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A Dictionary Learning Approach
for Poisson Image Deblurring

Liyan Ma, Lionel Moisan, Jian Yu and Tieyong Zeng

Abstract—The restoration of images corrupted by blur and and P denotes the effect of noise. Gaussian noise, impulse
Poisson noise is a key issue in medical and biological imagenopise, Poisson noise and multiplicative noise are typioal i
processing. While most existing methods are based on variational stances that have been studied in the literature. WHeis

models, generally derived from a Maximum A Posteriori (MAP) the identit trix. th bl d 0 d .
formulation, recently sparse representations of images have € IGENtty matrix, the probiem reduces 1o image aenoising

shown to be efficient approaches for image recovery. Following ~AS the linear operatof! is usually ill-conditioned, image
this idea, we propose in this paper a model containing three deblurring is a classical ill-posed inverse problem. Ragtyl
terms: a patch-based sparse representation prior over a leare  conditions are then required to restrict the solution sjake
dictionary, the pixel-based total variation regularization term [11]. A widely-used regularization criterion in image pro-

and a data-fidelity term capturing the statistics of Poisson L L .
noise. The resulting optimization problem can be solved by cessing is total variation (TV) [10], which is known to well

an alternating minimization technique combined with variable  Preserve edges in images. However, TV regularization is als
splitting. Extensive experimental results suggest that in termsfo  known to over-smooth textured regions, which may cause the

visual quality, PSNR value and the method noise, the proposed |oss of important details. Other widely-used approaches ar
algorithm outperforms state-of-the-art methods. wavelets and frames [12]-[14], which provide a multiscale
Index Terms—Deblurring, dictionary learning, patch-based and sparse representation of images, hence breaking the ill

approach, Poisson noise, total variation. posedness of the initial inverse problem. These methods bet
ter preserve textures than TV regularization and intergsti
|. INTRODUCTION connections between wavelet-based and TV-based restorati

Image degradation is unavoidable in real applications, inethods were established by Chambolle et al. [15] and later
particular in biomedical imaging, microscopy, astronamhic by Steidl et al. [16] and Cai et al. [17]. In 2002, Malgouyres
imaging, where low-intensity signals are frequently emzou[18] and Candes [19] proposed a hybrid restoration method
tered. Among the most important degradations in these fieltsmbining TV and wavelets. Although wavelet-based methods
are noise, in particular the unavoidable Poisson noise dueprovide good results in many applications, they are baseal on
the quantum nature of light, and blur, at least caused by tfieed dictionary, independent of the image content. As altesu
natural extent of the point spread function of the imagindpese methods may fail to capture the distinctive charisties
device. Other causes of blur, like defocus or motion blug, aof the processed image, which limits their performances. To
also frequently encountered. This makes image restorationercome this limitation and better take into account the
which aims at recovering a high-quality image from its destructure of the processed image, patch-based approaates h
graded observation, a very important topic in imaging smenbeen proposed and widely adopted in image processing in the

in general, and in these fields in particular [1]-[7]. past few years.
Mathematically, the degraded observed imgge R™*" Many patch-based sparse priors have been studied for image
can be written as restoration. One approach exploits a heavy-tailed gradien
f="P(Hu), (1) distribution of natural images [20]. Elad and Aharon [21]

groposed an effective denoising method (called K-SVD) tase
on a sparse and redundant representation: their algoritsin fi
learns an optimal over-complete dictionary from the obsérv
Manuscript received August 08, 2012; revised February @232accepted N0iSy image patches, and then recovers each image patch
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where u € R™*" denotes the unknown ideal image, th
known linear operatoff : R™*"™ — R™*™ stands for blur,
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of the stage corresponding to the learning of the Gaussias we have known, our work is the first one that deals with
Mixture prior is very high. Poissonian image deblurring via a learned dictionary.

Most of the above-mentioned methods are designed to workThe paper is organized as follows. In Section Il, we briefly
with Gaussian noise. Unfortunately, Gaussian distrim#tioreview the main principle of K-SVD algorithm. In Section
provide only a limited approximation in most real applicas. I, we detail the proposed model and propose an algorithm
Applying these methods directly for image deblurring undeo solve it. In Section 1V, some numerical experiments are
other kinds of noise is not very efficient in general, becaupeesented to demonstrate the performance of our modelr Othe
different kinds of noise may affect the image in totallyapplications, computational time and possible furtherrip-
different ways. In particular, Poisson noise, that we adeisi ments are then discussed in Section V. Finally, Section VI
in the present paper, is signal dependent, as the variancec@ficludes the paper.
the noise is, in each pixel, proportional to the intensitythed
signal. More precisely, assuming as usual that the values of,
the observed imag¢ at the locationgi} are independent, we
can write

. IMAGE DENOISING USING A PATCH-BASED SPARSE
REPRESENTATIONPRIOR

e~ (M), (Huy) )fi _ C_hoosing a good prior (or eq_uivalently,_a good _regular-
P (f|Hu) = H ' i (2) ization term) is the key of solving most ill-posed inverse
i fi! problems in Image Processing and Computer Vision. The
Lots of methods have been proposed for Poisson no@@Proach based on a learned dictionary has achieved very
removal. Major contributions fall in the following threetea Promising results in many applications since it was intiili
gories: (a) simply recover the image using a method designidy Olshausen and Field [37] in 1996. In the present paper, we
for Gaussian noise removal; (b) transform Poisson noige iffdOPt the K-SVD method, proposed by Elad et al. [21], [38], to
near-Gaussian noise by applying an appropriate transfol®@/n a good sparse representation prior. It is a flexibldnaugt
to the noisy image (called a variance-stabilizing transfor that can be adapted to different tasks, and it has the adyanta
VST), then process the transformed image with an algorithiph Providing an explicit dictionary to represent image pafs.
designed for Gaussian noise removal, and finally apply Y& now briefly recall the K-SVD method for Gaussian noise
it the inverse transform in order to get the result [1], [24femoval. _ _ _
[25]; (c) remove Poisson noise directly via a data-fidelity 1he basic assumption of the K-SVD method is that image
term derived from Poisson noise statistics [14], [26]-[Z8]e patches admit a sparse representation. More_ precisells, eac
present contribution belongs to the third category. Letlas a image patch (of size/N x V/N, converted to a single column

mention recent works dealing with mixed Poisson-GaussidfCtOr € RM) can be compactly represented as a linear
noise removal [1], [24], [29]. combination of a small subset of patches (atoms), taken from

Using the Bayesian framework in the case of Poisson noigedictionaryD € RV Denoting by

Le et al. [27] proposed to minimize . 1
[Vull; + A{Hu — flog Hu, 1), ®3) ]l = (Z m”)
1=1
where the first term is the classical discrete TV regulaidnat ) ) )
that is, thel; norm of the gradientVu = (9,u,d,u)” the classicall, norm in Euclidean space fop € [1,00),

whose componentd,u and d,u are finite differences that the above assumption can be formally transposed into the
estimate the partial derivatives of the image. The secomd teMinimization problem

is the data-fidelity term, derived from the log-likelihood o
the Poisson distribution. This functional is non-quadrand

causes several difficulties. Le et al. proposed to minim&e (yhere = is zero or a small positive constant, and the “zero-
by using a traditional gradient descent, which is slow. Mor, allo == #{i |1 <i < K, a; # 0} counts the

- fform
efficient methods were proposed later: Sawatzky et al. [3Q]inper of nonzero entries in the vecior Under Gaussian

proposed an EM-TV algorithm; Chaux et al. [31] proposefyise assumption, the observed noisy image is- u + b,
a nested iterative algorithm; Setzer et al. [28] employe®l thy horeq, is the ideal (non-observed) image to recover and
split Bregman technique [32]; Figueiredo et al. [14] usee th/\/(o,a2[) is the Gaussian noise term. In the following, we
alternating direction method of multiplier to solve (3) or &na1 assume thaj (andw) are written as column vectors of

& = arganel]gjl( llallg, st |Da— x|, <e, 4)

frame-based version of (3). R™*" indexed by
Based on the developments mentioned above and inspired
by the K-SVD algorithm for Gaussian noise removal, we here A={1,2,...,m} x{1,2,...,n},

propose a new model, involving a sparse representation over

a learned dictionary, to deblur images corrupted by PoissBfd the subset oft where /N x v/N patches can be placed
noise. Although Xiao et al. [33] studied Poisson noise remhovill P& denoted by

via a learned dictionary, they did not consider the blur \uhic A ={1,2,....m— VN + 1% {1,2,...,n— VN + 1}.

as we saw earlier, cannot be avoided in many real application

Also, some recent works studied image deblurring undepllowing the sparse representation assumption (4), Etad e
Gaussian noise via a learned dictionary [34]-[36], but as fal. [21] proposed to achieve Gaussian noise removal with the
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.. TABLE |
variational model NOTATIONS USED THROUGH THE PAPER
. 2 o
min Z tij ezl + Z |Daij — Rijull; f blurry and noisy image
{aijbu,D < - noisy image
(4,5)€As (i,5)EAs g y ge )
u  the unknown ideal image
A |lu — g||§ , H  blur kernel
(5) P the effect of noise
where the binary matrix?;; € RY*™" corresponds to the P()  probabilly
) y 1j ; p ) V  the gradient operator
extraction of ay N x v N block from the image at location X\ the balanced parameter for the data-fidelity term

(i,7), so thatR;ju € RYN. The hidden parametes;; > 0 VN xVN patchsize
depend on the optimization procedure. The first two terms As - set of patches' locations

. . . . D  dictionary
in (5) correspond to the above-mentioned sparsity assompti ai;  the coefficients for the patch locaded (at5)
(for some dictionaryD € RM*K), while the last term Rij thdextfaction Otf a patch from the image at locat{on;)
2 H ot H i laden parameters
controls data fidelity (for the statistics .of Gaussian nptlggt # 7 hee St"‘; Ation ol
correspond to a squared norm), weighted by a positive n  the balanced parameter for the TV term
parameter\. p,q,w  the auxiliary variables introduced in the splitting method

n1,7v,3 positive parameters penalize the distance betweéw,

The choice of the dictionary) has. a S|gn|f|capt impact on Hu and their corresponding auxiliary variables
the performance of the K-SVD algorithm. Experimental resul V*  the complex conjugate transpose of
in [21] show that learning the dictionary from the noise irmag No  the iterations of the outer loop

Ny the iterations of the inner loop

leads to better performances in most cases. To get the@oluti rg. Ty GrOWth rates for parameters v, :

of (5), Elad et al. minimized (5) with respect 10, a;; andu
separately:

« Solving for D given{«;;},u: Elad et al. update one atomA, Proposed model

at a time inD and its corresponding coefficients using Im ncountered in real lications are structureal dat
SVD decomposition of a residual matrix. Details can b ages encountere eal applications are structu a

found in [21], [38] t%at present lots of repeated patterns, in particular edges
; ' - ; ; smooth regions, and textures. This is probably why methods
. I f y D ) ; . . -
Solving for {a;} given DD, u requires to consider incorporating sparse and adaptive patch priors have agHibi
min sl + Day; — Ry 2 very good performqnces.. In the proposed model, we use the
{eis} Z #ig il Z | ! il sparse representation prior (4) proposed by Elad et al, [21]
(6) [38] as a regularization term, and the data-fidelity term3)f (
In general, this optimization problem is difficult to solveto model blur and Poisson noise. Moreover, to overcome the

Aharon et al. [38] used the orthogonal matching pursuitifacts sometimes caused by patch-based priors in déetgur

(i,)€As (i,)€As

(OMP) method [39] to efficiently get a solution. tasks (see, e.g., the art?facts encountere.d in smoothmegm
« Solving foru given D, {;;}: The recovered image is a[34], [36] when deblurring under Gaussian noise), we add a
solution of TV regularization term. Thus, the discrete variational elod

, , we propose for Poisson image deblurring writes
min Y || Day; — Ryully + Mu—glly. (7) | 2
(i,1) €A oo > willely+ Y. 1Das; — Rijull;
YT (Li)eAs (ij)€As

This minimization problem has a closed-form solution:
+n [|[Vul|; + A (Hu — flog Hu, 1),

taking the derivative of (7) with respect to the vector u,

; . : N (8)
setting to 0 and solving the resulting equation yields wheren and A are positive constants that balance the different
4=\ + Z RZJ;Rij)_l()\g n Z RZ;‘Daij)- terms. Notationsd,, 1,5, i, D andR;; are those of (5). This

model mixes two priors: one is patch-based and it contribute
to recover textures, while the other one is pixel-based and
The K-SVD algorithm provides very good results for Gaussiatelps favoring local smoothness while keeping sharp edges.
noise removal, and it has been later generalized to hantfiee last term in (8) is the data-fidelity term, which measures
color image denoising, demosaicking, inpainting and imagke “distance” between the recovered image and the observed
sequence denoising [40], [41]. In the next section, we mites@ne according to Poisson statistics.

a way to adapt this sparse representation prior to the case ofhe proposed model (8) raises some important issues: it is
Poisson image deblurring. non convex (because of the product between the unkndwns
ando;), the TV regularization term is non-differentiable, and
the data-fidelity term, because of th&s function, is much
less easy to handle than, say, a classical squéretbrm.

We first describe a new variational model for Poisson imag®rtunately, these difficulties can be overcome: giveénthe
deblurring, then present an algorithm to find the solution Hunction to minimize with respect t¢a;;} andw is convex,
solving the associated minimization problem. (See Tabtw | fso that there is hope to find a good minimization algorithm
a list of the notations used in this paper.) by minimizing this convex function in an inner loop, while

,J 4,3

IIl. PROPOSEDALGORITHM
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optimizing with respect td in an outer loop. Moreover, thereThis is exactly the sub-optimization problem (6), already
exists lots of methods to handle non-differentiable funtdi present in the K-SVD algorithm. To solve it, we use the OMP
[32], [42]-[45], so that the TV term is not really a problemmethod [39] as in the K-SVD algorithm.

Last, the variable splitting method [32], [42], [45] can keed 2) Solving forp givenwu, D: The minimization of (12) with

to overcome the non-quadratic form of the data-fidelity termespect top becomes

Before describing the algorithm that we will use to solve, (8)

we introduce in the next section the variable splitting mdth mm Z [Da; — iijg + g lp— UH% - (13
(i,5)€As
B. Variable Splitting Method This is a least squares problem, similar to (7). Its closedaf
The main idea driving the variable splitting method is thagolution is
by introducing appropriate auxiliary variables, the miizas I T 1 T
. i . . . = 2 R R;; 2 R;.Da;;).
tion of a sum of two functionals involving the same variable I+ Z s) - (But Z i)
X L. K (i,j)EAs (i,j)€As
can be achieved by means of separate minimizations. To be (14)
more precise, let us consider the unconstrained optimizati 3) Solving forg givenu, D: The minimization of (12) with
problem respect tog boils down to
min Fy (Az) + Fy(x), 9

. m 2
| o min 7 lgl, + 3 [ Vu -l
whereF; and F, are two functions andl is a linear operator. q

By introducing an auxiliary variable/, Problem (9) can be This is an!;-regularized least squares problem. It can be

rewritten as the constrained problem solved explicitely by pointwise soft-thresholding (seescal
min Fi(d) + Fy(x) st Av=d. (10) 1131 [14] [45]):
sT . 7]
We can see that Problem (10) is equivalent to Problem (9) g = shrink <Vu, 771> ’ (19)
in the feasible sef(d,z) | Az = d}. Now we can relax the where the shrinkage operator is defined by

constrained problem (10) to an unconstrained one, namely
t

shrink (¢, 7) = max (||¢|| — 7,0) T

The connection between (11) and (10) is simple: when the 4) Solving forw givenu, D: The minimization of (12) with

parameter is sent to+oo, Problem (11) goes back to"eSPect tow leads to

(10), or, gquivalently_(g). But in general_, sol\_/ing (_11) is min A(w—flogw,1>+l Hw—HUH; (16)

much easier than solving (9). Thanks to this variable &pdjtt w 2

method, many efficient algorithms have been designed wihose explicit solution is

solve minimization problems involving a non-differentiab 5

TV regularization term [14], [32], [42], [45], [46]. Hu — % + \/<Hu — %) + 4¥

w = > . a7

5) Solving foru given {«;;}, p, ¢, w, D: The minimization
(8) with respect tau is equivalent to

min Py (d) + 5 | Az — d||5 + Fa(z). (11)

C. The full algorithm for Poisson image deblurring

Let us now return to the optimization problem (8). Using
the variable splitting method presented above, we tramsfor
(8) into

mmf lp—ull; + 2 Hvu —qli+ 2 ||w Hull3.
{“ij}g{%””q’w (v:ge:As o ”%HOjL(,;gE:AS |1 Dev; = ”pH? This is again a Ieast squares problem whose closed-form
8 ) ) solution is
talp vl +wlal + 3 0ve -l w=(B+mV*V +yHTH) ' (Bp+ 09" q+H w)
A (w — flogw, 1) + L [lw — Hull3, (18)

(12) Wwhere the complex conjugate transpaseof V is defined by
Whgr_EP S _Rm",q e R™ x ]Rm",w S Rm’n are three vq _ [qth}T clU =R™ x ann’ V*q _ 6;(]1 +a*q2
auxiliary variables, andy,, v, g are three positive numerical
parameters, that can be chosen rather large in practice. The products by? and HT in (18) can be efficiently computed
new minimization problem (12) is easier to solve than (8hy FFT algorithm.
Like many algorithms [43], [45], we can use an alternating As we saw in Section IlI-B, Model (12) is equivalent
minimization algorithm to solve (12). This procedure inxed to Model (8) when the parameters, v, 8 tend to +oc.

several sub-problems: Therefore, we should set these three parameters to langesyal
1) Solving for {«;;} given u,D: For (i,j) € A, the so thatthe solution of (12) remains close to the solutior8pf (
minimization of (12) with respect te;; amounts to However, if we use too large values, numerical problems occu

in the minimization process (see [47]). This is why, insgire

. 2
el levislly + 1 Davij = Ripll;- by the implementation of the FTVd method [45], we start with
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small values for the three parameters and gradually inereas The stopping criterion we adopt is widely used [14], [45]:
them along the iterations, thereby forcing the convergencewe stop when the relative difference between two successive

the solution of Model (8). iterates of the restored image fall beyond a fixed threshpld
The dictionary learning procedure has a crucial influendeat is, when

on the quality of the recovered image. Since the degraded ||ukJr1 *uk||2 20

image lacks textures and details, we use the estimated image [, (20)

u to learn the dictionanp. Hoyvever, updating egch timeu _We stop the inner loop of Algorithm 1 wheiter; — N, or
changes would be computatlon_ally too expensive, so we j b) is satisfied withe — 10-. For PIDSplit+, we use the
_updateD In an outer I_oo_p. In this paper, we use the metho opping criterion suggested in [28] and set the error bdand
in [2;] to learn the dllct|on.ary. Th(_a details of the proposege 0.5. We set — 10~ for PIDAL-FA. For these settings,
algorithm are summarized in Algorithm 1. all the algorithms reach convergence in most cases.
For PIDSplit+, we sety = 10/)\, and the parametex in
e regularization term is tuned empirically to perform el
For PIDAL-FA, we set the parametgras suggested in [14],
and the parameter in the regularization term is tuned empiri-
cally to perform well. As suggested in [14], we use a reduhdan
Haar frame for the Cameraman image and Daubechies-4 for
the other imagés
: For the proposed algorithm, we set the parameters of K-
updatea;,; using OMP; SVD? as follows:.J = 30 (since this is enough to ensure the
updatep using (14); convergence), patches of size< 4, and a dictionary of size
updateq using (15); 16 x 256. We also set) = 0.1, No = 12, N; = 60, and the
updatew using (17); initialization for 7, 8 and~ are0.01, 10 and50 respectively
updateu using (18); (excepted for Barbara image in Section IV-B, for which we
end for takey = 20). Growth rates are; = ., = 2 andr,, = 1.5,
update Dictionary D; and the remaining parametgin the data-fidelity term is tuned

Algorithm 1 Proposed algorithm for Poisson image deblurringl
Initialization : Setu = f, D = DCT. Chooseny, A, 7,
n and 3, the number of iterations for the outeNg) and
inner (N;) loops, the growth ratesg, r.,, 7,
Output: u
for itero = 1 to Np do
for ¢ter; =1 to N; do

B=p5-rs empirically to achieve good performances.
’)/ = ’y . 7/;\{;
1= T A. Experiments on Medical Images

end for

To compare the effects of PIDSplit+ and PIDAL-FA al-
gorithms to ours, we realized synthetic experiments (blur +
IV. EXPERIMENTAL RESULTS noise, then deblurring) on the following gray-level images

c?ining from the biomedical fiefd Ankle (512 x 512), Brain

In this section, we evaluate the performance of the propos . )
algorithm and compare it to the TV-based algorithm [28%]f;?ﬁ;ghggu:?enﬁggﬁtgg?ﬁ |2:i5§)1andNeck (256256).

(denoted by PIDSplitt) and to the frame-based aIgorlthmIn Fig. 2 is reported a detail of the results obtained by

[14] (denoted by PIDAL-FA). We first present experlrnentsrocessing a corrupted version Afkle image (Gaussian blur

on MRI and Fluorescenpe Microscopy images, then provugend Poisson noise with peak intensity 600). We can observe
experiments on natural images to further study the behavt bt the TV-based PIDSplit+ method tends to oversmooth the
of these methods.

We consider two different blur kernels9a9 Gaussian blur IT:S:n tzn: b?:)(glgf:\rsatic:hso\g”dtsr:)rgfe f‘lar(]je esstrlff;:r?;n:;_ggsoe d
with standard deviation 1 (generated by the Matlab functi P 9 ges.

, - . . . DAL-FA method preserves more details, but introduces
fspecial’), and a5 x 5 uniform blur. Three peak IntenSItIeS:some artifacts. Comparatively, our method reaches a higher
are considered Keak = 255,600,1000), corresponding to i P Y. g

. i X 4 .~ PSNR value and achieves better visual quality. The same
different Poisson noise levels. To obtain the degraded éna . S . .
. P . onclusions hold foBrain image corrupted with a uniform
we first scale the original image Weak /I 1yax, Wherel,, .  is

the maximal value of the original image, and then convolve k|3t|ur and Poisson noise (see Fig.3). For the latter expetimen

. . o . ~we show in Fig.4 the final dictionary learned at the last
with the appropriate blur kernel, before with simulate Bois . . g y

. - LT ; iteration of the proposed method.
noise on the blurred image (Matlab function 'poissrnd’).

Periodic boundary conditions are adopted, so that the DiSiThe frame is computed via the Rice Wavelet toolbox:
crete Fourier Transform (DFT) can be used to compute thip://dsp.rice.edu/software/rice-wavelet-toolbox

convolution operator. The quality of the restoration resig ~__-When implementing the K-SVD denoising algorithm, we use the code
L . provided by Rubinstein on his website: http://www.cs.téchrac.il/ ron-
compared quantitatively by means of the peak signal-t8e0Oipin/software.htmi
ratio (PSNR), which is defined (as usual) by 3We downloaded these images from the following websites:
Pealk http://sehati.org/index/patientresources/diagnpsticedures/mri.html,
PSNR =20 log €a (19) http://www.cedars-sinai.edu/Patients/Programs-aniSss/Imaging-
10 1 |u* — ul ’ Center/For-Patients/Exams-by-Procedure/MRI/Lowerdixrities-Leg.aspx,
mn 2 http://www.microscopyu.com/articles/livecellimaginglax.html,
whereu* is the restored image andis the true original image. http://osc-ortho.com/blog/tag/open-mri/
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Fig. 1. Original images. From left to righfinkle, Brain, Mouseintestine4, Neck.

_nﬂ'

e it e Br== L, 5wy

(a) Degraded (b) PIDSplit+ (30.88dB) (c) PIDAL-FA (31.66dB) (d) Ours (32.59dB) (e) Original

Fig. 2. Results of different methods @mkle image (detail) corrupted by a Gaussian blar=€ 1) and Poisson noise with peak intensity 600.

(a) Degraded (b) PIDSplit+ (25.52dB) (c) PIDAL-FA (26.02dB) (d) Ours (27.21dB) (e) Original

Fig. 3. Results of different methods @rain image (detail) corrupted by @ x 5 uniform blur and Poisson noise with peak intensity 600.

Note that our dictionary method assumes high repetition [48]. Evidently, few textures/structure should be presa

of features in the image. This is not always true in medic#ie difference in (21). Since we are mainly dealing with Pois
images as minor irregularities may sometimes be of higion noise, which is signal dependent, we apply the Anscombe
importance, as pointed out by [48]. In order to handle thisansform on bothu and Dju, leading to an approximate
problem, we have reduced the dictionary patch size fro@aussian noise. The results of Method Noise are reported in
16 x 16 (in the original K-SVD paper [21]) td x 4. It is then Fig. 5 where all theMethod Noise images are drawn with
interesting to see that the dictionary shown in Fig.4 costaithe same grayscale range. Note that for fair comparisons,
some typical details of the origin&8rain image, thus showing we tune the parameters in different methods until the MSE
the ability of the algorithm to recover details from the detgd betweenu and Dj,u reaches a predefined value. Clearly, our
image. The spotted atoms there should be useful to represmethod produces the best result with the least image strictu
those minor irregularities in medical images (see spotsgdn Finformation removed.

11). The parameters settings corresponding to the differerk pea
More systematic results are presented in Table II. intensities Peak = 1000, 600,255) are, respectively: for
Besides PSNR evaluations, we also provide results of ttiee PIDSplit+ method) = 0.01,0.012,0.02 (Gaussian blur)

Method Noise proposed in [49] on th®&rain image, adaptive and A = 0.005,0.007,0.015 (uniform blur); for the PIDAL-

to Poisson noise. Denoteas the underlying image (possiblyFA method, = = 0.01,0.015,0.025 (Gaussian blur) and

with some noise), and);, the image restoration result withr = 0.008,0.01,0.02 (uniform blur); for the method we

parameter(sh. Inspired by [25], [48], [49], theVlethod Noise  propose, we tookh = 5000, 4000, 3000 (Gaussian blur) and

(or the stabilized noise residual) is then defined as A = 8000, 7000, 5000 (uniform blur).

A(u) = A((Dpw)), (21)

where A is the identity operator for Gaussian noise or thg' Experiments on Natural Images
Anscombe transform (see [25]) for Poisson noise for vaganc To further compare the performance of the three methods,
stabilization. The importance of Method Noise was discdssae also ran experiments on classical gray-level imagas:
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(a) Original

(b) PIDSplit+

Fig. 5. Method Noise of different methods on thBrain image.
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Fig. 4. Dictionary learned by our method for the experiment igf 3~

GAUSSIAN BLUR WITH STANDARD DEVIATION 1 ORBY A5 X 5 UNIFORM

TABLE I
PSNREB) VALUES FORPIDSPLIT+ [28], PIDAL-FA [14] AND OUR
ALGORITHM FOR THE TEST IMAGES OFFIG.1 CORRUPTED BY A9 X 9

BLUR, AND POISSON NOISE WITH VARIOUS PEAK INTENSITIES
(Peak = 1000, 600, 255).

Gaussian blur Uniform blur
Images/Peak  [28] [14] Ours [28] [14] Ours
Ankle/1000 31.54 32.45 33.56 28.74 29.16 29.77
Ankle/600 30.88 31.66 32.59 28.15 28.47 29.22
Ankle/255 29.63 30.13 30.84 27.40 27.73 28.08
Brain/1000 29.22 29.93 31.66 26.22 26.68 27.41
Brain/600 28.42 29.01 30.79 25,52 26.02 27.21
Brain/255 27.08 27.50 29.38 24.40 24.85 26.14
Mou./1000 29.78 30.48 31.91 27.01 27.59 28.26
Mou./600 29.16 29.77 31.04 26.37 26.90 27.50
Mou./255 27.80 28.26 29.22 25.43 26.05 26.07
Neck/1000 29.36  29.91 30.91 27.01 2752 27.71
Neck/600 28.78 29.23 30.23 26.33 26.88 27.28
Neck/255 27.64 27.98 28.85 25.39 25.87 26.24
Aver./1000 29.98 30.69 32.01 27.25 27.74 28.29
Aver./600 29.06 29.92 31.16 26.59 27.07 27.80
Aver./255 28.04 28.47 29.57 25.66 26.13 26.63

bara (512 x 512), Cameraman (256 x 256), Lena (512 x 512)

(c) PIDAL-FA (d) Ours

Poisson noise with peak intensity 600). The PIDSplit+ mdtho
recovers less details than PIDAL-FA, which is itself a dttl
less contrasted and detailed than our result, as confirmed
by the PSNR values. By employing the multiscale structure
information, the PIDAL-FA method can better recover teggir
made of repeated patterns than the PIDSplit+ method, but for
the Man image, which contains many different irregular tex-
tures, the superiority of PIDAL-FA over PIDSplit+ vanishes
For Cameraman image (Fig.9), the level of recovered details
and the PSNR are in accordance: our method outperforms
PIDAL-FA, which is itself a little above PIDSplit+. Another
observation we can make is that like all TV-based methods,
PIDSplit+ produces images that suffer from the staircafexef
(piecewise constant regions sometimes delimited by aaific
boundaries, instead of smoothly-varying gray values).sThi
artifact does not appear with our method, that permits simoot
transitions as each patch is represented by a linear cotidrina

of atoms taken from the learned dictionary.

More systematic results are presented in Table Ill. The
parameters settings corresponding to the different peak in
tensities Peak = 1000, 600, 255) are, respectively: for the
PIDSplit+ method,\ = 0.008,0.015,0.025 (Gaussian blur)
and A = 0.006,0.01,0.02 (uniform blur); for the PIDAL-FA
method onBarbara image r = 0.008,0.015,0.025 (Gaus-
sian blur) andr = 0.008,0.01,0.02 (uniform blur), while
for other imagesr = 0.015,0.02,0.03 (Gaussian blur) and
7 = 0.01,0.015,0.025 (uniform blur); for the proposed
method, we took\ = 7000, 6000,4000 (Gaussian blur) and
A = 8000, 7000, 5000 (uniform blur).

V. DISCUSSIONS

In this section, we discuss several topics associated to
the present work: blind deblurring, a possible adaptatmn t
image deblurring under multiplicative noise, the effecttoé
parameters and the convergence of the algorithm, computati
time aspects, and suggestions for further improvements.

A. Blind deblurring

Until now, we assume that the blur kernel is known.
However, this is not possible in real applications. Estintat
kernels, which is a very difficult problem, is still an un-

andMan (512 x 512). The original images are shown in Fig.6dergoing topic. Here, we just do some attempts to handle
In Fig. 7 is reported a detail of the restored images obtainbtind deblurring under Poisson noise. Since almost all the
from Barbara image (degraded with a Gaussian blur andxisting methods designed for estimating kernels are under
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(d) Ours (25.29dB) (e) Original

(a) Degraded (b) PIDSplit+(24.51dB) (c) PIDAL-FA (24.93dB)

Fig. 7. Results of different methods ®arbara image corrupted by the Gaussian blur and Poisson noise witk ipéensity 600.

Fig. 8.

- '-'
(a) Degraded (b) PIDSpIit+(26.09dB) (c) PIDAL-FA (26.21dB) (d) Ours (26.76dB) (e) Original

Fig. 9. Results of different methods @ameraman image corrupted by the Uniform blur and Poisson noise wittkpetensity 600.

the Gaussian assumption of noise, we handle the Poiss®much lower than that obtained by deblurring with known

noise via a variance stabilizing transformation (VST)(E2s kernel.

for example) leading to an approximate normal distribution Second, we present experiments on real imhgéth Pois-

Then we use the algorithm proposed by Krishnan et al. [58bn noise. The sizes of the estimated kernels are sét /e

to estimate the kernel. Having the kernels, we can use tige parameters empirically to obtain the best visual te$oi

proposed method to recover the image. all the methods. In Fig. 11, we test our method on a CT image.
First, we present an experiment on the synthetic imagéle can observe that the proposed method achieves higher

degradedBrain image corrupted by a Gaussian blur andestored quality, with noise suppressed and blur reduced. |

Poisson noise with peak intensity 600. Fig. 10 presents they. 12, we provide theMethod Noise on the CT image

results. The size of the original kernel §s The size of to test the effects of different methods. Thethod Noise

the estimated kernel is set to H&é. We can observe that

the proposed meth_Od achieves higher reStolred quality thaEWe downloaded these two images from the DICOM Sample Image Sets:
the compared algorithms. However, the resulting PSNR valti:/iwww.osirix-viewer.com/datasets/
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TABLE Il T . T
PSNROB) VALUES FORPIDSPLIT+ [28], PIDAL-FA [14] AND OUR for multiplicative noise removal when the multiplicativeise
ALGORITHM FOR THE TEST IMAGES OFFIG.6 CORRUPTED BY A9 X 9 M, follows the Gamma distribution with probability density
GAUSSIAN BLUR WITH STANDARD DEVIATION 1OR BY A5 X 5 UNIFORM  fnction
BLUR, AND POISSON NOISE WITH VARIOUS PEAK INTENSITIES

(Peak = 1000, 600, 255). P 1 L1 =
’ ;0,L) = ——a" e ¢ for x>0
( ) ) ) HLF(L) — )
Gaussian blur Uniform blur whereT is the Euler Gamma function ani and L denote
Images/Peak  [28] ~ [14]  Ours (28] [14] Ours  the scale and shape parameters in the Gamma distribution,
Bar./1000 24.98 25.46 25.67 2424 2452 24.65 respectively. Models of multiplicative noise usually assu
Bar./600 2451 2493 2529 23.95 24.23 24.40 _
Bar./255 24.07 24.34 24.60 2357 23.79 23.84 that the means gquals one, so thatt= 1.

1000 2833 2838 2877 672 2686 26.97 Here we just give a simple example to show that our model,
Cam /600 5754  27.84 28.40 2609 2621 2676 though de5|gn_ed for P0|sso_n noise, can _ex_hlbl_t good per
Cam./255 26.63 26.79 27.52 2523 2531 26.06 formances for image deblurring under multiplicative Gamma
Lena/1000 3270  32.98 33.70 3092 3125 31.75 noise. We compare f!ve methods: the thrge me_thods considered
Lena/600 3227 32.38 33.06 30.44 30.70 31.19 earlier for Poisson image deblurring (including ours), splu
Lena/255 31.10 31.15 31.68 29.65 2975 29.94 two models explicitly designed for image deblurring under
Man/1000 29.92 29.78 30.35 28.12 28.17 28.46 multiplicative noise: the AA model [55] and the RLO model
Man/600 29.29  29.23 29.82 27.66 2765 27.99  [56] As we can observe in Fig.14, the result obtained with

Man/255 28.34 2825 28.73 26.90 26.90 27.12 . . .
an our method leads to a better image quality and a higher PSNR

Aver/1000  28.98 29.15 29.62 2750 27.70 27.96 than the other methods considered.
23221223 53;;‘2 §§;2§ 52;}‘3‘ %:gi %:ig %:?i Note that in the case of multiplicative noise removal, bias
correction is important [60], [61]. In our experiments, bipg

a bias correction improves the PSNR by 0.1 to 0.2 dB. This
images are still drawn with the same grayscale range. Itisswhy, in order to provide a fair comparison, we applied the
clear that our method removes the least details. Notice tB@me projection step proposed in [60] to the results of all
“Y” shaped bright area in the original image. Since this paglgorithms. We refer to [60], [61] for more information on
has a constant grayscale value, it shall not be altered by #ias correction.

debluring algorithms. This is clearly the case in our method

In Fig. 13, we test our method on a cardiac CT image. We The effect of the parameters and the convergence of the
can observe that the restored image by the proposed methatgbrithm

is much sharper than the original image. This indicates thatHere we study the effect of the parameters in the energy
the motion blur in the original image is successfully redlicefunction(12). Actually, most of them can be fixed in all the
Meanwhile, we can also observe that the proposed meth@heriments. The parametercontrols the effect of the TV
preserves more details than the other deblurring methods. regularization. When there are some artifacts in the reeaver
The results obtained by blind deblurring under Poissonenoignage, one may take larger In fact, the influence of the TV
are not satisfactory. There are seldom works handling thisgularization also depends on the ratio of the valug ehd
topic. Jiang et al. [51] proposed a blind deblurring aldorit )\ Thus, we can fix other parameters, and study the sensitivity
to improve spiral CT image resolution in the case of Gaussigfthe recovered results to the choice of the parametexsd
blurring. In Computer Vision, many algorithms have beep. Fig. 15 gives the PSNR values of the resulting images under
proposed to estimate the blur kernel from images acquirggrtain choice of the two parameters. As expected, we found
under Gaussian noise (see [52]-[54] and references therejfat the choice of\ is dependent on the noise level, and the
Although we try to use those methods to estimate the blur kefoice of is dependent on the choice af However, the
nel by means of a variance stabilizing transformation (VSTgensitivity of the results to the choice gfis smaller.
However, we think generalizing these works to estimate afig. 16 presents the objective function values of the pro-
blur kernel under Poisson noise would lead to much betigsed method oBrain image corrupted by the Gaussian blur
recovered results. Furthermore, the blur kernel may beapatand Poisson noise with peak intensity 600. We can observe
varying in real applications, this makes the problem mokfat, as iterations progress, the objective function valuene
harder to handle. proposed method converges

B. Deblurring under Multiplicative Noise D. About the Computation Time

Multiplicative noise appears in several applications,hsuc Although providing better recovered images, the proposed
as laser imaging, ultrasound imaging, and synthetic apertunethod is computationally heavier: with our implementagio
radar (SAR) [55]-[59]. In these cases, the image formatigrocessing a512 x 512 image takes around ten minutes,
process (including blur) can be written while PIDSplit+ and PIDAL-FA need less than one minute

f= (Hu)M (all experiments realized using Matlab 7.12 (R2011a) on a PC

" equipped with a 2.70GHz CPU).
where M,, represents a random variable (multiplicative noise) The computation time cost of our approach could be reduced
with mean one. As shown in [57], Model (3) is also appropriaie at least three ways: (1) using a better computer or even
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A\

(a) kernel (b) estimation (c) PIDSplit+ (23.56dB) (d) PIDAL-FA (24.51dB)  (e) Ours (25.35dB) (f) Original

Fig. 10. Results of different methods @&nain image corrupted by a Gaussian blur and Poisson noise with ipgasity 600.

(a) Estimated kernel (b) Original (c) PIDSplit+ (d) PIDAL-FA (e) Ours

Fig. 11. Results of different methods @T image.

(a) Original (b) PIDSplit+ (c) PIDAL-FA (d) Ours

Fig. 12. Method Noise of different methods on the CT image.

(a) Estimated kernel (b) Original (c) PIDSplit+ (d) PIDAL-FA (e) Ours

Fig. 13. Results of different methods on a cardiac CT image.

clusters since ours for experiments is not so good; (2) apply [62], thus taking advantage of the self-similarity of image
some paralleling techniques to compute the most time apstif63], [64] to constrain similar patches to share similar or
step (6); (3) stopping the outside/inside iterations tineice identical dictionary elements in their sparse represemat
the satisfactory resulting image is obtained. Currentlysse Another possibility would be to incorporate the multiscale
N; =60 andNp = 20 which are largely unnecessary in manytructure of images as in [65], since the size of texturecpadt
cases. varies among different images, or even inside a single image
(actually, for some test images considered in Section IV, we

) got better results when using different patch sizes, but we

E. How to further improve the proposed method chose to use the same patch size for simplification). Las&rot

The proposed method could be improved in different wayBatch-based sparse priors could also improve the resalts, i
A more powerful dictionary learning method could be usegarticular the Gaussian mixture prior used in [23] or thegma
incorporating for example the “non-local” information as i content based heavy-tailed gradient distribution of [20].
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(d) PIDSplit+ (22.53dB) (e) PIDAL-FA (22.75dB) (f) Ours (23.51dB) (9) Original

Fig. 14. Results obtained with different methodsBnain image corrupted by Gaussian blur £ 1) and multiplicative noiseff = 10).
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Fig. 15. Resulting PSNR values of our methodRyain image corrupted by Fig. 16. Resulting objective function values of our methodBoain image
the Gaussian blur and Poisson noise with peak intensity 6@hvincreasing corrupted by the Gaussian blur and Poisson noise with peeksity 600 as
the values of\ for different . iterations progress.

VI. CONCLUSION procedure in the present approach would also be an integesti
development and open new possibilities of applications.
In this paper, we proposed a new model to recover images
suffering from blur and Poisson noise. It is based on the VII. ACKNOWLEDGEMENTS
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