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Abstract

We define scattering data for the Newton equation in a potential
V € C?(R™,R), n > 2, that decays at infinity like r=% for some o €
(0,1]. We provide estimates on the scattering solutions and scattering
data and we prove, in particular, that the scattering data at high
energies uniquely determine the short range part of the potential up
to the knowledge of the long range tail of the potential. The Born
approximation at fixed energy of the scattering data is also considered.
We then change the definition of the scattering data to study inverse
scattering in other asymptotic regimes. These results were obtained
by developing the inverse scattering approach of [Novikov, 1999].

1 Introduction

Consider the multidimensional Newton equation in an external static force
F deriving from a scalar potential V:

Z(t) = F(z(t) = =VV(x(t)), (1.1)

where z(t) € R, i(t) = 9£(t), n > 2.

When n = 3 then equation (1.1) is the equation of motion of a nonrel-
ativistic particle of mass m = 1 and charge e = 1 in an external and static
electric (or gravitational) field described by V' (see [8]) where x denotes the
position of the particle, & denotes its velocity and & denotes its acceleration
and ¢ denotes the time.

We also assume throughout this paper that V' satisfies the following con-
ditions

F=F+F (1.2)



where F! := —VV! F*:= —VV* and (V!,V®) € (C*(R",R))?, and where

V! satisfies the following long range assumptions
05V ()] < Bl (1 + |y, (1.3)
and V* satisfies the following short range assumptions
|5V ()] < Bja (14 [a]) (@D, (1.4)

for x € R™ and |j| < 2 and for some « € (0, 1] (here j is the multiindex
j € (NU{0PH™ il = >0 _, jm, and B and 32, are positive real constants
for m = 0,1,2 and for m’ = 1,2,3). Note that the assumption 0 < a < 1
includes the decay rate of a Coulombian potential at infinity. Indeed for a
Coulombian potential V(x) = ﬁ, estimates (1.3) are satisfied uniformly for

|z| > € and a = 1 for any € > 0. Although our potentials (V!, V*) are assumed
to be C? on the entire space R", our present work may provide interesting
results even in presence of singularities for the potentials (V! V*).

For equation (1.1) the energy

1
E =S |#(0)]" + V(x(t) (1.5)
is an integral of motion.
For ¢ > 0 we denote by B(0, ) the Euclidean open ball of center 0 and
radius o, B(0,0) = {y € R" | |y| < o}, and we denote by B(0,0) = {y €

2% max(41 4

- ) Under conditions (1.3)
the following is valid (see Lemma 2.1 given in the next Section): for any
v € R"\B(0, i), there exists a unique solution z4 (v, .) of the equation

R™ | |y| < o} its closure. We set u :=

3(t) = Fl(2(t)), t € R, (1.6)

so that
Zi(v,t) —v=0(1), as t — £o0, z4(v,0) =0,
and .
2212 3
alvl
When F' = 0 then 3¢, 3% and p can be arbitrary close to 0, and we have that
2y (v, t) = to for (t,v) € R x R", v # 0.
Then under conditions (1.3) and (1.4), the following is valid: for any
(v_,z_) € R"\B(0, u) x R", the equation (1.1) has a unique solution = €
C?*(R,R") such that

|ze(v,t) — tv| < |t] for t € R.

z(t) = z_(v_,t) + x_ +y_(1), (1.7)
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where |y_(t)|+|y—(t)| = 0, as t — —oo; in addition for almost any (v_,z_) €
R™\B(0, 1) x R™,

w(t) = 24 (vis ) + 2p + 44 (D), (1.8)
for a unique (v4,x4) € R® x R™, where |v;| = |v_| > p by conservation of
the energy (1.5), and where v, =: a(v_,z_), xy =: b(v_,x_), and |y, (¢)| +
lyL(t)] — 0, as t — 400. A solution z of (1.1) that satisfies (1.7) and (1.8)
for some (v_,x_), v_ # 0, is called a scattering solution.

We call the map S : (R™\B(0, 1)) x R™ — (R™\B(0, 1)) x R™ given by the
formulas
vy =alv_,z_), xy =blv_,x_), (1.9)

the scattering map for the equation (1.1). In addition, a(v_,z_), b(v_,z_)
are called the scattering data for the equation (1.1), and we define

asc(v_,z_) =alv_,z_) —v_, bs(v_,z_)=blv_,z_) —x_. (1.10)

Our definition of the scattering map is derived from constructions given in
[6, 1]. We refer the reader to [6, 1] and references therein for the forward
classical scattering theory.

By D(S) we denote the set of definition of S. Under the conditions
(1.3) and (1.4) the map S : D(S) — (R"\B(0, 1)) x R™ is continuous, and
Mes(((R™\B(0, 1)) x R")\D(S)) = 0 for the Lebesgue measure on R™ x R".
In addition the map S is uniquely determined by its restriction to M(S) =
D(S)NM and by F!, where M = {(v_,z_) e R"xR" | v_ # 0,v_-x_ = 0},
(Indeed if z(t) is a solution of (1.1) then x(t + to) is also a solution of (1.1)
for any to € R.)

One can imagine the following experimental setting that allows to mea-
sure the scattering data without knowing the potential V' inside a (a priori
bounded) region of interest. First find a potential V! that generates the same
long range effects as V' does. Then compute the solutions z4 (v, .) of equation
(1.6). Then for a fixed (v_,z_) € (R™\B(0, 1)) x R™ send a particle far away
from the region of interest with a trajectory asymptotic to x_ + z_(v_,.) at
large and negative times. When the particle escapes any bounded region of
the space at finite time, then detect the particle and find S(v_,z_) = (v4, z4)
so that the trajectory of the particle is asymptotic to x, + zy (vy,.) at large
and positive times far away from the bounded region of interest.

In this paper we consider the following inverse scattering problem for
equation (1.1):

Given S and given the long range tail F' of the force F, find F*. (1.11)

The main results of the present work consist in estimates and asymptotics
for the scattering data (as., bs.) and scattering solutions for the equation (1.1)
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and in application of these asymptotics and estimates to the inverse scatter-
ing problem (1.11) at high energies. Our main results include, in particular,
Theorem 1.1 given below that provides the high energies asymptotics of the
scattering data and the Born approximation of the scattering data at fixed
energy.

Consider

TS ' :={(0,2) € S" ' xR" | §-x =0},
and for any m € N consider the x-ray transform P defined by

Pf(0,z) = m F(t0 + x)dt

—00

for any function f € C(R",R™) so that |f(z)| = O(|z| %) as |z| — +o0 for
some 3 > 1. For (0, 8,7, @) € (0,4+00)? x (0,1) x (0,1], let s = so(o, 7, 3, &)
be defined as the root of the equation

4577,(0—1— 1) 1 2 3
1= — (1 > 2% 1.12
dr(;—g —7)(1— r)a+2( T ;_g _ r) » S0 2T ( )

Then we have the following results.

Theorem 1.1. Let (0,x) € TS" . Under conditions (1.3) and (1.4) the
following limits are valid

lim sas(s,2) = PF'(0,z)+ PF(0,x), (1.13)

s$—+00

lim 5% - <bsc(39,x) - W(s@,x)) = —PV?30,x), (1.14)

s——+00

where
W(,z) = /_ /_ (Fio_(v,7) + 2) — F'(e_(v,7)))drdo (1.15)
+oo +00
—/0 / (F'(z4(a(v,z),7) + ) —Fl(z+(a(v,x),7')))dad7'),

for (v,x) € D(S).
In addition,

F(rsf + z)dr| < 225 (1.16)
00 a?(1 —r)2et3(272s —r)?

+o00 An®(3|z| +5)8%(1 + —4
‘asc(sﬁ,x) —/



0 o
|bse(s0, ) — W (sb, z) — / / F*(1s6 + x)drdo

o oo 4n?(3|a| + 5)82 (1 + ——)°
+/ / F*(1s0 + x)drdo| < S22 (1.17)
o Jo a2(1 — r)2042(2735 — 7)3

for (r,(6,z)) € (0,1) x TS™ ! and for s > so(|z|, T, B, @),
where 3 = max(By, B3, 55, B5).

Note that the vector W defined by (1.15) is known from the scattering
data and from F'. Then from (1.13) (resp. (1.14)) and inversion formulas for
the X-ray transform for n > 2 (see [12, 4, 9, 10]) it follows that F* can be
reconstructed from ag. (resp. bs.).

Note that (1.16) and (1.17) also give the asymptotics of as., bs., when
the parameters «, n, s, # and x are fixed and  decreases to 0 (where 3 =
max (3L, 85, 55, 35)). In that regime the leading term of sa,.(sf,r) and s%6 -
(bse(s0,2) — W(s0,x)) for (0,x) € TS* ! and for s > so(|z|, 7, 3, ) is given
by the right hand sides of (1.13) and (1.14) respectively. Therefore Theorem
1.1 gives the Born approximation for the scattering data at fixed energy when
the potential is sufficiently weak, and it proves that F'* can be reconstructed
from the Born approximation of the scattering map at fixed energy.

Theorem 1.1 is a generalization of [10, formulas (4.8a), (4.8b), (4.9a)
and (4.9b)] where inverse scattering for the classical multidimensional New-
ton equation was studied in the short range case (F' = 0). We develop
Novikov’s framework [10] to obtain our results. Note that results [10, formu-
las (4.8b) and (4.9b)] also provide the approximation of the scattering data
(ase(v_,x_),bse(v_,x_)) for the short range case (F' = 0) when the param-
eters a, n, v_ and [ are fixed and |r_| — +o00. Such an asymptotic regime
is not covered by Theorem 1.1. Therefore we shall modify in Section 3 the
definition of the scattering map to study these modified scattering data in
the following three asymptotic regimes: at high energies, Born approxima-
tion at fixed energy, and when the parameters a;, n, v_ and [ are fixed and
|x_| = 400.

For inverse scattering at fixed energy for the multidimensional Newton
equation, see for example [7] and references therein.

For the inverse scattering problem in quantum mechanics for the Schrédinger
equation, see for example [3], [2], [11] and references given in [11].

Our paper is organized as follows. In Section 2 we transform the differen-
tial equation (1.1) with initial conditions (1.7) in an integral equation which
takes the form y_ = A(y_). Then we study the operator A on a suitable
space (Lemma 2.2) and we give estimates for the deflection y_(t) in (1.7)
and for the scattering data as.(v_,z_), bs(v_,z_) (Theorem 2.4). We prove
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Theorem 1.1. Note that we work with small angle scattering compared to
the dynamics generated by F' through the “free” solutions z_(v_,t): In par-
ticular, the angle between the vectors x(t) = 2_(v_,t) + y_(¢) and 2_(v_, )
goes to zero when the parameters 3, o, n, v_/|v_|, x_ are fixed and |v_|
increases. We also provide similar results when one replaces the “free” so-
lutions z_(v,.) by some other functions “z_ y(v,.)” that may be easier to
compute in practise (Formulas (2.47) and (2.48)). In Section 3 we change the
definition of the scattering map so that one can obtain for the modified scat-
tering data (ds.(v_, z_), bse(v_, z_)) their approximation at high energies, or
their Born approximation at fixed energy, or their approximation when the
parameters «, n, v_ and [ are fixed and |z_| — 400 (Theorems 3.3, 3.4 and
formulas (3.40) and (3.41)). Sections 4, 5, 6 and 7 are devoted to proofs of

our Theorems and Lemmas.

2 Scattering solutions

2.1 Integral equation

First we need the following Lemma 2.1 that generalizes the statements given
in the Introduction on the existence of peculiar solutions z4 of the equation

(1.6).

Lemma 2.1. Assume conditions (1.3). Let (v, z,w,h) € (R")* so that v-z =
0 and
|w—v\§—cmd|h|<1—i—m (2.1)

42 V2’

2°n max(f3], 3)
afo2(1+ 51— |ap)e

and assume

(2.2)

Then there exists a unique solution zy(w,x + h,.) of the equation (1.6) so
that

Zo(w,z+ hyt) —w=o0(1), ast — too, zx(w,x+h,0)=xz+h, (2.3)

and -
23n3
|ze(w, 24+ h,t) —z — h—tw| < nxﬁl |t], (2.4)
alo|(1+ 7 —[h[)®
forteR.



A proof of Lemma 2.1 is given in Section 4.
For the rest of this Section we set

ze(v,t) = 24(v,0,t) for t € R, when p < ||, (2.6)
By = max(fy, B3). (2.7)

Let (v_,z_) € R* x R", v_ -2_ = 0 and |v_| > p. Then the function y_
in (1.7) satisfies the integral equation y_ = A(y_) where

AP () :/; /; <F(z_(v_,7')+x_+f(7'))—Fl(z_(v_,T))>d7'dcr (2.8)

fort € Rand for f € C(R,R"), sup_., g | f| < 0o. Under conditions (1.3) and
(1.4) we have A(f) € C*(R,R") for f € C(R,R") so that sup_., o |f| < .
For r > 0 we introduce the following complete metric space M, defined

by
£(2)
M, = e C(R,R" su + su —— ) <r}, 2.9
(f €CREY | sup | te[o,fm)(um) } (2.9)

1+t
Then we have the following estimate and contraction estimate for the map
A restricted to M,.

and endowed with the norm ||.|| where || f|| = sup(_u g |.f[+5UPte(o,400) (M>

Lemma 2.2. Let (v_,z_) € (R"\B(0,)) x R", v_-x_ =0, and let r > 0,
r < max(%, 1+ ‘x—\/%') Then the following estimates are valid:

A < p(n,a, By, 2], o], 7) (2.10)
Ba(n(3le_| +2r) + 2\/5)( 2 N 1 )
(I —na-re Calgl-r (et HA-1)"
and
IA(f1) = A(f)ll < An, e, Ba, B3, |-, [o— |, 7)1 fr = foll, (2.11)
s . 2n 3 3
A(n,a,62,63,|x_|,|v_|,r) T a<% —7’)(1 g %)a(52+ 1—rt % % _
" 1 1 )
1—7’+‘x—\/’§| %—r 7

for (f, f1, f2) € M?.



A proof of Lemma 2.2 is given in Section 5.
We also need the following result.

Lemma 2.3. Let (v_,z_) € (R"\B(0,)) x R", v_-x_ =0, and let r > 0,
r < max('v L1 Iz ‘) When y_ € M, is a fized point for the map A then

z_(v_,.) + T_+y_ () is a scattering solution for equation (1.1) and

o (oo ) s+ y(8) = ze(alon, o), ) + Do, o) £ ya(t), (2.12)

fort >0, where

alv_,z_) = v+/_ OOF(z,(v,,T)jL:c,—i—y,(T))dT, (2.13)
= -+l v_, oy )+ (v, x )+ l(vo,z_ y_), (2.14)

400 +OO
/ / v, 1) xo+y (1) = Fl(zy(alv-,2-),7)))drdo,
(2.15)
fort >0, and where

l(v_,z_ / / (v, 7) + 2 +y- (7)) = F'(2-(v-,7))) drdo
_ /0"’00 /+OO I (Z_(U—’T) + 2 + y_(T))deO', (2.16)

li(v_,x_) ::—/ 00/ Oo(Fl(,7:+(a(v_,x_),7‘)+:16_)—Fl(zur(a(v_,:16_),7')))d7'd<7,
R (2.17)

lo(v_,z_ / O0/ h (F'(z—(v_, 7)o 4y (7)) = F' (24 (alv_, 2_), 7)+2_) ) drdo,
(2.18)
fort>0.

Lemma 2.3 is proved in Section 4. Note that [; is known from the scat-
tering data and the knowledge of F.

2.2 Estimates on the scattering solutions

In this Section our main results consist in estimates and asymptotics for the
scattering data (as., bs.) and scattering solutions for the equation (1.1).



Theorem 2.4. Under the assumptions of Lemma 2.3 the following estimates
are valid

Bo(n(|lz—| + 1) + /n)

-] < o (219)
(a+1)(|211/_| r)(l —r+ |t\(% —r))
Pa(n(lz_| +7) ++/n)
ly-(O)] < = (2.20)
(a+1)(|2v\—}| —7) (1 —r+ |t|(|\7 r))
fort < 0. In addition
2nz ﬁ_{ Pa
ase(v-r 7)) < (bl -y 25l - )a(a i (a+1)(1+ 2 —r)>'
(2.21)
Banz (nz(Ja_| + 1) +2)
l(v_,x_,y_)| < 5 2.22
I -l a(a—l—l)(l—r)a(‘;—\;i‘—r) (2:22)
and
400
|ase(v_, 32) — / F(z_(v_,7) + z_)dr|
Amax(Bs, B5)2n2(n2(3|z_| +2r)+2), 1 5
ST e A

dmax(By, B5)*n} (nd (3Je_| +2r) +2)

|l(v_,x_,y_) —l(v_,$—,0)| (a+1)(|v2| T)3<1_T>2a+2

x(ﬁ +1)% (2.24)

22

In addition when
8n max(5}, 5)

04(M — 7’) (1 —r)atl

22

1, (2.25)



then

8Bam|x_|
[h(v-,z-)] < alat Do P’ (2.26)
2n282(n2(2)z_| +r) + 3)
|l2(’l}_,l‘_, y—)| < aQ(a N 1)2(1 _ T)QO‘(% _ T)4’ (227)
271%52
ly+ ()] < oo+ 1)(|;j_§| —r)2(l—r+ \x_\/sl +t(;—? —r))e
<1+ 2nfa(n2(2|x_| +1r) + 3) ). (2.98)

ala+ 1) (B —r)2(1 = r)e
fort > 0.

A proof of Theorem 2.4 is given in Section 6. We now prove Theorem 1.1
combining Theorem 2.4, Lemma 2.2 and estimate (2.4).

2.3 Proof of Theorem 1.1

Let (v_,z_) € R" x R", v_-2z_ =0 and |v_| > p. We first prove estimates
(2.32) and (2.34) given below. We use the following estimate (2.29)
o o+ (L= ) (o, 7| > o+ 70| — o (0_,7) — o_|

— T| 2 — + |T|—, .
ToV2 o v2 ap [T 23

|z
V2
for n € (0,1) and 7 € R (we used (2.4) and (2.2)). Then from (1.3), (1.4),
(2.29) and (2.4) it follows that

nBlz(v_,7) = 70|
FPlz_(v_,7)4+2x_) — F°(tvo_+2x_)| < sup
B s 0 1 N TN (et BN e

23n 356! 7]
alo|(1+ 5 [r|Egyoss

IA

(2.30)

for 7 € R. Similarly

2302 |7| B8
afv_|(1 + % + ITI';’—g')O‘+2

|F (z_(v_,7) +2_) — F'(rv_ +2_)| < (2.31)

for 7 € R. Then using (2.30) and (2.31) we have

y/+°° Fz_(v_,7) +x_)d7—/+oo FPlro_ +x_)dr]

[e o] e}
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_ 280’ max(fy, 8)6] / [7ldr _ 270’ max(Bz, 55)5]
STl e TR e B S b P B
(2.32)
Set
0 o +o00 400
:/ / Fs(z_(v_,7)+x_)d7'dcr—/ / F*(2_(v_,7)+a_)drdo.
—o0 J —o0 0 g
(2.33)

Then using (2.30) we have

+oo +oo
’Al (v_,x / / FS 7”U +x_ decr+/ / FS 7”U +x dea}

_ 22 / / \7|drdo _ 25 Bl

Calu | (1+ |+ |U—|‘7-|>oz+3 a2(a+1)|v,|3(1+%)a'
(2.34)

Let r >0, r < max(;’—gl, 1). Note that
e (Lo, S B Al v) g 1
r 7Oz(M—r)Q(l—r)oﬁLl T ar(BE - py (1 = p)et2 kol _¢77

23 23 22

(2.35)
where p and A are defined by (2.10) and (2.11) respectively. Assume that
lv_| > so(|x_|,r, B, a) where sq is the root of the equation (1.12). Then from
(1.12) and Lemma 2.2 it follows that A has a unique fixed point in M, denoted
by y_. Then adding (2.23) and (2.32) we obtain (1.16). Note also that

l(v_,x_,0) = /_ /_U (F'(2—(v_,7) +2_) — F'(2_(v_,7))) drdo
+A(v_, ).

Hence adding (2.34), (2.27) and (2.24) we obtain (1.17). Theorem 1.1 is
proved. O

2.4 Motivations for changing the definition of the scat-
tering map

For a solution = at a nonzero energy for equation (1.1) we say that it is a

scattering solution when there exists ¢ > 0 so that 1+|x(t)| > e(1+]¢|) for t €

R (see [1]). In the Introduction and in the previous subsections we choose to
parametrize the scattering solutions of equation (1.1) by the solutions z4 (v, .)
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of the equation (1.6) (see the asymptotic behaviors (1.7) and (1.8)), and then
to formulate the inverse scattering problem (1.11) using this parametrization.
To compute the ”free” solutions z4 (v, .) one has to integrate equation (1.6).
For some cases solving (1.6) leads to simple exact formulas (see [8, Section 15]
when F! is a Coulombian force). In general one may choose to approximate
the solutions zy(v,.) by the functions zy ny1(v,.) defined below. In general
the functions zy n41(v,.) are easier to compute, and in this Subsection we use
these approximations to obtain an other formulation of the inverse scattering
problem and to mention results similar to Theorem 1.1 and to those given in
the previous subsections.

Assume without loss of generality that o ¢ {= | m € N, m > 0} and
set N = |a~!] the integer part of a~!. Then let (z,v,w,h) € (R")* so that
v-x =0 and (2.1) and (2.2) are satisfied. We define by induction (see also

[6])
z2eo(w, x4+ h,t) =2 + h+ tw, (2.36)

t o
2o mer(w, x4+ h,t) =x 4+ h+tw+ / / F'(z_p(w, o + h,7))dr, (2.37)

t +o0
Zemu(w,x+ ht) =z +h+tw— / / F'zy m(w, o + h,7))dT,(2.38)

for t € R and for m = 0...N. Then one can prove the following estimates
by induction (see the proof of Lemma 2.1 and see also [6])

|2 m(w, 24-h, t) —wt—z—h| < it teR, m=1...N+1,

(2.39)
23(m+1)nm+% (ﬁl )mﬁl
m ) +h'7t - m 9 _'_hut < 2 L
el 2 0 = Zen 02 0O S G T (1 )
|z| [v[\1-m+1)a || (m+1)a
((1+7—|h|+|t| - (1+ﬁ—|h|) ) (2.40)

form=0...N —1 and for =t > 0,
23(N+1)nN+%<ﬁl)Nﬁi

|Zi,N+1(w,$+h,t)—2’i,N(wa$+hat)| a—1"
aN+1|,U|2N+2HN j|1—ja|(1+ J=| |h|) (N+1)a—1

(2 41)
for &t > 0, and

() W
oty [2mt1(] + % — |h|)mtDa
(2.42)

|24 mi1(w, z+h,t) — 24 p(w, x4+ h,t)| <
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for t € R and for m = 1...N. We set zp ,(v,.) 1= 24 ,,(v,0,.) for m =
1...N+1and |v] > p. For (v_,z_) € R" x R", |[v_| > p, there exists a
unique solution z(t) of equation (1.1) so that

2(t) = o+ 2 (vt) +y-(2), € R and T (y-(0)|+ i () = 0.
(2.43)

In addition when the solution x in (2.43) is a scattering solution then there
exists a unique (vy,z,) € R" X R |vy| = |v_| so that

o(t) = x4 + 24 N+1(vg, 1) +y4(8), t € R and tl}+moo(\y+(t)| + 9+ ()]) = 0.
(2.44)
In that case we define the scattering data (ay(v_,z_),by(v_,2z_)) := (vy,z4),
and we consider the inverse scattering problem

Given (ay,by) and given the long range tail F' of the force F, find F*.
(2.45)
The function y_ in (2.43) satisfies the following integral equation y_ =
An(y-) where

0= [ [ (Fe sl ta 500 = Fe (o7 )ardo

(2.46)
for t € R and for f € C(R,R"), sup_. g |f| < co. Then with appropriate
changes in the proof of Lemma 2.2 we can study the operator Ay restricted
to M, and we can obtain estimate and contraction estimate similar to (2.10)
and (2.11). We also obtain the analog of Lemma 2.3 by appropriate change
in its proof, and the decomposition (2.12) remains valid by replacing a, b and
z_(v_,7)+x_+y_(7) by ay, by and z_ 1 (v_,7) + 2_ +y_(7) in (2.12)-
(2.18), and by replacing z; and F'(z_(v_, 7)) by z; n41 and F'(z_ y(v_,T))
in (2.12) and (2.16), and by replacing z; by z; y in (2.15), (2.17) and
(2.18). An analog of Theorem 2.4 can be proved for the scattering solu-
tions and scattering data (ax,by). Set ase n(v—,2_) := ay(v_,z_) —v_ and
bsen(v—,2_) := by(v_,2_) — x_. Finally the following high energies limits
are valid. Let (6, z) € TS"!, then

lim sa.n(s0,2) = PF 0,7)+ PF*(0,2)(2.47)

s—+400

lim 529.(bsc,N@e,x)—WN(se,x)) — _PV(8,2), (2.48)

s$—+00
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where
Wy(v,x) = / /J (F'(z-n(v,7) + ) — F'(2_ n(v,7)))drdo (2.49)

_/0 OO/ ) (F'(zs n(an(v,2),7) + ) — F'(2¢ n(an(v, 2),7)))dodr,

for (v,z) € R" x R*, v-2 = 0 and |v| > C for some constant C. The
vector Wy defined by (2.49) is known from the scattering data and from F.
For the Problem (2.45), from (2.47) (resp. (2.48)) and inversion formulas for
the X-ray transform for n > 2 (see [12, 4, 9, 10]) it follows that F** can be
reconstructed from ay. n (resp. bse n).

The limits (2.47) and (2.48) follow from estimates similar to (1.16) and
(1.17) that also give the Born approximation of a,. n, bsn at fixed energy.
However these similar estimates also do not provide the asymptotics of the
scattering data (ascn,bsey) When the parameters o, n, v_ and f are fixed
and |r_| — +4o00. Motivated by this disadvantage, in the next section we
modify the definition of the scattering map given in the Introduction so that
one can obtain a result on this asymptotic regime.

3 A modified scattering map

3.1 Changing the parametrization of the scattering so-
lutions

We set

5 «(4 A
p(o) == \/2 Z(HIHZF(%;EQ), for o > 0. (3.1)

Under conditions (1.3) and (1.4), the following is valid: for any (v_,z_) €
R™\{0} x R™ so that |v_| > u(|z_|) and v_ - z_ = 0, then the equation (1.1)
has a unique solution z € C?(R, R") such that

z(t) = z_(v_,x_,t) + y_(t), (3.2)

where |y_(¢)| + |y_(t)| — 0, as t — —o0, and where z_(v_,x_,.) is defined
in Lemma 2.1 (for " (w, z,v,h) = (v_,x_,v_,0)").

In addition the function y_ in (3.2) satisfies the integral equation y_ =
A(y_) where

AP ®) :/_; /_Oo (Fle—(omsa_ir) + (7)) = F'(_ (v, 2 7)) )drdo
(3.3)

14



fort € Rand for f € C(R,R"), sup_., ¢ | f| < 0o. Under conditions (1.3) and
(1.4) we have A(f) € C*(R,R") for f € C(R,R") so that sup_., o [f| < .
We study the map A defined by (3.3) on the metric space M, defined by
(2.9). Set

+oo

k(v_,z_, f) = v_ +/ F(z_(v_,z_,7) + f(7))dr, (3.4)

[e.e]

for f € M,. For the rest of the section we set 35 = max(85, 33).
The following Lemma 3.1 is the analog of Lemma 2.2.

Lemma 3.1. Let (v_,z_) € R*" xR", v_-xz_ =0, |v_| > p(|lz_]), and let
r>0,r< max('”‘l 1+ %) Then the following estimates are valid:

2_%7
AT < pln, o, Bo, ||, [o-],7) (3.5)
2Bonz (n2r + 1)

1 2
(L —T)(l—r+%)a<(a+1)(1—r+%) +a(|;’—§|—r))’

[ACA) = Al < Mn, o, Ba, B3, |-, [v-], )| fr = foll, (3.6)

and

NI

~ 2
|k5(’l}_,l‘_, )—U_| < [o_]| - T
(2\/5 - T)(l T

for (f, f1, f) € M2, where \ is defined in (2.11).

B B2
—r)a<3+ (a+1)(1+%—r))’

=
(3.7)

Proof of Lemma 3.1 is given in Section 5.
Let (v_,z_) € R"xR™ v_-x_ = 0, and let r € (0, max (%—1—@, 2*3\1),\)).

Assume that
20 max(8, )

v_ 2 z_ a —
alsn =) G+ —7)

Then using Lemma 2.1 and (3.7) one can consider the free solution 2z, (k(v_, z_,
f),z_,.) (for ”(w,v,z,h) = (k(v_,z_, f),v_,z_,0)”) for f € M,. In addi-
tion, with appropriate changes in the proof of Lemma 2.3 one can prove that
when y_ € M, is a fixed point of the operator A then z_(v_,z_,.)+y_(.)is
a scattering solution of (1.1) (in the sense given in Section 2.4), and one can

prove that the following decomposition is valid

2o (v o, ) 4y—(t) = ze(a(v_, a), m_+h, )+ (Gy_ o (h)—h)+H (v_, :L(, y,,) h)(t),
3.9
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for t > 0, where
+oo
a(v_,x_) = wv_ +/ F(z_(v_,z_,7) +y_(1))dr. (3.10)

Go (h) = v,z y) — / N / T (F (e (o2 7) + 9 (1)

a(v_,z_),x_ + h,7))) drdo, (3.11)

—Fl z+
l(v_,z_,y.) = / / (v, ao,7) +y (7)) = F' (2~ (v_,2_,7))) drdo

_/Om /m F*(e_(v_y2_,7) + y_(r))drdo (3.12)
and
+o0 +oo
H(v_,z_,y_,h)( / (v, aT)JF?/—(T))
—F( z+(a(v T ) z_+h,7)))drdo, (3.13)

for ¢ > 0 and for |h| < 1+ ﬁ We need the following Lemma.

Lemma 3.2. Let (v_,z_) e R"XR", v_-xz_=0andletr >0, r < %+|z_§|

Under conditions (1.3), (1.4) and (3.8), when y_ € M, is a fixed point of the
operator A then the following estimates are valid:

Ba(6(nr + v/m) +n(1 + 24))

Go_w_(R)| < . - — (3.14)
2a(a+1)(‘2\[‘ ) ( +‘2\—f‘—r)
||
< - 1
< NG (3.15)
, 16n8lh — I b= 1|
gvf T_ h _gv, T h S P S 5 3.16
o) = G ) < S e e S g B19

for (b 1) € R* x R, || < || < &+ 2.
Lemma 3.2 is proved in Section 7.

Under the assumptions of Lemma 3.2 the map gvﬂw is a E—COHtIaCtIOIl

map from B(0,  + E—g') to B(0,  + %) We denote by by(v_, z_) its unique
2 2

fixed point in B(0, 1 + E—;), and we set b(v_,z_) := x_ + by(v_,z_) and

asc(v_,x_) :=a(v_,z_) —v_. The decomposition (3.9) becomes

Z— (1)_, )+y ()_Z-i—( ('U T— ) E('U_,l‘_),t)+y+(t), (317)
y+(t) = H(Uﬂxﬂyﬂbsc(vﬂwf))(t)y (3.18)
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for t > 0. The map (as., lN)SC) are our modified scattering data. The inverse
scattering problem for equation (1.1) can now be formulated as follows

Given (dse, bse) and F', find F*. (3.19)

3.2 Estimates and asymptotics of the modified scat-
tering data

Let (v_,z_) € R* xR", v_-2_ =0andlet r >0, r < 3+ 22l o that
condition (3.8) is fullfilled. Then set

22

W(v_,z_) ::/ Fl(z_(v_,x_,T))d7'+/0 OoFl(,7:+( (v_,x_),x_,T))dT.

- (3.20)
Note that W is known from the modified scattering data and from F!. We
obtain the following analog of Theorem 2.4.

Theorem 3.3. Under the assumptions of Lemma 3.2 and under conditions
(1.3), (1.4) and (3.8), the following estimates are valid:

i) < falor + /) =1 (321)
(a—l—l)(l;i;_l )<1+|ff‘—r+|t\(|v‘ r))
Ba (nr + v/n)
) < : - (3:22)
ala+ 1)(;‘2‘ —7) (1 + |ff| r+ |t|(|v—‘ - r))
fort <0; and
~ 6\/731’I1&X<5{,62)
IO pe— P (3.23)
(B -+ 7)
bec(v_, 2 )] < |46|z(nr + /1) . (3.24)
a(a—i—l)(;—\;——r) (3 +;7—r)
2B2/n
‘y+<t>|§ (O{—l—l)(‘—%‘— ) ( +‘2”‘;/_‘—r+t(%—r))a’ (325>
fort > 0. In addition
~ +oo
lasc(v_,z_) — W (v_,z_) — / Fé(z_(v_,z_,1))dT]|
iy B0l VD)2

ala+ 1)(|v—| r)2(1 — 7+ %)20&-{-1
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. i 10n(nr + /i) max(B, 53)2(3 + = —)°
|b86(v_’ x_) - l(v_’ e O)| = Jv—| 3 || = 2a
a2(a+1)(57m —1) (1+55 —7)
(3.27)

Theorem 3.3 is proved in Section 7. .
For (0,3, r, &) € (0,400)% x (0,1], r < 5 + 2%, and let 59 = 3¢(o, 7, 3, &)
2
be defined as the root of the equation

123
= — bn ——(1+ =) 5 > 2% (3.28)
arip —nG-r+gt o

Then the high energies asymptotics of the modified scattering data (s, bs.)
are given in the following Theorem 3.4.

Theorem 3.4. Let (0,x) € TS" . Under conditions (1.3) and (1.4) the
following limits are valid:

hT $(Gse(s0, ) — W (s0,2)) = PF*(0,z), (3.29)
S—r+00

lim 526 - by (s6, z) = —PV*(0, x), (3.30)
s——+00

In addition,

—+00

120267 (3 + —2—)”

27 s r

(50, 2) WV (58, )

— 00

F*(rst+z)dr| < ,
afa+1)(273s — r)2(1 — r + 2yt

(3.31)
5 0 o +00 +o00
}bsc(se, x) — / / F*(1s0 + x)drdo + / / Fé(rsh + x)decr’
0 o

24n?F(3+ ——)°

?(a+1)(272s —r)3(1 —r + 17y

(3.32)

forr € (0, % + %) and for s > 3o(|x|,r, B, ), where § = max(ﬁ{, Ba, 53).

Formulas (3.29) and (3.30) prove that [ can be reconstructed from the
high energies asymptotics of the modified scattering data. For Problem (3.19)
this implies that F*® can be reconstructed from a,. and Z;SC.

Estimates (3.31) and (3.32) also provide the Born approximation of the
modified scattering data at fixed energy, i.e. the leading term of the asymp-
totics of dge, bse, when the parameters a, n, s, 0 and = are fixed and S
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decreases to 0. We obtain that F'* can be reconstructed from the Born ap-
proximation of the modified scattering data at fixed energy.

Estimates (3.31) and (3.32) also provide the first leading term in the
asymptotics of the modified scattering data when the parameters «, n, s, 0
and [ are fixed and |z| increases to +o0.

Proof of Theorem 8.4. Let (v_,z_) € R"xR", v_-z_ = 0and |v_| > u(|z_|).
Similarly to estimate (2.29) we have

n(z—+ 7o)+ (1 =n)z (v, 2, 7)| > (3.33)
\/_
for n € (0,1) and 7 € R. Using (3.33), (1.4) and (2.4), we obtain
+o0
'/ (F*(2—(v_y2_, 7)) — F*(Tv_ + 2_))dr
233 Heo
- 6163;: / |z—| |T| Jo_]| a+3d7'
a|v_|(1+ﬁ)“ - (1+ + 755 )
4 % L 2s
< 25,5 (3.34)

afa + 1)(Eh)3(1 4 )2t

and

/ / |F* (2 (v, 2, 7)) = F*(Tv- + 2 )| drdo

227126153 / / | (335>
afo_|(1 + =)o (1+ B 4 |yl

The same estimate (3.35) holds for fo [ |F*(z- (v, 2, 7)) = F*(Tv_ + 2_)| drdo.
Therefore from the definition (3.12) it follows that

5 0 o +00 +00
’l(v_,x_,O) —/ / FS(Tv_+:E_)dT+/ / FS(TU_+1‘_)deU’dO
—o0 J —0o0o 0 g

4n’ Bl B3

lo_| Ee (3.36)
o2(a + 1)(2\}) (1+ 7)
Let r >0, r < max('”:l T+ %) Note that
- 128n(1+ =—)"
e (P, 2o )
) v_ 2 T_ a) — v 2 |\’
r a(%—r) (%+|2—%‘—r) ar(%—r)(%—r—kg—%‘)
(3.37)
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where p and A are defined in (3.5) and (2.11) respectively. Assume that
lv_| > So(|x—|,r, B, a) where §y is the root of the equation (3.28). Then from
(3.28) and Lemma 3.1 it follows that A has a unique fixed point denoted by
y_ in M,. Then adding (3.26) and (3.34) we obtain (3.31). And adding (3.36)
and (3.27) we obtain (3.32). Theorem 3.4 is proved. O

3.3 Approximating the “free” solutions z. (v, z,.)

One may approximate the solutions z4 (v, x,.) by the functions z4 y11(v,x,.)
defined in Section 2.4 that are easier to compute in general. Then we can
repeat the study of the previous Subsections. For (v_,z_) € R"xR", v_-x_ =
0, [v_| > u(|x_]), there exists a unique solution z(t) of equation (1.1) so that

2(t) = 2w (v 2o 1)+ y(£), £ € R and lim (Jy(5)] + [3-(1)]) = 0.

(3.38)
The function y_ in (3.38) satisfies the following integral equation y_ =
Apn(y—) where

An(f)(t) = /_ ; /_ ; (F(z_,NH(v_,a;_,TH f(T))—Fl(z_,N(v_,a;_,ﬂ))dma

(3.39)
for t € R and for f € C(R,R"), sup_q g |[f| < oo. Then with appropri-
ate changes in the proof of Lemma 3.1 we can study the operator Ay re-
stricted to M, and we can obtain estimate and contraction estimate similar
to (3.5) and (3.6). The decomposition (3.9) remains valid with the follow-
ing changes: first we define ay by the formula (3.10) where we replaced
z_(v_,x_,7) by 2_ yy1(v_,x_, 7); then we replace a and z_(v_,z_, 7)+y_(7)
by an and z_ yi1(v_,z_,7) + y_(7) in (3.9), (3.11)-(3.13), and we replace
zp and F'(z_(v_,z_,7)) by z4y N1 and F'(z_ ny(v_,2z_,7)) in (3.9) and
(3.12), and we replace z; by z; x in (3.11), (3.13). This defines a new map
Gy_ . and the analog of Lemma 3.2 can be proved. Such a result then al-
lows to define the scattering data by. Then an analog of the Theorem 3.3
can be proved for the scattering solutions and scattering data (ay, EN) Set
Gsen(V_,z_) = an(v_,x_)—v_ and by y(v_, z_) := by(v_, z_)—z_. Finally
the following high energies limits are valid. Let (6, z) € TS"!, then

ligrn $(lsen (50, 1) — W (s0,2)) = PF*(0, ), (3.40)
S—r—+00

ligrn 520 - by N (50, ) = —PV?*(0, ), (3.41)
S—r+00

20



where

0 —+0c0
W (v, z) ::/ Fl(z_vN(v,x,T))dTJr/O F'(zy y(an(v,z), 2, 7))dT.

- (3.42)
for (v,r) € R* x R", v-x = 0, |v] > C for some constant C. The vector
Wy defined by (3.42) is known from the scattering data and from F'. From
(3.40) (resp. (3.41)) it follows that F** can be reconstructed from a,.n (resp.

bsc,N)-

The limits (3.40) and (3.41) follow from estimates similar to (3.31) and
(3.32) that also give the Born approximation of .y, ZN)SC,N at fixed en-
ergy, and the first leading term of the asymptotics of the scattering data
(Gse.ns ESCJ\[) when the parameters a, n, v_ and § are fixed and |z_| — +o0.

4 Proof of Lemmas 2.1 and 2.3

Proof of Lemma 2.1. We prove the existence and uniqueness of the solution
z, (similarly one can prove the existence and uniqueness of z_ or just use

the relation “z_(w,z + h,1) = 2¢.(~w,z + h, —7). Set ¢ = — I(ﬁnwl\hn

Let V be the complete metric space defined by
V:={ge C(R,R") | |g(t)] < C'|t| for t € R},

endowed with the following norm |[[g|ly := sup;eg (o) ’@} We consider the
integral equation

Gif(t) //+00le+h+7'w+f( ))drdo, t € R, (4.1)

for f € V. First note that

2+ h+ 1w+ f(7)] 2 |2+ 7o = [h] = |7]]v —w| = [f(7)]
&l 3] Kl

el ey oL
T3l (G = Ol = = lhl S 1.2

for 7 € Rand f € V (we used that z-v = 0 and that ¢’ < 4|\v/|—) Using (1.3)
we obtain that

e NP [ e ,
\G+f(t)\§\/ﬁﬁl/_lt/ (1T =Wl 5 )™ drdo < O], (1.3
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for t € R and f € V. Now let (f1, fo) € V2. Then using (1.3) we have
|

|Fl (2 + b+ Tw+ fi(7) = F(z + h+ 1w+ fo7))| < | fr = fol(7)

x s?p)(1+|x+h+7w+(€f1+(1—E)fz)( 3] I
e€(0,1

for 7 € R. Hence using also (4.2) we have

|T|dTdo

“+oo
Gy fi(t) — Gy fo(t)] < nBY|f1 — f2”V/t|/ 14 Irl

v a+2
— |hl+ 35%I71)

2v2n83| fr — follv e drdo
: /t|/ 1+ |$|

|v] — |hl + %

16n85 |t f1 — f2Hv

9-1
P+ B e =2 T A

fort € R (we used (2.2)). From (4.3) and (4.4) it follows that the operator G,
is a contraction map from V to V. Set 24 (w,z+h,t) = x+h+tw+ f, 240 (t)
for t € R, where f, ,1, denotes the unique fixed point of G in V. Then
zy(w,z + h,.) satisfies (1.6), (2.3) and (2.4). O

Before proving Lemma 2.3 we recall the following standard result (see
also [6, Lemma II.2]). For sake of consistency we provide a proof of Lemma
4.1 at the end of this Section.

Lemma 4.1. Let z(t) be a solution of equation (1.1) and let z(t) be a solution
of equation (1.6). Assume that there ezists a vector v € R", v # 0, so that

tl}inoo 2(t) = t£+moo (t) = v. (4.5)
Then
sup |r — z| < o0. (4.6)
(0,4-00)

Proof of Lemma 2.3. We need the following preliminary estimate (4.8). Us-
ing (2.9) we have for 7 € R and f € M,,

lf ()] < rlr| + 7. (4.7)

Hence

Y

|z (v 7) + 2+ f(7)] [z +71v| = |z (v 1) = 7| = | f(7)]

5 1
|| _r+|7|(|”—| _ 2nEf _r)
V2 V2 ol

|x—\/§‘—7“+|7'|<%—7‘)- (4.8)

v

v
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We used (2.4) (with ” (z, w, v, h) = (0,v_,v_,0)”), the inequality |z_+7v_| >
‘x—\/*i‘ + |7’|% (z— -v_ = 0) and (4.7) and we used the condition |v_| > pu.
Hence the integral fj;o F(z_(v_,7)4+x_ + f(7))dr is absolutely convergent
for any f € M,. And when y_ € M, is a fixed point for A then z_(v_,.) +
xr_ +y_ satisfies equation (1.1) (see (2.8)) and 2_(v_,t)+x_ +9y_(t) =v_ +
ffoo F(z_(v_,7)+z_~4y_(7))dr — a(v_,z_) as t — +o0, where a(v_,z_) is
defined in (2.13). Then from Lemma 4.1 it follows that sup;c g o) |2-(v—, )+
r+y (t) — zy(a(v_,z_),t)] < 4oo. Using this latter estimate and (1.3)
and (1.4), and using (4.8) we obtain that the integrals on the right hand
sides of (2.15) and (2.18) are absolutely convergent. Then the decomposition
(2.12) follows from the equality A(y_) = y_ and (2.8) and straightforward
computations. O

Proof of Lemma 4.1. We set 6(t) = x(t) — z(t) for t > 0. Property (4.5)
shows that there exists € > 0 so that
1+ nz(t) + (1 —n)z(t)] > e(l+1t), for t >0 and n € [0, 1]. (4.9)

Then from equations (1.1) and (1.6) it follows that

- /0 t / " P () drdo — /0 t / " (Fla(r)) — FUa(r)))drdo,

(4.10)
for t > 0, where the integrals on the right hand side of (4.10) are absolutely
convergent (see (4.9) and (1.3) and (1.4)). Note that

//+OO\FS drdo < v/ //+OO drdo V1B

1+ 7)ot = afa+ 1)ext?’
(4.11)

for t > 0. Hence using (4.10) we obtain

+oo
)] < Co +/ / |F* (o F'(2(7))|drdo, for t >0, (4.12)

where Cy = |6(0)] + -2

a(at1)za2
One may assume without loss of generality that o # % for any m € N.
Otherwise replace o by some o/ € (0,a) so that o/ # = for any m’ € N.
Then

[ [ (P + e < avaset [ 740

2y/npi

< W(l+t)l_“, (4.13)
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for t > 0. Using also (4.12) we obtain that there exist positive constants C}
and C so that |§(t)| < Cy + Cjt'~« for t > 0. Now using (4.12), the growth
properties of F' (1.3) and (4.9) we obtain

oo nBola(r) — =(r)|
ol = 00*/ / S 1+|7793( >+<1—n>z<7>|>a+2d7d"

“+oo
< Co+nphe " / / a+2drda, (4.14)

for ¢ > 0. Then using (4.14) we prove by induction the following: For any
m = 1...|a"!] there exist positive constants C,, and C/, so that |5(¢)] <
Cp+C! t'7=™ for t > 0. Combining again this latter estimate for m = [a™?]
and the estimate (4.14) we obtain

“+o0o ! 1—mao
0(t)] < Co+nbae® // Com +C drdo

oz+2
n62 Cm C1/nn62

< C
= Gt ala+ 1)got? * (m+ Da((m+1)a —1)eot?’

fort >0 ((m+ 1)a — 1 > 0), which proves the lemma. O

5 Proof of Lemmas 2.2 and 3.1

Proof of Lemma 2.2. We first prove (2.10). We need the following estimates
for A(f)(t) (5.5) and (5.11). Using (1.3), (1.4) and (4.8) we obtain

Bav/nt

Fé(z_(v_,7)+ax_+ f(7))| < at2’
(o) ) 1+ —r+ 7l - )

(5.1)

and

Banlle | + 150
(1 —r+ |7'|(|v 7“))OHr2
(5.2)

P (om,7) + 2 + f(7) = F'(= (v, 7))] <

for 7 € R. In addition from (2.8) it follows that

A()(t) = / (F<z,<v,,7)+x,+ f(T))—Fl(z,(v,,T)))dT, TER. (5.3)

—00
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Therefore combining (5.1), (5.2) (with |f(7)] < sup_.) |f| for 7 < 0) and
(5.3) we obtain

Vit (e |+ 110D

AN < B D
A0 ST )
< (n(lx |+sup ey [F1) + V) e
03— 1+ )
for t < 0. Then integrating over (—oo,t) we obtain
AP < Ba(n(|z—| + sup_o gy I f]) + /) (5.5)

afat DA =) (1=r+ i )"

for t <0.
Now let ¢t > 0. Using (5.3) we have

AN = A(H(0)+ /(Fl( (o, )+ o+ (1) = Fl(z—(v_,7)))dr
+/0th (. 7) +a + f(r)dr (5.6)

Hence from

5.4) (with "t = 07), (5.1) and (5.2) (with |f(7)] < (1 +
)supsE(OJroo) " | for 7 > 0) it follows that
Ba(n(jz—| +sup_oo ) |f]) + /1)
v_ a+1

(a+ 1G5 -r)(1-7)

t 3 +nfz | +n(l + 7) SUDge (0 400) Tis
+52/ at2 =d

0 (1 T+‘T|(‘U_ r))

_ BCnle 40l +2vn) | 18250 100) "fiz‘

A @) <

= T (BT
<a+1)(%—r)(1 r>a+ (=) -
We also have
AN = AFO) +A)®)
// Fl(e—(v-7) + 2ot [(7) = (e (v, 7) ) drdo
/O/Fs (v_,7) + 2_ + f(7))drdo (5.8)
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Using (5.1) and (5.2) we obtain

FS )+ x_+ f(1))drdo| < — Bay/n — _

a(a+1)(2\—f—r) (1+T;_T>
(5.9)
Fl (v-,7) + 2 + f(7)) = F'(2-(v_,7)))drdo
< t/ ’Fl )+ + f(r) — Fl( ’dT
0
= (nﬁQ Supse(o,m)‘{(—ﬂ 1B (|| + 5UPse (0,40 ‘{(fi‘) (5.10)
= a(l;\/_\ )2<1 —r)e (o + 1)(\11/_\ _7,)<1 — et . .

Combining (5.8), (5.5) (with 7t = 0”), (5.7), (5.9) and (5.10) we obtain
Bo(n(|—| + Sup_sc) |f1) + 24/)
ala+1)(Ih - (1-7)"
(3nla_| +2nllf]| +2y7) | 205Up,egsa) T
(a+1)(d—n)(1- 7«)&“ a(yz —r) (-

[AN®)] <

+t62< ).(5.11)

Then (2.10) follows from (5.5) and (5.11) and the estimate || f]| < 7.
It remains to prove (2.11). Estimate (2.11) will follow from (5.16) and
(5.24) given below. Let (f1, f2) € M?2. Using (1.3), (1.4) and (4.8) we obtain

Ban| f1 — fo| (T)
Flz_(v_, 7)o 4 fi(1) = F'(2_(v_, T)+a_+fo(7))| < D
[F (2 (v-, 7) (7)) —F (- (v-, 7) (7))l (B ()
(5. 12)
Binlfi — fol(7)
(4 =t (- )™
(5.13)

|2 (2 (0, T) 241 (7)) = F (2= (v, T) -+ fo(7))| <

for 7 € R. In addition from (5.3) it follows that
A(f1)(t) = A(f2)(t)
_ /_ (F'(e_(v_,7) + 7+ fi(7) = Flo_(v_,7) + 7 + folr)))dr
+/ (FS(Z_(U_, o+ fi(r) = F*(e_(v_,7) + 2+ fQ(T)))dT. (5.14)
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Hence we integrate in the 7 variable over the interval (—oo,t), ¢ < 0, both
sides of (5.12) and (5.13) where we use the inequality | f1— f2[(7) < sup_o o) [f1—
f2], and we obtain

. o nsup_ ooo]|f1—f2| Do
Af)® — A0 < () (e 5 e () {M D
Ps
+(a+2)(1+f/§r+t<;\/§r>)]’ (5.15)

for ¢ < 0. Then we integrate in the t variable both sides of (5.15) and we
obtain

A0 - AR < R |2
(a—l—l)(%—r) (1+‘ff‘—7’+\t|<‘v‘ 7’))
B3
, 5.16
+(a+2)(1+f/§7’+t<;\/§7’>)] (>10)
for t <0.
From (5.6) it follows that
A(f)(t) = A(f2) (1) = A(f1)(0) — A(f2)(0) (5.17)
+/0 (F'(z—(v=,7) + 2+ f1(7)) = F' (e (v, 7) + 2— + fo(7)))dT
" / (F*(e- (v m) + o+ [i(7) = (= (v ,7) + 2+ fo(7)) ) dr.
We have
| / (F* (o) 42—+ 1) = F(e—(o_,7) + 2 + folr)))dr]

1+7

A
<nf; sup —=dT
5€[0,4-00) 1 + S 0 (14 Ir — 4 |7.‘ (Iv— r)) +

o B3 SWDsepo too) e 1 . 1
- v_ €T _ M_ v_ !
(eh=r )t oo [ ()

(5.18)
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and
}/ot <Fl(z_(v_’7) tao-+ fi(m) = Flz (v, 7) + o+ fz(T)))dT}

nﬁ? SupsE[O +00) w 1 + 1
- v T_ |z | v_ ’
(‘Q\f‘—'r*)(le‘—ﬁ‘—'r’)a <O‘+1)<1+W_T) a(éé—r)
(5.19)
Hence using also (5.15) (for “¢ = 0”) we obtain
i i n|lfi — fo B
A0 - AL < — prpmied et
(F—r)@—i-ﬁ—'r’)
+ &
(a+2)(1+%—7’>
nSUpSE[O +00) w 6.?? + @ (5 20)
v T_ lz—| _ ' '
(L—f—r) (1+%—r)0‘ (a+1)(1+\/§ r) o

Next we consider

A(f2)(t) = A(f1)(0) = A(f2)(0) + t(A(f1)(t) — A(f2)(t)) (5.21)
// (F'(a (o) + 2+ o)) = Fie (v, ) + 2 + (7)) )drdo

// (F*(e(omm) 2 4+ () = F*(o—(0-7) + 2 + fo(7)) ) drdo

Using (5.12) we obtain

I

Fé(z_(v_,7)+2_ + fi(1)) = F*(2—(v_,7) + 2_ + fo(T ’dea

N3 SUP efo o) L) L a ]
Cale+ )R- 0+ e (G ) (er2+RE -

(5.22)

(2 (v, 1)+ 2+ fo(7) = Fle_(v_,7) + 7+ fi(r ’deU

d
t
|
[(f1—f2)(s)] 1

nBQ SUDse0,+00) 1+s

R e

+1). (5.23)



Therefore using also (5.16) (with 7t = 07), (5.20) and (5.21), we have

() — Alf) ()] < nlif =~ ol B,

nBs; SUPs¢[0,400) i 1125)(8)‘

Oz(Oé —+ 1)(‘271;5‘ _ 7,)3<1 + \x_\/_§| - T)a

4 — ”||f1—|f2|| . (ofi 3 n B3 —
(ﬁ )(1—1—7_2—7*) (a+2)(1+w—7~)
[(f1—rf2)(s)]
nsup, o) T 5 2
” e 1 163 o ] +%
(v e
O
Proof of Lemma 3.1. We follow the proof of Lemma 2.2.
Estimate (4.7) for 7 € R, f € M, still holds and we have
o o 2%nig
z_(v_,x_,T)+ f(1)] > + ( —T)
|2-( )+ f(7)| 5 7] V2 o jal+ e
|| o]
> ——r+¢( _7«>, 5.25
=iy (5:25)

We used (2.4) (with ”(z,w,h) = (z_,v_,0)”) and the inequality |v_| >
p(|z—]). Then using (1.3), (1.4) and (5.25) we obtain

B/ (5.26)

1+ 5 —r+ (=)™

[F* (2 (v-, 2, 7) + (7)) <
and

IFl(z_ (v, 2, D)+ f(0)=F o (v, z_,7))| < Ban| f(7)|

(1+ |ff| r+ |T|(|v_ r))aJrQ

(5.27)
for 7 € R. Then the proof of the following estimates (5.28), (5.29), (5.30),
(5.31) is similar to the proof of the estimates (5.4), (5.5), (5.7) and (5.11)
respectively, and we have

B (nsup(_oo ) | f| +v/n)

(0‘“)(%—T)<1+%—r+lt|(——r)>a“’

JA(f) ()] < (5.28)

29

(a+1)<‘2v\‘[‘ r)2<1+%|—r)a @ <04+2)<1+

=)

(5.24)



6 (nsup —00,0) ‘f|+\/_)

MA@ < (520
ofo 1) (57 =) (14 57 - (7 )
fort <0
LA ()] Bo(nllf] +2v) 1 SUD e 4oy L
T -n (1 )T eGR - 0B e
; (5.30)
ort >0, and
) < — 2Py ) + 2V .
ala+1) (55 —r) (1 + 2l r)
+t52( (2n||f|| - 2\/_) 2n SUD e (0,4-00) |{fz| )
@Az ) elE - o

for t > 0. Estimate (3.5) follows from (5.29) and (5.31).
Let (f1, f2) € M?. Using (1.3), (1.4) and (5.25) we obtain

|[F (- (v, 2o, )+ fu(7)) = F (2 (0= 2o, 7) 4 fo(7))| <

Banlfi — fa|(T)

1+ 25 —r+ |7l (3
(5. 32)

Bin|fi — fa|(T)

=

[ (2 (v o, 7)+f1(7) = FP (2 (v, 2, )+ fo(T))| <

(5.33)
for 7 € R. Then similarly to the proof of (5.15) (resp. (5.16)) and (5.20)
(resp. (5.24)) we prove the following: A(f1)(t) — A(f2)(t) (resp. A(f1)(t) —
A(f2)(t)) for t <0 is bounded by the right-hand side of (5.15) (resp. (5.16));
A(f) () — A(f2)(t) (vesp. A(f1)(t) — A(f2)(t)) for t > 0 is bounded by the
right-hand side of (5.20) (resp. (5.24)). Then estimate (3.6) follows from these
latter bounds on A(f1)(t) — A(f2)(t), t € R.

It remains to prove (3.7). Let f € M,. Using (1.3) we obtain

pivn
(1+ 25— (] = 7))

[Fi (2 (v, oo, 7) + f(7))] < (5.34)
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for 7 € R. Then from (3.4), (5.26) and (5.34) it follows that

400 1
|]%(U—"'E—7 Jmv-l < / lz—| \/ﬁﬁldTv a+1
~o (L4+ 55 —r+17l(55 — 7))
+/+OO \/_BQdT
e

which proves (3.7). O

6 Proof of Theorem 2.4

The estimate (2.19) (resp. (2.20)) follows from the assumption y_ = A(y_),
and sup_, o) [y-| < 7 and the estimate (5.4) (resp. (5.5)). Using (1.4) and
(4.8) we obtain

Bivn

lZ_'U_T xX_ _\T
|F( ( s )+ +y())|§(1+?|_r+|7|(;i/§

(6.1)

=

for 7 € R. Using (2.13), (5.1) and (6.1) we obtain

+o00 1L
(v, 2 )| < / - fin:_ dr
—o (1+5 —r+ (2f r)|r[)ett

e 52712
+/_ (14 2] ‘—r+(ﬂ—r)|7|)a+2d7
o V2 V2

which proves (2.21).
Then using (2.16), (5.1) and (5.2) we have

Hv_,z_,y )] < 262n2/ / r+(;]—\/l—r)|7'|)a2d7'da
+ —o0
+52n/ / - | sup‘ o lv-| drdo

(1—r+( T)|T|)a+2
262n% Pan(lz—| +sup(_o 0 Y1)
a(a+1)(% —7) (1—|—‘x—\/‘§‘ - ala+ 1)(% —r) (1 —r)
Ba(nlz_| +2n2 + NSUP(_ oo 0) [Y-)
ala+1)(1— T)a(% - r)2
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This estimate with the estimate sup_. o) |[y-| < r proves (2.22). Now using
(2.13) and (5.20) we obtain that

o) = [P (om) +a)] = Jim (A0 - A)O)

00 t—+00

nlly-| B B3
) T el )

o) & + @] (6:2)
. T lz—| _ : -
(‘2\[‘—7’> (1+‘—\/§|—7’)0‘ (a+1)(1+\/§ r)y o

Then note that ||y_|| = ||A(y-)|| is bounded by the right hand side of (2.10).
Hence combining this latter bound on ||y_|| and (6.2) and the estimate 1 +
‘x—\/‘i‘ —r >1—r we obtain (2.23).

Using (2.16), (5.12) and (5.13) we obtain

x_,y_) —l(v_,z_,0)|

/ / }Fl )+ xo +y (7 ))—FZ(Z_(U_,T)+x_)}deU
+/ / }Fs(z_(v_,7)+x_+y_(7')) —Fs(z_(v_,T)er_)}drdg
+/0 OO/ oo|Fs(z_(v_,7')er_er_(T)) —FS(Z_(U_,T)+:L‘_)|deo'

IN

< (ﬁQSupse(—oo,O) |y,(8)| + 5§Hy ”
- v 2 T_ x
I E TS e tarans
63 SUDse(—o0,0) ‘yl_sz)‘
o] ) (6.3)
04(2\7 — T)

Then ||y_|| is bounded by the right hand side of (2.10), and combining this
latter bound on ||y_|| and (6.3) and the estimate 1 + ‘x—\/*i‘ —r>1—r we
obtain (2.24).

It remains to prove (2.26), (2.27) and (2.28). From (2.21) it follows that
4n2 max (6}, Bo)
(I;\_—F —7)(1 — 7)ot

In addition using (2.4) (for ”(w,v,z,h) = (a(v_,z_),a(v_,2_),0,0)”) and
the identity |a(v_,z_)| = |v_| that follows from the conservation of energy,

lauelv,a)] < (6.4)
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we have .
i,
alv_|
Then using (4.7) for ” f = y_” and using (6.4), (6.5) and (2.4) (for " (w, v, x,h) =

(v—,v_-,0,0)”) we obtain

[z +n(z- (v, 1) +y- (1) + (1 = n)z(a(v, z), 1)
> oo +to | = ly-(O] = [2- (v, 1) = v t] = |z4 (a(v-, 2-), ) = ta(v, z)|

—[tlase(v—, z-)|

|2y (a(v_,x_),t) —ta(v_,x_)| <

t|, t € R. (6.5)

| | 228l dmax(8l, By)nz

S, Ht'(ﬂ afv_] a(;;i_r)u_r)w)

o] o] 8max(Bl, By)n2 e | el
S N e

forn € (0,1) and ¢t € R (we used (2.25) and we used the estimate |z_ +tv_| >
o] 4] oo
vz A

_ =0). Similarly

v_
ne— + 24 (alo, 2_), 1) > 1=

From (2.17), (1.3) and (6.7) it follows that

|t], for (n,t) € (0,1) x R. (6.7)

+oo +o00o
v,z )] < Bon|z_ |/ / sup (1+ [nz_ + 2z (a(v_,z_),7)|)"* *drdo

n€(0,1)

—+00 +oo _9
< Bonlr |/ / | )" 2drdo,

which gives (2.26). Using (2.18), (1.3) and (6.6) we obtain
oo ey (v, T) — zy(a(v_,x_),7)|drdo
o < [ [ - y-(7) ~ 24(afo_z) 7)ldrds

T a+2
‘—f‘—r+|f| =)

(6.8)
Then using (2.12) and (2.14) we have

|z_(v_,7) +y—_(7) — 24 (a(v_, z_),T)|
< o,z + (o)l + (o 3y )| + s (7], (6.9)
for 7 € (0,400). Combining (6.8) and (6.9) we obtain

|l2(’l},7gj‘7, y)‘ < 8(,07737*7 0) (61())
X([la(voy z— y- )| + [lv—, 2,y )| + [l (v-, 2 )| + Sup. y+1),
;oo
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where

e(v_,z_,t) i= nps (6.11)

v_ 2 €T_ v_ o)
a@r DG~ + 5 (5 - )
for ¢ > 0. From (2.15) and (5. ) it follows that

lyr(t)] < n~ 252} - (6.12)

/+00/+00}Fl (voy7) + 2o +y_ (7)) — Fl(z4(alv_, x_),7))|drdo,
for t > 0. Then similarly to (6.10) we have
B G [ L O R O
Fll(v—,z )|+ sup [y4]), (6.13)

(t,400)

for ¢ > 0. From (6.10) and (6.13) it follows that

(I=e(v, 2, 0))[l2(v—, 2, y-)| < 6(v7,x7,0)(ll(vﬂx7,yf)\Hh(vf,:cf)H(Osup) Y1),
;00

(6.14)

and

(1—€<U,,1’,,t)) sup ‘er‘ §8(1},,x,,t)(n_%+|l2(v,,x,,y)|+|l(v,,x,,y,)|+|l1(v,,x,)|),

(t,+00)
(6.15)
for t > 0. Using (2.25) and (6.11) we have
sup e(v_,z_,t) =¢e(v_,z_,0) <8 (6.16)

te(0,+00)

Then multiplying (6.14) by (1 — e(v_,z_,0)) and using (6.15) for ¢t = 0 we
obtain
1

(1—2e(v_,2_,0)|la(v_,z_,y)| < e(v_,r_,0)*n"2 (6.17)
+e(uo, 2, 0)(Jl(v—, 2, y)| + [l (v-, 2-))).
Using (6.17) and (6.16) we have

o (v_, 2, y)] < 2e(v_, a—, 0)(n™Ze(v_, 2, 0) + [I(v_, 2, y)| + [l (v, 2_)]).
18)
16)

S O

x

(
Then (2.27) follows from (6.11) (for ¢ = 0), (2.22) and (5.20). Using (
and (6.15) we obtain

sup [y | < 2e(v,a, 0) (02 + (o, 2, y) [+ (oo, 2,y )|+l (oo, 20)]),
(t,+00)

(6.19)
for ¢ > 0. Then (2.28) follows from (2.27) (combined with (2.25)), (2.22),
(2.26) and (6.11). O
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7 Proof of Lemma 3.2 and Theorem 3.3

7.1 Preliminary lemmas

Lemma 7.1. Let (v,z,w,h) € (R")* and x € R™ so that v-x = 0. Under
the assumptions of Lemma 2.1 the following estimates are valid

|2y (w, x4+ ht) — 2z (w, e+ 1 1) < 2|h— K|, (7.1)

2w, 4 W) + (L= )z (w,a+ by t)] > A2

> % \h\+t|| (7.2)

2v2'
fort>0,n€(0,1) and b € R™, |[W/| < |h|.

Proof of Lemma 7.1. First we prove (7.2). We estimate nz, (w,x + b/, 1) +
(1—=n)zy(w,z+ h,t) forn € (0,1) and t > 0, and for (h,h') € B(0,1+ %—)2
so that |h'| < |h|. Using (2.4) we obtain

‘anr(er + h/7t) + (1 o n)er(er + h7 t)|
> fo+ to] — 0! + (1= )| — tlo — w] — |z (w, 0+ B, 2) — 2 — B — tul
—(1=n)|lzs(w,z + h,t) —x — h — tw|
30 in gl 252 ]
e e alol(1+ 2 — | )
wm< CE e Tafl(+ & - e
(7.3)

jot

zm—tht(
2

for t > 0. Estimate (7.2) follows from (7.3) and assumption (2.2).

Now we set §(t) := 2z, (w,x 4+ h,t) — 24 (w,x + h,t) for t > 0, where
|P’| < |h[. From Lemma 4.1 it follows that sup ;. 10| < oo. Then from
(1.6) with the boundary conditions (2.3) it follows that

/ / h (F' (24 (w, 24k, 7)) = F' (24 (w,z+h, 7)) )drdo, (7.4)

for t > 0, and using (1.3) and (7.2) we obtain

~ +°° | | —a—2
()| < |W — h|+npBy sup 5// +——h+ drdo,
5(6)| < |1~ bl + s sup 3 b+ 72 5)

(7.5)

for t > 0, which proves that

nfs - /
T o M S LR

8n B2 . >
a(atDof2 (1412 )" =
mate and (7.6) we obtain (7.1). O

Using (2.2) we have 1 — 5. Combining this latter esti-
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We also need the following lemma.

Lemma 7.2. Let (v_,z_) € R* xR", v_-2_ = 0 and let r > 0, r <
%+%, and let y_ € M,. Under the assumptions of Lemma 3.2 the following

estimates are valid

208 (nr + 34/n)
|2 (v— 2, ) +y—(t) =2z (a(v-, z-), 2, 1)| < 19@(04+1)(|v\—}|—r) (1+%_T) ;
(7.7)
n(z- (v, z )y (1) +(1—n)z (a(v_, z_ ),z )| > %_ Lt (f(7 g)

fort>0 andn € (0,1).

Proof of Lemma 7.2. Weset §(t) = z_(v_,z_,t)+y_(t)—z4(a(v_,z_),z_,1)
for ¢ > 0. From Lemma 4.1 it follows that sup g, [d] < co. Using (1.1) and
(1.6) we obtain

o0
/ / (F'(2—(v_,2_,7) +y—(1)) — F'(24(@(v_,2_),2_,7)))drdo
+l 'U_,{L‘_,y )+H1(1)_, LT, Y- )( ) (79)

for t > 0, where [ is defined by (3.12) and where

Hy(v_,x_ /M/MFS (v_,z_,7) +y_(7))drdo.  (7.10)

Then from (3.12), (5.26), (5.27) and the estimate |y_(7)| < r for 7 <0
we obtain

Dol + 2y/n) _ (7.11)
oo+ 1)Lk — ) (14 22— )

Using (7.10) and (5.26) we obtain

(v, z,y-)| <

62\/5 7.12
e = L

for t > 0. From (3.7) and the inequality r < £+ |$ and from (3.10) it follows
that

|H1(U_,{L‘_,y_)(t)| <

GﬁmaX(BDBQ)
a=l - —r+ ‘x—\/g)“

3
22

|ase(v, )] < (7.13)

36



Then from (3.8) it follows that |as.(v_,z_)| < 4\/5, and using (7.2) we obtain
lzy(a(v_,z_),z_ t)| > |z| 7ty |v| for t > 0. And using (2.4) we obtain

‘n('z*<v*7x*7t> +y- (t)) + (1 - 77) +(C~L<U,,SL’,),SL’,,1})|
> oo +to | — (1 —n)(Jzg(a(v_,z_), 2, t) — x_ — ta(v_, x_)| + t{as(v_, z_)])
(

—n|z- (v, x—,t) — - —v_t| = nly_(?)]
71
= |x_| -t |t|(|v_| N lv_| 6\/56 |z | a 22”26{x| _T)a
V2 V2 a(m—r)(l+ﬁ—r) a|v_|(1+ﬁ)a

for t > 0. Combining (7.14) and (3.8) we obtain (7.8).
From (7.9), (1.3) and (7.14) it follows that

|0(t)] < C(v_,z_,r)+nPy sup |5\/ /+OO +—— +7 (| | )) a_Zdrda,

(0,400) 2\/§
(7.15)
for t > 0, where
nr + 3yn ~
Ol v) = B IR s\l sup [Hi(om )
(O[+1)(2\[ ) (1‘|‘W—7") (0,400)

(7.16)
(see (7.11) and (7.12)). From (7.15) it follows that

11— nbs sup 0| < C(v_,x_,r). (7.17)
bl \2( o ] e
(()("‘1)(2\/— ) (14—%—7’) (0,400)
Using (3.8) we have 1 — nfs = > 22 and then estimate
atart) (57 -r) (1457 )
(7.7) follows from (7.17) and (7.16). Hence Lemma 7.2 is proved. O

7.2 Proof of Lemma 3.2
Let (h, ') € B(0, 1 + %), |h'| < |h|. Using (7.1) and (7.8) we have

S L ) YT e R e 5

2v/2



fort > 0 and n € (0,1). Using (7.1) and (7.7) we obtain

20 3
o (e 4y (D=2 o2, 1) < G+ 3vn)
Wala+1) (575 —r) 1+ 55

(7.19)
Combining (7.11), (3.11), (1.3), (7.18) and (7.19) we have
2
|gvi7$7(h)| SQI(TLT +2 \/ﬁ) = -
a(a+1)(m—r) (1+W—T)
2082 (nr+3+y/n) + Q‘h‘

+o0 oo 19a(a+1 \v \ T)2(1+\zf_\ T)a
+n52/ / V3 T+T(‘U_‘ r))a+2 drdo

2v2
Ba(3(nr +\/_)+2|h|n)
O‘<O‘+1)(I2W—r)2(l+%—r)

(7.20)

GOnﬂg

19a(a+1)(‘;\/—‘ 7") (122l S

(7.20) and the estimate |h| < 3+ |$\[| we obtain (3.14). Using again (3.8) and

(3.14) and the estimate r < 1 + |§ | we obtain (3.15).
Then using (3.11), (1.3), (7.2) and (7.1) we have

(we used (3.8) which implies

< 1). Then using

+o0 +o0
Go o (B) = Gu o (W] < / / F{ (2 @(o, o), + 1, 7))
l

(a(v_,z_),x_ +h,7))|drdo

—F Z+
too rboo Q\h h’|drda
< nﬁz/ / )oc+2’ <7'21>

Ll

T2

for (h,R') € B(0, 1 + ‘f—\;%)Q, which proves the first estimate in (3.16). The

second estimate in (3.16) follows from (3.8). O

7.3 Proof of Theorem 3.3

The estimate (3.21) (resp. (3.22)) follows from (5.28) (resp. (5.29)) and the
equality y_ = A(y_). For estimate (3.23) see also (7.13). We prove (3.24).
Since bge(v_,2_) = G, 4 (bse(v—,z_)) we use (7.20) with "h = bs.(v_,z_)"
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and we obtain
( B - 2n3, — a) |bee(v_, )|
ala+1)(57 =) G+57 )
liﬁf(nr+\f) T (7.22)
a(a—i—l)(y_r) (z+ 2V2 =)
2ns = > = This proves

Then use (3.8) to prove that 1 — TN e
alat1) ( 22 7r) (%Jr 2vz "

2

(3.24). We prove (3.25). From (1.3), (7.18) and (3.17) it follows that

/t Oo/ T (0w )y (7)) — Fles @), B0 3 ), 7)) |drdo
e s (7)ldrdo
= 52”/15 /a (1+ lz—| | 7‘—1—7’(‘”\}5‘ 'r’))OHr2

Ban SUD (£, +00) |y+|

ala+ 1)(';—\[‘ — 'r) (1+ Iffl r)®

for ¢ > 0. Then using (3.18), (7.23) and (7.12) we obtain
1

nz +nsu oo

ly4 ()] < el o] 2(t’+ ) |f+||) @ (7.24)
(a+1)(2\/_ )(1+W—T>

dan = < &

- 2 |lz_|
\/5—7") 1+ Vol

(7.23)

for ¢ > 0. Then from (3.8) it follows that (
a(a+1) ;

Hence from (7.24) it follows that
2082
fan2 (7.25)

su < @>
(t+£)o) i -1 _ lz—| _
: 19a(a+1)(2f r) 1+ —r

which proves (3.25). .
We prove (3.26). From the contraction estimate on A(.)(¢ ) for ¢t <0 (see
(flv f27 ) -

the proof of Lemma 3.1 and the right hand side of (5.15) fo
(y-,0,0)”) it follows that

)/ (v, )y (1) = F(e-(vo,x_,7)))dr
nmaX(ﬁmﬁs) P(—o0,0 Y- 1
< (a+1)(%—r)(1+x7—r>aﬂ(l+ (1+%—r ). (7.26)
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Using (5.33) for "(fi, f2) = (y—,0)” we also obtain

+oo0
/0 (Fs(z_(v_,x_, T) + y_(T)) — F(z_(v_,z_, T)))dT
ly—(s)]

< nﬁg SupSE[O,—I—oo) 1+s 1
(i) i e [0
1
LAY (7.27)
E
22

Then using (1.3), (7.7) and (7.8) we have

/0 h (Fl(z,(v,,x,,T) +y7(7')) — Fl(er(a(v,,:c,),:c,,T)))dT

20n83(nr + 3/n)
19a(a + 1) (2 —r)* (14 22 -

)2a+1. (7.28)

Combining (3.10), (7.26), (7.27) and (7.28), we obtain
0
}dsc(v_,x_) —/ F(z_(v_,z_,7))dr

[Pt [P o) o )i
n max(fy, 55)||y-| (1+ 1 1
(Oé-'-l)(‘%/—‘ ><1_|_x7|_r)a+1 (1"‘%-7‘) (‘;—\;5‘—7*)
20n82(nr + 3/n)
+ 2(lv=l _ lz—|
19a(a+ 12(Ll — ) (14 22

(7.29)

T‘) 2a+1"

Then estimate (3.26) follows from (7.29), (3.5) and the equality y_ = A(y_),
alrlld from the estimate 1+ |f‘ r > 2. We prove (3.27). From (3.12) it follows
that

|l Vy Ty Y- )—l(v_,x_,0)|
/ / |F(z-(v_,z,7) + y—(1)) — F(2-(v_,2_,7))|drdo  (7.30)

+/0+00 /UJFOO ’FS(z_(v_,:p_,T) +y_(7-)) _FS(Z—(U_,$_,T))’deg
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From the contraction estimate on A(.)(¢) for ¢ < 0 (see the proof of Lemma

3.1 and the right hand side of (5.16) for ”(f1, f2,t) = (y—,0,0)”) we have

'/ / (2 7) +y-(7) = F(2- (v, 2,7))) drdo

nSUP(_q o) [Y-| B2 B3
S(a+1)(|2v\—f|—’f‘) (1+‘x—\[‘—7“) [O&+(a+2)(1+x7|_r)]’ (731)

and using (5.33) for " (f1, f2) = (y_,0)” we obtain
/+oo /+oo )FS (v_,x_,T) +y_(7)) — Fs(z_(v_,l‘_,T)))deg

oo (14 7)drdo
< nfy sup 1 / / 2| lo_| a+t3
5€(0,400) +S 0 o (1—0—\/——7’+T(2\/§—r))
|

33 S0, o0) U

1 1
- (a+1)(%—r) (1+‘x—\/’§‘—7’)a [a(;ﬁ—'r) +(a+2)(1+%—r)].

(7.32)
Hence
[ [ x(Ba, B5) 1y
(v, o_,y—) = l(v_,2_,0)| < nmax(fs, 53 _
o D - (142
1 1
I+ e ) (7.33)

+
(1+T;_T) (QJE_T)
And combining (7.23) and (7.25) we have

+oo  p+oo )

/ / |Fl (vo,z_, 1) +y_(7)) — Fl(z+( (v_,z_),bv_,z_),7))|drdo
2052712

a1 ) (-

for t > 0. Then we use the estimates (7.33) and (3.5) and the equality

y_ = A(y_), and we use the estimate (7.34) and the estimate 1+ |f[‘ —r > 1

to obtain (3.27). D

(7.34)
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