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Abstract

Let (Xi)i≥1 be an i.i.d. sequence of mean zero random variables,

Sn := X1 + · · · + Xn and V 2

n := X2

1 + · · · + X2

n. We consider four se-

quences of partial sums processes: the broken lines with vertices at the

points (k/n, Sk/Vn) or (V 2

k /V
2

n , Sk/Vn) and the corresponding random

step functions. We prove that each of them converges weakly in C[0, 1] or
D[0, 1] to the Brownian motion if and only if X1 belongs to the domain

of attraction of the normal distribution. These results contrast with the

classical Donsker Prohorov invariance principles where the N.S.C. for such

convergences is EX2

1 < ∞.

Résumé

Soit (Xi)i≥1 une suite de variables aléatoires i.i.d. centrées, Sn :=
X1 + · · · + Xn et V 2

n := X2

1 + · · · + X2

n. Nous considérons quatre suites

de processus de sommes partielles : les lignes polygonales de sommets les

points (k/n, Sk/Vn) ou (V 2

k /V
2

n , Sk/Vn) et les fonctions aléatoires étagées
correspondantes. Nous prouvons que chacune de ces suites converge en

loi dans C[0, 1] ou D[0, 1] vers le mouvement brownien si et seulement

si X1 est dans le domaine d'attraction de la loi normale. Ces résultats

contrastent avec les principes d'invariance de Donsker Prohorov classiques

pour lesquels la C.N.S. est EX2

1 < ∞.
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1 Introduction

Many limit theorems in the theory of probability deal with the asymptotic
behavior of sums Sn = X1+· · ·+Xn of independent identically distributed mean
zero random variables, normalized by some deterministic sequence (bn). When
the Xi's are square integrable, the classical choice of bn =

√
n is used to obtain

central limit theorems as well as invariance principles in C[0, 1] or D[0, 1]. Self-
normalization consists here in replacing bn by Vn = (X2

1 + · · ·+X2
n)

1/2. There
is of course a strong statistical interest in this replacement. For instance the
classical Student t-statistic can be easily expressed in term of self-normalized
sums. It is now well established that in general self-normalization improves the
asymptotic properties of sums of independent random variables.

A rich litterature is devoted to limit theorems for self-normalized sums. Lo-
gan, Mallows, Rice and Shepp [11] investigate the various possible limit distri-
butions of self-normalized sums. Giné, Götze and Mason [8] prove that Sn/Vn

converges to the Gaussian standard distribution if and only if X1 is in �DAN�,
the domain of attraction of the normal distribution (the symetric case was pre-
viously treated in Gri�n and Mason [10]). Egorov [7] investigates the non
identically distributed case. Bentkus and Götze [3] obtain the rate of conver-
gence of Sn/Vn when X1 ∈ DAN . Gri�n and Kuelbs [9] prove the LIL for
self-normalized sums when X1 ∈ DAN . Moderate deviations (of Linnik's type)
are studied in Shao [15] and Christiakov and Götze [5]. Large deviations (of
Cramér-Cherno� type) are investigated in Shao [14] without moment condi-
tions.

Chuprunov [6] gives invariance principles for various partial sums processes
under self-normalization in C[0, 1] or D[0, 1]. Ra£kauskas and Suquet [13] ob-
tained the weak convergence in the best possible Hölder space of the adap-
tive broken line of self-normalized partial sums of symetric i.i.d. Xi's when
X1 ∈ DAN . In the present contribution we are concerned with invariance
principles in the more classical frameworks of C[0, 1] or D[0, 1] for processes of
self-normalized partial sums of i.i.d. Xi's in DAN, without symetry assumption.
We prove that these processes converge to the Brownian motion in C[0, 1] or
D[0, 1] if and only if X1 ∈ DAN . This improves on Chuprunov's result in the
i.i.d. case.

Let us �x now the notations used throughout the paper. X1, . . . , Xn, . . . are
i.i.d. mean zero random variables. Set S0 = 0, V0 = 0,

Sk = X1 + · · ·+Xk, V 2
k = X2

1 + · · ·+X2
k for k = 1, 2, . . .

When Vn = 0, we adopt the convention that Sk/Vn := 0 (k ≤ n). We consider
the following processes:

• the standard (non normalized) broken line process

ξn(t) = S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1];

• the adaptive broken line process ζn = (ζn(t), t ∈ [0, 1]) which is de�ned by
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linear interpolation of the points
(
V 2
k /V

2
n , Sk/Vn

)
, k = 0, . . . , n,

whenever Vn > 0 and by ζn = 0 when Vn = 0;

• the standard (non normalized) step process

Wn(t) = S[nt], t ∈ [0, 1];

• the adaptive step process Zn = (Zn(t), t ∈ [0, 1]) which whenever Vn > 0
is constant on each intervall [V 2

k /V
2
n , V

2
k+1/V

2
n ) and satis�es

Zn

(V 2
k

V 2
n

)
=

Sk

Vn
k = 0, . . . , n,

while for Vn = 0, Zn := 0.

2 Donsker-Prohorov invariance principle under

self-normalization

Before stating the results let us remind that X1 ∈ DAN means that there exists
a sequence ℓn ↑ ∞ such that

ℓ−1
n n−1/2Sn

D−→ N(0, 1). (1)

This yields that

ℓ−2
n n−1V 2

n
P−→ 1. (2)

We have moreover for each τ > 0,

nP (|X1| > τℓn
√
n) → 0, (3)

ℓ−2
n E (X2

1 ; |X1| ≤ τℓn
√
n) → 1, (4)

nE (X1; |X1| ≤ τℓn
√
n) → 0, (5)

see for instance Araujo and Giné [1], Chap. 2, Cor. 4.8 (a), Th. 6.17 (i) and
Cor. 6.18 (b). Here and in all the paper (X;E) means the product of the
random variable X by the indicator function of the event E.

Let us also recall O'Brien's [12] result: X1 ∈ DAN if and only if

V −1
n max

1≤k≤n
|Xk| P−→ 0. (6)

Throughout the paper, W denotes a standard Brownian motion.

Theorem 2.1 The convergence

ξn
Vn

D−→ W (7)

holds in the space C[0, 1] if and only if X1 ∈ DAN.
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Theorem 2.2 The convergence

V −1
n ζn

D−→ W (8)

holds in the space C[0, 1] if and only if X1 ∈ DAN.

Let us remark that the necessity of X1 ∈ DAN in both Theorem 2.1 and
Theorem 2.2 follows from Giné, Götze and Mason [8]. Let us notice also that
(1) or (8) both exclude the trivial case P (X1 = 0) = 1, so that almost surely
Vn > 0 for large enough n.

Proof of theorem 2.1. First we prove the convergence of �nite dimensional
distributions (f.d.d.) of the process (V −1

n ξn) to the corresponding f.d.d. of the
Wiener process W.

To this aim, consider the process Wn = (S[nt], t ∈ [0, 1]). By (6) applied to
the obvious bound

sup
0≤t≤1

V −1
n |ξn(t)−Wn(t)| ≤ V −1

n max
1≤k≤n

|Xk|,

the convergence of f.d.d. of V −1
n ξn follows from those of the process V −1

n Wn.
Let 0 ≤ t1 < t2 < · · · < td ≤ 1 and let (ℓn) be the (non random) sequence

introduced above. From (1), independence of the X ′
is and the fact that ℓ2[nt]ℓ

−2
n

converges to 1 (see e.g. Remark 3.2 in [13]), we get

ℓ−1
n n−1/2

(
S[nt1], S[nt2] − S[nt1], . . . , S[ntd] − S[ntd−1]

) D−→
(
W (t1),W (t2)−W (t1), . . . ,W (td)−W (td−1)

)
.

Now (2) and the continuity of the map

(x1, x2, . . . , xd) 7→ (x1, x2 + x1, . . . , xd + · · ·+ x1)

yields the convergence of f.d.d. of V −1
n Wn. The convergence of �nite dimensional

distributions of the process V −1
n ξn is thus established.

To prove the tightness we shall use Theorem 8.3 from Billingsley [4]. Since
ξn(0) = 0, the proof reduces in showing that for all ε, η > 0 there exist n0 ≥ 1
and δ, 0 < δ < 1, such that

1

δ
P
{

sup
1≤i≤nδ

V −1
n |Sk+i − Sk| ≥ ε

}
≤ η, n ≥ n0, (9)

for all 1 ≤ k ≤ n.
Let us introduce the truncated variables

Yi := ℓ−1
n (Xi; X2

i ≤ τ2ℓ2nn), i = 1, . . . , n,

where ℓn is de�ned above and τ will be chosen later. Denote by S̃k and Ṽk the
corresponding partial sums with their autonormalizing random variables:

S̃k = Y1 + · · ·+ Yk, Ṽk = (Y 2
1 + · · ·Y 2

n )
1/2, k = 1, . . . , n.
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Then we have

P
{

sup
1≤i≤nδ

V −1
n |Sk+i − Sk| ≥ ε

}
≤ A+B + C, (10)

where

A := P
{

sup
1≤i≤nδ

|S̃k+i − S̃k| ≥ ε
√
n/2

}
,

B := P{Ṽn <
√
n/2},

C := nP{|X1| ≥ τℓn
√
n}.

Due to (5) we can choose n1 such that
√
n|EY1| ≤ 1/4 for n ≥ n1. Then with

n ≥ n1 and δ ≤ ε we have

A ≤ P
{

max
1≤i≤nδ

∣∣∣
k+i∑

j=k+1

(Yj −EYj)
∣∣∣+ nδ|EY1| ≥

√
nε/2

}

≤ P
{

max
1≤i≤nδ

∣∣∣
k+i∑

j=k+1

(Yj −EYj)
∣∣∣ ≥

√
nε/4

}
.

By Chebyshev's inequality and Rosenthal inequality with p > 2, we have for
each 1 ≤ k ≤ nδ

P
{
n−1/2

∣∣∣
k+nδ∑

j=k+1

(Yj −EYj)
∣∣∣ ≥ ε

8

}
≤ 8p

εpnp/2
E

∣∣∣
k+nδ∑

j=k+1

(Yj −EYj)
∣∣∣
p

≤ 8p

εpnp/2

[
(nδ)p/2(EY 2

1 )
p/2 + nδE |Y1|p

]
.

By (4) we can choose n2 such that

3/4 ≤ EY 2
1 ≤ 3/2 for n ≥ n2. (11)

Then we have E |Y1|p ≤ 2n(p−2)/2τp−2 and then assuming that τ ≤ δ1/2 we
obtain

P
{
n−1/2

∣∣∣
k+nδ∑

j=k+1

(Yj −EYj)
∣∣∣ ≥ ε

8

}
≤ 8p

εpnp/2

[
2p/2(nδ)p/2 + δnp/2τp−2

]

≤ 2 · 16pδp/2
εp

.

Now by Ottaviani inequality we �nd

A ≤ δη

3
, (12)

provided δp/2 ≤ εp/(4 · 16p) and δ(p−2)/2 ≤ ηεp/(6 · 16p).
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Next we consider B. Since n−1
E Ṽ 2

n = EY 2
1 we have by (11) n−1

E Ṽ 2
n ≥ 3/4,

for n ≥ n2. Furthermore

B ≤ P{n−1|Ṽ 2
n −E Ṽ 2

n | ≥ 1/2} ≤ 4n−1
EY 4

1 ≤ 4τ2EY 2
1 ≤ δη/3, (13)

provided n ≥ n2 and τ2 ≤ δη/18.
Finally choose n3 such that C ≤ ηδ/3 when n ≥ n3 and join to that the

estimates (12, 13) to conclude (9). The proof is completed.

Proof of theorem 2.2.

Due to Theorem 2.1, it su�ces to check that
∥∥V −1

n ξn − ζn
∥∥
∞

goes to zero
in probability, where ‖f‖∞ := sup0≤t≤1 |f(t)|. To this end let us introduce the
random change of time θn de�ned as follows. When Vn > 0, θn is the map from
[0, 1] onto [0, 1] which interpolates linearly between the points (k/n, V 2

k /V
2
n ),

k = 0, 1, . . . , n. When Vn = 0, we simply take θn = I, the identity on [0, 1].
With the usual convention Sk/Vn := 0 for Vn = 0, we always have

ζn
(
θn(t)

)
= V −1

n ξn(t), 0 ≤ t ≤ 1. (14)

Clearly for each t ∈ [0, 1],

∣∣∣
V 2
[nt]

V 2
n

− θn(t)
∣∣∣ ≤ max

1≤k≤n

X2
k

V 2
n

.

It follows by (6) that

sup
0≤t≤1

∣∣∣
V 2
[nt]

V 2
n

− θn(t)
∣∣∣ P−→ 0.

By Lemma 3.1 in [13],

sup
0≤t≤1

∣∣∣
V 2
[nt]

V 2
n

− t
∣∣∣ P−→ 0.

So denoting by I the identity on [0, 1] we have

‖θn − I‖∞
P−→ 0. (15)

Let ω(f ; δ) := sup{|f(t)− f(s)|; |t− s| ≤ δ} denote the modulus of continuity
of f ∈ C[0, 1]. Then recalling (14) we have
∥∥V −1

n ξn − ζn
∥∥
∞

= sup
0≤t≤1

∣∣V −1
n ξn

(
θn(t)

)
− ζn

(
θn(t)

)∣∣ ≤ ω
(
V −1
n ξn; ‖θn − I‖∞

)
.

It follows that for any λ > 0 and 0 < δ ≤ 1,

P
(∥∥V −1

n ξn − ζn
∥∥
∞

≥ λ
)
≤ P

(
‖θn − I‖∞ > δ

)
+ P

(
ω(V −1

n ξn; δ) ≥ λ
)
. (16)

Now since the Brownian motion has a version in C[0, 1], for each positive ε,
we can �nd δ ∈ (0, 1] such that P

(
ω(W ; δ) ≥ λ

)
< ε. As the functional ω is

continuous on C[0, 1], it follows from Theorem 2.1 that

lim supP
(
ω(V −1

n ξn; δ) ≥ λ
)
≤ P

(
ω(W ; δ) ≥ λ

)
.

Hence for n ≥ n1 we have P
(
ω(V −1

n ξn; δ) ≥ λ
)
< 2ε. Having in mind (15) and

(16) we see that the proof is complete.
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3 Invariance principle in D[0, 1] under

self-normalization

We now investigate the convergence in the Skorohod space of the step process
V −1
n Wn which jumps at deterministic times t = k/n and of the adaptive step

process Zn which jumps at random times t = V 2
k /V

2
n .

Theorem 3.1 The convergence

V −1
n Wn

D−→ W (17)

holds in the space D[0, 1] if and only if X1 ∈ DAN .

Theorem 3.2 The convergence

Zn
D−→ W (18)

holds in the space D[0, 1] if and only if X1 ∈ DAN .

Here again, the necessity of X1 ∈ DAN in both Theorems 3.1 and 3.2 follows
from Giné, Götze and Mason [8].

Proof of Theorem 3.1. We have to prove tightness of the process Wn only.
To this end we shall use Theorem 15.6 from Billingsley [4]. According to this
theorem we have to �nd a nondecreasing continuous on [0, 1] function F such
that

P (|Wn(t)−Wn(t1)| ≥ λ, |Wn(t2)−Wn(t)| ≥ λ) ≤ λ−2γ(F (t2)− F (t1))
α, (19)

for all 0 ≤ t1 ≤ t ≤ t2 and all n ≥ 1, where γ ≥ 0 and α > 1.
Let us denote by Iλ(t1, t, t2) the probability in the left hand side of (19). If

t2 − t1 ≤ 1/n then either t, t1 ∈ [(k − 1)/n, k/n) or t, t2 ∈ [(k − 1)/n, k/n) for
some k = 1, . . . , n. In both cases Iλ(t1, t, t2) = 0, so we may and do assume
that t2 − t1 > 1/n. By Markov inequality we have

Iλ(t1, t, t2) ≤ λ−4
EV −4

n (S[nt] − S[nt1])
2(S[nt2] − S[nt])

2. (20)

To treat this bound let us remark that due to independence and identical dis-
tribution of the Xi's, we have with d := ♯{i1, i2, i3, i4}

E
Xi1Xi2Xi3Xi4

V 4
n

=





EV −4
n X2

1X
2
2 when d = 2;

EV −4
n X1X2X

2
3 when d = 3;

EV −4
n X1X2X3X4 when d = 4.

After some combinatorics, this leads to the upper bound

Iλ(t1, t, t2) ≤ c
(t2 − t1)

2

λ4

[
n2

E
X2

1X
2
2

V 4
n

+ n3
E

X1X2X
2
3

V 4
n

+ n4
E

X1X2X3X4

V 4
n

]
.
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It remains to check that the square brackets in the above estimate is bounded
uniformly in n.

Since X1 ∈ DAN , we have by (1) and (2) the stochastic boundedness of
the sequence (Sn/Vn). Now from Lemmas 2.1, 2.2 and 2.4 in Giné, Götze and
Mason [8], it is easily seen that for some constant K depending only on the
distribution of X1,

EV −4
n X2

1X
2
2 ≤ Kn−2;

EV −4
n X1X2X

2
3 ≤ Kn−3;

EV −4
n X1X2X3X4 ≤ Kn−4.

The proof is complete.
It is worth noticing that without the hypothesis X1 ∈ DAN , the stochastic

boundedness of the sequence (Sn/Vn) is su�cient to obtain the tightness of the
process V −1

n Wn.

Proof of Theorem 3.2. We shall exploit Theorem 3.1 through the identity

Zn(u) = V −1
n Wn(θ

−1
n (u)), u ∈ [0, 1],

where
θ−1
n (u) := sup{t ∈ [0, 1]; θn(t) = u}, u ∈ [0, 1],

is a generalized inverse of the random change of time introduced in the proof
of Theorem 2.2. Observe that θ−1

n is a non decreasing càdlàg function mapping
[0, 1] into [0, 1]. By a classical result on the random changes of time in D[0, 1]
(see e.g. Billingsley [4] p. 145 and Th. 4.4 ibidem), the problem is easily reduced
to check the convergence in probability to zero of

∥∥θ−1
n − I

∥∥
∞
. To this end we

note that
∥∥θ−1

n − I
∥∥
∞

= sup
t∈[0,1]

∣∣θ−1
n

(
θn(t)

)
− θn(t)

∣∣

≤ sup
t∈[0,1]

∣∣θ−1
n

(
θn(t)

)
− t

∣∣+ ‖θn − I‖∞ . (21)

Now for each t ∈ [0, 1] we have

0 ≤ θ−1
n

(
θn(t)

)
− t ≤ Ln

n
,

where Ln is the discrete random variable equal to the maximum length of runs
of consecutive occurences among the events {Xi = 0} (1 ≤ i ≤ n). Put p :=
P (X1 = 0). Since the case p = 0 is obvious and the hypothesis X1 ∈ DAN
excludes the trivial case p = 1, we are left with the case 0 < p < 1 for which
the elementary estimate

P
(Ln

n
> ε

)
≤ npnε−1 = o(1),

gives the required convergence in probability of
∥∥θ−1

n ◦ θn − I
∥∥
∞
. Together with

(15) and (21), this makes the proof complete.
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