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Let (Xi) i≥1 be an i.i.d. sequence of mean zero random variables,

n . We consider four se- quences of partial sums processes: the broken lines with vertices at the points (k/n, S k /Vn) or (V 2 k /V 2 n , S k /Vn) and the corresponding random step functions. We prove that each of them converges weakly in C[0, 1] or D[0, 1] to the Brownian motion if and only if X1 belongs to the domain of attraction of the normal distribution. These results contrast with the classical Donsker Prohorov invariance principles where the N.S.C. for such convergences is E X 2 1 < ∞.

Résumé

Soit (Xi) i≥1 une suite de variables aléatoires i.i.d. centrées, Sn :=

X1 + • • • + Xn et V 2 n := X 2 1 + • • • + X 2
n . Nous considérons quatre suites de processus de sommes partielles : les lignes polygonales de sommets les points (k/n, S k /Vn) ou (V A rich litterature is devoted to limit theorems for self-normalized sums. Logan, Mallows, Rice and Shepp [START_REF] Logan | Limit distributions of self-normalized sums[END_REF] investigate the various possible limit distributions of self-normalized sums. Giné, Götze and Mason [START_REF] Giné | When is the Student t-statistic asymptotically standard normal?[END_REF] prove that S n /V n converges to the Gaussian standard distribution if and only if X 1 is in DAN, the domain of attraction of the normal distribution (the symetric case was previously treated in Grin and Mason [START_REF] Grin | On the asymptotic normality of self-normalized sums[END_REF]). Egorov [START_REF] Egorov | On the asymptotic behavior of self-normalized sums of random variables[END_REF] investigates the non identically distributed case. Bentkus and Götze [START_REF] Bentkus | The Berry-Esseen bound for student's statistic[END_REF] obtain the rate of convergence of S n /V n when X 1 ∈ DAN . Grin and Kuelbs [START_REF] Grin | Self-normalized laws of the iterated logarithm[END_REF] prove the LIL for self-normalized sums when X 1 ∈ DAN . Moderate deviations (of Linnik's type) are studied in Shao [START_REF] Shao | A Cramér type large deviation result for Student's t-statistic[END_REF] and Christiakov and Götze [START_REF] Christiakov | Moderate deviations for selfnormalized sums[END_REF]. Large deviations (of Cramér-Cherno type) are investigated in Shao [START_REF] Shao | Self-normalized large deviations[END_REF] without moment conditions.

V n = (X 2 1 + • • • + X 2 n ) 1/2
Chuprunov [START_REF] Chuprunov | On convergence of random polygonal lines under Student-type normalizations[END_REF] gives invariance principles for various partial sums processes under self-normalization in C[0, 1] or D[0, 1]. Ra£kauskas and Suquet [START_REF] Ra£kauskas | Invariance principle for selfnormalized sums of symmetric random variables[END_REF] obtained the weak convergence in the best possible Hölder space of the adaptive broken line of self-normalized partial sums of symetric i.i.d. X i 's when X 1 ∈ DAN . In the present contribution we are concerned with invariance principles in the more classical frameworks of C[0, 1] or D[0, 1] for processes of self-normalized partial sums of i.i.d. X i 's in DAN, without symetry assumption. We prove that these processes converge to the Brownian motion in C[0, 1] or D[0, 1] if and only if X 1 ∈ DAN . This improves on Chuprunov's result in the i.i.d. case.

Let us x now the notations used throughout the paper. X 1 , . . . , X n , . . . are i.i.d. mean zero random variables. Set S 0 = 0, V 0 = 0,

S k = X 1 + • • • + X k , V 2 k = X 2 1 + • • • + X 2 k for k = 1, 2, . . . When V n = 0, we adopt the convention that S k /V n := 0 (k ≤ n).
We consider the following processes:

• the standard (non normalized) broken line process

ξ n (t) = S [nt] + (nt -[nt])X [nt]+1 , t ∈ [0, 1];
• the adaptive broken line process

ζ n = (ζ n (t), t ∈ [0, 1]
) which is dened by linear interpolation of the points

V 2 k /V 2 n , S k /V n , k = 0, . . . , n,
whenever V n > 0 and by ζ n = 0 when V n = 0;

• the standard (non normalized) step process

W n (t) = S [nt] , t ∈ [0, 1];
• the adaptive step process

Z n = (Z n (t), t ∈ [0, 1]) which whenever V n > 0 is constant on each intervall [V 2 k /V 2 n , V 2 k+1 /V 2 n ) and satises Z n V 2 k V 2 n = S k V n k = 0, . . . , n,
while for V n = 0, Z n := 0.

Donsker-Prohorov invariance principle under self-normalization

Before stating the results let us remind that X 1 ∈ DAN means that there exists a sequence ℓ n ↑ ∞ such that

ℓ -1 n n -1/2 S n D -→ N (0, 1). (1) 
This yields that

ℓ -2 n n -1 V 2 n P -→ 1. (2) 
We have moreover for each τ > 0,

nP (|X 1 | > τ ℓ n √ n) → 0, (3) 
ℓ -2 n E (X 2 1 ; |X 1 | ≤ τ ℓ n √ n) → 1, (4) 
nE (X 1 ; |X 1 | ≤ τ ℓ n √ n) → 0, (5) 
see for instance Araujo and Giné [START_REF] Araujo | The Central Limit Theorem for Real and Banach Valued Random Variables[END_REF], Chap. 2, Cor. 4.8 (a), Th. 6.17 (i) and Cor. 6.18 (b). Here and in all the paper (X; E) means the product of the random variable X by the indicator function of the event E.

Let us also recall O'Brien's [START_REF] O'brien | A limit theorem for sample maxima and heavy branches in Galton-Watson trees[END_REF] result: X 1 ∈ DAN if and only if

V -1 n max 1≤k≤n |X k | P -→ 0. (6) 
Throughout the paper, W denotes a standard Brownian motion.

Theorem 2.1 The convergence

ξ n V n D -→ W (7)
holds in the space C[0, 1] if and only if X 1 ∈ DAN.
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Theorem 2.2 The convergence

V -1 n ζ n D -→ W (8) 
holds in the space C[0, 1] if and only if X 1 ∈ DAN.

Let us remark that the necessity of X 1 ∈ DAN in both Theorem 2.1 and Theorem 2.2 follows from Giné, Götze and Mason [START_REF] Giné | When is the Student t-statistic asymptotically standard normal?[END_REF]. Let us notice also that (1) or ( 8) both exclude the trivial case P (X 1 = 0) = 1, so that almost surely V n > 0 for large enough n.

Proof of theorem 2.1. First we prove the convergence of nite dimensional distributions (f.d.d.) of the process (V -1 n ξ n ) to the corresponding f.d.d. of the Wiener process W.

To this aim, consider the process

W n = (S [nt] , t ∈ [0, 1]
). By ( 6) applied to the obvious bound

sup 0≤t≤1 V -1 n |ξ n (t) -W n (t)| ≤ V -1 n max 1≤k≤n |X k |, the convergence of f.d.d. of V -1 n ξ n follows from those of the process V -1 n W n . Let 0 ≤ t 1 < t 2 < • • • < t d ≤ 1
and let (ℓ n ) be the (non random) sequence introduced above. From (1), independence of the X ′ i s and the fact that ℓ 2

[nt] ℓ -2 n converges to 1 (see e.g. Remark 3.2 in [START_REF] Ra£kauskas | Invariance principle for selfnormalized sums of symmetric random variables[END_REF]), we get

ℓ -1 n n -1/2 S [nt1] , S [nt2] -S [nt1] , . . . , S [nt d ] -S [nt d-1 ] D -→ W (t 1 ), W (t 2 ) -W (t 1 ), . . . , W (t d ) -W (t d-1
) . Now (2) and the continuity of the map

(x 1 , x 2 , . . . , x d ) → (x 1 , x 2 + x 1 , . . . , x d + • • • + x 1 )
yields the convergence of f.d.d. of V -1 n W n . The convergence of nite dimensional distributions of the process V -1 n ξ n is thus established. To prove the tightness we shall use Theorem 8.3 from Billingsley [START_REF] Billingsley | Convergence of probability measures[END_REF]. Since ξ n (0) = 0, the proof reduces in showing that for all ε, η > 0 there exist n 0 ≥ 1 and δ, 0 < δ < 1, such that

1 δ P sup 1≤i≤nδ V -1 n |S k+i -S k | ≥ ε ≤ η, n ≥ n 0 , (9) 
for all 1 ≤ k ≤ n.

Let us introduce the truncated variables

Y i := ℓ -1 n (X i ; X 2 i ≤ τ 2 ℓ 2 n n), i = 1, . . . , n,
where ℓ n is dened above and τ will be chosen later. Denote by S k and V k the corresponding partial sums with their autonormalizing random variables:

S k = Y 1 + • • • + Y k , V k = (Y 2 1 + • • • Y 2 n ) 1/2 , k = 1, . . . , n.
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Then we have

P sup 1≤i≤nδ V -1 n |S k+i -S k | ≥ ε ≤ A + B + C, (10) 
where

A := P sup 1≤i≤nδ | S k+i -S k | ≥ ε √ n/2 , B := P { V n < √ n/2}, C := nP {|X 1 | ≥ τ ℓ n √ n}.
Due to [START_REF] Christiakov | Moderate deviations for selfnormalized sums[END_REF] we can choose n 1 such that

√ n|E Y 1 | ≤ 1/4 for n ≥ n 1 .
Then with n ≥ n 1 and δ ≤ ε we have

A ≤ P max 1≤i≤nδ k+i j=k+1 (Y j -E Y j ) + nδ|E Y 1 | ≥ √ nε/2 ≤ P max 1≤i≤nδ k+i j=k+1 (Y j -E Y j ) ≥ √ nε/4 .
By Chebyshev's inequality and Rosenthal inequality with p > 2, we have for each

1 ≤ k ≤ nδ P n -1/2 k+nδ j=k+1 (Y j -E Y j ) ≥ ε 8 ≤ 8 p ε p n p/2 E k+nδ j=k+1 (Y j -E Y j ) p ≤ 8 p ε p n p/2 (nδ) p/2 (E Y 2 1 ) p/2 + nδE |Y 1 | p .
By (4) we can choose n 2 such that

3/4 ≤ E Y 2 1 ≤ 3/2 for n ≥ n 2 . ( 11 
)
Then we have E |Y 1 | p ≤ 2n (p-2)/2 τ p-2 and then assuming that τ ≤ δ 1/2 we obtain

P n -1/2 k+nδ j=k+1 (Y j -E Y j ) ≥ ε 8 ≤ 8 p ε p n p/2 2 p/2 (nδ) p/2 + δn p/2 τ p-2 ≤ 2 • 16 p δ p/2 ε p .

Now by Ottaviani inequality we nd

A ≤ δη 3 , (12) 
provided δ p/2 ≤ ε p /(4 • 16 p ) and δ (p-2)/2 ≤ ηε p /(6 • 16 p ).

Invariance principle in D[0, 1] under self-normalization

We now investigate the convergence in the Skorohod space of the step process V -1 n W n which jumps at deterministic times t = k/n and of the adaptive step process Z n which jumps at random times t = V 2 k /V 2 n .

Theorem 3.1 The convergence

V -1 n W n D -→ W (17) holds in the space D[0, 1] if and only if X 1 ∈ DAN . Theorem 3.2 The convergence Z n D -→ W (18) 
holds in the space D[0, 1] if and only if X 1 ∈ DAN .

Here again, the necessity of X 1 ∈ DAN in both Theorems 3.1 and 3.2 follows from Giné, Götze and Mason [START_REF] Giné | When is the Student t-statistic asymptotically standard normal?[END_REF].

Proof of Theorem 3.1. We have to prove tightness of the process W n only. To this end we shall use Theorem 15.6 from Billingsley [START_REF] Billingsley | Convergence of probability measures[END_REF]. According to this theorem we have to nd a nondecreasing continuous on [0, 1] function F such that

P (|W n (t) -W n (t 1 )| ≥ λ, |W n (t 2 ) -W n (t)| ≥ λ) ≤ λ -2γ (F (t 2 ) -F (t 1 )) α , (19)
for all 0 ≤ t 1 ≤ t ≤ t 2 and all n ≥ 1, where γ ≥ 0 and α > 1.

Let us denote by I λ (t 1 , t, t 2 ) the probability in the left hand side of (19). If t 2 -t 1 ≤ 1/n then either t, t 1 ∈ [(k -1)/n, k/n) or t, t 2 ∈ [(k -1)/n, k/n) for some k = 1, . . . , n. In both cases I λ (t 1 , t, t 2 ) = 0, so we may and do assume that t 2 -t 1 > 1/n. By Markov inequality we have

I λ (t 1 , t, t 2 ) ≤ λ -4 E V -4 n (S [nt] -S [nt1] ) 2 (S [nt2] -S [nt] ) 2 . ( 20 
)
To treat this bound let us remark that due to independence and identical distribution of the X i 's, we have with

d := ♯{i 1 , i 2 , i 3 , i 4 } E X i1 X i2 X i3 X i4 V 4 n =    E V -4 n X 2 1 X 2 2 when d = 2; E V -4 n X 1 X 2 X 2 3 when d = 3; E V -4 n X 1 X 2 X 3 X 4 when d = 4.
After some combinatorics, this leads to the upper bound

I λ (t 1 , t, t 2 ) ≤ c (t 2 -t 1 ) 2 λ 4 n 2 E X 2 1 X 2 2 V 4 n + n 3 E X 1 X 2 X 2 3 V 4 n + n 4 E X 1 X 2 X 3 X 4 V 4 n .
It remains to check that the square brackets in the above estimate is bounded uniformly in n.

Since X 1 ∈ DAN , we have by ( 1) and ( 2) the stochastic boundedness of the sequence (S n /V n ). Now from Lemmas 2.1, 2.2 and 2.4 in Giné, Götze and Mason [START_REF] Giné | When is the Student t-statistic asymptotically standard normal?[END_REF], it is easily seen that for some constant K depending only on the distribution of X

1 , E V -4 n X 2 1 X 2 2 ≤ Kn -2 ; E V -4 n X 1 X 2 X 2 3 ≤ Kn -3 ; E V -4 n X 1 X 2 X 3 X 4 ≤ Kn -4 .
The proof is complete.

It is worth noticing that without the hypothesis X 1 ∈ DAN , the stochastic boundedness of the sequence (S n /V n ) is sucient to obtain the tightness of the process V -1 n W n .

Proof of Theorem 3.2. We shall exploit Theorem 3.1 through the identity (21)

Z n (u) = V -1 n W n (θ -1 n (u)), u ∈ [0, 1], where θ -1 n (u) := sup{t ∈ [0, 1]; θ n (t) = u}, u ∈ [0, 1], is a
Now for each t ∈ [0, 1] we have

0 ≤ θ -1 n θ n (t) -t ≤ L n n ,
where L n is the discrete random variable equal to the maximum length of runs of consecutive occurences among the events {X i = 0} (1 ≤ i ≤ n). Put p := P (X 1 = 0). Since the case p = 0 is obvious and the hypothesis X 1 ∈ DAN excludes the trivial case p = 1, we are left with the case 0 < p < 1 for which the elementary estimate

P L n n > ε ≤ np nε-1 = o(1),
gives the required convergence in probability of θ -1 n • θ n -I ∞ . Together with (15) and (21), this makes the proof complete.

1 n 1 n

 11 generalized inverse of the random change of time introduced in the proof of Theorem 2.2. Observe that θ -1 n is a non decreasing càdlàg function mapping [0, 1] into [0, 1]. By a classical result on the random changes of time in D[0, 1](see e.g.Billingsley [4] p. 145 and Th. 4.4 ibidem), the problem is easily reduced to check the convergence in probability to zero of θ -1 n -I ∞ . To this end we note thatθ -1 n -I ∞ = sup t∈[0,1] θ -θ n (t) -θ n (t) ≤ sup t∈[0,1] θ -θ n (t) -t + θ n -I ∞ .

1

  IntroductionMany limit theorems in the theory of probability deal with the asymptotic behavior of sums S n = X 1 +• • •+X n of independent identically distributed mean zero random variables, normalized by some deterministic sequence (b n ). When the X i 's are square integrable, the classical choice of b n = √ n is used to obtain central limit theorems as well as invariance principles in C[0, 1] or D[0, 1]. Selfnormalization consists here in replacing b n by

  . There is of course a strong statistical interest in this replacement. For instance the classical Student t-statistic can be easily expressed in term of self-normalized sums. It is now well established that in general self-normalization improves the asymptotic properties of sums of independent random variables.
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Next we consider B. Since n -1 E V 2 n = E Y 2 1 we have by ( 11) n -1 E V 2 n ≥ 3/4, for n ≥ n 2 . Furthermore

provided n ≥ n 2 and τ 2 ≤ δη/18. Finally choose n 3 such that C ≤ ηδ/3 when n ≥ n 3 and join to that the estimates [START_REF] O'brien | A limit theorem for sample maxima and heavy branches in Galton-Watson trees[END_REF][START_REF] Ra£kauskas | Invariance principle for selfnormalized sums of symmetric random variables[END_REF] to conclude [START_REF] Grin | Self-normalized laws of the iterated logarithm[END_REF]. The proof is completed.

Proof of theorem 2.2.

Due to Theorem 2.1, it suces to check that V -1 n ξ n -ζ n ∞ goes to zero in probability, where f ∞ := sup 0≤t≤1 |f (t)|. To this end let us introduce the random change of time θ n dened as follows. When V n > 0, θ n is the map from

With the usual convention S k /V n := 0 for V n = 0, we always have

Clearly for each t ∈ [0, 1],

It follows by ( 6) that

By Lemma 3.1 in [START_REF] Ra£kauskas | Invariance principle for selfnormalized sums of symmetric random variables[END_REF],

So denoting by I the identity on [0, 1] we have

Then recalling [START_REF] Shao | Self-normalized large deviations[END_REF] we have

It follows that for any λ > 0 and 0 < δ ≤ 1,

(16) Now since the Brownian motion has a version in C[0, 1], for each positive ε, we can nd δ ∈ (0, 1] such that P ω(W ; δ) ≥ λ < ε. As the functional ω is continuous on C[0, 1], it follows from Theorem 2.1 that lim sup P ω(V -1 n ξ n ; δ) ≥ λ ≤ P ω(W ; δ) ≥ λ . Hence for n ≥ n 1 we have P ω(V -1 n ξ n ; δ) ≥ λ < 2ε. Having in mind ( 15) and (16) we see that the proof is complete.