunov problem:

ATw4+wa=—-C"c. (32)

It follows that W(T) or W can be used as a measure of
the observability degree of the system, since the singular
values of W or W represent the sensitivity of output y to
each component of any initial state x(0) = X.

Since our goal is to maximize the observability of a
physical phenomenon, we seek for maximizing a norm of
the observability gramian [9]; for instance, the trace of the
gramian that is the sum of the singular values of the gramian:

1,(0,T) = trace(W(T)), (33)

where I, will be denoted as the transient observability index,
while I, = I,(0,+00) = trace(W) will be denoted as the
asymptotic observability index in what follows.

B. An observability index for the reduced model of the
ADPDE

The previously-described approach can be easily applied
to reduced model (10), where output y corresponds to the
measurement vector of the pollutant z(x,#) provided by a set
of M mobile sensors:

y(l‘) = (Z(xl(t)’t)v"'7Z(xM(t)7t))T’

where x;(¢) is the coordinate vector of each mobile sensor i,
i=1,...,M. in domain Q, at time ¢.

Z(xi,t):/QS(x—x,-)z(x,t)dx,

where 8 denotes the spatial Dirac-delta function.
In our approach, z is approximated by z,(x,z) =

(34)

N
Y zi(1)9i(x). Therefore, the (M x N) output matrix is given
lb:);)

¢1(x1 (1)) on(x1(1))

(35)

81 (xn (1)) o (1))



Now we use the following assumption in what follows:
Assumption: the time-varying velocity field U(x,t) is
replaced by a mean velocity field defined over a finite time

interval [0,7)
1 /T
== | Ulxt)dt
| vt

This assumption means that the velocity field U(x,t) is
available through measurements or computation over [0,7].

By using this assumption, matrix A of (10) is no more
time-varying and the observability index I,, can be computed
by considering any fixed configuration (xi,...,x)) of the M
sensors in domain Q. W (xj,...,xy) is computed as solution
to the following Lyapunov equation:

,xM)TC(xl,...,

where H = E~'A is an Hurwitz matrix and I, (x1, ...,xy) =
trace(W (x1,...,xpm)).

(36)

H'W4+WH = —C(xy,... M), (37

Remark. The observability index does neither depend on
the magnitude of the source nor its location D(x,) in domain
Q, represented by vector B.

C. Sensor interdistance constraints

Two kinds of interdistance constraints should be intro-
duced: On the one hand, some minimum distance between
each sensor has to be considered since the sensors should
not be located at the same place. On the other hand, some
communication constraints between the sensors should be
taken into account, since communications between sensors
will be needed in our case to compute the trajectory of each
mobile sensor.

These sensor interdistance constraints will be taken into
account by using a barrier function approach [6], which
is very useful in constrained optimization as a penalty
functional. If d;; is the distance between two mobile sensors
i and j, we can define the following potential Fy :

M=1 M
Fy=—u Y Y {log(d;

i=1 j=it+1

a®)+log(B* —dj)},  (38)
where y > 0, o and B are the minimum and maximum
distances between two robots respectively, and d;; = ||x; — x;||
(||| is the Euclidian norm).

This potential ensures that the mobile sensor configuration

is always such that oo < d;; < B, Vi,j=1,...M

D. Optimal static configuration of the mobile sensors

The optimal static configuration of the M-mobile sensor
network is obtained as solution to the following optimization
problem:

x[lrznlm —lao(x1, -, Xm) + Fa(x1, - X01), (39)
that is
| min | —trace(W (x1,...xm))
M-1 M
Y Y {loa(d— ) tlog(B2 )} (40)

This problem may be viewed as a multi-criteria optimization
problem whose solution x}, i =1,...,M is a trade-off between
observability maximization and generation of an equilibrium
configuration corresponding to fixed sensor interdistances
defined in interval [@,f]. u is used to tune this trade-off.

Proposition: Any equilibrium configuration is necessarily
solution of the algebraic set of nonlinear equations:

_Vx,'lao(xl ) ...7XM)

—2u Z { —xj)  (xi— )} 0,

2 2 B2 _
J=L1j#i d” « B> -

i=1,..

M—l 41)

Proof. The set of equations (41) corresponds to Lagrange
necessary conditions for optimality of problem (40).

Remark. From the barrier function theory [6], it appears
that, for all p sufficiently small, problem (40) admits a
minimizer near a solution to the constrained optimization
problem:

min M—trace(W(xl,...,xM)) (42)

st.a<dj<B,Vi=1,..M—1,j=i+1,...M

IV. THE NAVIGATION STRATEGY

In this paper, the dynamics of the mobile sensors will not
be considered and the problem will be the real-time planning
of the trajectory of each mobile sensor by using a potential-
based approach [13], [8], which is well known to be easily
implementable.

(43)

A. A potential-based control strategy

In this approach, the trajectory {x*};>¢ inside the domain
Q of each sensor i, i =1,...,M is generated by a gradient

method:

x{‘H_l pV P()H(, ) {C 1,)‘]1(’“‘]1;17""“‘]54)7 (44)
where P is a given potential functional, p is
the gradient step which has to be chosen in
order that P ...,xé‘fﬂ,xé‘“,xﬁﬂ, X <
PO b )

The common goal of all the sensors is therefore to reach
an optimal configuration x}, i =1, ..., M such that the gradient
of the potential P is equal to zero, that is a solution to the
necessary conditions of the optimization problem

min MP(xl,...

xii=1,...,

M) (45)

Then in our case, the choice of the functional P is naturally
given by

P(xi,... =Ly (X1, ey x0r) F Fy (X1, ey X1)- (46)

Finally the trajectory xé‘ of each sensor i is obtained from
the following recursive equation

xi‘{H = xk—f—p[V Icw(xllc, )
)

+2u { / Y. (47
JIZJ’#I d2_a2 ﬁz_dizj

7-xM) -




k1 k|| < &, where g is

The navigation will end when ||x
a given reached precision.

It can be easily checked that any cluster point of the
sequence xé‘, i=1,..,M (a final configuration reached)
corresponds to a solution satisfying necessary conditions

A1).

Some remarks.

o if the basis functions are regular, output matrix C
is differentiable and VI, (x1,...,xy) is always well

defined as
Vadao (X1, ..., xm) = trace(W), (48)
where W/ is solution to the Lyapunov equation
ac;"
H'W/+W/H=-2-—" ¢, (49)

dx;

where C; is the ith row of matrix C.

o Each mobile sensor i, i =1, ..., M computes its own com-
ponent of the gradient vector of the potential functional
at step k. However the current positions of the M — 1
other sensors at step k have to be transmitted and re-
ceived by sensor i to compute this gradient component.
This is the only information needed. It should be also
assumed that an ad hoc communication infrastructure is
implemented in the sensor network.

o With this navigation strategy (mainly by tuning the
gradient step p), we will be able to track slow variations
of observability index I, induced by (slow w.r.t. sensor
kinematics) variations of the mean velocity field, by
updating the position of each sensor according to (47).

Algorithm for slowly time-varying velocity field track-
ing:

S = A pl-v, tmce(W(tk))
) ()
+2/JJ 12]75,{01[2,_0‘]2 - ﬁz—d:zj H-

%z@m = LZ(x0)+ (1),
B(Z(x,1)) = 0, Z(x,0) =Z(x),

W) = AT(OW()+ (I)A(f)

+ CT( )C(xlf’ * )
W) = 0 (50)

where L denotes a differential operator, B is a boundary
condition operator and f is a bounded operator. (L, f,B)
defines the PDEs governing Z(x,¢) which includes the ve-
locity field U (x,t) over the domain (for instance the shallow
water equations in the case of water pollution, with Z(x,r) =
(h(x,7),U(x,t)), where h is the water level and U, the
water velocity). It should be also notice that a differential
observability gramian Lyapunov equation is needed since the
PDE is time-varying (reduced-model state matrix A is now
time-varying, since the velocity field U is). #; is the time
instant corresponding to navigation iteration k.

B. Discussion on an improved navigation strategy

In order to relax the assumption of constant or slowly time-
varying velocity field, we can derive an improved navigation
strategy, solution to the following optimal control problem
defined on a given time interval [0,T]:

M-1 M
—1 Y, Y, {log(df(r) — o) +log(B? —dj(r))Yar
i=1 j=it]
M-1 M
—u Y {log(diy(T) — &®) +log(B> — d7(T))}
i=1 j=i+1
—trace(W(T))
s.t. )'C'i(t) = Mi(l‘), i=1,...M,
%(T) =0,

—W(e) + AT (W (1) + W (D)A(r)

= 7CT()C1 (t),. ( ))C(Xl( ) (t))v

W (0) = owe[o T], (51)

where u; is the acceleration vector of mobile sensor i and R;
is the weighting matrix of accelerations.!.

This advanced strategy will not be experimented in this
paper.
V. APPLICATION TO 2D AIR POLLUTION

Now we consider the optimal navigation of a M-sensor
network towards the equilibrium configuration satisfying
necessary conditions (41), on domain Q = [—1km, 1km]*. The
ADPDE parameters used in the simulation are given in table
I, where the velocity field U = (Uy,Uy) is supposed to be
uniform over the domain and constant with respect to time.

TABLE I
ADPDE PARAMETERS

U, U, K B.C. Dx.1)
2
10km /h

10km/h 1 Zpe(x,1) =0

The reduced model of the ADPDE is obtained by using
20 Legendre polynomials in each spatial direction as basis
functions and with y= —1e*.

In the simulation depicted in Fig. 1, the initial positions of
the sensors are randomly distributed over the domain. The
gradient-based navigation approach (47) is applied to reach
an optimal configuration denoted by some small circles,
with the parameters given in table II. Sensor interdistance
constraints are satisfied thanks to the potential F.

Fig. 2 presents how well the sensor network adapts itself
to a change in the wind velocity (U, Uy) that changes from
(10km/h,10km/h) to (—10km/h,5km/h). The initial config-
uration of the sensors corresponds to the final configuration
in Fig. 1.

IRather than using a double integrator dynamics, we could introduce a
more complex dynamical model of each mobile sensor without restriction.



TABLE I
PARAMETERS OF THE POTENTIAL NAVIGATION

p a B & u
0.2 || 0.01km || 3km || 13 || 0.001

Trajectories of the mobile sensors

E o-
=

-0.2 4
0.4
-0.6 4
-0.8

1 T T T T T T T T 1

1 0.8 0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x (km)
Fig. 1. Trajectories of the 20-sensor network with level curves correspond-

ing to the equilibrium ADPDE solution (reduced-model field).

It appears that the sensors tend to localise themselves at
extremities of the concentration field.

VI. CONCLUSIONS

In this paper, a novel approach has been proposed for the
goal of real-time planning of a mobile sensor network for
environmental monitoring applications in either 1D, 2D or
3D. The control goal is to reach an optimal location of the
sensors in order to maximize an observability gramian-based
index under sensor interdistance constraints. Application to
a simple 2D example with a team of 20 mobile sensors has
demonstrated the effectiveness of this approach. The here-

Trajectories of the mobile sensors

y (km)

-1 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8

Fig. 2. Adaptation of 20-sensor network to a change of the wind velocity.

proposed methodology can be also applied to the problem
of optimally locating static sensors. Further researches will
be devoted to including energy and/or communication con-
straints, as an extension of the work in [10], but also to
inclusion of robustness w.r.t. measurement noise. Another re-
search perspective is the derivation, the effective computation
and the use of infinite-dimensional observability gramian, as
in [17] for the linear advection PDE.
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