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Abstract

We propose a mathematical model of the Path Integration (PI) process. Its
core assumption is that orientations of a path are summarized by circular
probability distributions. We compare our model with classical, determinis-
tic models of PI and find that, although they are indistinguishable in terms
of information encoded, the probabilistic model is more parsimonious when
considering navigation strategies. We show how sensory events can enrich
the probability distributions memorized, resulting in a continuum of navi-
gation strategies, from PI to stimulus-triggered response. We analyze the
combination of circular probability distributions (e.g., multi-cue fusion), and
demonstrate that, contrary to the linear case, adding orientation cues does
not always increase reliability of estimates. We discuss experimental predic-
tions entailed by our model.

This paper is concerned with mathematical modeling of the Path Integration (PI) process.
More precisely, we are interested in the way global spatial properties of a path can be
estimated and used by a navigator. Here, we use the word navigator as a general term to
encompass both simulated and real moving entities, whether they are natural or artificial.
A classical example of the purpose of PI is when a navigator is interested in estimating the
angle and distance between a starting and ending point of a path, in order to be able to go
back to the starting point of this path, using a shortcut trajectory.

Several reviews already presented the variety of mathematical definitions of possible
PI mechanisms (Benhamou & Séguinot, 1995; Etienne & Jeffery, 2004; Maurer & Séguinot,
1995; Merkle, Rost, & Alt, 2006; Vickerstaff & Cheung, 2010). In particular, the two most
recent of these classify PI models according to the reference frame used in the computations
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(either geocentric – i.e. allocentric – or egocentric) and the vector basis used for encoding
displacements (either polar or Cartesian).

We summarize the four principal models we wish to highlight, in order of historical
appearance.

The first mathematical formulation of PI is attributed to Jander (1957). In this
model, the final estimate of angles is a simple average of experienced angles, which, unfor-
tunately, is not correct geometrically. Indeed, the first geometrically correct model is the
bi-component model (Mittelstaedt, 1962; Mittelstaedt & Mittelstaedt, 1982), as it estimates
two components to recover the XE , YE position of the end-point E of the path by:

XE =
N∑
i=0

cos(θi), YE =
N∑
i=0

sin(θi) , (1)

where θ0, θ1, . . . , θN is the sequence of angles experienced along a path. From these two
coordinates, recovering the global angle Φ and distance D is straightforward.

Müller and Wehner then developed a variant of the initial model of Jander to allow a
recurrent estimation process in an egocentric reference frame (Müller & Wehner, 1988). To
do so, they dropped the geometrical correctness in favor of neurocomputational plausibility,
and proposed an approximate estimation process, further modified to better fit experimental
data (introducing empirically determined constants, for instance). Finally, a recent paper
by Vickerstaff and Cheung (2010) develops mathematical formulations of PI for various
reference frames, leading to elegant differential equations for updating processes and a
complete translation scheme between reference frames, to discuss the mathematical (lack
of) distinguishability of the considered formulations.

Several variants are noteworthy, and highlight the complexity and richness of PI pro-
cesses. What is the influence, for instance, of random errors in the estimation of elementary
displacements (Benhamou, Sauvé, & Bovet, 1990)? How can angles and distance be esti-
mated while following a non-discretized, continuous path? Is this updating process itself
continuous (Gallistel, 1990; Merkle et al., 2006)? If it is discrete, does it need to be sampled
regularly over time or space? Or, in other words, does the step length need to be constant
(Benhamou, 2004)? Going beyond purely motor inputs to the PI process, how do other
sensory modalities contribute to PI estimations (Etienne, Maurer, & Séguinot, 1996; Eti-
enne & Jeffery, 2004)? Does tracking multiple goals or starting locations over time require
several PI processes, or a single one that would be reset? How about tracking multiple
spatial relations simultaneously (Biegler, 2000)?

Whatever the extension considered, a common assumption to previous models is that
PI would be concerned with the computation of values, like angles or distances. Indeed, in
textbook presentations of PI (Batschelet, 1981; Jammalamadaka & SenGupta, 2001), the
mean vector is usually presented as the correct summary of a trajectory, which is very close
to the bi-component model above.

Indeed, the mean vector has the same direction as the vector sum of N elementary
displacements, i.e., tan Φ = YE/XE . Let D be the length of the vector sum of N elementary
displacements; the mean vector length is, by definition, D/N .



PATH MEMORIZATION USING CIRCULAR PROBABILITY DISTRIBUTIONS 3

Bayesian encoding of spatial relations

The core of our approach is to assume that uncertainties are incorporated as a central
component of the memory system. In this view, states of knowledge about the sensorimotor
interactions with the environment are not encoded by single values, but by probability
distributions. This is a subjectivist approach to probabilities: probability distributions
encode states of knowledge of individual subjects (Colas, Diard, & Bessière, 2010; Jaynes,
2003). In this paper, we therefore use the term Bayesian in this specific sense 1.

In life sciences, the assumption that probability distributions might be assessed and
manipulated by sensorimotor systems is gaining momentum, concerning both the encoding
of single quantities and the combination of several quantities. In this last case, this is the
now classical model of statistically optimal fusion for perception, that was applied to various
cases of intramodal cue fusion (Drewing & Ernst, 2006; Hillis, Watt, Landy, & Banks, 2004;
R. A. Jacobs, 1999) and multimodal sensory fusion, both in cases of congruent (Anastasio,
Patton, & Belkacem-Boussaid, 2000; Körding & Wolpert, 2004; Zupan, Merfeld, & Darlot,
2002) and conflicting cues (Alais & Burr, 2004; Banks, 2004; Battaglia, Jacobs, & Aslin,
2003; Ernst & Banks, 2002).

Memorizing orientations using von Mises probability distributions

Returning to the specific case of PI modeling, we reformulate our central question.
Let us assume a PI system based on a probabilistic model of the orientations experienced
along a trajectory: what are its properties? What is the difference, if any, between such a
probabilistic PI model and a deterministic PI model? What information would be stored?
What would be the properties of resulting navigation strategies and their combination?
How could a probability distribution over orientations be combined with other sources of
information?

To study these questions, we first introduce a Bayesian formulation of a Path In-
tegration process, based on circular probability distribution, i.e., probability distributions
that behave mathematically correctly over the discontinuity of circular spaces at −π. We
consider unimodal distributions, that is to say, bell-shaped, “Gaussian-like” distributions
over circular spaces. The mathematical tool we choose here is von Mises probability distri-
butions, whose parameters are a preferred direction µ and some measure of the confidence
about this direction, in the form of a concentration parameter λ.

There are four main results to our analysis.

• The first result is an indistinguishability result. We study the properties of the µ
and λ parameters: µ acts as an estimate of the angle to the base, and λ helps retrieve the
distance to the base, relative to the travelled distance. In other words, the λ parameter
turns out to be both a measure of the variability of angles and a distance estimate. It
leads to a an internal representation which explicitly encodes the direction to the starting
point S of the path, and implicitly encodes the distance to S. Our first result concerns the
comparison of the probabilistic model of PI based on von Mises probability distributions
and the deterministic model of PI based on mean vectors: both encode information of the

1As opposed to a sense which is more widespread in physics and statistics, for instance, where a model
can be said to be Bayesian if it incorporates a non-uniform prior probability distribution.
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same nature (an angle and D/N). Therefore, they are indistinguishable in this regard;
discriminating them then requires further consideration.

• The second and third results both mainly concern the parsimony of our model. Us-
ing our probabilistic representation of experienced orientations, we define a single navigation
strategy, and show that it yields homing, trajectory-reproduction, or random exploration
behaviors, depending on the actual parameters of the learned probability distribution. In
other words, in our framework, these strategies do not need to be assumed to be different
entities, activated by a hypothetical higher-level arbiter. Instead, they are particular cases
over a continuum of navigation strategies, described by varying parameters µ, λ. Moreover,
when studying how sensory events enrich the probabilistic representation of orientations, a
similar result ties Path Integration and stimulus-driven navigation (route following). They
both appear as extremes on a gradual scale of navigation strategies. Indeed, PI summarizes
the global spatial properties of a path, whereas route following builds upon a more precise
path description, indexed by sensory events. We show how Bayesian inference links the two.
These two results also yield discriminating experimental predictions, which we outline.

• Finally, the fourth result is a quantitative experimental prediction. We show that,
in the context of sensor fusion, the mathematics of probabilistic fusion over circular space are
not the same as for linear space. Contrary to the linear case, cue combination in circular
spaces does not always increase confidence. This provides a discriminating experimental
prediction in order to assess whether spatial quantities are encoded in linear or circular
representations in the central nervous system.

The rest of the paper is organized as follows. We first recall the definition of von
Mises probability distributions, some of their properties and the way their parameters can
be identified from experimental data, using a Maximum Likelihood estimation procedure.
Next, we apply this parameter estimation procedure to the special case where the orienta-
tions used as experimental data come from following a path, and analyze the properties of
the resulting probability distribution. We then show how it can be the basis for naviga-
tion behaviors, like homing and path reproduction, and how it can serve as a scaffold for
anchoring sensory cues observed along the path. Finally, we consider the case of multi-cue
fusion in the context of von Mises probability distributions.

von Mises probability distributions

Definition

Intuitively, von Mises probability distributions are “Gaussian probability distributions
over orientations”. In other words, they are unimodal symmetrical probability distributions.
However, contrary to Gaussian probability distributions, which are strictly defined over
IR, von Mises probability distributions are defined over circular spaces. Applied to a set
of angular or orientation data, they allow summarizing it by a preferred angle µ and a
concentration λ around that preferred angle. Although the preferred angle µ can be thought
of as the equivalent of an “average angle”, the concentration parameter behaves in an
opposite manner from standard-deviations: as λ grows, the von Mises distribution gets
more and more peaked.

The probability density function, denoted vM, of a von Mises distribution is given
by (Abramowitz & Stegun, 1965; Batschelet, 1981; Dowe, Oliver, Baxter, & Wallace, 1995;
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Shatkay & Kaelbling, 1998):

P (θ | µ λ) = vM(θ;µ, λ) =
1

2πI0(λ)
eλ cos(θ−µ) , (2)

with µ ∈ [−π, π), λ ≥ 0, and where I0(λ) is the modified Bessel function of the first kind
and order 0 (Shatkay & Kaelbling, 1998), defined as:

I0(λ) =
∞∑
r=0

1

r!2

(
λ

2

)2r

, (3)

or, alternatively (Abramowitz & Stegun, 1965; Fu, Chen, & Li, 2008):

I0(λ) =
1

π

∫ π

0
eλ cos(θ)dθ =

1

π

∫ π

0
cosh(λ cos(θ)) . (4)

I0(λ) cannot be computed in closed form (Abramowitz & Stegun, 1965); it will there-
fore be assumed in the following that von Mises probability distributions are computed as
P (θ | µ λ) = eλ cos(θ−µ) and normalized numerically afterwards.

A couple of limit cases need attention. On the one hand, when λ = 0, and since
I0(0) = 1, the probability density function (2) becomes:

∀µ ∈ [−π, π), P (θ | µ [λ = 0]) =
1

2π
. (5)

In other words, when the concentration parameter λ is 0, the von Mises probability distribu-
tion degenerates to a uniform probability distribution over all possible angles, and the value
of the preferred direction µ becomes undefined. For this reason, some references (Shatkay
& Kaelbling, 1998) restrict the range of λ to strictly positive real values: λ > 0.

On the other hand, at the other extreme, when λ gets larger, von Mises probability
distributions get more peaked, so that they converge towards Dirac delta probability dis-
tributions centered on µ, the preferred direction (Jones & Pewsey, 2005). Some examples
of von Mises probability distributions over the range [−π, π) are shown Figure 1.

As a final introductory note, it should be noted that a recent mathematical treatment
by Jones and Pewsey (2005) has shown that von Mises probability distributions could be
cast into a large family of distributions over circular spaces. In this family, von Mises,
wrapped Cauchy, Cardioid, circular uniform, and Dirac delta (but not wrapped Gaussian
distribution) are special cases in a continuum of probability distributions. Out of these
so-called “JP distributions”, the von Mises, wrapped Cauchy and Cardioid probability
distributions are circular, unimodal and symmetrical. Most of the properties we discuss
in this paper derive from these properties. Therefore, although we center our study on
von Mises distributions, it is very likely that our results generalize to other probability
distributions of this family and to wrapped Gaussian distributions, although with different
mathematical treatments.

Maximum Likelihood parameter estimation for von Mises distributions

Let ∆ = {θi}Ni=1 be a set of N experimental data, each θi being an angle expressed
in radians. We look for the parameters µ, λ of maximum likelihood, given the data ∆. The
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Figure 1. Examples of von Mises probability distributions for various µ, λ parameter values. Left:
von Mises probability distributions are plotted against the [−π, π) interval. Right: the same von
Mises probability distributions, plotted on a polar reference frame, using the standard trigonometric
convention (0 angle eastward, positive angles counter-clockwise): for λ = 0, this display shows the
von Mises as a circle. As λ grows, the distribution gets elongated in the µ direction.

likelihood function is given by:

L(µ, λ) = P (∆ | µ λ) (6)

=
N∏
i=1

P (θi | µ λ) (7)

=
N∏
i=1

(
1

2πI0(λ)
eλ cos(θi−µ)

)
(8)

L(µ, λ) =
1

(2πI0(λ))N
eλ
∑N

i=1
cos(θi−µ) . (9)

Let µ̄, λ̄ be the maximum likelihood estimates of µ, λ. Because of I0(λ), there is no
closed form formula for µ̄, λ̄. However, it is possible to first find an (asymptotically) exact
µ̄ estimate, then estimate λ̄ based on this µ̄ estimate (Jones & Pewsey, 2005; Shatkay &
Kaelbling, 1998). In other words, we compute µ̄ and λ̄ one after the other.

Let us first compute the maximum likelihood preferred orientation µ̄:

µ̄ = max
µ

L(µ, λ) = arctan(
ȳ

x̄
) , (10)

with

ȳ =

∑N
i=1 sin(θi)

N
and x̄ =

∑N
i=1 cos(θi)

N
. (11)

Now, λ̄ is the solution to (Jammalamadaka & SenGupta, 2001; Shatkay & Kaelbling,
1998):

I1(λ̄)

I0(λ̄)
=

1

N

N∑
i=1

cos(θi − µ) , (12)

with I1(λ̄) the modified Bessel function of the first kind and order 1. In general, the
modified Bessel function of the first kind and order n, for integer values of n, is defined by
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Figure 2. Plots of A1(λ) = I1(λ)/I0(λ). Left: linear scale. Right: log-linear scale.

(Abramowitz & Stegun, 1965):

In(λ) =
1

π

∫ π

0
eλ cos(θ) cos(nθ)dθ . (13)

In Eq. (12), µ is unknown, so we replace it with the estimated µ̄. After some trigonometry,
we need to find λ̄ that solves:

I1(λ̄)

I0(λ̄)
=
√
x̄2 + ȳ2 . (14)

This function of λ is usually noted A1 (Codling & Hill, 2005; Fisher, 1993; Jammalamadaka
& SenGupta, 2001):

A1(λ) = I1(λ)/I0(λ) . (15)

A1 has no closed form formula, but can be approximated; it is shown Figure 2.

Finding λ̄ amounts to inverting the A1 function. There are two main methods for
this; firstly, there is an approximate form for A−11 (Fisher, 1993)

A−11 (x) =


2x+ x3 + 5x5/6 x < 0.53
−0.4 + 1.39x+ 0.43/(1− x) 0.53 ≤ x < 0.85
1/(x3 − 4x2 + 3x) x ≥ 0.85

; (16)

secondly, a more brute force approach consists in building a lookup table (Shatkay & Kael-
bling, 1998). More precisely, some range of values of λ̄ are tried, and the one that is selected
is the one that minimizes: ∣∣∣∣A1(λ̄)−

√
x̄2 + ȳ2

∣∣∣∣ . (17)

Figure 3 shows some examples of results of this estimation process.

Path Integration based on von Mises probability distributions

von Mises probability distributions as path summaries

The previous section introduced the von Mises probability distributions, and the way
their parameters could be estimated, given any data set ∆ of directional data. We now
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Figure 3. Examples of von Mises probability distributions learned from data. The data are 1000
data points shown as histograms on the [−π, π) interval, with bin counts scaled vertically for read-
ability. The example on the right illustrates the fact that von Mises probability distributions learned
from data behave correctly over the −π discontinuity.

turn to the specific case where the observations are paths or trajectories, from which sets
of directional data ∆ can be extracted.

In this paper, because we focus on the comparison of deterministic and probabilistic
models of PI, we set aside some of the extensions we mentioned in the introduction; the
initial analysis we propose is restricted to the case of a discretized path, with elementary
steps of exactly unit length, etc.

We define our notation. Let v be a planar path, decomposed in a discrete manner
as a sequence of length N of positions {〈xt, yt〉}Nt=1. Between consecutive positions, each
elementary displacement is of the same length. Path v starts at point S of coordinates
xS , yS (assumed, in the following, to be (0, 0) for simplicity, and without loss of generality),
and ends at point E of coordinates xE , yE . We reuse here the notation of Benhamou and
Séguinot (1995); this is illustrated Figure 4.

Given a path v in a plane, a history of elementary angles ∆ = {θt}Nt=1 can be obtained
by computing, at each position along the path, the angle of the next elementary displacement
(or, in the continuous case, this can be approximated by the tangent to the path). Measuring
these angles requires an orientation reference frame, i.e., a choice for rotations corresponding
to positive angles, and a fixed orientation, noted 0. None of these is constrained by the
mathematics of our model. The choice of following trigonometric rotations (positive angles
for counter-clockwise rotations), used in the following, is purely arbitrary. Also, the model
is agnostic with respect to the nature of the orientation reference; it could refer either to a
geocentric cue readily available (position of a distant landmark, e.g., a mountain or the sun),
or to a memorized egocentric orientation (e.g., the heading at the start of the trajectory)
(Berthoz et al., 1999). How this reference frame is set and updated is beyond the scope of
our model; an obvious extension of the model would, of course, be to study the effect of
drift of this reference frame, or errors in the memory system that sustains it (noise, decay,
etc.).

We thus assume that a navigator, having experienced a given path v of length N
(its forward trip), observes the orientations ∆ = {θt}Nt=1, and identifies the most likely von
Mises probability distribution Pf (θ | ∆). In other words, the forward trip is summarized
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Figure 4. Schema of path v and associated variables. Path v is approximated by a sequence of
positions (Xt, Yt) joined by discrete segments of angles θt; the overall relation between S and E, the
starting and ending positions of v, is given by beeline distance D and angle Φ.

by an overall direction µf and a concentration around that preferred direction λf :

Pf (θ | ∆) = vM(θ;µf , λf ) . (18)

Figure 5 shows several examples of simulated forward trips, “top-view” polar his-
tograms of the set of angles along these paths and polar displays of the learned von Mises,
centered at the final positions of the paths.

Geometrical properties of von Mises probability distributions as path summaries

In this section, we first show that the parameter µf of the learned von Mises proba-
bility distribution is the angle Φ between the starting point S and ending point E of the
path. We then demonstrate that the concentration parameter λf has actually the same
information content as the distance D between S and E, provided that the length of the
path N is known.

Firstly, consider the µf parameter. The maximum likelihood estimation (Eq. (10)
and (11)) yields:

µf = arctan

(∑N
i=1 sin(θi)/N∑N
i=1 cos(θi)/N

)
= arctan

(∑N
i=1 sin(θi)∑N
i=1 cos(θi)

)
, (19)

provided N 6= 0. Of course,
∑N
i=1 sin(θi) = yE , and

∑N
i=1 cos(θi) = xE : these sums of sines

and cosines are the coordinates of the end-point of the path in the Cartesian geocentric
reference frame. Therefore, taking the arctangent of the ratio yE/xE is indeed computing
the angle Φ.

Secondly, consider the λf parameter. Eq. (11) and (14) show that:

A1(λ̄) =
√
x̄2 + ȳ2 (20)
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Figure 5. Examples of Von Mises probability distributions learned from paths. For each, the
path is shown in a dashed line starting from (0, 0), while the solid lines are the polar probability
distributions of the learned von Mises (parameter values shown on top). Left: a rather straight
trajectory leads to a very peaked von Mises. Center: A less direct trajectory that reaches a similar
end position has a lower concentration parameter λ, i.e., a higher uncertainty. Right: a trajectory
almost completing a circle leads to a very flat von Mises (almost uniform over [−π, π)).

=

√
(
∑N
i=1 cos(θi))2 + (

∑N
i=1 sin(θi))2

N2
(21)

=

√
xE2 + yE2

N
(22)

A1(λ̄) =
D

N
. (23)

In other words, the concentration parameter of maximum likelihood, λ̄, is the one such that
A1(λ̄) is equal to the ratio of two distances: D, the shortest distance between S and E, and
N , the length of path v actually followed from S to E.

Eq. (23) ties the evolution of the λ parameter with D/N , which is called the straight-
ness index (Benhamou, 2004) or the net-to-gross displacement ratio (NGDR) (Bartumeus,
Catalan, Viswanathan, Raposo, & da Luz, 2008). Also, recall Eq. (12):

A1(λ̄) =
1

N

N∑
i=1

cos(θi − µ) . (24)

This ties the evolution of λ with the orientation efficiency, which is approximated by the
mean cosine of directional errors (Benhamou, 2004).

At this point, three properties of A1(λ) = I1(λ)/I0(λ) appear to be relevant
(Jammalamadaka & SenGupta, 2001): A1 is strictly monotonic and differentiable every-
where, so that it is a bijection, and its range is [0, 1]. This implies, for instance, that λ
increases as A1(λ) increases. This also clarifies the extreme cases. Firstly, this shows that
λ = 0 if and only if A1(λ) = D/N = 0. The learned von Mises degenerates to a uniform
probability distribution over angles only if D is zero, i.e., when the travelled path v is a
loop and the starting point S and end-point E are superposed. Secondly, it can also be
seen that λ tends to large values when A1(λ) = D/N tends to 1. The learned von Mises
gets extremely peaked only if D equals N , i.e., when the travelled path v is a straight line
between S and E.
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Therefore, it can be seen that the concentration parameter λ has two interpretations;
it is both a measure of the variability of angles experienced while following the path v, and
a measure of the sinuosity of v. When the length N of v is known, λ is actually in bijection
with D, the distance between the start and end-point of v. In other words, knowing both the
length of the performed trajectory and the variability of experienced orientations provides a
unique estimate of the distance to the starting position (by inversion of the A1(λ) function).

Discussion

Most species that control their movements in their environment possess various id-
iothetic information about their displacements, both in translation and rotation. It is
therefore safe to assume that both the length of the outward trajectory and variability of
orientations can be estimated from egocentric cues.

The length of the trajectory is certainly estimated by temporal integration of a com-
bination of estimators (Montello, 1997), like step counting or stride integration (Wittlinger,
Wehner, & Wolf, 2006), optic flow (Dacke & Srinivasan, 2007), time elapsed (when speed
is somewhat constant), and energy expenditure. Although these last two are debated,
and mostly discounted when considering insect navigation (Wolf, 2011), it is known that
expected effort biases estimation of distance in humans (Proffitt, Stefanucci, Banton, &
Epstein, 2003; Proffitt, 2006). These cues, whatever their combination, would provide an
estimate for N , the travelled distance.

Observation of orientations is provided by a variety of sensors related with turning
angles, even in ants and spiders (Wolf, 2011). The variability of orientations could be
approximated by a neural population that would adjust the width of its bell-shaped activity
packet. Such a bell-shaped activity is a common assumption in models of head-direction cells
(Arleo & Gerstner, 2001; Mittelstaedt, 2000; Samsonovich & McNaughton, 1997; Sharp,
Blair, & Cho, 2001; Stringer & Rolls, 2006; Taube & Bassett, 2003). This would provide
an estimation for λ, the concentration parameter.

If both N and λ are estimated, and since λ and D/N are linked by a one-to-one
correspondence, this implies that navigators would also implicitly obtain an estimate of the
distance to home D, without further information required.

Therefore, with respect to information encoded, our probabilistic model of PI is not
distinguishable from a deterministic model based on mean vectors. In both cases, data
gathered along a trajectory are summarized by two parameters: an angle and a mean
distance for the mean vector model, and an angle and a concentration parameter for the von
Mises model. Models differ in the way information is encoded; neurophysiology models, in
this regard, would not help discriminate them clearly. Indeed, in models of head-direction
cell activity, a “Gaussian-like” bump of activity is maintained in a preferred direction.
Whether its width directly encodes a concentration parameter λ or is fixed (and distance is
encoded in another population) is rather unclear.

With respect to mathematical sophistication, we would argue that the probabilistic
model is not more convoluted than the deterministic model. For instance, the Bessel func-
tion appearing in the probability density function formulation never needs to be explicitly
computed; indeed, as it appears at the denominator, it can always be replaced by a nor-
malization term. Also, lateral inhibitions in neural ensembles are a possible mechanism for
normalizing activity. In the same vein, the A and A−1 functions are non-linear functions.
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Along the cos and sin functions, which are used in both models, we have to assume that
they could be at least approximated by neural computation.

This opens up the discussion about a mechanism for incrementally updating the
von Mises parameters as individual θi arrive. Mathematical derivations above provide an
existence proof of such a mechanism. Indeed, Eq. (10) and (11) can be combined to update
the µ parameter on the one hand, and Eq. (20) to (23) to update the λ parameter on
the other hand. However, care must be taken not to interpret such a mechanism at face
value, as it would suggest that, underlying the probabilistic model, the “true”, “explicit”
information to be memorized and updated is the x, y position of the navigator.

This would not be a logical consequence: that the existence proof of the update
mechanism explicitly uses the x, y quantity does not imply that all update mechanisms do.
For instance, there could be a closed form solution to compute new µ, λ as θi arrives that
we have not found. Or, a neurological implementation of the update mechanism might very
well approximate the updating function. Or, it might also be the case that the probabilistic
representation of orientations and its parameters are the “true” information memorized
and updated, and that they are used to recover the x, y estimates in some species, when
needed. At this point, there are no theoretical grounds on which to discriminate these
possibilities. This is a direct consequence of the indistinguishability highlighted above, in
terms of information content, between the probabilistic and deterministic model.

Another issue that warrants discussion is, of course, noise. The initial development
we proposed so far is noise-free. For instance, at each time step, the observed angular
displacement θi is assumed to be correct. In a realistic case, this is obviously not the case.
Again, because of the indistinguishability we have demonstrated between the probabilistic
model and the deterministic model, the impact of noise is, at least qualitatively, well un-
derstood: either some stable allocentric cue (sky polarization, sun position, distant visual
landmark, etc.) is available, that can be used to recalibrate, so that errors at each time
step are corrected and therefore uncertainty in the probabilistic model would be increased
by sensory uncertainty, or there is no such cue available, in which case errors will accu-
mulate over time, unbounded. This is the classical distinction between purely idiothetic
and allothetic navigation (Cheung & Vickerstaff, 2010), also found in many other domains,
like odometry computation in robotics and dead reckoning in maritime navigation. Going
further and precisely quantifying the effect of noise on the probabilistic orientation model
would require precise hypotheses about sensory noise characteristics, relative frequency of
probability distribution updating and recalibration, possible drift of geocentric cues over
long time-scales (sun vs. distant mountain), species considered, etc. This is beyond the
scope of this general introduction to spatial memorization of paths using circular probability
distribution.

We have also so far assumed a fixed, unitary step length. Here again, enriching the
model by considering variable but perfectly known step length is rather straightforward.
However, analyzing the effect of noise about step length would again require precise hy-
potheses about noise characteristics, geometry of the navigator locomotion apparatus and
terrain, whether sensory estimates of elementary displacement are used in conjunction with
proprioception and motor efferent copy, which species is considered, etc. This is also beyond
the scope of the analysis proposed here.

Overall, the theoretical indistinguishability between the deterministic and probabilis-
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tic models implies that the von Mises model cannot be dismissed on purely conceptual
grounds. As an aside, we note that this general topic, i.e., the question of constraints of
probabilistic models, and thus their explanatory and predictive power, has been a hotly
debated topic for a long time (e.g., see a recent treatment by Jones and Love (2011)).
Our strategy, in this regard, is to go beyond theoretical comparison of demonstrably indis-
tinguishable models; in the remainder of this paper, we first examine the parsimony and
experimental adequacy of both the deterministic and probabilistic model of PI, and provide
discriminating experimental predictions.

Navigation strategies based on probabilistic PI

In the deterministic model, a mean vector is assumed to be a summary of traversed
paths sufficient to inform navigation strategies. For instance, assuming the navigator is at
the starting location, following the mean vector direction orients the navigator towards the
end point of the memorized trajectory. On the other hand, if the navigator is at the end
position of a trajectory, reversing the mean vector provides a direction toward the starting
location. Following this direction thus brings the navigator back to the starting location.
A stopping criterion is given by the mean vector length D/N ; if the number of steps N is
estimated, it helps recover D, the beeline distance to home.

It is quite possible, in the probabilistic model, to perfectly emulate such a navigation
strategy. The memorized von Mises probability distribution provides µ, the preferred direc-
tion, which can be followed until a stopping criterion based on λ is met (since λ has the same
information as D/N , the mean vector length). This would, again, conflate the probabilistic
and deterministic model, in terms of predicted trajectories. Therefore, this first navigation
strategy is not studied further. Instead, we define another navigation strategy using von
Mises probability distributions, with different predictions.

The deterministic model predicts that homing trajectories would be straight segments
aligned with the homing vector, and that, after a homing trajectory of length D, the
navigator would either be exactly back home, or able to engage in a search behavior to,
hopefully, find home.

Observations deviate from this ideal navigator model. Firstly, in triangle completion
tasks, it is commonly observed that navigators do not directly reach home, and instead
rally at a point near the beginning of the outward journey. Such errors can be attributed
either to systematic underestimations of rotations, to limited memory, or even to the fa-
vorable property that crossing the outward journey increases the likelihood of encountering
familiar landmarks (Merkle et al., 2006). Such accounts would equally apply both to the
deterministic and probabilistic models, and thus would not help discriminate them.

Secondly, it is also observed that homing trajectories are not perfectly straight seg-
ments (Collett & Collett, 2000; Maurer & Séguinot, 1995; Müller & Wehner, 1988). Humans
appear as an exception in this regard, with very straight trajectories in small-scale triangle
completion tasks. Most non-human animals will home following somewhat tortuous trajec-
tories. This is even the case when the homing behavior is a result of a startling stimulus
(e.g. rattling keys to make a sudden loud noise in gerbil experiments), and thus, quick,
optimal, straight ahead fleeing trajectories would be expected (Siegrist, Etienne, Boulens,
Maurer, & Rowe, 2003). These deviations are often explained away either by uncontrolled
terrain variations (e.g. in return trip of desert ants), uncontrolled sensory input during the



PATH MEMORIZATION USING CIRCULAR PROBABILITY DISTRIBUTIONS 14

homing trajectory (i.e., the observed behavior is not a pure homing behavior), or even to
noise in the locomotion and trajectory following processes.

Here, we assume that some portion of the observed sinuosity and some of the vari-
ability between different trials or different animals are not the result of uncontrolled factors
outside of the PI mechanism. Instead, they could also be a direct translation of the concen-
tration parameter of the learned von Mises probability distribution. Indeed, if we assume
that a probability distribution is the memorized summary of a path, it seems appropriate
to use the full information at hand in subsequent navigation strategies. Consider briefly
the alternative: assume that only the µ parameter was used, or, equivalently, that the nav-
igator always follows the most probable direction µ. That would amount to discarding the
λ parameter, i.e., half of the memorized information, and would again conflate the trajec-
tories predicted by probabilistic and deterministic models. Therefore, in the following, we
explore navigation strategies in which orientations are drawn at random, according to the
probability distribution at hand. This randomness directly explains away the variability
between trials or animals; even with the same memory state, navigation would never result
in the exact same trajectory.

We assume that the navigator is capable of “inverting” the learned distribution over
orientations. This means that, from Pf (θ | ∆) that represents the probabilities of orien-
tations of the forward trip, the navigator computes Pr(θ | ∆), which is an estimate of the
orientations to follow on the return trip. We assume this is done by “flipping” the µf of the
learned von Mises distribution by π (i.e., adding 180◦ to µf ), and leaving λf unchanged:

µr = µf + π mod 2π (25)

λr = λf (26)

Pr(θ | ∆) = vM(θ;µr, λr) . (27)

This simple computation can be seen as the equivalent, in the probabilistic setting, of the
computation of the opposite vector −~a of vector ~a.

Once this reversal is done, directed navigation behaviors are obtained if the navigator
draws, at each time step, orientations to follow according to the obtained von Mises prob-
ability distribution. Figure 6 shows examples of trajectories obtained by such a sampling
process. Not only is the preferred direction µ used as a drive in a given direction, but the
concentration parameter λ is translated in the resulting trajectories as well. When λ is large,
the trajectories obtained are fairly straight in the µ direction, whereas when λ is small, the
drawn directions to follow are more widespread, resulting in more sinuous, less directed
trajectories. Note the special case when λ = 0, where von Mises probability distributions
degenerate to uniform distributions: the resulting navigation strategy is mathematically
exactly a simple isotropic random walk (SRW) (Codling, Plank, & Benhamou, 2008).

Updating the homing direction along the return trip

Homing behaviors can be built upon the previous mechanism. We assume that orien-
tations are drawn according to the probability distribution pointing home, i.e., Pr(θ | ∆),
providing some angle θN+1 to follow for the next elementary displacement. This means that
the navigator position changes, and Pr(θ | ∆) is therefore outdated. However, θN+1 can be
incorporated into ∆, and the parameters µr and λr reevaluated, using the same procedure
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Figure 6. Trajectories obtained by drawing at random according to von Mises probability distribu-
tions. On each plot, 100 trajectories of length 100 steps are simulated. The µ parameter is always 0,
the λ parameter goes from 0 (top left, random undirected walks) to 50 (bottom right, fairly straight
trajectories along the µ = 0 direction).

as described above 2. See Figure 7 for simulations showing homing trajectories obtained in
this manner.

Our first result, concerning this navigation strategy, is the observation that it indeed
performs homing. This is observed by computing the mean distance over time for a series
of 10 simulations; Fig. 8 indeed shows a sharp initial decrease of distance to home.

Animal studies have led experimentalists to assume that the homing behavior was
complemented by a systematic search strategy (Siegrist et al., 2003). Indeed, when animals
approach their presumed home position, and do not find it (usually because it was removed
for experimental purposes), a qualitative change in trajectories can be observed: animals
switch from fairly straight homing trajectories to more sinuous trajectories. These are
interpreted as the result of the activation of an exploration strategy. This is so commonly
observed, that a sudden increase in the sinuosity of the trajectory is taken as an indicator
of the nest position presumed by the animal (Biegler, 2000).

We now show that the homing behavior we have described generates trajectories which
include this increase in sinuosity near the encoded home position. This was illustrated by the
end of return trajectories in simulations shown Figure 7, and by longer homing trajectories
shown Fig. 9; it can be seen that, as the simulated navigator nears home, its trajectories

2We chose here to describe a “continuous” updating variant of our model, for simplicity; variants using
intermediate resetting at the end location of the outward path are outside the scope of this paper; refer to
Collett and Collett (2000) for discussion about these variants in the context of a deterministic model of PI.
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Figure 7. Three examples of homing simulations using von Mises probability distributions. Length
of forward trajectories (oblique lines) is 100, and length of return trajectories is 500. Every simulation
step, a direction to follow is drawn according to the current von Mises probability distribution.
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Figure 8. Mean distance to home as a function of time for a series of 10 simulations (length of
forward trajectories is 100, length of return trajectories is 1,000). Error bars indicate standard
deviations.

spread and become seemingly random search behavior near the presumed home position.

This effect is a direct consequence of the geometric properties demonstrated above.
Indeed, we have shown that the concentration parameter λ varies monotonically with the
D/N ratio: as the distance to home decreases, so does λ. If λ reaches exactly 0, the
travelled path is a loop and the navigator is back at the starting point. Recall that the
homing strategy we have described selects heading directions at random according to the von
Mises probability distribution, so that λ is directly translated in the resulting trajectories.
Therefore, when the navigator approaches home, λ decreases, and the sinuosity of the
resulting trajectory increases. In the neighborhood of the presumed home position, λ gets
close to zero, and the obtained trajectory is similar to a random exploration strategy.
We note, however, that the probabilistic model predicts a smooth increase in orientation
variability as distance to home decreases and λ increases.
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Figure 9. Sample return trajectories: lengths of forward trajectories are 100, lengths of return
trajectories are 1,000. A random search phase can be observed at the end of homing.

Let us now study the long term behavior of the probabilistic homing strategy. Fig. 10
shows an example of a 5,000 steps homing behavior following a 100 steps outward trajectory.
After the initial homing phase, the behavior transforms into a random search in the vicinity
of the goal, as previously described. However, consider the last portion of the simulation:
it can be observed that distance to home rises, as if an exploratory behavior was engaged.
This is a direct result of the properties of random exploration: as time grows, the probability
to stray away from home increases.

Note, however, that this navigation strategy is equivalent to a purely random walk
only when λ = 0, i.e., only when the navigator is exactly at the home position. When the
navigator strays away from this position, λ grows and acts as a “pulling force” towards
home: the navigation strategy is still a homing strategy. Home is therefore revisited more
often than in a purely random walk. Also, as time passes, the path is getting longer, so that
the rate at which λ grows decreases, the resulting pulling force gets weaker, which means
that the spread of the search increases over time.

This appears to be similar to observed characteristics of search behavior in desert
ants (Wehner & Srinivasan, 1981) and to previous models of mixed homing-search strategies
(Vickerstaff & Di Paolo, 2005; Vickerstaff & Cheung, 2010), but in a more parsimonious
account (without an explicit parameter to control the spread of the search strategy). In
other words, in the probabilistic model, the expansion of covered terrain during search is
explicitly tied to the length N of the complete trajectory, via Eq. (23); this constitutes a
discriminating experimental prediction.

Discussion

In the homing strategy we have explored in this section, the µ parameter behaves like
a compass heading, and the λ parameter is the variability over time of this compass. λ is
the variability of orientations of the outbound path, which is then used to drive navigation
during homing. Therefore, the accuracy of homing is directly influenced by sinuosity of
the outbound path; this was indeed observed experimentally in animals (Etienne, Maurer,
Boulens, Levy, & Rowe, 2004; Siegrist et al., 2003).

We have also shown that our PI model, based on von Mises probability distributions,
reproduces the experimental observations of the increase in sinuosity of trajectories in the
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Figure 10. Long term simulation. Left: Starting location is (0, 0), length of forward trajectory
is 100, and length of return trajectory is 5,000. Right: plot of the distance to home as a function
of time. Between time steps 0 and 100, the outward trip makes distance to home increase sharply.
The first phase of the return trip (time steps 100 to roughly 500) show a steep decrease of distance
to home; this is the homing phase proper. Distance to home stagnates while the “homing force”
provided by the initial outbound trip is slowly diluted among newly acquired data. In the final
phase, we observe the diffusive property of random walks.

neighborhood of the presumed home position. However, it does so without having to ap-
peal to a combination of strategies. Indeed, only one homing strategy is involved, which
increases the sinuosity of the trajectory when the encoded position is reached (Vickerstaff
& Cheung, 2010). In this view, there is no explicit notion of “having reached the goal”, and
an associated explicit switch between two strategies. Furthermore, the long term analysis
shows that, after a random search close to the presumed home position, the navigation
strategy turns to a diffusive phase, akin to an exploratory behavior. In our formulation, all
these behaviors are encompassed in a single mechanism; our model is more parsimonious
than previous explanations, while explaining experimental data equally well.

However, this has to be tempered by the discussion of the smoothness of simulated
trajectories or, equivalently, the abruptness of the change in sinuosity. In our simulations,
it can be observed that, as the navigator approaches home, and as λ gradually decreases,
the trajectory gets gradually more sinuous, contrary to common observations. However, a
number of outside factors can qualitatively affect this property of the probabilistic naviga-
tion strategy. One deals with a parameter of our simulations, which is the relative scales of
temporal updating and spatial displacement. So far, we have assumed that one elementary
step happened between each update of the histories of angles and positions. If updating
happens faster or, equivalently, if the outward trip is longer, we observe trajectories which
appear more straight at the beginning of the return trip (see Fig. 11).

Therefore, the frequency of spatial memory updating would have an effect on the
smoothness of simulated trajectories. A wide variety of other smoothing mechanisms can
be imagined: for instance, properties of the realization of command movements by the
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Figure 11. Effect of the scaling factor on homing simulations. Left (resp. center, right): length
of forward trajectory is 100 (resp. 1,000, 2,000), length of return trajectory is 500 (resp. 5,000,
10,000). When the updating frequency increases, the trajectory appears straighter.

mechanical articulated body (inertia, accumulation of command signal, etc.). Such mecha-
nisms probably depend on a variety of factors, like the precise type of animal modeled, the
context of its navigation, etc. Therefore, in the current study, no “hard”, objective crite-
rion is available to us to set this parameter, other than the relative smoothness of simulated
trajectories.

We thus consider the issue of the smoothness of simulated trajectory to be outside of
the scope of the current paper. However, another property can be examined. It concerns
the moment, along the return trajectory, where the change in behavior occurs. In the de-
terministic model, the navigator has to follow the homing direction at least for distance D
before suddenly switching to random search. This implies that navigators would overshoot,
in terms of distance, when homing. This is not what experiments report: instead, under-
estimations of distances during homing have been observed (Sommer & Wehner, 2004).
In the probabilistic model, even though the change between behaviors is gradual, such an
undershoot can clearly be observed in typical simulated trajectories (Fig. 7, Fig. 10, left).

Adding sensory information

Up to this point, we have assumed that the only information available to the navigator
was orientations relative to a fixed, non-drifting geocentric polar reference frame. In this
context, orientations were assumed to be extracted from motor history, motor efferent copy
or sensory data about the geocentric cues related to the orientation reference frame. We
now turn to the process of linking all this orientation information to sensory events coming
from the environment (L. F. Jacobs & Schenk, 2003); a process commonly referred to in
the literature as binding (Etienne & Jeffery, 2004).

Binding process: indexing probability distributions with sensory events

We consider a landmark-learning situation, i.e., a situation where a navigator is
traversing a path, and encounters sensory events of some saliency. The navigator could
either dismiss the landmarks, and memorize a single von Mises probability distribution for
the whole path, or it could use some of the landmarks to split the path in sub-paths to be
memorized.
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Using our notation: assume that path v is split at points Si, with Si the point where
sensory event i happens, and vi the portion of path v that follows Si. Note ∆i the sets of
experienced orientations in vi; the whole data set for the complete path is ∆w =

⋃
i ∆i.

Consider firstly the von Mises probability distribution learned from the whole history
∆w, P (θf |∆w), and secondly the ones learned from ∆i and associated with sensory event Si:
P (θf | Si ∆i). These constitute the conditional probability distribution P (θf | S ∆), with
S = {S1, S2, . . .} and ∆ = {∆1,∆2, . . .}. Sensory events Si, in this sense, index a collection
of probability distributions; in the binding process, landmarks would provide a scaffold for
path memorization, in a manner mirroring and complementing the one hypothesized by
Müller and Wehner (2010).

What would the navigator choose to memorize, between a single probability distribu-
tion P (θf | ∆w) and the conditional probability distribution P (θf | S ∆)? There are two
criteria to take into account. The first is, of course, memory requirement; as P (θf | S ∆)
is made of a set of probability distributions, it takes more memory space than the single
probability distribution P (θf | ∆w). The second criterion is fidelity of representation; are
the probability distributions P (θf | S ∆) better able to represent path v than a single
distribution P (θf | ∆w)? These two criteria, of course, are at odds: the navigator is faced
with the trade-off of size of representation vs. its adequacy to the experienced phenomenon
(a trade-off well known in computational modeling).

We assume that entropy of probability distributions quantifies the second criterion,
as it measures uncertainties of the considered probability distributions.

von Mises probability distributions and entropy

Given a von Mises probability distribution over orientations P (θf | ∆), as a summary
of a path, let H be its entropy. In a manner similar to Gaussian probability distributions,
where H is uniquely determined by the standard-deviation σ, in the von Mises case, H
depends only on the λ concentration parameter (Lund & Jammalamadaka, 2000):

H(λ) = log(2πI0(λ))− λI1(λ)

I0(λ)
. (28)

The function H(λ) is shown Fig. 12.

Consider, intuitively, the extreme cases. When λ = 0, the von Mises is equivalent
to the uniform probability distribution over [−π, π), which is of maximal entropy, and
corresponds to a ratio D/N = 0. At the other extreme, when λ→∞, von Mises probability
distributions tend toward Dirac distributions, which are of minimal entropy, and the ratio
D/N → 1.

Concentration parameters λ and entropies are related by a bijection, i.e. in a one-
to-one correspondence. Furthermore, recall that concentration parameters λ are in one-to-
one correspondence with the straightness index D/N , through the A1 function. Therefore,
concentration parameters λ, entropies H and straightness D/N are all related by bijections.

We now turn back to the case of the navigator having to decide which sensory events,
if any, are to be memorized along a path. We consider a fixed memory space case, so that
we can set aside the memory space requirement criterion; assume there is only room for one
more probability distribution to be encoded, but several sensory events are available. Also



PATH MEMORIZATION USING CIRCULAR PROBABILITY DISTRIBUTIONS 21

0 4.10^4 8.10^4
!4
!3
!2
!1
0
1

Λ

H
!Λ"

0.01 1 100 104
!4
!3
!2
!1
0
1

Λ

H
!Λ"

Figure 12. Entropy H of von Mises probability distributions as a function of λ, the concentration
parameter. Left: linear scale. Right: log-linear scale. When λ → 0, H(λ) → log(2π) ' 1.83, which
is the entropy of the uniform circular distribution.

assume that the sensory events in consideration have all the same sensory saliency. Which
one to select as the last memorized sensory event?

We assume that the navigator would aim to reduce the overall uncertainty of its mem-
ory system. In other words, among the possible sensory events, the one which would result
in the lowest overall entropy would be chosen. Since entropy, concentration parameters and
straightness D/N are in bijection, this implies that the goal would be to reduce the overall
sinuosity of memorized sub-paths. Among sensory events of identical sensory saliency, those
at geometrically salient points of the path would be preferred.

In other words, the probabilistic framework yields the prediction that memorized
landmarks would separate straight, or as straight as possible, portions of paths. Further-
more, entropy computations (or sinuosity computations) could quantify the gain that a
navigator would consider when choosing sensory events to memorize along a path. This, we
believe, could provide experimental leverage in navigation experiments in humans, where re-
call tasks after path memorization could verify which landmarks were encoded, and whether
they corresponded to landmarks with the highest entropy decrease. The fact that landmarks
at direction changes are more likely to be recalled has already been observed in humans
(Aginky, Harris, Rensink, & Beusmans, 1997; Stankiewicz & Kalia, 2007); our model yields
the discriminating experimental prediction that entropy gain is the measure controlling this.

Discussion

Consider two navigation strategies, that concern two extreme cases: the first is when
there are as many sensory events as there are elementary displacements, the second is when
there are no sensory event whatsoever.

At one extreme case, assuming that each elementary displacement is associated with
a unique sensory event Si, the navigator memorizes a large set of von Mises probability
distributions: P (θf | Si ∆i). If the path v is of length N , then N von Mises probability
distributions need to be memorized. Each encodes the property of a single displacement ∆i,
i.e., a straight segment (no variability in experienced angles). Then, recognizing sensory
event Si triggers the use of a unique distribution, peaked in the direction of the next
elementary displacement. This can be seen as a stimulus-triggered response navigation
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strategy, or route following (Collett & Collett, 2000; Franz & Mallot, 2000; Trullier, Wiener,
Berthoz, & Meyer, 1997).

At the other extreme case, assuming no sensory event is available, the navigator
memorizes a single von Mises probability distribution that summarizes the whole path v:
P (θf | ∆w). As we described previously, this leads to navigation strategies similar to PI.

In this view, PI and stimulus-triggered response are two navigation strategies which
are not different in nature. They only differ by the amount of sensory information used
for memorizing paths; PI requires minimal memory but yields a coarse path description,
whereas stimulus-triggered response requires more memory and yields a more precise path
description. This result concerns the parsimony of our model; PI and route following
strategies are encompassed as special cases of our general path description mechanism.

A further prediction concerns the case of landmark removal between path memo-
risation and homing or path reproduction. Indeed, consider a navigator that has mem-
orized a collection of P (θf | Si ∆i) probability distributions. By Bayesian inference,
the navigator can still, from this detailed route representation, recover the global path
property: P (θf | ∆w) ∝

∑
S P (θf | Si ∆i)P (Si), or, assuming uniform prior P (Si),

P (θf | ∆w) ∝
∑
S P (θf | Si).

Why would it favor route following behavior, that is potentially not optimal in terms of
travelled distance, compared with a shortcut driven by PI behavior? Entropy computations
again shed some light on this issue.

It is a well-known theorem that information in the right-hand part of conditional
probability distributions leave unchanged or decrease entropy (Shannon, 1948); whatever
variables A,B, let HA be the entropy of P (A) and HA|B the entropy of P (A | B): HA ≥
HA|B. If B adds information about A, this reduces uncertainties about A; if B is completely
uncorrelated to A, this does not change uncertainties about A. In other words, P (θf | ∆w)
when computed as

∑
S P (θf | Si), is a more uncertain model than the initial stimulus-

triggered detailed model.

A direct consequence of this theorem is that, when landmarks are available, they allow
the navigator to rely on less uncertain probability distributions. That is, P (θf | Si ∆i) is
always more certain than P (θf | ∆i).

Experimentally however, it is possible to force navigators to fall back to PI-like strate-
gies; that is the case of landmark removal between path memorizing and navigation. Our
model predicts that navigators, in the case of path reproduction with suddenly absent land-
marks, would try to perform a path with the same global spatial relationship (i.e., that
goes from the same starting point to the same end point), but the order of turnings, for
instance, would be lost by the summation implied by Bayesian inference. This has been
qualitatively observed in one of our previous experiments (Diard, Panagiotaki, & Berthoz,
2009).

Finally, recall that we showed that PI and stimulus-triggered response could be con-
strued as limit cases of a general mechanism of indexation of action probability distributions
by sensory events. In other words, P (θ | Si ∆i) can have any number of sensory events
Si used as indexes, if memory allows. In this view, experimental identification of PI and
stimulus-triggered responses as navigation strategies correspond to exploring only the ex-
treme situations and avoiding the rich continuum between.
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Combining probability distributions about orientations

Above, we have treated the case of indexing the von Mises probability distributions
at point Si with a single sensory cue. What if, at Si, there are several relevant sensory
cues? How would they be combined?

Indeed, this is a very general issue, as perception of space clearly appears to be
multimodal: vision, kinesthetic and haptic systems, vestibular systems, even hearing, all
contribute to the estimation of spatial properties. A wide variety of studies have focused
on cases of intramodal cue fusion (Drewing & Ernst, 2006; Hillis et al., 2004; R. A. Jacobs,
1999) or multimodal sensory fusion, whether cues were congruent (Anastasio et al., 2000;
Körding & Wolpert, 2004; Zupan et al., 2002) or conflicting (Alais & Burr, 2004; Banks,
2004; Battaglia et al., 2003; Ernst & Banks, 2002). Considering navigation tasks, it has been
shown that blindfolded subjects rely on proprioceptive cues to update information correctly
(Loomis, Klatzky, & Golledge, 2001). Also, in self movement estimation, Bayesian models
have been proposed, in which vestibular, optokinetic, podokinetic and cognitive information
are combined (Jürgens & Becker, 2006).

A common assumption of these approaches is that sensory cues are weighted according
to their respective reliabilities (Wang & Spelke, 2002). In other words, cues would be
associated with a measure of their informative content, which helps assess whether they
should be trusted and strongly weighted in the multimodal fusion. In spatial navigation
studies, such a hypothesis has been, for instance, proposed by Lambrey and Berthoz (2003).

In probabilistic terms, this is usually translated into the Maximum Likelihood Esti-
mation (MLE) model of cue fusion (Ernst & Banks, 2002) or the sensory weighting model
(Zupan et al., 2002). Under some assumptions, a deterministic interpretation of this model
can be derived, which is a simple linear combination between individual estimates (R. A. Ja-
cobs, 2002). In the remainder of this text, we refer to this model as the “classical” sensor
fusion probabilistic model (Colas et al., 2010).

In this classical formulation, a stimulus S yields two different sensations S1 and S2,
on two different sensory inputs. Sensations S1 and S2 are usually assumed to be condi-
tionally independent given stimulus S, so that the model is defined by the joint probability
distribution:

P (S S1 S2) = P (S)P (S1 | S)P (S2 | S) , (29)

where P (S) is defined as a uniform probability distribution, P (S1 | S) and P (S2 | S)
are direct sensor models, which describe what the sensation would be, assuming the real
stimulus value is known.

Probabilistic model of multisensory integration of linear cues

In the case of cues lying on linear spaces, P (S1 | S) and P (S2 | S) are assumed to be
Gaussian probability distributions, which we denote as G:

P (S1 | S) = G(S1;µ1, σ1) (30)

P (S2 | S) = G(S2;µ2, σ2) . (31)

The model is then used to solve the perception task, that is to say, recover likely
values of the external phenomenon S given sensory readings. In the multi-cue case, both
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Figure 13. Combining Gaussian probability distributions in the classical sensor fusion model. Left:
Congruent cues (dashed curves) yield a more peaked Gaussian distribution (solid curve). Center,
right: the property still holds for conflicting cues, even when the distance between initial distributions
is large.

sensors provide values s1 and s2; they are used to compute P (S | [S1 = s1] [S2 = s2]). A
remarkable property is that the result of that inference also follows a Gaussian probability
distribution, of parameters µ and σ, with:

µ =

1
σ2
1
µ1 + 1

σ2
2
µ2

1
σ2
1

+ 1
σ2
2

(32)

σ2 =
σ21σ

2
2

σ21 + σ22
. (33)

A fundamental property of the probabilistic sensor fusion model is that σ2, the vari-
ance of the estimate based on two cues, is smaller than or equal to the variances of estimates
based on single cues: σ2 ≤ σ21 and σ2 ≤ σ22. In other words, adding cues about the mea-
sured quantity always yields more reliable estimates. However counter-intuitive it may be,
this property holds whatever the values of s1 and s2; even when cues are conflicting, their
combination yields a more reliable estimate, with a mean value being a tradeoff between
means of single-cue estimates. This is illustrated Figure 13.

This prediction, of course, limits the applicability of the probabilistic fusion model.
Indeed, when subjects are confronted with widely conflicting cues, they commonly do not
resolve it anymore by this tradeoff mechanism. Instead, the underlying assumption that a
single source S generated both cues, s1 and s2, becomes so implausible that another model
with two sources S and S′ become more plausible. This has successfully been modeled
recently under the name of causal modeling (Beierholm, Körding, Shams, & Ma, 2008;
Körding & Tenenbaum, 2006; Körding et al., 2007; Sato, Toyoizumi, & Aihara, 2007),
thus called because the model infers the number of sources (causes) generating the sensor
readings (observations).

Probabilistic model of multisensory integration of orientation cues

We now show that the mathematics of fusion of linear cues are different than those
for orientation cues (Cheng, Shettleworth, Huttenlocher, & Rieser, 2007). In particular,
we show that combining cues over orientations does not necessarily yield more peaked
probability distributions, contrary to the classical model over linear space.
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In the case of orientations cues, we assume that P (S1 | S) and P (S2 | S) are circular
probability distribution. We consider here von Mises probability distributions:

P (S1 | S) = vM(S1;µ1, λ1) (34)

P (S2 | S) = vM(S2;µ2, λ2) . (35)

In the case of the combination of Gaussian probability distributions, their fusion was
a Gaussian distribution. How about the case of the fusion of two von Mises probability
distributions?

Property 1. Let µ1, λ1 and µ2, λ2 be the parameters of two von Mises probability distribu-
tions. Then their fusion 3 is itself a von Mises probability distribution, of parameters µ, λ,
with:

µ = arctan

(
λ1 sinµ1 + λ2 sinµ2
λ1 cosµ1 + λ2 cosµ2

)
(36)

λ =
(
λ21 + λ22 + 2λ1λ2 cos(µ1 − µ2)

)1/2
. (37)

The detailed proof of this property is provided in Appendix A.
In the case of the combination of Gaussian probability distributions, the sensor fusion

model yielded a Gaussian distribution which is always more peaked than the initial Gaussian
probability distribution. Does this hold in the case of the fusion of von Mises probability
distributions?

We proceed to demonstrate that it does not, and the condition for which concentration
decreases during fusion is not trivial. Having peaks of initial von Mises separated by less
than a quadrant (π/2), ensures a concentration increase; however, a wider initial separation
can yield a resulting von Mises that is either more concentrated, or less concentrated than
(either or both) initial von Mises distributions. This is illustrated Fig. 14.

Property 2. Let µ1, λ1 and µ2, λ2 be the parameters of two von Mises probability distribu-
tions, and µ, λ the parameters of the von Mises distribution obtained by their fusion. Then,
if cos(µ1 − µ2) < −λ2/2λ1 (resp. cos(µ1 − µ2) < −λ1/2λ2) then λ < λ1 (resp. λ < λ2).

The detailed proof of this property is provided in Appendix B.
Therefore, since λ2 and λ1 are positive parameters, this last equation is always true

as long as cos(µ1−µ2) ≥ 0, that is to say, as long as |µ1−µ2| ≤ π/2; when the µ parameters
of the initial von Mises are separated by less that π/2, the fusion von Mises is at least as
peaked as the least peaked of the two initial von Mises.

However, when the von Mises point towards different quadrants (separated by more
than π/2), then cos(µ1 − µ2) becomes negative. When it falls below −λ2/(2λ1), then the
fusion von Mises is less peaked than the initial von Mises probability distributions. For
example, assuming λ1 = λ2, cos(µ1 − µ2) needs to fall below −1/2, that is to say, µ1 and
µ2 need to be separated by more than 2π/3, so that the resulting von Mises is less peaked
than one of the initial von Mises.

3A similar looking, but different result concerns the convolution of von Mises probability distributions,
i.e., a model where P (S S1 S2) = P (S | S1)P (S1 | S2)P (S2) (compare with Eq. (29)), both conditional
terms are von Mises probability distributions, and the aim is to compute P (S | S2) (Jammalamadaka &
SenGupta, 2001).
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Figure 14. Study of the evolution of variance and concentration parameters in fusion of Gaussian
and von Mises models. Top: A Gaussian probability distribution of standard-deviation σ is obtained
by the fusion of Gaussian probability distributions of parameters σ1 and σ2 = 5. The plot shows σ
as a function of σ1. The resulting σ is always lower than both σ1 and σ2 (variance always decreases).
Center, bottom: A von Mises probability distribution of concentration λ is obtained by the fusion
of von Mises probability distributions of parameters µ1, λ1 and µ2 = 0, λ2 = 5. The plots show
λ as a function of µ1, λ1 (wavy curve). The planes help highlight conditions when λ > λ2 (center
plot, horizontal plane) and λ > λ1 (bottom plot, slanted plane), i.e., conditions where concentration
increases.
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Discussion

This result provides a quantitative experimental prediction. Indeed, Eqs. (37) and
(36) quantitatively describe the von Mises probability distribution that should be obtained
if orientation cues were encoded by von Mises probability distributions and if they were
combined in a manner similar to Gaussian probability distributions in the linear case.

The property that adding cues increases reliability of estimates is a major difference
between the fusion model in the linear and orientation case: it holds in the linear case; it
does not always hold in the orientation case. This may help assess whether some quantities
are encoded in the central nervous system in linear or orientation internal spaces.

However, in some experimental scenarios, cues that differ widely in orientations might,
as in the linear case, favor models that do not assume a single cause for the discrepant cues
(as in causal inference models in the linear case). But, even outside of this limit behavior,
the linear and orientation fusion model quantitatively differ: Eq. (37) clearly shows that the
increase in concentration is modulated by the discrepancy, however small, between initial
cues, contrary to the linear model.

This model, ultimately, quantitatively predicts that the evolution of orientation rep-
resentations in cue fusion is clearly dependent on the concentration parameter of underlying
von Mises probability distributions. As such, it radically departs from the classical, deter-
ministic model based on mean vector. Therefore, experimental observation would clearly
be able to discriminate between the deterministic and probabilistic models, in a way rem-
iniscent of the demonstration that variances of probability distributions participate in cue
fusion in the linear case (Ernst & Banks, 2002).

Combination of orientation cues, resulting in compromise trajectories in case of ex-
perimentally induced conflicts, has already been observed in a variety of experiments, from
desert ants (Collett, 2012) to humans (Mallot & Gillner, 2000). The corresponding ex-
perimental settings could be reused and adapted to check the mathematical predictions
provided by our model.

Conclusion

In this study, we have explored the possibility that, instead of a single vector, a
spatial memory system would encode probability distributions over orientations, and draw
according to them to produce return trajectories. We have highlighted a number of origi-
nal properties of such a procedure, mostly issued from the mathematical properties of the
chosen probabilistic representation. The central observation is that memorizing the expe-
rienced variability of orientations, in the λ concentration parameter, is very rich, as it can
also be interpreted as an implicit distance estimation. We have also studied how this ori-
entation representation might be further enriched by sensory cues, and how multiple such
representations could be combined in multi-sensory and multi-cue conditions.

von Mises probability distributions are drastic summaries of the experience of forward
paths. They only retain two parameters and yet, we have shown that this very short
summary is sufficient to form the basis for large-scale homing behaviors. We believe it
is a potentially new direction in which to comprehend functions of neural population and
ensembles in the hippocampal and parahippocampal areas, in particular with respect to
modeling and understanding the function of head-direction cells.
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Appendix A
Property 1 and its proof

Recall our first property: Let µ1, λ1 and µ2, λ2 be the parameters of two von Mises
probability distributions. Then their fusion is itself a von Mises probability distribution, of
parameters µ, λ, with:

µ = arctan

(
λ1 sinµ1 + λ2 sinµ2
λ1 cosµ1 + λ2 cosµ2

)
(38)

λ =
(
λ21 + λ22 + 2λ1λ2 cos(µ1 − µ2)

)1/2
. (39)

Proof. We first compute:

P (S | [S1 = s1] [S2 = s2]) (40)

∝ P ([S1 = s1] | S)P ([S2 = s2] | S) (41)

∝ 1

2πI0(λ1)
eλ1 cos(θ−µ1)

1

2πI0(λ2)
eλ2 cos(θ−µ2) (42)

∝ eλ1 cos(θ−µ1)+λ2 cos(θ−µ2) . (43)

We recognize here a von Mises of parameter µ and λ when we develop the exponents of
both a regular von Mises and equation (43):

λ1 cos(θ − µ1) + λ2 cos(θ − µ2) = cos θ(λ1 cosµ1 + λ2 cosµ2) (44)

+ sin θ(λ1 sinµ1 + λ2 sinµ2) (45)

λ cos(θ − µ) = cos θ(λ cosµ) + sin θ(λ sinµ) . (46)
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We therefore identify: {
λ cosµ = λ1 cosµ1 + λ2 cosµ2
λ sinµ = λ1 sinµ1 + λ2 sinµ2

. (47)

This is solved by some manipulation. We first square and add both equations of this system:

λ2(cos2 µ+ sin2 µ) (48)

= λ2 (49)

= (λ1 cosµ1 + λ2 cosµ2)
2 + (λ1 sinµ1 + λ2 sinµ2)

2 (50)

= λ21(cos2 µ1 + sin2 µ1) + λ22(cos2 µ2 + sin2 µ2) (51)

+2λ1λ2(cosµ1 cosµ2 + sinµ1 sinµ2) (52)

= λ21 + λ22 + 2λ1λ2 cos(µ1 − µ2) . (53)

Moreover, when λ cosµ 6= 0:

λ sinµ

λ cosµ
= tanµ (54)

=
λ1 sinµ1 + λ2 sinµ2
λ1 cosµ1 + λ2 cosµ2

. (55)

We therefore have obtained our result.

A main variant of this proof casts the problem into the complex plane, where the
sum of cosines amounts to a vectorial sum. This can be seen to be equivalent to the phasor
model of PI (Wittmann & Schwegler, 1995) and the discrete, geocentric polar exact update
equations of the homing vector of Table 4 of (Vickerstaff & Cheung, 2010).

Appendix B
Property 2 and its proof

Recall our second property: Let µ1, λ1 and µ2, λ2 be the parameters of two von Mises
probability distributions, and µ, λ the parameters of the von Mises distribution obtained by
their fusion. Then, if cos(µ1 − µ2) < −λ2/2λ1 (resp. cos(µ1 − µ2) < −λ1/2λ2) then λ < λ1
(resp. λ < λ2).

Proof. Recall that we have previously shown, Eq. (37), that:

λ =
(
λ21 + λ22 + 2λ1λ2 cos(µ1 − µ2)

)1/2
. (56)

Because this equation is symmetrical with respect to λ1 and λ2, we focus, without loss
of generality, on the relation between λ and λ1, conditioned on λ2. Recall that the λs
are concentration parameters; the higher their value, the more peaked the von Mises are
(contrary to the σs of Gaussian distributions, which are dispersion parameters). We study
the inequality:

λ ≥ λ1 (57)(
λ21 + λ22 + 2λ1λ2 cos(µ1 − µ2)

)1/2
≥ λ1 (58)
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λ21 + λ22 + 2λ1λ2 cos(µ1 − µ2) ≥ λ21 (59)

cos(µ1 − µ2) ≥ − λ2
2λ1

, (60)

provided λ1 6= 0 and λ2 6= 0.


