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A Dictionary Learning Approach

for Poisson Image Deblurring
Liyan Ma, Lionel Moisan, Jian Yu and Tieyong Zeng∗

Abstract—The restoration of images corrupted by blur and
Poisson noise is a key issue in medical and biological image
processing. While most existing methods are based on variational
models, generally derived from a Maximum A Posteriori (MAP)
formulation, recently sparse representations of images have
shown to be efficient approaches for image recovery. Following
this idea, we propose in this paper a model containing three
terms: a patch-based sparse representation prior over a learned
dictionary, the pixel-based total variation regularization term
and a data-fidelity term capturing the statistics of Poisson
noise. The resulting optimization problem can be solved by
an alternating minimization technique combined with variable
splitting. Extensive experimental results suggest that in terms of
visual quality, PSNR value and the method noise, the proposed
algorithm outperforms state-of-the-art methods.

Index Terms—Deblurring, dictionary learning, patch-based
approach, Poisson noise, total variation.

I. INTRODUCTION

Image degradation is unavoidable in real applications, in

particular in biomedical imaging, microscopy, astronomical

imaging, where low-intensity signals are frequently encoun-

tered. Among the most important degradations in these fields

are noise, in particular the unavoidable Poisson noise due to

the quantum nature of light, and blur, at least caused by the

natural extent of the point spread function of the imaging

device. Other causes of blur, like defocus or motion blur, are

also frequently encountered. This makes image restoration,

which aims at recovering a high-quality image from its de-

graded observation, a very important topic in imaging science

in general, and in these fields in particular [1]–[7].

Mathematically, the degraded observed image f ∈ R
m×n

can be written as

f = P (Hu), (1)

where u ∈ R
m×n denotes the unknown ideal image, the

known linear operator H : Rm×n → R
m×n stands for blur,
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L. Moisan is with Université Paris Descartes, MAP5 (CNRS UMR 8145),
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and P denotes the effect of noise. Gaussian noise, impulse

noise, Poisson noise and multiplicative noise are typical in-

stances that have been studied in the literature. When H is

the identity matrix, the problem reduces to image denoising.

As the linear operator H is usually ill-conditioned, image

deblurring is a classical ill-posed inverse problem. Regularity

conditions are then required to restrict the solution space [8]–

[11]. A widely-used regularization criterion in image pro-

cessing is total variation (TV) [10], which is known to well

preserve edges in images. However, TV regularization is also

known to over-smooth textured regions, which may cause the

loss of important details. Other widely-used approaches are

wavelets and frames [12]–[14], which provide a multiscale

and sparse representation of images, hence breaking the ill-

posedness of the initial inverse problem. These methods bet-

ter preserve textures than TV regularization and interesting

connections between wavelet-based and TV-based restoration

methods were established by Chambolle et al. [15] and later

by Steidl et al. [16] and Cai et al. [17]. In 2002, Malgouyres

[18] and Candes [19] proposed a hybrid restoration method

combining TV and wavelets. Although wavelet-based methods

provide good results in many applications, they are based on a

fixed dictionary, independent of the image content. As a result,

these methods may fail to capture the distinctive characteristics

of the processed image, which limits their performances. To

overcome this limitation and better take into account the

structure of the processed image, patch-based approaches have

been proposed and widely adopted in image processing in the

past few years.

Many patch-based sparse priors have been studied for image

restoration. One approach exploits a heavy-tailed gradient

distribution of natural images [20]. Elad and Aharon [21]

proposed an effective denoising method (called K-SVD) based

on a sparse and redundant representation: their algorithm first

learns an optimal over-complete dictionary from the observed

noisy image patches, and then recovers each image patch

via a linear combination of only a few atoms in the learned

dictionary. Another remarkable denoising method relying on

a sparse representation is the BM3D algorithm proposed by

Dabov et al. [22]. Similar patches are first stacked into 3D

arrays, and then jointly denoised using collaborative filtering

in the 3D transformed domain. The BM3D method is very

efficient, and does not need to find an explicit dictionary.

Recently, Zoran and Weiss [23] proposed a simple Gaussian

Mixture prior learned from a set of natural images, then used

this prior for denoising or deblurring purposes. Although the

restoration results obtained by Zoran and Weiss are better than

many other sparse prior based methods, the computational cost
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of the stage corresponding to the learning of the Gaussian

Mixture prior is very high.

Most of the above-mentioned methods are designed to work

with Gaussian noise. Unfortunately, Gaussian distributions

provide only a limited approximation in most real applications.

Applying these methods directly for image deblurring under

other kinds of noise is not very efficient in general, because

different kinds of noise may affect the image in totally

different ways. In particular, Poisson noise, that we consider

in the present paper, is signal dependent, as the variance of

the noise is, in each pixel, proportional to the intensity of the

signal. More precisely, assuming as usual that the values of

the observed image f at the locations {i} are independent, we

can write

P (f |Hu) =
∏

i

e−(Hu)i ((Hu)i)
fi

fi!
. (2)

Lots of methods have been proposed for Poisson noise

removal. Major contributions fall in the following three cate-

gories: (a) simply recover the image using a method designed

for Gaussian noise removal; (b) transform Poisson noise into

near-Gaussian noise by applying an appropriate transform

to the noisy image (called a variance-stabilizing transform,

VST), then process the transformed image with an algorithm

designed for Gaussian noise removal, and finally apply to

it the inverse transform in order to get the result [1], [24],

[25]; (c) remove Poisson noise directly via a data-fidelity

term derived from Poisson noise statistics [14], [26]–[28]. The

present contribution belongs to the third category. Let us also

mention recent works dealing with mixed Poisson-Gaussian

noise removal [1], [24], [29].

Using the Bayesian framework in the case of Poisson noise,

Le et al. [27] proposed to minimize

‖∇u‖1 + λ 〈Hu− f logHu, 1〉 , (3)

where the first term is the classical discrete TV regularization,

that is, the l1 norm of the gradient ∇u = (∂xu, ∂yu)
T

whose components ∂xu and ∂yu are finite differences that

estimate the partial derivatives of the image. The second term

is the data-fidelity term, derived from the log-likelihood of

the Poisson distribution. This functional is non-quadratic and

causes several difficulties. Le et al. proposed to minimize (3)

by using a traditional gradient descent, which is slow. More

efficient methods were proposed later: Sawatzky et al. [30]

proposed an EM-TV algorithm; Chaux et al. [31] proposed

a nested iterative algorithm; Setzer et al. [28] employed the

split Bregman technique [32]; Figueiredo et al. [14] used the

alternating direction method of multiplier to solve (3) or a

frame-based version of (3).

Based on the developments mentioned above and inspired

by the K-SVD algorithm for Gaussian noise removal, we here

propose a new model, involving a sparse representation over

a learned dictionary, to deblur images corrupted by Poisson

noise. Although Xiao et al. [33] studied Poisson noise removal

via a learned dictionary, they did not consider the blur which,

as we saw earlier, cannot be avoided in many real applications.

Also, some recent works studied image deblurring under

Gaussian noise via a learned dictionary [34]–[36], but as far

as we have known, our work is the first one that deals with

Poissonian image deblurring via a learned dictionary.

The paper is organized as follows. In Section II, we briefly

review the main principle of K-SVD algorithm. In Section

III, we detail the proposed model and propose an algorithm

to solve it. In Section IV, some numerical experiments are

presented to demonstrate the performance of our model. Other

applications, computational time and possible further improve-

ments are then discussed in Section V. Finally, Section VI

concludes the paper.

II. IMAGE DENOISING USING A PATCH-BASED SPARSE

REPRESENTATION PRIOR

Choosing a good prior (or equivalently, a good regular-

ization term) is the key of solving most ill-posed inverse

problems in Image Processing and Computer Vision. The

approach based on a learned dictionary has achieved very

promising results in many applications since it was introduced

by Olshausen and Field [37] in 1996. In the present paper, we

adopt the K-SVD method, proposed by Elad et al. [21], [38], to

learn a good sparse representation prior. It is a flexible method,

that can be adapted to different tasks, and it has the advantage

of providing an explicit dictionary to represent image patches.

We now briefly recall the K-SVD method for Gaussian noise

removal.

The basic assumption of the K-SVD method is that image

patches admit a sparse representation. More precisely, each

image patch (of size
√
N×

√
N , converted to a single column

vector x ∈ R
N ) can be compactly represented as a linear

combination of a small subset of patches (atoms), taken from

a dictionary D ∈ R
N×K . Denoting by

‖x‖p =

(

m
∑

i=1

|xi|p
)

1

p

the classical lp norm in Euclidean space for p ∈ [1,∞),
the above assumption can be formally transposed into the

minimization problem

α̂ = arg min
α∈RK

‖α‖0 , s.t. ‖Dα− x‖2 ≤ ε, (4)

where ε is zero or a small positive constant, and the “zero-

norm” ‖α‖0 := #{i | 1 ≤ i ≤ K, αi 6= 0} counts the

number of nonzero entries in the vector α. Under Gaussian

noise assumption, the observed noisy image is g = u + b,
where u is the ideal (non-observed) image to recover and b ∼
N (0, σ2I) is the Gaussian noise term. In the following, we

shall assume that g (and u) are written as column vectors of

R
m×n indexed by

A = {1, 2, . . . ,m} × {1, 2, . . . , n},

and the subset of A where
√
N ×

√
N patches can be placed

will be denoted by

As = {1, 2, . . . ,m−
√
N + 1} × {1, 2, . . . , n−

√
N + 1}.

Following the sparse representation assumption (4), Elad et

al. [21] proposed to achieve Gaussian noise removal with the
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variational model

min
{αij},u,D

∑

(i,j)∈As

µij ‖αij‖0 +
∑

(i,j)∈As

‖Dαij −Riju‖22

+λ ‖u− g‖22 ,
(5)

where the binary matrix Rij ∈ R
N×mn corresponds to the

extraction of a
√
N ×

√
N block from the image at location

(i, j), so that Riju ∈ R
N . The hidden parameters µij > 0

depend on the optimization procedure. The first two terms

in (5) correspond to the above-mentioned sparsity assumption

(for some dictionary D ∈ R
N×K ), while the last term

controls data fidelity (for the statistics of Gaussian noise, that

correspond to a squared l2 norm), weighted by a positive

parameter λ.

The choice of the dictionary D has a significant impact on

the performance of the K-SVD algorithm. Experimental results

in [21] show that learning the dictionary from the noise image

leads to better performances in most cases. To get the solution

of (5), Elad et al. minimized (5) with respect to D, αij and u
separately:

• Solving for D given {αij}, u: Elad et al. update one atom

at a time in D and its corresponding coefficients using

SVD decomposition of a residual matrix. Details can be

found in [21], [38].

• Solving for {αij} given D,u requires to consider

min
{αij}

∑

(i,j)∈As

µij ‖αij‖0 +
∑

(i,j)∈As

‖Dαij −Riju‖22 .

(6)

In general, this optimization problem is difficult to solve.

Aharon et al. [38] used the orthogonal matching pursuit

(OMP) method [39] to efficiently get a solution.

• Solving for u given D, {αij}: The recovered image is a

solution of

min
u

∑

(i,j)∈As

‖Dαij −Riju‖22 + λ ‖u− g‖22 . (7)

This minimization problem has a closed-form solution:

taking the derivative of (7) with respect to the vector u,

setting to 0 and solving the resulting equation yields

û = (λI +
∑

i,j

RT
ijRij)

−1(λg +
∑

i,j

RT
ijDαij).

The K-SVD algorithm provides very good results for Gaussian

noise removal, and it has been later generalized to handle

color image denoising, demosaicking, inpainting and image

sequence denoising [40], [41]. In the next section, we present

a way to adapt this sparse representation prior to the case of

Poisson image deblurring.

III. PROPOSED ALGORITHM

We first describe a new variational model for Poisson image

deblurring, then present an algorithm to find the solution by

solving the associated minimization problem. (See Table I for

a list of the notations used in this paper.)

TABLE I
NOTATIONS USED THROUGH THE PAPER.

f blurry and noisy image
g noisy image
u the unknown ideal image
H blur kernel
P the effect of noise

P (·) probability
∇ the gradient operator
λ the balanced parameter for the data-fidelity term√

N ×
√
N patch size
As set of patches’ locations
D dictionary

αij the coefficients for the patch locaded at (i, j)
Rij the extraction of a patch from the image at location (i, j)
µij hidden parameters
û the estimation of u
η the balanced parameter for the TV term

p, q, w the auxiliary variables introduced in the splitting method
η1, γ, β positive parameters penalize the distance between u,∇,

Hu and their corresponding auxiliary variables
∇∗ the complex conjugate transpose of ∇
NO the iterations of the outer loop
NI the iterations of the inner loop

rβ , rγ , rη1 growth rates for parameters β, γ, η1

A. Proposed model

Images encountered in real applications are structured data

that present lots of repeated patterns, in particular edges,

smooth regions, and textures. This is probably why methods

incorporating sparse and adaptive patch priors have exhibited

very good performances. In the proposed model, we use the

sparse representation prior (4) proposed by Elad et al. [21],

[38] as a regularization term, and the data-fidelity term of (3)

to model blur and Poisson noise. Moreover, to overcome the

artifacts sometimes caused by patch-based priors in deblurring

tasks (see, e.g., the artifacts encountered in smooth regions in

[34], [36] when deblurring under Gaussian noise), we add a

TV regularization term. Thus, the discrete variational model

we propose for Poisson image deblurring writes

min
{αij},u,D

∑

(i,j)∈As

µij ‖αij‖0 +
∑

(i,j)∈As

‖Dαij −Riju‖22

+η ‖∇u‖1 + λ 〈Hu− f logHu, 1〉 ,
(8)

where η and λ are positive constants that balance the different

terms. Notations As, µij , αij , D and Rij are those of (5). This

model mixes two priors: one is patch-based and it contributes

to recover textures, while the other one is pixel-based and

helps favoring local smoothness while keeping sharp edges.

The last term in (8) is the data-fidelity term, which measures

the “distance” between the recovered image and the observed

one according to Poisson statistics.

The proposed model (8) raises some important issues: it is

non convex (because of the product between the unknowns D
and αij), the TV regularization term is non-differentiable, and

the data-fidelity term, because of the log function, is much

less easy to handle than, say, a classical squared l2 norm.

Fortunately, these difficulties can be overcome: given D, the

function to minimize with respect to {αij} and u is convex,

so that there is hope to find a good minimization algorithm

by minimizing this convex function in an inner loop, while
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optimizing with respect to D in an outer loop. Moreover, there

exists lots of methods to handle non-differentiable functions

[32], [42]–[45], so that the TV term is not really a problem.

Last, the variable splitting method [32], [42], [45] can be used

to overcome the non-quadratic form of the data-fidelity term.

Before describing the algorithm that we will use to solve (8),

we introduce in the next section the variable splitting method.

B. Variable Splitting Method

The main idea driving the variable splitting method is that

by introducing appropriate auxiliary variables, the minimiza-

tion of a sum of two functionals involving the same variable

can be achieved by means of separate minimizations. To be

more precise, let us consider the unconstrained optimization

problem

min
x

F1 (Ax) + F2(x), (9)

where F1 and F2 are two functions and A is a linear operator.

By introducing an auxiliary variable d, Problem (9) can be

rewritten as the constrained problem

min
d,x

F1(d) + F2(x) s.t. Ax = d. (10)

We can see that Problem (10) is equivalent to Problem (9)

in the feasible set {(d, x) | Ax = d}. Now we can relax the

constrained problem (10) to an unconstrained one, namely

min
d,x

F1(d) +
β

2
‖Ax− d‖22 + F2(x). (11)

The connection between (11) and (10) is simple: when the

parameter β is sent to +∞, Problem (11) goes back to

(10), or, equivalently (9). But in general, solving (11) is

much easier than solving (9). Thanks to this variable splitting

method, many efficient algorithms have been designed to

solve minimization problems involving a non-differentiable

TV regularization term [14], [32], [42], [45], [46].

C. The full algorithm for Poisson image deblurring

Let us now return to the optimization problem (8). Using

the variable splitting method presented above, we transform

(8) into

min
{αij},u,D,p,q,w

∑

(i,j)∈As

µij ‖αij‖0 +
∑

(i,j)∈As

‖Dαij −Rijp‖22

+β
2 ‖p− u‖22 + η ‖q‖1 + η1

2 ‖∇u− q‖22

+λ 〈w − f logw, 1〉+ γ
2 ‖w −Hu‖22,

(12)

where p ∈ R
mn, q ∈ R

mn × R
mn, w ∈ R

mn are three

auxiliary variables, and η1, γ, β are three positive numerical

parameters, that can be chosen rather large in practice. The

new minimization problem (12) is easier to solve than (8).

Like many algorithms [43], [45], we can use an alternating

minimization algorithm to solve (12). This procedure involves

several sub-problems:

1) Solving for {αij} given u,D: For (i, j) ∈ As, the

minimization of (12) with respect to αij amounts to

min
αij

µij ‖αij‖0 + ‖Dαij −Rijp‖22.

This is exactly the sub-optimization problem (6), already

present in the K-SVD algorithm. To solve it, we use the OMP

method [39] as in the K-SVD algorithm.

2) Solving for p given u,D: The minimization of (12) with

respect to p becomes

min
p

∑

(i,j)∈As

‖Dαij −Rijp‖22 +
β

2
‖p− u‖22 . (13)

This is a least squares problem, similar to (7). Its closed-form

solution is

p = (βI + 2
∑

(i,j)∈As

RT
ijRij)

−1(βu+ 2
∑

(i,j)∈As

RT
ijDαij).

(14)

3) Solving for q given u,D: The minimization of (12) with

respect to q boils down to

min
q

η ‖q‖1 +
η1
2

‖∇u− q‖22 .

This is an l1-regularized least squares problem. It can be

solved explicitely by pointwise soft-thresholding (see also

[13], [14], [45]):

q = shrink

(

∇u,
η

η1

)

, (15)

where the shrinkage operator is defined by

shrink (t, τ) = max (‖t‖ − τ, 0)
t

‖t‖ .

4) Solving for w given u,D: The minimization of (12) with

respect to w leads to

min
w

λ 〈w − f logw, 1〉+ γ

2
‖w −Hu‖22 , (16)

whose explicit solution is

w =
Hu− λ

γ
+

√

(

Hu− λ
γ

)2

+ 4λf
γ

2
. (17)

5) Solving for u given {αij}, p, q, w,D: The minimization

of (8) with respect to u is equivalent to

min
u

β

2
‖p− u‖22 +

η1
2

‖∇u− q‖22 +
γ

2
‖w −Hu‖22 .

This is again a least squares problem, whose closed-form

solution is

u =
(

β + η1∇∗∇+ γHTH
)−1 (

βp+ η∇∗q + γHTw
)

,
(18)

where the complex conjugate transpose ∇∗ of ∇ is defined by

∀q = [q1, q2]
T ∈ U = R

mn × R
mn, ∇∗q = ∂∗

xq1 + ∂∗
yq2.

The products by H and HT in (18) can be efficiently computed

by FFT algorithm.

As we saw in Section III-B, Model (12) is equivalent

to Model (8) when the parameters η1, γ, β tend to +∞.

Therefore, we should set these three parameters to large values,

so that the solution of (12) remains close to the solution of (8).

However, if we use too large values, numerical problems occur

in the minimization process (see [47]). This is why, inspired

by the implementation of the FTVd method [45], we start with
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small values for the three parameters and gradually increase

them along the iterations, thereby forcing the convergence to

the solution of Model (8).

The dictionary learning procedure has a crucial influence

on the quality of the recovered image. Since the degraded

image lacks textures and details, we use the estimated image

u to learn the dictionary D. However, updating D each time u
changes would be computationally too expensive, so we just

update D in an outer loop. In this paper, we use the method

in [21] to learn the dictionary. The details of the proposed

algorithm are summarized in Algorithm 1.

Algorithm 1 Proposed algorithm for Poisson image deblurring

Initialization: Set u = f , D = DCT . Choose η1, λ, γ,

η and β, the number of iterations for the outer (NO) and

inner (NI ) loops, the growth rates rβ , rγ , rη1

Output: u
for iterO = 1 to NO do

for iterI = 1 to NI do

update αi,j using OMP;

update p using (14);

update q using (15);

update w using (17);

update u using (18);

end for

update Dictionary D;

β = β · rβ ;

γ = γ · rγ ;

η1 = η1 · rη1
;

end for

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

algorithm and compare it to the TV-based algorithm [28]

(denoted by PIDSplit+) and to the frame-based algorithm

[14] (denoted by PIDAL-FA). We first present experiments

on MRI and Fluorescence Microscopy images, then provide

experiments on natural images to further study the behavior

of these methods.

We consider two different blur kernels: a 9×9 Gaussian blur

with standard deviation 1 (generated by the Matlab function

’fspecial’), and a 5 × 5 uniform blur. Three peak intensities

are considered (Peak = 255, 600, 1000), corresponding to

different Poisson noise levels. To obtain the degraded image,

we first scale the original image by Peak/Imax, where Imax is

the maximal value of the original image, and then convolve it

with the appropriate blur kernel, before with simulate Poisson

noise on the blurred image (Matlab function ’poissrnd’).

Periodic boundary conditions are adopted, so that the Dis-

crete Fourier Transform (DFT) can be used to compute the

convolution operator. The quality of the restoration results is

compared quantitatively by means of the peak signal-to-noise

ratio (PSNR), which is defined (as usual) by

PSNR = 20 log10
Peak

1
mn

‖u∗ − u‖2
, (19)

where u∗ is the restored image and u is the true original image.

The stopping criterion we adopt is widely used [14], [45]:

we stop when the relative difference between two successive

iterates of the restored image fall beyond a fixed threshold ε,

that is, when
∥

∥uk+1 − uk
∥

∥

2

‖uk+1‖2
< ε. (20)

We stop the inner loop of Algorithm 1 when iterI = NI or

(20) is satisfied with ε = 10−5. For PIDSplit+, we use the

stopping criterion suggested in [28] and set the error bound to

be 0.5. We set ε = 10−4 for PIDAL-FA. For these settings,

all the algorithms reach convergence in most cases.

For PIDSplit+, we set γ = 10/λ, and the parameter λ in

the regularization term is tuned empirically to perform well.

For PIDAL-FA, we set the parameter µ as suggested in [14],

and the parameter τ in the regularization term is tuned empiri-

cally to perform well. As suggested in [14], we use a redundant

Haar frame for the Cameraman image and Daubechies-4 for

the other images1.

For the proposed algorithm, we set the parameters of K-

SVD2 as follows: J = 30 (since this is enough to ensure the

convergence), patches of size 4 × 4, and a dictionary of size

16 × 256. We also set η = 0.1, NO = 12, NI = 60, and the

initialization for η1, β and γ are 0.01, 10 and 50 respectively

(excepted for Barbara image in Section IV-B, for which we

take γ = 20). Growth rates are rβ = rγ = 2 and rη1
= 1.5,

and the remaining parameter λ in the data-fidelity term is tuned

empirically to achieve good performances.

A. Experiments on Medical Images

To compare the effects of PIDSplit+ and PIDAL-FA al-

gorithms to ours, we realized synthetic experiments (blur +

noise, then deblurring) on the following gray-level images

coming from the biomedical field3: Ankle (512× 512), Brain

(256×256), Mouseintestine4 (256×256) and Neck (256×256).

These images are presented in Fig.1.

In Fig. 2 is reported a detail of the results obtained by

processing a corrupted version of Ankle image (Gaussian blur

and Poisson noise with peak intensity 600). We can observe

that the TV-based PIDSplit+ method tends to oversmooth the

image and exaggerate the width of fine structures. It also

presents a blocky aspect along some edges. The frame-based

PIDAL-FA method preserves more details, but introduces

some artifacts. Comparatively, our method reaches a higher

PSNR value and achieves better visual quality. The same

conclusions hold for Brain image corrupted with a uniform

blur and Poisson noise (see Fig.3). For the latter experiment,

we show in Fig.4 the final dictionary learned at the last

iteration of the proposed method.

1The frame is computed via the Rice Wavelet toolbox:
http://dsp.rice.edu/software/rice-wavelet-toolbox

2When implementing the K-SVD denoising algorithm, we use the code
provided by Rubinstein on his website: http://www.cs.technion.ac.il/ ron-
rubin/software.html

3We downloaded these images from the following websites:
http://sehati.org/index/patientresources/diagnosticprocedures/mri.html,
http://www.cedars-sinai.edu/Patients/Programs-and-Services/Imaging-
Center/For-Patients/Exams-by-Procedure/MRI/Lower-Extremities-Leg.aspx,
http://www.microscopyu.com/articles/livecellimaging/index.html,
http://osc-ortho.com/blog/tag/open-mri/
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Fig. 1. Original images. From left to right: Ankle, Brain, Mouseintestine4, Neck.

(a) Degraded (b) PIDSplit+ (30.88dB) (c) PIDAL-FA (31.66dB) (d) Ours (32.59dB) (e) Original

Fig. 2. Results of different methods on Ankle image (detail) corrupted by a Gaussian blur (σ = 1) and Poisson noise with peak intensity 600.

(a) Degraded (b) PIDSplit+ (25.52dB) (c) PIDAL-FA (26.02dB) (d) Ours (27.21dB) (e) Original

Fig. 3. Results of different methods on Brain image (detail) corrupted by a 5× 5 uniform blur and Poisson noise with peak intensity 600.

Note that our dictionary method assumes high repetition

of features in the image. This is not always true in medical

images as minor irregularities may sometimes be of high

importance, as pointed out by [48]. In order to handle this

problem, we have reduced the dictionary patch size from

16×16 (in the original K-SVD paper [21]) to 4×4. It is then

interesting to see that the dictionary shown in Fig.4 contains

some typical details of the original Brain image, thus showing

the ability of the algorithm to recover details from the degraded

image. The spotted atoms there should be useful to represent

those minor irregularities in medical images (see spots in Fig.

11).

More systematic results are presented in Table II.

Besides PSNR evaluations, we also provide results of the

Method Noise proposed in [49] on the Brain image, adaptive

to Poisson noise. Denote u as the underlying image (possibly

with some noise), and Dh the image restoration result with

parameter(s) h. Inspired by [25], [48], [49], the Method Noise

(or the stabilized noise residual) is then defined as

A(u)−A((Dhu)), (21)

where A is the identity operator for Gaussian noise or the

Anscombe transform (see [25]) for Poisson noise for variance

stabilization. The importance of Method Noise was discussed

in [48]. Evidently, few textures/structure should be present in

the difference in (21). Since we are mainly dealing with Pois-

son noise, which is signal dependent, we apply the Anscombe

transform on both u and Dhu, leading to an approximate

Gaussian noise. The results of Method Noise are reported in

Fig. 5 where all the Method Noise images are drawn with

the same grayscale range. Note that for fair comparisons,

we tune the parameters in different methods until the MSE

between u and Dhu reaches a predefined value. Clearly, our

method produces the best result with the least image structure

information removed.

The parameters settings corresponding to the different peak

intensities (Peak = 1000, 600, 255) are, respectively: for

the PIDSplit+ method, λ = 0.01, 0.012, 0.02 (Gaussian blur)

and λ = 0.005, 0.007, 0.015 (uniform blur); for the PIDAL-

FA method, τ = 0.01, 0.015, 0.025 (Gaussian blur) and

τ = 0.008, 0.01, 0.02 (uniform blur); for the method we

propose, we took λ = 5000, 4000, 3000 (Gaussian blur) and

λ = 8000, 7000, 5000 (uniform blur).

B. Experiments on Natural Images

To further compare the performance of the three methods,

we also ran experiments on classical gray-level images: Bar-
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(a) Original (b) PIDSplit+ (c) PIDAL-FA (d) Ours

Fig. 5. Method Noise of different methods on the Brain image.

Fig. 4. Dictionary learned by our method for the experiment of Fig.3.

TABLE II
PSNR(DB) VALUES FOR PIDSPLIT+ [28], PIDAL-FA [14] AND OUR

ALGORITHM FOR THE TEST IMAGES OF FIG.1 CORRUPTED BY A 9× 9
GAUSSIAN BLUR WITH STANDARD DEVIATION 1 OR BY A 5× 5 UNIFORM

BLUR, AND POISSON NOISE WITH VARIOUS PEAK INTENSITIES

(Peak = 1000, 600, 255).

Gaussian blur Uniform blur

Images/Peak [28] [14] Ours [28] [14] Ours

Ankle/1000 31.54 32.45 33.56 28.74 29.16 29.77
Ankle/600 30.88 31.66 32.59 28.15 28.47 29.22

Ankle/255 29.63 30.13 30.84 27.40 27.73 28.08

Brain/1000 29.22 29.93 31.66 26.22 26.68 27.41

Brain/600 28.42 29.01 30.79 25.52 26.02 27.21
Brain/255 27.08 27.50 29.38 24.40 24.85 26.14

Mou./1000 29.78 30.48 31.91 27.01 27.59 28.26
Mou./600 29.16 29.77 31.04 26.37 26.90 27.50
Mou./255 27.80 28.26 29.22 25.43 26.05 26.07

Neck/1000 29.36 29.91 30.91 27.01 27.52 27.71
Neck/600 28.78 29.23 30.23 26.33 26.88 27.28
Neck/255 27.64 27.98 28.85 25.39 25.87 26.24

Aver./1000 29.98 30.69 32.01 27.25 27.74 28.29
Aver./600 29.06 29.92 31.16 26.59 27.07 27.80

Aver./255 28.04 28.47 29.57 25.66 26.13 26.63

bara (512× 512), Cameraman (256× 256), Lena (512× 512)

and Man (512×512). The original images are shown in Fig.6.

In Fig. 7 is reported a detail of the restored images obtained

from Barbara image (degraded with a Gaussian blur and

Poisson noise with peak intensity 600). The PIDSplit+ method

recovers less details than PIDAL-FA, which is itself a little

less contrasted and detailed than our result, as confirmed

by the PSNR values. By employing the multiscale structure

information, the PIDAL-FA method can better recover textures

made of repeated patterns than the PIDSplit+ method, but for

the Man image, which contains many different irregular tex-

tures, the superiority of PIDAL-FA over PIDSplit+ vanishes.

For Cameraman image (Fig.9), the level of recovered details

and the PSNR are in accordance: our method outperforms

PIDAL-FA, which is itself a little above PIDSplit+. Another

observation we can make is that like all TV-based methods,

PIDSplit+ produces images that suffer from the staircase effect

(piecewise constant regions sometimes delimited by artificial

boundaries, instead of smoothly-varying gray values). This

artifact does not appear with our method, that permits smooth

transitions as each patch is represented by a linear combination

of atoms taken from the learned dictionary.

More systematic results are presented in Table III. The

parameters settings corresponding to the different peak in-

tensities (Peak = 1000, 600, 255) are, respectively: for the

PIDSplit+ method, λ = 0.008, 0.015, 0.025 (Gaussian blur)

and λ = 0.006, 0.01, 0.02 (uniform blur); for the PIDAL-FA

method on Barbara image τ = 0.008, 0.015, 0.025 (Gaus-

sian blur) and τ = 0.008, 0.01, 0.02 (uniform blur), while

for other images τ = 0.015, 0.02, 0.03 (Gaussian blur) and

τ = 0.01, 0.015, 0.025 (uniform blur); for the proposed

method, we took λ = 7000, 6000, 4000 (Gaussian blur) and

λ = 8000, 7000, 5000 (uniform blur).

V. DISCUSSIONS

In this section, we discuss several topics associated to

the present work: blind deblurring, a possible adaptation to

image deblurring under multiplicative noise, the effect of the

parameters and the convergence of the algorithm, computation

time aspects, and suggestions for further improvements.

A. Blind deblurring

Until now, we assume that the blur kernel is known.

However, this is not possible in real applications. Estimating

kernels, which is a very difficult problem, is still an un-

dergoing topic. Here, we just do some attempts to handle

blind deblurring under Poisson noise. Since almost all the

existing methods designed for estimating kernels are under
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Fig. 6. Original images. From left to right: Barbara, Cameraman, Lena, Man.

(a) Degraded (b) PIDSplit+(24.51dB) (c) PIDAL-FA (24.93dB) (d) Ours (25.29dB) (e) Original

Fig. 7. Results of different methods on Barbara image corrupted by the Gaussian blur and Poisson noise with peak intensity 600.

(a) Degraded (b) PIDSplit+(29.29dB) (c) PIDAL-FA (29.23dB) (d) Ours (29.82dB) (e) Original

Fig. 8. Results of different methods on Man image corrupted by the Gaussian blur and Poisson noise with peak intensity 600.

(a) Degraded (b) PIDSplit+(26.09dB) (c) PIDAL-FA (26.21dB) (d) Ours (26.76dB) (e) Original

Fig. 9. Results of different methods on Cameraman image corrupted by the Uniform blur and Poisson noise with peak intensity 600.

the Gaussian assumption of noise, we handle the Poisson

noise via a variance stabilizing transformation (VST)(see [25]

for example) leading to an approximate normal distribution.

Then we use the algorithm proposed by Krishnan et al. [50]

to estimate the kernel. Having the kernels, we can use the

proposed method to recover the image.

First, we present an experiment on the synthetic image:

degraded Brain image corrupted by a Gaussian blur and

Poisson noise with peak intensity 600. Fig. 10 presents the

results. The size of the original kernel is 9. The size of

the estimated kernel is set to be 15. We can observe that

the proposed method achieves higher restored quality than

the compared algorithms. However, the resulting PSNR value

is much lower than that obtained by deblurring with known

kernel.

Second, we present experiments on real images4 with Pois-

son noise. The sizes of the estimated kernels are set to 15. We

tune parameters empirically to obtain the best visual results for

all the methods. In Fig. 11, we test our method on a CT image.

We can observe that the proposed method achieves higher

restored quality, with noise suppressed and blur reduced. In

Fig. 12, we provide the Method Noise on the CT image

to test the effects of different methods. The Method Noise

4We downloaded these two images from the DICOM Sample Image Sets:
http://www.osirix-viewer.com/datasets/
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TABLE III
PSNR(DB) VALUES FOR PIDSPLIT+ [28], PIDAL-FA [14] AND OUR

ALGORITHM FOR THE TEST IMAGES OF FIG.6 CORRUPTED BY A 9× 9
GAUSSIAN BLUR WITH STANDARD DEVIATION 1 OR BY A 5× 5 UNIFORM

BLUR, AND POISSON NOISE WITH VARIOUS PEAK INTENSITIES

(Peak = 1000, 600, 255).

Gaussian blur Uniform blur

Images/Peak [28] [14] Ours [28] [14] Ours

Bar./1000 24.98 25.46 25.67 24.24 24.52 24.65

Bar./600 24.51 24.93 25.29 23.95 24.23 24.40
Bar./255 24.07 24.34 24.60 23.57 23.79 23.84

Cam./1000 28.33 28.38 28.77 26.72 26.86 26.97
Cam./600 27.54 27.84 28.40 26.09 26.21 26.76
Cam./255 26.63 26.79 27.52 25.23 25.31 26.06

Lena/1000 32.70 32.98 33.70 30.92 31.25 31.75
Lena/600 32.27 32.38 33.06 30.44 30.70 31.19

Lena/255 31.10 31.15 31.68 29.65 29.75 29.94

Man/1000 29.92 29.78 30.35 28.12 28.17 28.46

Man/600 29.29 29.23 29.82 27.66 27.65 27.99
Man/255 28.34 28.25 28.73 26.90 26.90 27.12

Aver./1000 28.98 29.15 29.62 27.50 27.70 27.96
Aver./600 28.40 28.60 29.14 27.04 27.20 27.59
Aver./255 27.54 27.63 28.13 26.34 26.44 26.74

images are still drawn with the same grayscale range. It is

clear that our method removes the least details. Notice the

“Y” shaped bright area in the original image. Since this part

has a constant grayscale value, it shall not be altered by the

debluring algorithms. This is clearly the case in our method.

In Fig. 13, we test our method on a cardiac CT image. We

can observe that the restored image by the proposed method

is much sharper than the original image. This indicates that

the motion blur in the original image is successfully reduced.

Meanwhile, we can also observe that the proposed method

preserves more details than the other deblurring methods.

The results obtained by blind deblurring under Poisson noise

are not satisfactory. There are seldom works handling this

topic. Jiang et al. [51] proposed a blind deblurring algorithm

to improve spiral CT image resolution in the case of Gaussian

blurring. In Computer Vision, many algorithms have been

proposed to estimate the blur kernel from images acquired

under Gaussian noise (see [52]–[54] and references therein).

Although we try to use those methods to estimate the blur ker-

nel by means of a variance stabilizing transformation (VST).

However, we think generalizing these works to estimate a

blur kernel under Poisson noise would lead to much better

recovered results. Furthermore, the blur kernel may be spatial-

varying in real applications, this makes the problem more

harder to handle.

B. Deblurring under Multiplicative Noise

Multiplicative noise appears in several applications, such

as laser imaging, ultrasound imaging, and synthetic aperture

radar (SAR) [55]–[59]. In these cases, the image formation

process (including blur) can be written

f = (Hu)Mn,

where Mn represents a random variable (multiplicative noise)

with mean one. As shown in [57], Model (3) is also appropriate

for multiplicative noise removal when the multiplicative noise

Mn follows the Gamma distribution with probability density

function

P (x; θ, L) =
1

θLΓ(L)
xL−1e−

x
θ for x ≥ 0,

where Γ is the Euler Gamma function and θ and L denote

the scale and shape parameters in the Gamma distribution,

respectively. Models of multiplicative noise usually assume

that the means equals one, so that Lθ = 1.

Here we just give a simple example to show that our model,

though designed for Poisson noise, can exhibit good per-

formances for image deblurring under multiplicative Gamma

noise. We compare five methods: the three methods considered

earlier for Poisson image deblurring (including ours), plus

two models explicitly designed for image deblurring under

multiplicative noise: the AA model [55] and the RLO model

[56]. As we can observe in Fig.14, the result obtained with

our method leads to a better image quality and a higher PSNR

than the other methods considered.

Note that in the case of multiplicative noise removal, bias

correction is important [60], [61]. In our experiments, applying

a bias correction improves the PSNR by 0.1 to 0.2 dB. This

is why, in order to provide a fair comparison, we applied the

same projection step proposed in [60] to the results of all

algorithms. We refer to [60], [61] for more information on

bias correction.

C. The effect of the parameters and the convergence of the

algorithm

Here we study the effect of the parameters in the energy

function(12). Actually, most of them can be fixed in all the

experiments. The parameter η controls the effect of the TV

regularization. When there are some artifacts in the recovered

image, one may take larger η. In fact, the influence of the TV

regularization also depends on the ratio of the value of η and

λ. Thus, we can fix other parameters, and study the sensitivity

of the recovered results to the choice of the parameters γ and

λ. Fig. 15 gives the PSNR values of the resulting images under

certain choice of the two parameters. As expected, we found

that the choice of λ is dependent on the noise level, and the

choice of γ is dependent on the choice of λ. However, the

sensitivity of the results to the choice of γ is smaller.

Fig. 16 presents the objective function values of the pro-

posed method on Brain image corrupted by the Gaussian blur

and Poisson noise with peak intensity 600. We can observe

that, as iterations progress, the objective function value of the

proposed method converges

D. About the Computation Time

Although providing better recovered images, the proposed

method is computationally heavier: with our implementation,

processing a 512 × 512 image takes around ten minutes,

while PIDSplit+ and PIDAL-FA need less than one minute

(all experiments realized using Matlab 7.12 (R2011a) on a PC

equipped with a 2.70GHz CPU).

The computation time cost of our approach could be reduced

in at least three ways: (1) using a better computer or even
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(a) kernel (b) estimation (c) PIDSplit+ (23.56dB) (d) PIDAL-FA (24.51dB) (e) Ours (25.35dB) (f) Original

Fig. 10. Results of different methods on Brain image corrupted by a Gaussian blur and Poisson noise with peak intensity 600.

(a) Estimated kernel (b) Original (c) PIDSplit+ (d) PIDAL-FA (e) Ours

Fig. 11. Results of different methods on CT image.

(a) Original (b) PIDSplit+ (c) PIDAL-FA (d) Ours

Fig. 12. Method Noise of different methods on the CT image.

(a) Estimated kernel (b) Original (c) PIDSplit+ (d) PIDAL-FA (e) Ours

Fig. 13. Results of different methods on a cardiac CT image.

clusters since ours for experiments is not so good; (2) applying

some paralleling techniques to compute the most time costing

step (6); (3) stopping the outside/inside iterations timely once

the satisfactory resulting image is obtained. Currently we set

NI = 60 and NO = 20 which are largely unnecessary in many

cases.

E. How to further improve the proposed method

The proposed method could be improved in different ways.

A more powerful dictionary learning method could be used,

incorporating for example the “non-local” information as in

[62], thus taking advantage of the self-similarity of images

[63], [64] to constrain similar patches to share similar or

identical dictionary elements in their sparse representation.

Another possibility would be to incorporate the multiscale

structure of images as in [65], since the size of texture patterns

varies among different images, or even inside a single image

(actually, for some test images considered in Section IV, we

got better results when using different patch sizes, but we

chose to use the same patch size for simplification). Last, other

patch-based sparse priors could also improve the results, in

particular the Gaussian mixture prior used in [23] or the image

content based heavy-tailed gradient distribution of [20].
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(a) Degraded (b) RLO (20.66dB) (c) AA (20.76dB)

(d) PIDSplit+ (22.53dB) (e) PIDAL-FA (22.75dB) (f) Ours (23.51dB) (g) Original

Fig. 14. Results obtained with different methods on Brain image corrupted by Gaussian blur (σ = 1) and multiplicative noise (L = 10).
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Fig. 15. Resulting PSNR values of our method on Brain image corrupted by
the Gaussian blur and Poisson noise with peak intensity 600 when increasing
the values of λ for different γ.

VI. CONCLUSION

In this paper, we proposed a new model to recover images

suffering from blur and Poisson noise. It is based on the

mixture of two priors: a patch-based sparse representation

prior over a learned dictionary, and the pixel-based TV regu-

larization. Compared to TV-based and frame-based methods,

the proposed algorithm leads to higher PSNR values and

improves the quality of restored images, though requiring a

higher computational cost.

Among future research directions, we think it could be

worth exploring strategies to reduce the computation time.

We also plan to work on possible extensions of the present

method to different frameworks such as color images, video

sequences, or other non-Gaussian noise models (like Rician

noise, that appears in MRI [48], [66]). Designing a blind

deblurring algorithm by embedding a blur kernel estimation
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Fig. 16. Resulting objective function values of our method on Brain image
corrupted by the Gaussian blur and Poisson noise with peak intensity 600 as
iterations progress.

procedure in the present approach would also be an interesting

development and open new possibilities of applications.

VII. ACKNOWLEDGEMENTS

The authors also thank the anonymous reviewers for their

extremely useful suggestions for improving the quality of the

paper.

REFERENCES

[1] J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J. Sibarita, and
J. Salamero, “Patch-based nonlocal functional for denoising fluorescence
microscopy image sequences,” IEEE Trans. Medical Imaging, vol. 29,
no. 2, 2010.

[2] R. Chan and K. Chen, “Multilevel algorithms for a poisson noise removal
model with total variation regularization,” Int. J. Comput. Math., vol. 84,
pp. 1183–1198, 2007.

[3] G. Hagberg, G. Zito, F. Patria, and J. Sanes, “Improved detection
of event-related functional mri signals using probability functions,”
NeuroImage, vol. 2, pp. 1193–1205, 2001.



THIS IS AN AUTHOR VERSION. THE PUBLISHER VERSION CAN BE FOUND AT HTTP://DX.DOI.ORG/10.1109/TMI.2013.2255883 12

[4] J. Ollinger and J. Fessler, “Positron emission tomography,” IEEE Signal

Proces. Mag., vol. 14, no. 1, pp. 43–55, 1997.
[5] J. Miao and D. Wilson, “Selective evaluation of noise, blur, and

aliasing artifacts in fast mri reconstructions using a weighted perceptual
difference model: Case-pdm,” in Proc. SPIE 7263, 72631N, 2009.

[6] E. Rollano-Hijarrubia, R. Manniesing, and W. Niessen, “Selective de-
blurring for improved calcification visualization and quantification in
carotid ct angiography: Validation using micro-ct,” IEEE Trans. Medical

Imaging, vol. 28, no. 3, 2009.
[7] G. Wang, M. Vannier, M. Skinner, M. Cavalcanti, and G. Harding,

“Spiral ct image deblurring for cochlear implantation,” IEEE Trans.

Medical Imaging, vol. 17, no. 2, 1998.
[8] N. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE

Trans. Inf. Theory, vol. 55, no. 10, pp. 4723–4741, 2009.
[9] G. Peyre, S. Bougleux, and L. Cohen, “Non-local regularization of

inverse problems,” Inverse Probl. Imag., vol. 5, pp. 511–530, 2011.
[10] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise

removal algorithms,” Physica D, vol. 60, pp. 259–268, 1992.
[11] A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems. PWinston,

Washington, DC, 1977.
[12] D. Donoho and I. Johnstone, “Ideal spatial adaptation by wavelet

shrinkage,” Biometrika, vol. 81, pp. 425–455, 1994.
[13] I. Daubechies, M. Defriese, and C. Mol, “An iterative thresholding

algorithm for linear inverse problems with a sparsity constraint,” Com-

mun.Pure Appl. Math., vol. 57, pp. 1413–1457, 2004.
[14] M. Figueiredo and J. Bioucas-Dias, “restoration of poissonian images

using alternating direction optimization,” IEEE Trans. Image Process.,
vol. 19, pp. 3133–3145, 2010.

[15] A. Chambolle, R. DeVore, N.-Y. Lee, and B. Lucier, “Nonlinear wavelet
image processing: Variational problems, compression, and noise re-
moval through wavelet shrinkage,” IEEE Trans. Image Process., vol. 7,
pp. 319–335, 1998.

[16] G. Steidl, J.Weickert, T. Brox, P. Mrzek, and M. Welk, “On the
equivalence of soft wavelet shrinkage, total variation diffusion, total
variation regularization, and sides,” SIAM J. Numer. Anal., vol. 42,
pp. 686–713, 2004.

[17] J. Cai, B. Dong, S. Osher, and Z. Shen, “Image restoration: Total
variation, wavelet frames, and beyond,” J. Amer. Math. Soc., vol. 25,
pp. 1033–1089, 2012.

[18] F. Malgouyres, “Mathematical analysis of a model which combines total
variation and wavelets for image restoration,” Journal of information

processes, vol. 2, pp. 1–10, 2002.
[19] E. Candes and F. Guo, “A new multiscale transforms, minimum total

variation synthesis:application to edge-preserving image reconstruction,”
Signal Processing, vol. 82, pp. 1519–1543, 2002.

[20] T. Cho, N. Joshi, C. Zitnick, S. Kang, R. Szeliski, and W. Freeman, “A
content-aware image prior,” in CVPR, (San Francisco,USA), pp. 169–
176, IEEE, 2010.

[21] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, pp. 3736–3745, 2006.

[22] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3d transform-domain collaborative filtering,” IEEE Trans. Image

Process., vol. 16, pp. 2080–2095, 2007.
[23] D. Zoran and Y. Weiss, “From learning models of natural image patches

to whole image restoration,” in ICCV, (Barcelona, Spain), pp. 479–486,
Nov. 2011.
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