Cédric Auger

Zohir Bouzid

Pierre Courtieu

Sébastien Tixeuil

Xavier Urbain

Certified Impossibility Results for Byzantine-Tolerant Mobile Robots

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

R A P P O R T D E R E C H E R C H E L R I

CERTIFIED IMPOSSIBILITY RESULTS FOR BYZANTINE-TOLERANT MOBILE ROBOTS 1 Introduction

Networks of static and/or mobile sensors (that is, robots) [START_REF] Flocchini | Distributed Computing by Oblivious Mobile Robots[END_REF] received increasing attention in the past few years from the Distributed Computing community. On the one hand, the use of cooperative swarms of inexpensive robots to achieve various complex tasks in potentially hasardous environments is a promising option to reduce human and material costs and assess the relevance of Distributed Computing in a practical setting. On the other hand, execution model differences warrant extreme care when revisiting "classical results" from Distributed Computing, as very small changes in assumed hypotheses may completely change the feasibility of a particular problem. Negative results such as impossibility results are fundamental in Distributed Computing to establish what can and cannot be computed in a given setting, or permitting to assess optimality results through lower bounds for given problems. Two notorious examples are the impossibility of reaching consensus in an asynchronous setting when a single process may fail by stopping unexpectedly [START_REF] Michael | Impossibility of distributed consensus with one faulty process[END_REF], and the impossibility of reliably exchanging information when more than one third of the processes can exhibit arbitrary behaviour [START_REF] Marshall | Reaching agreement in the presence of faults[END_REF]. As noted by Lamport [START_REF] Lamport | The byzantine generals problem[END_REF], correctly proving results in the context of Byzantine (a.k.a. arbitrary behaviour capable) processes is a major challenge, as [they knew] of no area in computer science or mathematics in which informal reasoning is more likely to lead to errors than in the study of this type of algorithm.

An attractive way to assess the validity of distributed algorithm is to use tool assisted verification, be it based process algebra [START_REF] Bezem | Formalizing process algebraic verifications in the calculus of constructions[END_REF][START_REF] Fokkink | Modelling Distributed Systems[END_REF], local computations [START_REF] Litovsky | Graph relabelling systems and distributed algorithms[END_REF], Event-B [START_REF] Cansell | Logics of Specification Languages, chapter The Event-B Modelling Method: Concepts and Case Studies[END_REF], COQ [START_REF] Castéran | Certifying distributed algorithms by embedding local computation systems in the coq proof assistant[END_REF], HOL [START_REF] Chou | Mechanical verification of distributed algorithms in higher-order logic[END_REF], Isabelle/HOL [START_REF] Küfner | Formal verification of distributed algorithms -from pseudo code to checked proofs[END_REF], or TLA [START_REF] Lamport | The byzantine generals problem[END_REF][START_REF] Lamport | Byzantizing paxos by refinement[END_REF] that can enjoy an Isabelle back-end for its provers [START_REF] Cousineau | TLA + Proofs[END_REF]. Surprisingly, only few works consider using mechanized assistance for networks of mobile entities, be it population protocols [START_REF] Deng | Verifying self-stabilizing population protocols with coq[END_REF][START_REF] Clément | Guidelines for the verification of population protocols[END_REF] or mobile robots [START_REF] Devismes | Optimal grid exploration by asynchronous oblivious robots[END_REF][START_REF] Bonnet | Brief announcement: Discovering and assessing fine-grained metrics in robot networks protocols[END_REF]. In this paper, our goal is to propose a formal provable framework in order to prove positive or negative results for localised distributed protocols in mobile robotic networks, based on recent advances in mechanical proving and related areas, and in particular on proof assistants. Proof assistants are environments in which a user can express programs, state theorems and develop interactively proofs that will be mechanically checked (that is machine-checked). They have been successfully employed for various tasks such as the formalisation of programming language semantics [START_REF] Leroy | A formally verified compiler back-end[END_REF][START_REF] Mccarthy | Correctness of a compiler for arithmetic expressions[END_REF], verification of cryptographic protocols [START_REF] Almeida | Full proof cryptography: verifiable compilation of efficient zero-knowledge protocols[END_REF], certification of RSA keys [START_REF] Théry | Primality proving with elliptic curves[END_REF], mathematical developments as involved as the 4-colours [START_REF] Gonthier | Formal proof-the four-color theorem[END_REF] or Feit-Thompson [START_REF] Gonthier | Engineering mathematics: the odd order theorem proof[END_REF] theorems.

Our contribution

We developed a general framework relying on the COQ proof assistant to prove possibility and impossibility results about mobile robotic networks. The key property of our approach is that its underlying calculus is of higher order: instead of providing the code of the distributed protocols executed by the robots, we may quantify universally on those programs/algorithms, or just characterize them with an abstract property. This genericity makes this approach complementary to the use of model-checking methods for verifying distributed algorithms [START_REF] Cadilhac | Evaluating complex MAC protocols for sensor networks with APMC[END_REF][START_REF] Clément | Guidelines for the verification of population protocols[END_REF][START_REF] Devismes | Optimal grid exploration by asynchronous oblivious robots[END_REF] that are highly automatic, but address mainly particular instances of algorithms. In particular, quantifying over algorithms allows us to express in a natural way impossibility results.

We illustrate how our framework allows such certification by providing COQ proofs of two earlier impossibility and lower bound theorems by Bouzid et al. [START_REF] Bouzid | Optimal byzantineresilient convergence in uni-dimensional robot networks[END_REF], guaranteeing soundness of the first one, and of the SSYNC fair version of the second one. More precisely, in the context1 of oblivious robots that are endowed with strong global multiplicity detection and whose movements are constrained along a rational line, and assuming that the demon (that is, the way robots are scheduled for execution) is fair, the convergence problem cannot be solved if respectively not less than one half (Theorem 1) and not less than one third (Theorem 2) of robots are Byzantine.

The interestingly short size of the COQ proofs we obtained using our framework not only makes it easily human-readable, but is also very encouraging for future applications and extensions of our framework.

Related work.

With reference to proof assistants, Küfner et al. [START_REF] Küfner | Formal verification of distributed algorithms -from pseudo code to checked proofs[END_REF] develop a methodology to develop ISABELLE-checked proofs of properties of faulttolerant distributed algorithms in a asynchronous message passing style setting. This work's motivations are similar to ours, however the setting (message passing distributed algorithms) is different, moreover it focuses on positive results only whereas we provide negative results, i.e. proofs of impossibility.

Chou [START_REF] Chou | Mechanical verification of distributed algorithms in higher-order logic[END_REF] develops a methodology based on the HOL proof assistant to prove properties of concrete distributed algorithms via proving simulation with abstract ones. The methodology does not allow to prove impossibility results. Casteran et al. [START_REF] Castéran | Certifying distributed algorithms by embedding local computation systems in the coq proof assistant[END_REF] propose proofs of negatives results in COQ for some kinds of distributed algorithms. Though very interesting, their approach is based on labeled graph rewriting and does not address robot networks. Another interesting approach is that of Deng and Monin [START_REF] Deng | Verifying self-stabilizing population protocols with coq[END_REF] that uses COQ to prove the correctness of distributed self-stabilizing protocols in the population protocol model. This model permits to describe interactions of an arbitrary large size of mobile entities, but the considered entities lack movement control and geometric awareness that are characteristic of robot networks such as those we envision, and is thus not suitable for our purpose. This approach also only considers positive results.

Preliminary attempts for automatically proving impossibility results in robot networks properties are due to Devismes et al. [START_REF] Devismes | Optimal grid exploration by asynchronous oblivious robots[END_REF] and to Bonnet et al. [START_REF] Bonnet | Brief announcement: Discovering and assessing fine-grained metrics in robot networks protocols[END_REF]. The first paper uses LUSTRE formalism and model-checking to search exhaustively all possible 3-robots protocols that explore every node of a 3 × 3 grid (and conclude that no such algorithm exists). The second paper uses an ad hoc tool to generate all possible unambiguous protocols of k robots operating in an n-sized ring (k and n are given as parameters) and check exhaustively the properties of the generated protocols (and in the paper conclude that no protocol of 5 robots on a 10 sized ring can explore all nodes infinitely often with every robot). Those two proposals differ from our goal in several ways. Firstly, they are limited to a so called discrete space, where the robots may only occupy a finite number of positions, while we focus on the more realistic setting where an infinite number of positions are possible for the robots. Also, contrary to both, we do not want to restrict our tools to a particular setting (e.g. 3 robots on a 3 × 3 grid), but rather have results that are general with respect to all considered parameters. Then, unlike the second proposal, we want universal impossibility results (i.e. consider not only unambiguous protocols -that permit to limit combinatorial explosion to some extend -but also ambiguous ones -resulting from symmetrical situations that are likely to occur in practice). Finally, we want to integrate the possibility of misbehaving robots (e.g. robots crashing or exhibiting arbitrary and potentially malicious behaviour), rather than assuming that all considered robots are correct. This enables to state formally and assess the amount of faults and attack resilience a given robot protocol may guarantee, which is crucial when robots are deployed in dangerous areas as it is often the case.

Roadmap. The sequel of the paper is organized as follows. First, we recall the context of robot networks in Section 2. Then, in Section 3 we give a brief description of COQ and its main principles. Section 4 contains the basis of our formal model for robot networks, and some useful theorems. We show in Section 5 how convenient it is to carry out formal proofs of various properties, as we study previous results by Bouzid et al. [START_REF] Bouzid | Optimal byzantineresilient convergence in uni-dimensional robot networks[END_REF]. We provide some concluding remarks in Section 6.

Note that for the sake of readability we slightly simplified COQ notations (mostly to avoid syntactic sugar). The actual development for COQ 8.4pl3 is available at http://pactole.lri.fr/

Robot Networks

We borrow most of the notions in this section from [START_REF] Suzuki | Distributed anonymous mobile robots: Formation of geometric patterns[END_REF][START_REF] Agmon | Fault-tolerant gathering algorithms for autonomous mobile robots[END_REF][START_REF] Flocchini | Distributed Computing by Oblivious Mobile Robots[END_REF]. The network consists in a set of n mobile entities, called robots, arbitrarily located in the space. Robots cannot communicate directly by sending messages to each others. Instead, their communication is based on vision: they observe the positions of other robots, and based on their observations, they compute destination points to which they move.

Robots are homogeneous and anonymous: they run the same algorithm (called robogram), they are completely indistinguishable by their appearance, and no identifier can be used in their computations. They are also oblivious, i.e. they cannot remember any previous observation, computation or movement performed in any previous step.

For simplicity, we assume that robots are without volume, i.e. they are modeled as points that cannot obstruct the movement or vision of other robots. Visibility is global: the entire set of robots can always be seen by any robot at any time. Robots that are able to determine the exact number of robots occupying a same position enjoy strong multiplicity detection ; if they can only know if a given position is inhabited or not, their multiplicity detection is said to be weak. Each robot has its own local coordinate system and its own unit measure. They do not share any origin, orientation, and more generally any frame of reference.

The multiset of positions of robots at a given time is called a configuration. We assume that the actions of robots are controlled by a fictitious entity called the demon (or adversary). Each time a robot is activated by the demon, it executes a complete three-phases cycle: Look, Compute and Move. During the Look phase, using its visual sensors, the robot gets a snapshot of the current configuration. Then, based only on this observed configuration, it computes a destination in the Compute phase using its robogram and moves towards it during the subsequent Move phase. Movements of robots are atomic, i.e. the demon cannot stop them before they reach the destination.

A run (or execution) is an infinite sequence of rounds. During each round, the demon chooses a subset of robots and activates them to execute a cycle. We assume the scheduling to be fair, i.e. each robot is activated infinitely often in any infinite execution, and atomic in the sense that robots that are activated at the same round execute their actions synchronously and atomically. An atomic demon is called fully-synchronous (FSYNC) if all robots are activated at each round, otherwise it is said to be semi-synchronous (SSYNC). The impossibility results we focus on are given in the FSYNC and SSYNC models, and hence remain valid in less constrained ones (e.g. non-atomic, unfair scheduling, etc.).

A robot is Byzantine (or faulty) if it does not comply with the robogram and behaves in arbitrary and unpredictable way. We assume that the movements of Byzantine robots are controlled by the adversary that uses them in order to make the algorithm fail. Let f ∈ [0, n] be a parameter that denotes the number of faulty robots. Robots that are not Byzantine are called correct. Correct robots are supposed to know an upper bound on the number of Byzantine robots.

The COQ Proof Assistant

COQ is based on type theory. Its formal language can express objects, properties and proofs in a unified way; all these are represented as terms of an expressive λ-calculus: the Calculus of Inductive Constructions (CIC) [START_REF] Coquand | Inductively defined types[END_REF]. λ-abstraction is denoted fun x:T ⇒ t, and application is denoted t u. A proof development with COQ consists in trying to build, interactively and using tactics, a λ-term the type of which corresponds to the proven theorem (Curry-Howard style).

The kernel of COQ is a proof checker which checks the validity of proofs written as CIC-terms. Indeed, in this framework, a term is a proof of its type, and checking a proof consists in typing a term. Roughly speaking, the small kernel of COQ simply type-checks λ-terms to ensure soundness.

A very powerful feature of COQ is the ability to define inductive types to express inductive data types and inductive properties. For example the following inductive types define the data type nat of natural numbers, O and S (successor) being the two constructors, and the property even of being an even natural number. In this setting the term even_S(S(S O))(even_S O (even_O)) is of type even(S(S(S(S O)))) so it is a proof that 4 is even. We also make use of coinductive types to express infinite data types and properties on them. For example in the robot networks setting a set of robots has an infinite behaviour. For example one can define infinite streams of natural numbers and the property all_even of being a infinite stream of even natural number as follows:

The formal model

We present our formal model and the relevant notations. Robots are anonymous, however we need to identify some of them in the proofs. Thus, we consider the union of two given disjoint finite sets of identifiers: G referring to robots that behave correctly, and B referring to the set of Byzantine ones2 . Note that those sets are isomorphic to segments of N but we keep our formalisation as abstract as possible. If needed in the model, we can make sure that names are not used by the embedded algorithm, as shown below.

Variable G B : finite.

Inductive ident := Good : G → ident | Byz : B → ident.
Locations, Positions, Similarities. Robots are distributed in space, at places called locations. We define a position as a function from a set of identifiers to the space of locations. As the space of locations in the paper of Bouzid et al. [START_REF] Bouzid | Optimal byzantineresilient convergence in uni-dimensional robot networks[END_REF] is an infinite line, we use Q for locations. Note that going from one to many dimensions is not a problem with respect to our formalisation. Throughout this article, and unless specified otherwise gp denotes a position for correct robots, and bp a position for Byzantine ones. The position of all robots is then given by the combination gp ⊎ bp. Robots compute their target position from the observed configuration of their siblings in the considered space. We also define permutations of robots, that is bijective applications from G ∪ B to itself, usually denoted hereafter by Greek letters. Moreover, any correct robot is supposed to act as any other correct robot in the same context, that is, with a similar perception of the environment. For two rational numbers k = 0 and t, a similarity is a function mapping a location x to k × (xt), denoted [[k, t]]. Rational number k is called the homothetic factor, and -k × t is called the translation factor. For simplicity we restrict this definition to the uni-dimensional case; otherwise rotational factors may have to be provided too. Similarities are invertible; they form a group for the law of composition (This operation will be (abusively) written [[k, t]](gp ⊎ bp). Similarities will be used as transformations of frames of reference.

[[k, t]] -1 = [[k -1 , -k -1 × t]]).
Robograms. We now model what an algorithm r embedded in a correct robot is. For a robot r-id i , a computation takes as an input an entire position gp ⊎ bp as seen by r-id i , in its own frame of reference (scale, origin, etc.),3 and returns a rational number l i corresponding to a location (the destination point) in the same frame.

Remark 1. Recall that robots in G cannot decide whether another robot is Byzantine, and have no access to a symmetry breaking mechanism such as an identifier. In such a case: the result of r must be invariant by permutations of robots. This is a fundamental property that any embedded algorithm must fulfil.

Embedded computation algorithms verifying Remark 1 are called robograms, they are naturally defined in our COQ model as follows, two sets (i.e. objects of type finite). Note that this definition is completely abstract and makes no use of concrete code whatsoever.

Record robogram := { algo : position → location ; AlgoMorph : ∀ p q σ, (q ≡ p • σ -1) → algo p = algo q }.

Computation. So as to provide to r the locations of robots in terms of the considered robot's local frame of reference, and to obtain an absolute location in the global coordinate system from the result of r (thus local) we use the notion of similarity. Let us consider a robot r-id i the location of which is at t, and the scale of which is k times the global one, defining a similarity [[k, t]]. To obtain the resulting location in terms of the global coordinate system:

1. We center the origin of the position in t, and we zoom according to the homothetic factor k to express the position in the local frame of r-id i . 2. The algorithm r computes a local destination point. 3. We apply the inverse of the similarity to obtain the global destination point, that is: according to the global coordinate system.

We denote this operation r

[[k,t]] (gp ⊎ bp) = [[k, t]] -1 (r([[k, t]](gp ⊎ bp))
). This way we ensure that the global destination point does not depend on the individual frame of reference of robots. 4Demons and Properties. A demon provides the position for Byzantine robots, and selects the correct robots to be activated at the current round. As noticed in Footnote 3, we may consider that the demon, acting as an adversary, selects also the scale of the frame of reference for each activated correct robot at each round. A demonic action is thus a record

Record demonic_action:= {locate_byz: B → location; frame: G → Q}. consisting of a position for Byzantine robots (locate_byz), and a function associating to each correct robot a rational number k such that k = 0 and the robot is not activated, or k = 0 and the robot is activated with a scale factor.The actual demon is simply an infinite sequence (stream) of demonic actions.

CoInductive demon := NextDemon: demonic_action → demon → demon.

Characteristic properties of demons include fairness and synchronous aspects. A demon (seen as a sequence) is locally fair for a robot (inductive property LocallyFairForOne) if either this robot is activated during the first demonic action, or if the robot is not activated during the first round but the sequel of the demon is locally fair for that robot. This is related to the classical notion of accessibility. The demon will be fair if it is locally fair for all robots and if its infinite sequel is fair. To be fully synchronous for a demon can be defined similarly. Recall that a fully synchronous demon is a particular case of fair demon such that all correct robots are activated at each round. This is done easily in our setting where we only have to state that the demonic action's frame never returns 0. An inductive property FullySynchronousForOne states that the first demonic action activates a given robot. A demon is then fully synchronous if FullySynchronousForOne holds for all robots and this demon, and if its infinite sequel is fully synchronous.

CoInductive FullySynchronous d :=

NextfullySynch: FullySynchronous (demon_tail d) → (∀ g, FullySynchronousForOne g d) → FullySynchronous d.

Execution. Finally, given an initial position for correct robots gp 0 , and a demon

D = (locate_byz i , frame i) i∈N
, we may define an infinite sequence (gp i) i∈N called the execution (from gp 0 according to D) as

gp i+1 (x) = r [[frame i (x),gp i (x)]] (gp i ⊎ bp i) if frame i (x) = 0 gp i (x) otherwise
Its type is thus:

CoInductive execution := NextExecution : (G → location) → execution → execution.

Case Study: Impossibility Proofs with Byzantine Behaviours

Let us illustrate how well-suited our formalisation is to prove impossibility results, with two theorems by Bouzid et al. [START_REF] Bouzid | Optimal byzantineresilient convergence in uni-dimensional robot networks[END_REF]. Those results address the problem known as convergence. Given any initial configuration of robots, the convergence problem requires correct robots to approach asymptotically the same, but unknown beforehand, location. That is, for every initial configuration, convergence requires the existence a point c in space such that for every ε > 0, there exists a time τ ε such that ∀τ > τ ε , all correct robots are within a distance of at most ε of c at τ . The impossibility results in [START_REF] Bouzid | Optimal byzantineresilient convergence in uni-dimensional robot networks[END_REF] are as follows:

Theorem 1 ([5], Thm 4.3). It is impossible to achieve convergence if n ≤ 2f in the FSYNC uni-dimensional model, where n denotes the number of robots and f denotes the number of Byzantine robots.

Theorem 2 ([5], Thm 4.4). Byzantine-resilient convergence is impossible for n ≤ 3f in the SSYNC uni-dimensional model and a 2-bounded demon.

Proofs of Impossibility. Providing a solution to a problem in robot networks usually implies giving a robogram such that the expected property holds at some point in the execution, whatever the demon (seen as an adversary, thus including the Byzantine robots) might do. More precisely, it amounts to showing that there exists a robogram such that for all demons, the property is eventually satisfied. An immediate way of proving such a fact is to provide the actual code for the robogram.

When it comes to impossibility proofs, one has to show instead that for all robogram pretending to be a solution, there exists a demon such that the considered robogram will fail. In fact, the usual attempts to achieve this involve looking for a stronger result: exhibiting a demon that will make any candidate robogram for solution to fail. In both cases the statement of such a result is quantified universally on robograms. Giving any concrete code will not help. However, working with higher-order mechanical theorem proving allows to consider programs as abstract objects and to quantify over them. Robograms will be just characterised by some invariants and the fact that they are supposed to be a solution of a considered problem.

The Theorems in our Formal Model. First of all we need to define formally the convergence problem. In the atomic FSYNC and SSYNC models, an execution (gp i) i∈N is said to be convergent when for any ε > 0 there exists a number of rounds N ε ∈ N and a location l ε (in the particular context of [START_REF] Bouzid | Optimal byzantineresilient convergence in uni-dimensional robot networks[END_REF], l ε ∈ Q) such that for all n > N ε , all correct robots at round n are no further than ε from

l ε . ∀ε > 0, ∃N ε ∈ N, l ∈ Q, ∀n > N ε , ∀x ∈ G, |gp n (x) -l ε | < ε
Convergence expresses that all correct robots will eventually be gathered forever in a disc of radius ε. That is: robots stay gathered forever in a disc of radius ε (the coinductive part). . . Remark 2. Our current model considers locations in Q, however the final destination (limit) for convergence is allowed to be in R \ Q, in which case the sequence of l ε i is a sequence in Q which has a limit in R.

A formal version of Theorem 1. Let us focus on Theorem 1. As the premises require the demon to be fully-synchronous (FSYNC model) we may as well define what a fully-synchronous demon is, as mentioned on page 10, and specialise with it a version of solution. It is worth noticing that our development contains a proof that a fully-synchronous demon is fair and that therefore a solution for any fair scheduler is also a solution for a FSYNC one. It may seem surprising that we use g both for correct and Byzantine robots. As a matter of fact, since unions are disjoint by construction, this notation just ensures that the sets of names share the same cardinal. Adding another arbitrary set b to the Byzantine part is thus a way of saying that there are at least as many Byzantine robots as correct ones. Further note that this expression of the theorem clearly states that there are at least 2 correct robots; this is not implicit (as no assumption can be in COQ): the considered set of correct robots is indeed a singleton added to a non-empty set.

This theorem and its complete formal proof can be found in our development, as Theorem no_solution in File NoSolutionFSYNC_2f.v. The file itself is a hundred lines long and relies on various lemmas provided by our framework.

A formal SSYNC fair version of Theorem 2. Akin to the previous theorem the addition of an arbitrary set b denotes that the total number of robots is not more than three times the number of Byzantine ones.

We prove in fact a sligthly different result, instead of assuming the demon 2-bounded (that is, the demon may execute a particular robot at most two times between any two executions of any other robot [START_REF] Dubois | A taxonomy of daemons in self-stabilization[END_REF]), we show that the impossibility result holds for a demon that is fair in SSYNC, and for a number f of Byzantine robots such that 2f < n ≤ 3f where n is the total number of robots. The bound about f and n by Bouzid et al. can be obtained by combining this theorem with the previous one and using lemma solution_FAIR_FSYNC above.

Theorem th2': ∀ (g b: finite) (g = ∅) → (r : robogram ((b ⊎ g) ⊎ g) (b ⊎ g)), ¬ solution r.
As before, the theorem and its complete formal proof can be found in our development, as Theorem no_solution in File NoSolutionFAIR_3f.v. The file itself is 125 lines long and relies on various lemmas provided by our framework.

Remarks and Perspectives

The choice of the usual topology of Q as the basic one is driven by three main reasons. First, it allows arbitrary homotheties (which is not the case for N). Then, it preserves arbitrary precision (thus excluding IEEE754 floating point numbers). Finally, it is axiom-free, while R is not. As noticed in Remark 2, considering rational numbers is not a handicap for convergence properties.

The total size of our development, including the framework and the proofs of the aforementioned theorems is quite small, as it is approximately 450 lines of specifications and 950 lines of proofs. This is encouraging with reference to how adequate our framework is, as it indicates that proofs are not too intricate and remain human readable.

It is worth noticing that our formalism is robust enough to take into account several alternative models with few modifications. For instance, and thanks to the high abstraction level of our framework, considering a multi-dimensional space (instead of just a line) only amounts to considering tuples for locations (and not simply rational numbers) and adding a rotation for some similarities. The effort is thus put on the actual proof and not on the modeling tasks. Hence, a first short-term perspective is to tackle impossibility proofs for convergence on the rational plane or three dimensional space. Similarly, going from strong multiplicity to weak multiplicity is only a redefinition of the equality relation between positions. . . The same remark applies to demons' characteristics. Adding constraints such as being fully-synchronous is just (i) Defining this constraint, and (ii) Adding this constraint as an assumption in the statement of a theorem. Of course proofs may be very demanding in all those models, but we want to emphasise that relevant adaptations of our framework are rather non-expensive.

An noteworthy added benefit of our abstract formalisations is that keeping them as general as possible may lead to relaxing premises of theorems, thus potentially discovering new results (e.g. formalizing weaker daemons [START_REF] Dubois | A taxonomy of daemons in self-stabilization[END_REF] and weaker forms of Byzantine behaviours could lead to stronger impossibility results).

Finally, we plan to use our development for positive results also, that is, to prove properties of concrete algorithms. The language of COQ can handle datatypes, programs, and properties about them. Our general framework should allow for certification of embedded algorithms, as both concrete code for robots and global properties of the network fit in. Notice that such proofs would guarantee the expected properties in infinite spaces, i.e. without limits on locations.

Inductive

 nat : Set := O : nat | S : nat → nat. Inductive even : nat → Prop := | even_O : even O | even_S : ∀ n : nat, even n → even (S(S n)).

CoInductive

 stm : Set := | scons : nat → stm → stm. CoInductive all_even : stm → Prop := | Ceven_all: ∀ n s, even n → all_even s → all_even (scons n s).

Record

 position:= { gp: G → location ; bp: B → location }. (* Getting the location of a robot *) Definition locate p (id: ident): location := match id with | Good g ⇒ p.(gp) g | Byz b ⇒ p.(bp) b end.

 Similarities can be extended to positions, by applying the similarity transform to the extracted location. Definition similarity (k t : Q) (p:position) : position := { gp := fun n ⇒ k * (p.(gp) n -t) ; bp := fun n ⇒ k * (p.(bp) n -t) }.

Inductive

 LocallyFairForOne g (d : demon) : Prop := | ImmediatelyFair : ((demon_head d).frame g) = 0 → LocallyFairForOne g d | LaterFair : ((demon_head d).frame g) = 0 → LocallyFairForOne g (demon_tail d) → LocallyFairForOne g d. CoInductive Fair (d : demon) : Prop := AlwaysFair : Fair (demon_tail d) → (∀ g, LocallyFairForOne g d) → Fair d.

 and its computation is reflected by the following corecursive function execute: Definition round (r : robogram) (da : demonic_action) (gp: G → location) : G → location := fun g ⇒ let k := da.(frame) g in let t := g.(gp) in if k = 0 then t else t + 1 k * (algo r ([[k,t]]{gp := gp; bp := locate_byz da})). Definition execute (r : robogram): demon → (G → location) → execution := cofix execute d gp := NextExecution gp (execute (demon_tail d) (round r (demon_head d) gp)).

CoInductive

 imprisonned (prison_center : location) (radius : Q) (e : execution) : Prop := InDisk : (∀ g, [(prison_center -execution_head e g)] <= radius) → imprisonned prison_center radius (execution_tail e) → imprisonned prison_center radius e. . . . disc that they reach eventually (the inductive part) Inductive attracted (pc: location) (radius: Q) (e: execution): Prop := | Captured : imprisonned pc radius e → attracted pc radius e | WillBeCaptured : attracted pc radius (execution_tail e) → attracted pc radius e. A solution to the Convergence problem is a robogram such that for any initial position and assuming a fair demon, the execution eventually imprisons all correct robots. Definition solution (r: robogram) : Prop := ∀ (gp: G → location), ∀ d: demon, Fair d → ∀ ε: Q, 0 < ε → ∃ lim: location, attracted lim ε (execute r d gp).

Definition

 solution_FSYNC (r : robogram) : Prop := ∀ (gp : G → location), ∀ (d : demon), FullySynchronous d → ∀ ε: Q, 0 < ε → ∃ lim: location, attracted lim ε (execute r d gp). Lemma solution_FAIR_FSYNC : ∀ r, solution r → solution_FSYNC r. Theorem th1: ∀ (g b:finite) (g = ∅) → (r: robogram ({•} ⊎ g) (b ⊎ (g ⊎ {•}))), ¬ solution_FSYNC r.

Distributed Robot model assumptions are presented in Section

We will omit G and B most of the time, except in Section 5 where they characterise the number of robots.

Note that the scale factor is taken anew at each cycle for oblivious robots; in the context of Byzantine failures, it is convenient to consider it as chosen by some adversary.

Note that in this presentation, any considered robot perceives itself as the origin of its local frame of reference

⋆ This work was supported in part by the Digiteo Île-de-France project PACTOLE 2009-38HD.