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Asymptotic stability of a nonlinear
Korteweg-de Vries equation with a critical
length

Jixun Chu?* Jean-Michel Coron! Peipei Shang?

Abstract

We study an initial-boundary-value problem of a nonlinear Korteweg-de Vries equa-
tion posed on a finite interval (0, 27). The whole system has Dirichlet boundary condition
at the left end-point, and both of Dirichlet and Neumann homogeneous boundary con-
ditions at the right end-point. It is known that the origin is not asymptotically stable
for the linearized system around the origin. We prove that the origin is (locally) asymp-
totically stable for the nonlinear system.
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1 Introduction

This article is concerned with the following initial-boundary-value problem of the Korteweg-de
Vries (KdV) equation posed on a finite interval

Yt + Yz + YYq + Yzzz = 07

y(t,0) =y(t, L) =0,

ve(t, L) = 0, (1.1)
y(0,7) =yo € L*(0,L),
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with L = 2.

The KdV equation was first derived by Boussinesq in [4] (see, in particular, equation (283
bis), p. 360) and Korteweg and de Vries in [26] in order to describe the propagation of small
amplitude long water waves in a uniform channel. This equation is now commonly used
to model unidirectional propagation of small amplitude long waves in nonlinear dispersive
systems.

Since in many physical applications the region is finite, people are also interested in proper-
ties of the KdV equations on a finite spacial domain. Moreover, Bona and Winther pointed out
in [3] that the term y, should be incorporated in the KdV equations to model the water waves
when z denotes the spatial coordinate in a fixed frame. We refer to [T}, 2, 13, 18] 20} 22| 27, B35]
for the well-posedness results of initial-boundary-value problems of the KdV equations posed
on a finite interval. From control theory point of view, we refer to [7, B8] for an overall re-
view and recent progress on different kinds of KdV equations. In particular, when the spacial
domain is of finite interval, we refer to [6, 15, 16, 19, B0, B7, 45] for the controllability and
18, 23, B0, B1, B4] for some stabilization results. We refer to [10, 24 25 28] B9] [40] 4] for
studies on the KdV equations with periodic boundary conditions.

Rosier introduced in [36] the following set of critical lengths

S —
N {27“ /%w . N*}

for the following KdV control system

Yt T Yz + YYz + Yooz = 07

<t7 0) = <t7 L) = 07
Zx@, L) Zyu(t), (1.2)
y(0,z) = yo,

where u(t) € R is the control. We refer to [9, [I5] 36] for the well-posedness and controllability
of system (L2). Especially, Rosier proved in [36] that (L2]) is locally controllable around the
origin by analyzing the corresponding linearized system and by means of Banach fixed point
theorem, provided that the spacial domain is not critical, i.e. L ¢ N. However, this method
does not work when L € N, since the corresponding linearized system of (L2)) around the
origin is not any more controllable in this case. By using the “power series expansion” method,
Coron and Crépeau in [15] obtained the local exact controllability around the origin of the
nonlinear KdV equation (L2) with the critical length L = 2kw (i.e. taking j =1 =k in N),
provided that (see [14, Theorem 8.1 and Remark 8.2])

(2 + P +jl=3kand (j,1) e N\ {0}*) = (j =1 =k). (1.3)

The cases with the other critical lengths have been studied by Cerpa in [6] and by Cerpa and
Crépeau in [9] with the same method, where the authors have proved that the nonlinear term
yy. gives the local exact controllability around the origin.



If L ¢ N, it is proved by Perla Menzala, Vasconcellos and Zuazua in [34] that 0 is expo-
nentially stable for the linearized equation ([L4])

Yt + Yo + Yooz = 07

y(t,0) =y(t, L) =0,

va(t, L) =0, (14)
y(oa ZL‘) =o€ L2 (Oa L) )

of (LI) around 0. Furthermore, it is also proved in [34] that 0 is locally asymptotically
stable for system (LLI)). However, when L € N, it has been proved by Rosier in [36] that
([C4) admits a family of non-trivial solutions of the form e*wvy(z) for some A € iR, where
vy € C([0, L]) \ {0} satisfies

{ Ay (x) + Vi (z) + oY () =0,
ux(0) = vp(L) = v4(0) =i (L) =0.

For these critical lengths, it is therefore interesting to study the influence of the nonlinear term
yy, on the local asymptotic stability of 0 for the nonlinear KdV equation (ILT]). This article is
concerned with the stability property for system (1) with special critical length L = 27. In
this particular case, by Remark 3.6 of [36], a(1 — cosx), a € R are steady solutions of (L4).

Center manifolds play an important role in studying nonlinear systems. We refer to [5]
11 21], 29, 42] and the references therein for center manifold theories on abstract Cauchy
problems in Banach spaces. The authors in [B, 2], 29] investigated directly the evolution
equations and gave some sufficient conditions for the existence and smoothness of center
manifolds. While, the authors in [I1] presented a general result on the invariant manifolds
together with associated invariant foliations of the state space, which can be applied directly
to C'' semigroups in Banach space. But the method presented in [II] has no extension to
the case of C*-smoothness with & > 1. In [42], by using the method of graph transforms,
some classical results about smoothness of invariant manifolds for maps and the technique of
“lifting”, the existence, smoothness and attractivity of invariant manifolds for evolutionary
process on general Banach spaces are proved when the nonlinear perturbation has a small
global Lipschitz constant and is locally C*-smooth near the trivial solution. Because of the
existence of the nonlinear term in (LT), the results presented in [5 29] do not work for our
system. Moreover, due to the fact that the linear operator in our system (L)) with L = 2«
does not satisfy the resolvent estimates provided by [21], we cannot apply directly the results
given in [2I]. Thanks to the center manifold results given in [42], in this article, we show
the existence and smoothness of a center manifold of (LT]) with L = 27, and obtain that the
stability property can be determined by a reduced system of dimension one. Furthermore, by
studying the stability on this reduced one dimensional system, we obtain the local asymptotic
stability of 0 for the original system (LI) when L = 27. The main result of this article is the
following theorem.

Theorem 1.1 Let us assume that L = 2w. Then 0 € L*(0,L) is (locally) asymptotically
stable for the nonlinear KdV equation (I1). More precisely:
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(i) For every e > 0, there exists 0 = 6(g) > 0 such that, if ||yo||z2(0,0) < 9, then

Iyt )zzo,n) <&, VE>0.
(ii) There exists &1 > 0 such that, if ||yol|r2(0,0) < d1, then

lim ||y(¢,-)l[z20,) = 0.

t—-+o0

Remark 1.1 The existence of §(¢) is trivial and well known. In fact, one can take 6(c) =
e since t € [0,400) = [|y(t,-)||r20.2x) s nonincreasing (see also Lemma (31 below). The
nontrivial part of Theorem[11 is property (ii).

The organization of this paper is as follows: First, in Section 2] some basic properties of
the linearized system ([L4]) are given. Then, in Section [l we prove some properties of a non
local modification of the KdV equation (ILI]) and then deduce the existence and smoothness
of the center manifold. Finally, in Section [d], we analyze the dynamic on the center manifold,
which concludes the proof of the main result, i.e. Theorem [1]

2 Preliminary

In this section, we give some properties for the linearized system (4] with L = 2.
Set X := L*(0,L). Let A: D (A) — X be the linear operator defined by

with

D(A)={p e H*(0,L) : ¢ (0) = (L) = ¢, (L) = 0}.
It is easily verified that both A and its adjoint A* are dissipative. The following proposition
follows from [33 Corollary. 4.4, Chapter 1 |. See also [36].

Proposition 2.1 A generates a Cy-semigroup of contractions on L?(0, L).

From now on, we denote by {S (t)},, the Cp-semigroup associated with A. Then S(t)yo
is the mild solution of the linearized system (L4 for any given initial data yo € L? (0, L). By
Proposition 2.1l we obtain the following lemma directly.

Lemma 2.1 For every yo € L*(0, L), we have

”S@)QOHLQ(O,L) < HiUOHLQ(o,L)v vt > 0.
Furthermore, the following Kato smoothing effect is given by Rosier [36, Proposition 3.2].

Lemma 2.2 For everyy, € L* (0, L) and for every T > 0, we have S(t)yo € L? (0, T; H(0, L))
and

1
AT+ L\ 2
Hs(t)yo||L2(0,T;H1(O,L)) < ( 3 ) ||y0||L2(07L)'



Proceeding as in [32], we can prove the following two results.

Lemma 2.3 There exists a constant C' > 0 such that for any yo € H} (0,L), the solution
S(t)yo of (T4 fulfils
”S@)yOHHg(o,L) <C ”yOHHé(O,L) , Vt20.
Proof. For any Uy € D (A), let us define U(t) := S(t)Uy. Let V (t) = U; (t) = AU (t). Then
V' is the mild solution of the system
Vi=AV,
V(0) = AUy € L* (0, L) .
Hence, it follows from Lemma [2.]] that
IV (Ol 20,0y < VOl 20,0y, VE= 0.

Since V (t) = AU(t),V (0) = AUy, and the norms [[Ul|;2 1) + [[AU||2(0 7y and [[U]| (4, are
equivalent on D(A), we conclude that, for some constant C; > 0 independent of Uy and t > 0,
we have
1T )l pay < CrllUoll pay
Then the result of Lemma follows by a standard interpolation argument. m
Our next proposition shows that {S(¢)},., is a compact semigroup.

Proposition 2.2 LetT > 0. There exists a constant C' > 0 such that, for everyy, € L? (0, L),
we have

C
15°(8) woll 3 0,2y < i 1Yol 20,0y VE € (0,T]. (2.1)
Consequently, the Co-semigroup {S ()}, generated by A is compact.

Proof. Let T > 0 be fixed. For every ¢t € (0,7] and for every yo € L*(0, L), by Lemma 22|
the estimate

1
2L+ L\ 2
”S<')y0HLQ(O,é;H%(O,L)) < < 3 ) ”yOHLQ(O,L) (2.2)
holds. Then, arguing by contradiction, we get the existence of 7 € (0,¢/2] such that
1
2L+ L\? /2
15 @ wlagan < (25) Y E Il Yoo € 220.2) (23)

Now it follows from Lemma and (2.3) that there exists C' = C'(T") > 0 such that, for
every t € (0,7T] and every yo € L? (0, L),

15 @) yoll a0,y = 1S (& =7) S (7) woll sz 0.1
<C|S(r )yon 0.L)

2t+ L
<c( e

< — .
< \/% 190l 12 (0.1




Thus, for any given 7' > 0, (21]) holds. Since H'(0, L) is compactly embedded in L?(0, L), we
conclude that S (t) is compact. =

Let us now consider the spectral properties of the operator A. Firstly, we give the definition
of growth bound and essential growth bound of the infinitesimal generator of a linear Cy-
semigroup.

Definition 2.1 Let K : D(K) € X — X be the infinitesimal generator of a linear Cjy-
semigroup {Sk(t)},5o on a Banach space X. We define wy(K) € [~o0,+00) the growth
bound of K by

oo (K) = lim o (“SKit)”‘<X’>.

t—+o0

The essential growth bound wgess (K) € [—00, +00) of K is defined by

In ([|Sk(t)]],ss)

t—+o0 t ’

where ||Sk(t)||.., is the essential norm of Sk(t) defined by

€SS

1S5 ()] css = # (Sk (8) Bx (0,1))
where Bx (0,1) :={z € X : ||z|| <1} and, for each bounded set B C X,
k(B) =1inf{e > 0: B can be covered by a finite number of balls of radius < e}

1s the Kuratovsky measure of non-compactness.

The following result is proved by Webb [43, Proposition 4.11, p. 166, Proposition 4.13,
p.170] and by Engel and Nagel [I7, Corollary 2.11, p. 241].

Theorem 2.1 Let K : D(K) C X — X be the infinitesimal generator of a linear Cy-
semigroup { Sk (t)},5o on a Banach space X. Then

wo (K) = max (wo,ess (K) ,)\EU(II(I)I\EI:TX ) Re (A)) .

Assume in addition that wo ess (K) < wo (K). Then for each v € (woess (K) ,wo (K)],
{Ae o (K):Re(\) >~} Co,(K) is nonempty, finite and contains only poles of the resolvent
of K.

As a consequence of Proposition and Theorem [2.1], one has the following lemma.

Lemma 2.4 All the spectrum of the linear operator A are point spectrum, i.e., o (A) = 0, (A)
and wy (A) = )\mz&)Re (A\). Moreover, for each v € (—oo,wg (A)], {\ € 0 (A) : Re(\) >~} is
€o

nonempty, finite and contains only poles of the resolvent of A.
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From Lemma 2.1 and Lemma [2.4] one has
Lemma 2.5 For every A € 0 (A), Re(\) <0.
Let us now prove the following lemma.
Lemma 2.6 One has o, (A) NiR = {0}. Moreover, the kernel of A is a(1 — cosx), a € R.

Proof. We have A € 0, (A) N4R if and only if there exists ¢ € H* (0, L) \{0} such that

{w (0) =9 (L) =¢. (L) =0, (2.4)

Multiplying equation (Z4]) by %, and then integrating over [0, L], we obtain

L L L
A / podr + / wLpdx + / Przzpdr = 0. (2.5)
0 0 0

Taking the real part of (2.3]), we have

L - - L -
/ Pap T Pufp dr + / Pozef + Pazap dr = 0. (2.6)
0 0

2 2
Integrating by parts in (2.6]) and using (24]), we get
¢, (0) = 0.
Hence, A € 0, (A) N4R if and only if there exists ¢ € H* (0, L) \{0} such that

0 (0) = (L) = (0) =, (L) =0,

and the result of this lemma follows directly from the proof of Rosier [36, Lemma 3.5]. m
Combining Lemma [2.4] Lemma and Lemma 2.6, we obtain the following corollary.

Corollary 2.2 0 € 0 (A) = 0,(A) and the other eigenvalues of A have negative real parts
which are bounded away from 0.



3 Existence and smoothness of the center manifold

This section is devoted to show the existence and smoothness of the center manifold for system
(CI) with L = 27 by applying the results given in [42]. We would like to mention that the
linear operator A in our system (LI with L = 27 does not satisfy the resolvent estimates
required in [21]. In particular, A does not generate an analytic semigroup, but a Cy-semigroup
with a Gevrey property. We refer to [12] and [41] for this result. Hence, we cannot apply the
results given in [21] to show the existence and smoothness of the center manifold.

In order to apply the results given in [42], we need to show that the nonlinear perturbation
has a small global Lipschitz constant. To that end, we modify the nonlinear part of the original
system ([LI)) by using some smooth cut-off mapping, and consider the following equation

Yt + Yz + Yoz + (IDE(HyHLQ(O,L))yyx =0,

o
y(07 SL’) = y(](l’) € L2(07 L)

Here € > 0 is small enough, and @, : [0, +00) — [0, 1] is defined by
o, (2) = O (g) Yz € [0, +00),

where ® € C* ([0, +00); [0, 1]) satisfies
1
1, when z € [0, 5],
O(z) =
0, when x € [1,+00),

and
P <0.

It can be readily checked that

1
®_(r) =1, when x € [0, =],

2
O (z) =0, when = € [e, +00) . (3.2)
Moreover, there exists some constant C' > 0 such that
, C
0<—P(x) < = Vo € [0, 400). (3.3)

In (B3] and in the following, C' denotes various positive constants, which may vary from line
to line, but do not depend on ¢ € (0, 1] and yo € L*(0, L).



3.1 Well-posedness of (3.1))

In this section, we prove the following proposition on the global (in positive time) existence
and uniqueness of the solution to system (B.1]).

Proposition 3.1 For every yo€ L? (0, L), there exists a unique mild solution
y€C([0,+00),L2(0, L)) 1 L2, ([0, +00); HL (0, L))
of (D).
In order to prove this proposition, one first points out that
Lemma 3.1 Let T > 0. If

yeC([0,T;;L*(0,L)) N L* (0, T; Hy (0, L))

% (/OLyQ(t,x)dx) <0.

Proof. We multiply y: + Yo + Yuze + Pc(|[yll12(0,1))y¥> = 0 by y and integrate over [0, L].
Using the boundary conditions in (B]) and integrations by parts, we get

is a mild solution of (31), then

1d [*, 1
—— dz + =y2 (¢,0) = 0.
The lemma follows. m

By Lemma 3] in order to prove Proposition Bl it is sufficient to prove local (in positive
time) existence and uniqueness of the solution to system (B.1).

Proposition 3.2 Let e > 0,1 > 0. There exists T > 0 such that for every yo € L* (0, L) with
1Yoll r20,r) < 1, there exists a unique solution y € C ([0, T7]; L*(0,L)) N L*(0,T; Hy (0,L)) of

Proof. The case where ®. = 1 is proved in [34]. Adapting the proof given in [34], we get the
existence of T together with the existence and uniqueness of mild solution y. We briefly give
the proof since some estimates given in the proof will be used later on.

Using the variation of constants formula, system (B.)) can be written in the following
integral form:

y(t) = SOt [ =0 (s ) (s, s () ds
— 6] ).

= [o( (3.4)



We will show that the nonlinear map ¢ is a contraction from Y7 := C([0,7];L?*(0,L)) N
L?*(0,T; H} (0,L)) into itself when T > 0 is small enough.
Firstly, we prove that ¢ maps continuously Y7 into itself. Let us first show that if y € Y7,

D, <HyHL2(O7L)> yy, € L*(0,7;L?(0,L)) and the map y — @, <Hy”L2(0,L)> Yy, is continuous.

Indeed, let y,z € Yp. Applying the triangular inequality, Holder’s inequality and Sobolev’s
embedding H} (0, L) € C°([0, L]) together with [33)), we get

H‘be <||y||L2(O,L)) YYe — Pe (HZHLQ(OvL)) “ra LY(0,T;L2(0,L))

<N — 22l ooy + || [0 (Il ) = @ (120 ) ] 22

L(0,T;L2(0,L))

- C
<y =2 v+ o = ) 2lirazonn 2 |10 = iron 2 1 ey

T T
< [ 1= 2 vl i+ [ 16w =) 2l
C T
+ Z /0 ly = 2l 20, 1220l 120,12 At
T T
< C/o ly — zHLoo(o,L) HymHLQ(O,L) dt + C/o ”Z'HLOO(O,L) 1y — zm”L?(o,L) dt

C T
+ 2l = 2lmomarom [ Iellimom el @

< Cly - Z”L?(O,T;LOO(O,L)) ||?/m||L2(0,T;L2(0,L))

+ C 2l 20 120 0.2y 19 — 22l L2020,

C
+ = ly — Z||L°°(O,T;L2(O,L)) ||Z||L2(0,T;Loo(o,L)) ||Zx||L2(o,T;L2(o,L)) : (3.5)

By the classical Gagliardo-Nirenberg inequality, we have

1 1
lull oo,y < C llullFago,p ltallFaory Y € Hy (0,L). (3.6)

Hence,

T T
2
/0 ol dE < C / ol o 1y ltall g0 1

T
<C ||U||Loo(o,T;L2(o,L)) /0 ||um||L2(o,L) dt

1
<C ||U||Loo(o,T;L2(o,L)) 1> ||um||L2(o,T;L2(0,L)) :

Consequently, we get

1 1 1
||u||L2(0,T;Loo(0,L)) <C ||U||zoo(o,T;L2(o,L)) T ||ux||22(0,T;Lz(O,L))
< CT1 ||ully, , Yu € Yr.

10



Thus, it follows from (B.H) that

H(I)e <Hy”L2(O,L)> Yy — O <|’Z”L2(07L)) “rw L1(0,T;L2(0,L))

1 1
< CTi |y — Z”YT ||?/m||L2(0,T;L2(0,L)) + CT ||Z||YT Yz — ZﬂcHL?(O,T;L?(O,L))

1
+ = |y — Z”LOO(O,T;L?(O,L)) T ||Z||YT ||Zx||L2(0,T;L2(0,L))
1 1 2
<l =l T3 (b, + ol + 2 1215, ) (3.7
which implies that ®. <”y”L2(0,L)> yy. € L' (0,T; L? (0, L)) and that the map

y = . (vl 20, ) w9

is continuous from Yz to L' (0,T; L* (0, L)).
By Proposition 4.1 in [36], we obtain that

/Ot S(t—s)®. (Hy (s, -)HLQ(O’LQ y (s, ) ys (s, ) ds

lies in Y7, and the map
t
@ (19l 20,0y ) w0 = / St =)@ (1y(5: )20y ) ¥ (5:) v (5, ) s
0

is continuous. This fact, together with the continuity of the map y — ®. (||y|| £2(0 L)) Yy, from

Yr to L' (0,7;L?(0,L)) and S () yo € Yr (thanks to Lemma 2] and Lemma 2.2)), leads to
the conclusion that ¢ maps continuously Y7 into itself.

Let us now prove that ¢ is a contraction in a suitable ball Bg of Y7 when T > 0 is small
enough. Obviously,

¢
o) =0 = [ Stt=9) [0 (Ilon) v () = & (J2lny) 72 ()] ds.
0 2 (Il20.1)) (EEEAC]
In view of the proof of Proposition 4.1 in [36] and (B.7)), we deduce that
¢ () =& (2lly,

T +2L\?
S <1 —+ ( 3 ) ) H(I)E (||y||L2(0,L)) YYz — (I)a <||Z||L2(O,L)) Rz
SC (1 + ﬁ) H(I)E <HyHL2(O7L)> YYz — (I)E (”zHLQ(O,L)> “a

1 1
<C (14+VT) lly - #lly, T* (nynyT + llzlly, + - ||z||2YT) , (3:8)

L1(0,T;L2(0,L))

L1(0,T;L?(0,L))

11



which shows that ¢ is a contraction in the ball Bg of Yr if
1 1
C (1 + \/T) T (QR + g1—22) <1 (3.9)

Therefore, the proof will be complete if we could show that for a suitable choice of R and T'
satisfying ([B.9), the map ¢ sends Bp into itself.

It can be deduced from the definition of ¢ (y) given in (B.4]), Lemma 2T Lemma and
[B8) with z = 0 that there exists C' > 0 independent of ¢ € (0,1], yo € L*(0,L) and T > 0,
such that

AT + L\ ? .
||¢<>||YT_<1+( . ))||yo||L2(O,L>+||y||§TT4c(1+ﬁ)

AT + L\ ? s
S <1+ ( 3 ) ) ”yOHLQ(QL) +R2T4C <1+\/T)

<C (1 + \/T) (HyOHLQ(O,L) + R?T%) . Vyé€ Bn.

Now let [[yoll 2(.y < 1, and set R := 2nC. Then

6 @ly, <nC (1+VT) (1+4C*T4), vy e By (3.10)
It is clear that we can choose T' > 0 sufficiently small such that
(1 + \/T) (1 + 477(72T%> <2,

which, together with (B.I0) implies that ¢ maps Bpg into itself. Moreover, decreasing T if
necessary allows us to guarantee ([3.9) as well. The proof of Proposition is complete. m

Proposition 3.3 There exists C > 0 such that for every e > 0, for every yo € L*(0,L) and
for every T > 0, the unique solution of (31]) satisfies

8T + 2L
2 2 4
||?/||L2(0,T;H3(0,L)) < 3 ||fUO||L2(0,L) +CT ||y0||L2(07L) : (3.11)

Proof. Proceeding as in [36], we multiply the first equation in (8I]) by zy and integrate over
(0,L) x (0,T). Then, by Lemma Bl we obtain

L
// 2dxdt + ~ / y* (z,T) dx
2 T L
/ / Vrdt + - / wipds =5 [ 0l | ovvadode
0 0

T+L 2 Loy
< oo + / U9l 20.0) / 2yPyde
3 £20,L) T 3 o € L2(0,L) 0

dt. (3.12)
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Since

L 1 L
/ zy ypde = —= / y’de,
0 3 Jo
it follows from (B.12) that

L
// 2dxdt + = /:cy2 (,T)dx
0

T+ L 2 [T
L gy 5 [ i) [ o dea

T+ L
<L g2y + / / i dad.

AT + L
”y”i2<07T;H%(O7L)) S T ”yOHLQ(OL / / ‘y‘ dx‘dt (313)

Furthermore, by Lemmal[B.J] the continuous Sobolev embedding H; (0, L) C C°([0, L]), Poincaré
inequality and Holder’s inequality, we have

T L 5 T L )
[ [ wtasa<c [ ol ([ ) a
0 0 0 0
) T
< Cllwolao, / 1910,

1
T 2
2 2
< Cllwolary VT ( IR dt)
0

2
=CVT ”yOHLQ(O,L) ”y”m(o,T;Hg(o,L)) :

Hence,

Now, using the above inequality in (3.13]) we have

2

||y||L2(0,T;H(}(O,L))

- AT + L

- 3
4T + L 1 2

> HZUOHL2 o)t cT ”yOHL2 0,L) 5 HyHLQ(O,T;H(}(O,L)) :

2 2
||y0||L2(O,L) +CVT ||?/0||L2(0,L) ||?/||L2(0,T;H3(0,L))

Therefore, we get

2 8T + 2L
HyHm(o,T;Hg(o,L)) S ”yOHLQ(OL +CT HiUOHLQ 0.L)

This concludes the proof of Proposition [ ]
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Remark 3.1 According to Proposition[3.3, we have, for every T € [0,T],

8(T — 1)+ 2L
) < 3 ly (7, ')”iQ(O,L) +C(T—71)ly(r, ')”iQ(O,L) :

2
”yHm(T,T;Hg (0,L)
It follows that, if T € [0,T] is such that ||y (7. )| 12¢0 1) = €. then

) (T —7)+2L , ,
HyHL?(fr,T;H(}(O,L)) < 3 3 +C(T—7’)E
. 8T§2L82

+ CTe
Lemma 3.2 Let T > 0. There exist n > 0 and C' > 0, such that, for every e € (0,1] and for
every yo € L* (0, L) with 190ll 120,y < m. there exists a unique mild solution y : [0, T]x [0, L] —
R of (31) which satisfies
C
ly (¢, ')”H(}(O,L) < W HyOHLQ(O,L) , Vte(0,T].

Proof. From Proposition and (3.4]), we deduce that

t

ly (¢, ')HH&(O,L) <[5 (¢) yOHH&(QL) +/0 S(t—s)®. (Hy (s, ')HL?(O,L)) y(s,7)Ya (s, )’ 0.1 ds
C e

< W Hy0HL2(0,L) +/0 Ji—s [y (s,°) yx (s, ')HL?(O,L) ds. (3.14)

As a consequence of Lemma Bl and (B.6]), we have

||y (57 ) Yz (57 .)HLQ(O,L) < ||?/ (57 .)||Loo(07L) ||y$ (S, .)||L2(O,L)
1 3
< Clly (s: ) 220,y 192 (5, )1 22 0.1

1 3
<C H%Hiz(o,m Hy (37 ')H[Q{(}(QL) . (3-15>

Substituting (BI5) into ([BI4]), we obtain

C 1 e 3
ly (2, ‘)||H3(0,L) < % ||yO||L2(0,L) + ||QO||Z2(O,L)/O \/ﬁ 1y (s, ')HIQ{%(O,L) ds,
ie.
\/ﬂ’y(tv')”Hé(O,L)
3

1 LC 2
< Cllron + Il Vi | <= (Vi lgan) ds (316)
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Let C' > C. We claim that there exists 7 > 0 (small enough) such that, for every e € (0, 1]
and for every yo € L? (0, L) such that |[yol| ;2 ) < 7, we have

§(t) < Cllyollao,ry» ¥t € (0,77, (3.17)

where & (t) :== V1 |ly (¢, -)HH(}(QL). Let us argue by contradiction. Suppose that ([BI7) is not
valid. Then there exists 7 € (0, 7] such that

E(r)=C ||yO||L2(0,L) and ¢ (1) < C ||yO||L2(0,L) , vte(0,7). (3.18)
Thus by (B16), we have

3

2
()< Cllmlaosy + Il V7 | == (Cllmlegs) ds

m
2 — 3 1
:CHyOHLQ(O,L)+ HZUOHLQ(O,L) \/FC( )2 s%\/Ts
.3 [T 1
= |ly C+ly VTC (C)*? )
Il (€ + Il V7€ (©)F [ 5=

It can be readily checked that if [|yo|| 12y, 1) is small enough, we get & (1) < C |[yoll 12 (g 1,y » which
leads to a contradiction with (BI8). This concludes the proof of Lemma n

3.2 Properties of the semigroup generated by (3.1)
Let
S(t): L*(0,L) — L*(0,L), t>0
be the semigroup on L? (0, L) defined by
St)(yo) ==y (t,2),

where y (¢, z) is the unique solution of ([B.)) with respect to the initial value yo € L* (0, L).
Let T'> 0. Then, for every ¢ € [0,T], S(¢) can be decomposed as

S(t) = S(t) + R(¢),

or equivalently,
y(t,z) =z (t,x) + a(t,z),

where, as above, for every yo € L*(0, L), z (t,+) := S (t) yo is the unique solution of
2t + 2Zg + Zggz = 0,
z(t,0)=2z(t,L) =0,
2, (6, L) =0
z (07 ZL‘) = Yo

15



and « (t,-) := R(t)yo is the unique solution of

ap + g + Qg + Do (Hz - OCHL2(O’L)> (zz00 + @z + 2,2 + ) =0,
a(t,0) = a(t L) =0,

o (t,L) =
a(0,x) =

Let

M :={ap:a R},

where
1

<P($):E

Let us recall that, by Lemma 2.6, ¢ () is an eigenfunction of the linear operator A for the lin-
earized system ([L4]) corresponding to the eigenvalue 0 and M is the eigenspace corresponding
to this eigenvalue. Then we can do the following decomposition of X = L? (0, L):

(1 —cosx). (3.19)

X=MaoM"
The projection P : X — M is given by

Py(t, x) = p(t)p(w),
where

p(t) ::/0 y(t, z)p(x)dz, (3.20)

and the projection Q : X — M~ is given by I — P.

It is clear that S(t) leaves M and M invariant and S(¢) commutes with P and Q. Denote
by Si(t) : M — M and Ss(t) : M+ — M= the restriction of S(t) on M and M+ respectively.
Then Sy(t) = Id. Moreover, by Corollary 2.2, there exist N > 1 and w > 0 such that
|S2(¢)|| < Ne @t Vt > 0.

3.2.1 Global Lipschitzianity of the map R (¢): L*>(0,L) — L*(0, L)

The aim of this part is to prove and estimate the global Lipschitzianity of the map R (t) :
L*(0,L) — L*(0,L). To that end, we consider

Qp + g + gy + O <||a + z||L2(O’L)> (2o + Qpz + 2,2 + aza) =0,
a(t,0) = a(t L) =0,

a (t,L) =
a(0,z) =

16



and

where z is the solution of

(2 4 24 + Zygw = 0,
z(t,0)=z(t,L) =0,
7 (¢, L) =0,

(2 (0,2) =yo € L*(0,L),

and z is the solution of

Zt + 2o + Zoax :07
2(40) =2 (t, L) = 0,
Z: (t, L) = 0,

( 2(0,x) =7, € L*(0, L)

Set
+a

A=a—a, y=a+z ¥ ,
1720, -

=7z
@ﬂ:@@wmug,éyzg(
Then we obtain

A+ Ay + Ay = —Pryy, + Coty, = 01 [— (a+2) Ay — (@ +2.) A —a (2 —2),
—0; (2 —2) — 222 + Z,2] — (91 — By) (Zpa + Q2 + 2,2 + Q)

A(t,0)=A(t,L) =0,
AZB <t7 L) = 07
A(0,2) =0
(3.21)
Moreover, by the definition of ®;, ®; and (3.2)), we get
Oy =0, =0, Vyllzor) =& VIl =& (3.22)

We first give the following estimate of the L?-norm of A.
Lemma 3.3 Let T > 0. Then there exists C' > 0 such that
IAG sy < €. Ve € 0.T), Ve € (0,1], o € L2(0, L), g, € L0, 1)

Proof. By integrating by parts in

L
0

17



we get
1d [*
2dt J,
Note that A(¢,0) = A(t, L) = 0, by the continuous Sobolev embedding Hg (0, L) € C° ([0, L])
and Poincaré inequality, we obtain

L
/ Ayy,dx
0

1 L L
A’dx + §Ai (t,0) = =94 / Ayy,dr + <I>2/ Ayy,dx. (3.23)
0 0

L
< s~y / A7, | de
0

L

< Clallugon [ 1571 ds
0

L
< 1Tl o / A7, | de.
0

In the above inequalities and in the following, C, unless otherwise specified, denotes various

positive constants which may vary from line to line but are independent of ¢t € [0, T, ¢ € (0, 1],
Yo € L*(0, L) and y, € L*(0, L). Thus,

L
_ — 2
/0 ATG x| < C 1700 1A s -

Similarly, we have

L
2
| e < €l 1802
0
Hence, it follows from (3:23)) that

d [ 2 — 2
dt . Aldx + A% (t,0) < C (q)l ”yJBHLQ(O,L) + @, ”ymHLQ(O,L)> ”A”LQ(O,L) :

In particular,

d [F 2 — 2
= | 8%r < C (@ llyaliagn) + 22 1720 ) 18020
0

By Lemma 17 in [15] and Remark Bl we get

L t
[ o< ([0 (@l + 051 ) )

8T + 2L 2
<sct (2 (42 o)) wep)

2

The result follows. m
For the sake of simplicity, we denote from now on by L?*(L?) the norm L*(0,T; L*(0, L)).
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Lemma 3.4 Let T > 0. Then there exists C' > 0 such that
A ) z200,1)
T
< / (21 (120,00 + 12l 20,0y + IZeli0)) 1z = Dall ooy
1 -
101 = @] 2+ @l Fagq 1) 12 + @), o |
2
LQ(LQ)):| ’

<o ¢ (14| Ve, L +[vaEal,, + Ve

for every t € [0, T, for every e € (0,1], for every yo € L*(0, L) and for every y, € L*(0, L).

2 2

L2(12 L2(L?)

Proof. We multiply the first equation of (321 by 2zA and then integrate over [0, L]. By
integrating by parts and using the boundary conditions of ([B.21]), we get

d L L
— rA*dr + 3 / Aldx

L L L L
:/ A%dx + ®y x (—2/ raAAdx + 4/ raAAdx + 2/ rzAAdx
0 0 0 0
L L L
+ 2/ al*dx + 2/ 2AN*dx — 2/ zAa (2 —Z),dx (3.24)
) ’ r L
—2/ TAQ, (Z—E)dx—Q/ TAz, (Z—E)dx—Q/ xAZ(z—?)xdx)
0 0 0
L
— (P — Dg) / 2z (Z,o + @, 2 + Z,Z + @, @) du.
0

Note that « (t,0) = a (¢, L) = 0, by the continuous Sobolev embedding H} (0, L) C C°([0, L])
and Poincaré inequality, there exists C' = C(L) > 0 such that

L L
2/ raAAdx SCHamHLQ(OL)/ |[tAA,|dx.
0 0
Thus,
L
2 / raAAgdz| < CH%HB(O,L) ||A$||L2(O,L) ||$A||L2(0,L)
0
1 , 1 2
< 5180 + 5 (€l 128120, )
1 (L , L
< 5/ Aid:p+0||ax||L2(07L)/ rA%dx. (3.25)
0 0
Similarly,
Lo 1t o Lo
4 raAAdr| < ) Azdr + Cl[as 720 1) rA“dx, (3.26)
0 0 0
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L L L
1
2 / rzAA dr| < 5/ Aidfb"“CHZr|’i2(o,L)/ rA*dx. (3.27)
0 0 0

Note that @ (¢,0) = @ (¢, L) = 0, by the continuous Sobolev embedding H} (0, L) c C°([0, L])
and Poincaré inequality, we have

L
/ al’dx
0

1 _1
From (28) and Lemma 16 in [I5] with a := min{ﬁC_% ||H$||L22(07L) ,L}, there exists
C = C(L) > 0 such that

L
) < C @l 20, /0 Ay, (3.29)

L L L
1 3
0 0 0
Similarly, we have
L 1 (L 5 L
0 0 0
By Lemma 16 in [I5], there exists C'= C'(L) > 0 such that
L 1 (L L
/ A?dr < 5/ A2dx + C/ rA%dz. (3.31)
0 0 0

We have

2 < Cl[@all 20,1y

L
/ zA(z —7Z), dx
0

L
/ zAa (z — %), dx
0

1
L 2
<C ||ax||L2(o7L) (/ xZAde) (= _E)pr(o,L)
0

1
L 3
< s ([ o0%0) G- lmary 63
Similarly, we can obtain
L L 3
2 /o TAT, (z —Z)dz| < C|(z = 2),ll 120 1 </O I‘A2daj‘) [0l 20,2 » (3.33)
L L 3
2 /0 1Az (2 —2)da| < Cl(z = 2), [l 120 1) (/0 xAde) 122l z2(0,1) - (3.34)
L L 3
2 /0 tAZ (2 —7Z),dv| < C HEJ»‘HL?(O,L) </0 xA%lx) 1(z — Z)gc”L?(o,L) : (3.35)
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Moreover, we have

L
/ 20N (2,0 + (% + Z,Z + ap) da
0

L
=2 / T (Z, +,) (Z+a)dx
0

L
<27+ T oo / A (2 + @), | de

1
2

L
32\/E||z+a||Loo(07L) 1+ @), | 201 </0 :EAde) : (3.36)

Then, using the Gagliardo-Nirenberg inequality ([3.0), it follows from (330) that

L
/ 20N (2,0 + 0,2 + Z,Z + apa) da
0

1
. 5 L 3
<Clz+allf20.n 1+ @), l720.1) (/ ;pAde) : (3.37)
0
Thus, using (324)) to (B31), we get
d L

2 1 r 2
— A*d = AZd
at Jo " :p+2/0 o

L
=¢ <1 & (H%Hi%o,m + [[@ll2 0,y + ||Zx||L2(o,L)>> / Al
0

+C (@ (I8l 20y + 2220,y + 17l 20y ) 1z = 2l

1
) 3 L 3
+ |1 — Pof [[Z+ @[ 720 1 ”(5_'_6)1”12/2(07L)i| </0 SUAde) - (3.38)
In particular,
d L
— cA*dx
dt J,

L
2 — 2 2
<0 (140 (Joalisoun + 1@l + I l3an)) [ w8%e

+C |01 (I@ell a0y + Izl oy + 1Zeliz0.)) 1 = 2o,

1 3 L 2
12y = @] 24T gy 17+ @, o) (/ mzdx) .
0

Then, by Lemma 17 in [15], we get

L
/ eA*dx < W, Vtel0,T] (3.39)
0
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with

T
W := 3C? [/o ( <||(I)1ax||L2(07L) 1 ®120l p2o,py + ||(I)17x||L2(o,L)> 1z =2),ll 1201
1 3 2
+ @1 = P 2 +@ll 2o,y 1Z + @)l 20,1 )dt}

xexp[c(muﬁl% +Hf% Ve

Now integrating (B.38]) over [0, 7] and using (3.39), we have

L 1 [T [L
/ sA* (T, x) dx + = / / A2dxdt
0 2Jo Jo

T
2 — 112 2
<0 [ (14 @ (lonlas, + 1l + Nealian)) iV
0

I | B

L2(L2)

T
0 [ o0 (1@l + laelizon + Il 16 = 2.l
0
s o 1
@1 = @al 2+l 220 ) 12 + @), e,y | dtWE.

Then it follows that

1 T L
- A2dxdt (3.41)
2 0 0 ‘

T
<0 [ (14 (JaulBaan + Il + o) ) doV + W
10 r
+5lC / (@1 (1l 20,0y + 2l 20,y + 12l i0.)) 1z = Dall 2oy
1 3 2
101 = ol 17+ @l a0 1Z + ), oy )] (3.42)

Hence, combining (3.42]) with (3.40]), we obtain

T L
//Aidwdt
0 0
T
<O [ (10l + szl + 19 ) 1 = Dl
0

1 3 2
1@1 = B 7+ Tl 1y 1+ @, oy )]

xexp[ <T+H\fa$ +H\Fax +H\/72x

L2(L?) L2(L?)

)] e
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We multiply the first equation of ([B.2I) by A and integrate over [0, L]. Using the boundary
conditions of (B.21]) and integrations by parts, we get

1d
L L L

= d; x (—/ anAd:E+2/ HAmAder/ 2N, Adx
0 0 0

L 1

—/OLa(z—E)xAd:p—/OLagg(z—%)Adx
_/0sz (z — %) Adx—/OLi(z—i)ggAdx) (3.44)

It can be readily checked that

L
/ aA,Adx
0

1 [* 1 [*
< —/ A2dx + —/ Aa’dx
2 Jo 2 Jo
L 2 b
5/0 Axdx+0||ax||L2(0’L)/o A“dz. (3.45)

Similarly, we have

L
’2 / alA, Adzx
0

L 1 [t L
/ 2N Adz| < 5/ Aidx +C ||z$||ig(07L)/ A?dz. (3.47)
0 0 0

Similarly to ([B.32), we get the following inequalities

1 L L
< 5/0 Aidx+0"a$"i2(0,L)A A*dx, (3.46)

and

>
[\o}
QU
S
N—
NI

L
/0 G (2 - 2), Ada| < C [l 1 = 2l (3.48)

Nc\

L L
/0 @ (2= 2) Ad| < C N1z = 2), 2oy 1Tl 2oy ( Ade) (3.49)

(3.51)

/0sz (z =2) Adz| < Cl(z = 2),ll 20,1y 122 [l 20,1 ( Lydx) (3.50)
([ 5)

L
/0 2 (2= %), Ads| < C 1zl ooy 1 = 2o
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Moreover, for the last term on the right-hand side of (8.44]), using the same argument as for

B37), we have

L
/ A (Zy0 + uZ + 2,7 + Q,0) dx
0

1
) 3 L 3
< Oz +l b G+ T, ( /O A2dx> | (3.52)
Hence, by ([B3.44) to ([B52), we deduce that
1d [*
—— | A%
gat J, =

3 L 2 — 12 2 L
< 5/ Ajdz +CP, (||aw||L2(O,L) + [@ll720,r) + ||Zx||L2(o,L)> / Adz
0 0

+

C |1 (2120, + 2l 200.0) + Bl 20y ) 1z =Dl agoy
. 5 Lo 3
+@y—%uw+amm@n@+anmmuﬂ(/ Adﬁ
0
Therefore, by (843) and Lemma 17 in [I5], we get that, for every ¢ € [0, 7],
1A, ) 2200

T
<[A (@1 (1l 20,00 + el 20,y + 12l 120.)) 162 = Dl oo

1 P | 2
120~ D[+ @l gy 12+ D)l )]
2
L2(L2)):| '

X exp {C’ (1 + H\/<I>1a$ : + chblaz + H\/<I>12$
This completes the proof of Lemma 3.4 m

Now we are in a position to prove the following proposition on the global Lipschitzianity
of the map R(¢). With our notation, we have

2 2

L2(12 L2(L?)

Proposition 3.4 Let T > 0. There exists ¢y € (0,1] and C : (0,0] — (0, +00) such that

||A||L2(O,L) < é (5) ||y0 - yOHL?( V%a?/o € L? (07 L) >Vt S [OaT] >VE S (07 50]7 (353)

0,L)°
C(e)—=0ase— 0", (3.54)
Proof. Let
Apax == sup HA(tv ')”LQ(O,L) ’
te[0,7
€€(0,1]
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Let us point out that, by Lemma B.3] A, .« < +00. We claim that
Amax S 80 (HyO - yOHLQ(O,L) + Amax) 5 v@()’iyo S L2 <O7 L) . (355>

Then let € be small enough such that 1 —C' > 0, we obtain

eC _ _
Amax S 1 _ ||y0 yO||L2(O7L) ) \v/y(]?yo € L2 (0’ L) :

Consequently, we get

eC _ _
HA”LQ(OL = 1 HyO yO”LQ(O,L) , Vte [OvT] ) Vyo,yo €L’ <07L>7

and the result follows. Hence, in order to prove Proposition 3.4l we only need to show that
(B.58) holds in the following cases:

(i) H%”LQ(O,L) , HZJOHL2(0,L) > ¢, and ”yHLQ(O,L) , ”yHLQ(O,L) >¢e, Vi €[0,T7;

(i) [Woll 2.y » lIvoll2(0.ry = €. there exists 7 € [0,T] such that [[§ (7, )|z ) = & and
Hy (tv ')HLQ(O,L) >e, Ve [07 T] ;

(i) [Yollr20.z) > lvoll 120,y = €, there exists 7,5 € [0,7],¢ > 7, such that ||y (T, Wiz, =€
and ||y (<, )l 1202 = &

(iv) ||y0||L2(O,L) <¢eand ||?/||L2(0,L) > e, Vte0,T];
(V) Yol r2,ry) < € s %ol 120,y = €: and there exists 7 € [0, T such that ||y (7, )12 1) = &;

(vi) H%”LQ(O,L) <¢, HyOHLQ(O,L) <€
By Lemma B4 for every ¢ € [0, T], we have

HA(t, ')”L?(O,L)
T
< [ [# (Bl + Nealliron + Wallzan) 1 = Dullison
0
1 3
+@y—%uﬁ+aMMLH@+@)Mmm}ﬁ

XeXp[C(l—i-H\/alOzx 2+H\/7am +H\Fzm

Furthermore, by using Holder’s inequality and Lemma 2.2 we have

)| @0

L2(L?)

T
/ oy (HaxHB(O,L) + ||Zm||L2(0,L) + ||Ex||L2(O,L)> 1(z — E)me(o,L) dt
0

1(z — 5)1«”L2(L2) (”Cblax”ﬂ(m) + ”(I)lzmHLQ(LQ) + H‘I)ﬁmHLz(p))

<C ||fUO - yOHLQ(O,L) (H‘blame(L?) + ||(I)1ZJ3||L2(L2) + ||(I>1§x||L2(L2)> : (3-57)

IN

A
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Applying the mean value theorem, noticing that [lov — @l 2¢ ;) < Amax, V¢ € 0,77, and
by Lemma 2.1],

HZ - g”LQ(O,L) < HyO - yOHLQ(O,L) , Ve [OvT] )

we get
1= @] < [0 O)] |12+ ll o) — 17 + oo
<19 (O)] (= + ) — (2 + @)l 20y
< 12 )] (112 = 2l 2oy + o = Thiaor) )
<182 (0)] (Il = Toll 20,1 + D) (3.58)
where

0= 0(t) € (mindllz + all z(o.zy 17+ Tlag0. s max{llz + all 2o I+ 8l 2o }) -

Thus, combining (B.56), (B.57) and ([B.58]), we arrive at
HA(t, ) HL2(0,L)
< (Cllvo = Tollaqo.zy (191Felaizy + 1120 ey + 1917 o)

T 1 3
+@%—%mm@+AmQA|%wnw+wamw@+mmauwﬁ

X exp <C (1 + H\/cflax + H\/E@C S+ H\/cflzgg ;(LQ))) .

Consequently, we obtain
Amax < [C lyo — yOHLQ(O,L) (”q)lal“”LQ(L;) + ”q)lerH(L?) + Hq)lzmHLQ(LQ))
(o = Tollzon + Soms) [ @umuwﬁwmﬂwmi@mw] (3.50)
X exp (C (1 + H\/(Fl%H;(p) + H\/(Flaf}};(w) + H\/C}T%H;(B))) :

For case (i), by ([B.22), we have ®; = &y = 0,V € [0, T}, it follows directly from (3.50])
that

2 2

L2(L?) L2(12

Apax = 0.
For case (ii), by ([8.22), we have
®, =0, Vtelo,T]. (3.60)
In view of Lemma [B.1], we have
1) 20y 26 VL€ (0,71, (3.61)
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and
17 (2, ‘)||L2(0,L) <7 (r, ‘)||L2(0,L) =¢e, Vie[r,T]. (3.62)
Consequently, it follows from (3.22)) and (B.61]) that

(IDQEO, vtE[O,T]

From 3.3), (3.59), (3.60), (3.61) and (B.62), we get that

T
_ C 1. .3
B 2 050 (©) (o0 = Tol oy + D) [ S 1Bl (3.63)

From now on, we assume that ¢ € (0,7], where > 0 be chosen as in Lemma
Thanks to Lemma B2 and ([3.62)), we have

_ (G C
Hy:v <t7 ')HLQ(O,L) < \/ﬁ ”y (7-7 ')HLQ(O,L) = \/ﬁga vt € [7—7 T] : (364>

Replacing (8.64)) into (B.63), we obtain

T
_ 1
B < 2C (o0 = Tl + D) [ ——
r (t—T7)t
<eC <Hy0 - yOHLQ(O,L) + AmaX) :
For case (iii), by (822) and Lemma B.1] we have
B, =0, Vte0,d, (3.65)
Oy =0, Vit € [0,7], (3.66)
and ([B.62) still holds. In particular,
19 (s, ‘)HL?(o,L) <€ (3.67)
It follows from Lemma 2.2, (B.65) and (B.67) that
191Zal L2 0,7:2200,0)) = 1 P1Zall 2 70200,
< Zellrz rirzon) < CIY (S )2, < €C, (3.68)
P12l r20 0202y = P12/l L2 122000
< ||Zm||L2(g,T;L2(0,L)) < Clly (s, ')||L2(0,L) =eC, (3.69)
and
H\/(I)lzgc <eC. (3.70)
L2(0,T3L2(0,L))
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By Remark Bl (B.63]), (B.67) and (3.68]), we have

11| 12007 2200,0)) < (11Tl 22007 0200,0)) T 11Zell 22007 22(0,1)

< ||yz||L2(g,T;L2(O,L)) + H(I)lszLQ(O,T;L?(O,L)

<eC, (3.71)
and
H\/ @, < eC. (3.72)
L2(0,T;L2(0,L))
Similarly, we obtain
H\/CI)laz) <eC. (3.73)
L2(0,T;L2(0,L))

Moreover, for this case, ([3.64) still holds. Now it follows from 33)), (3:59), (3.62), (3.64),
(B55), (B50), (BES) to @T3) that

T
_ _ 1
Apax < C <C€ 190 = Toll 120,y + € (H?JO —Yoll 2o,y + Amax) / ( )3 dt>

t—r71)%
< C (Jlyo = Toll 0.y + Do ) -

For case (iv), by ([22]), we have ®; = 0,Vt € [0,7T]. It follows from (3359) that

T 1 3
B < € (10 = Tollsors + Buc) [ 10 O 15y . 670

By Lemma B.1] we have

17 () 20,0y < Woll 2o,y <& VEE€[0,T]. (3.75)
Moreover, thanks to Lemma [3.2, we have
_ c _ C
172 (&)l 20,0 < 7i 1ol 220,y < N vt €1[0,77. (3.76)

Then it follows from [B3)), (B.74) to (B1G) that

T
B 1
Amax S eC <||y0 - yO||L2(O,L) + Amax) / t_§dt
0 4

<eC (Hyo - yOHL?(O,L) + Amax) .

For case (v), similarly to case (iii), we have

||(I)1a$||L2(O7T;L2(O7L)) <eC, || Przel (0.T:L2(0,L)) = eC, (3.77)
191Z]l 20z o) < 560 ||V 0| oy < 5O (3.78)
V@ <eC, H\/ ) < &0, 3.79
H 1 ’LQ(OTLQ 0,L)) c 1o L2(0,T;L2(0,L)) c (8:79)
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Moreover, ([B.70) and (B.76]) still hold. Thanks to (8.3]), (B.75) and (B.76]), we have
T . 5 T 4
| 1@ @5 0t < < [ (3:50)
Then, by [B.59), B77) to (3.80), we obtain

Apax < eC (Hyo - yOHL2(O,L) + AmaX> .

For the last case (vi), (3.70)-(3.80) hold, and ([B.55) follows. Above all, we have proved
(B.58]) for all the cases (i)-(vi), which completes the proof of Proposition [3.4]

3.2.2 Smoothness of the semigroup

Lemma 3.5 Let ¢ > 0 and T > 0 be given. Then the nonlinear map S(t) defined by the
unique solution of ([31) is of class C® from L*(0,L) to C([0,T];L*(0,L)). Moreover, its
derivative SY at yo € L*(0, L) is given by

S (yo) (h) == KV (y)(h), vh € L*(0, L), (3.:81)
where K™ (y)(h) is defined by the following system ([B.82) with y = S(yo).

o L
. yA dx
A+ Ag + Dgaw + (I)e(HyHLQ(O,L))myyx + P (llyllz20,0)) (yAs + Ays) = 0,
A(t,0)=A(t,L) =0, (3.82)
A,(t, L) =0,
A0, z) = h(x),

Proof. We refer to [44] and [I, Theorem 5.4] for a detailed argument in related circumstances.
]

3.2.3 Center manifold

Combining [42, Remark 2.3], Corollary and Proposition B.4] we are in a position to apply
[42, Theorem 2.19] and [42) Theorem 2.28]. This gives, if ¢ > 0 is small enough which will be
always assumed from now on, the existence of an invariant center manifold for (3.]) which is
of class C®. (In fact this center manifold is called a center-unstable manifold in [42, Theorem
2.19]; however, in our situation, with the notations of [42], P»(t), t € R, are trivial projections
and then the name of center manifold can be adopted: see [42, Remark 2.20].) More precisely,
there exists a map g : M — M= of class C? satisfying g(0) = 0 and ¢'(0) = 0, such that, if

G:={x1+g(x1):21 € M},
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then, for every yo € G and for every t € [0,4+00), S(t)yo € G. Moreover, Theorem [LLT] holds,
if (and only if),

S(t)yo — 0 as t — 400, Vyo € G such that ||yol/z2(0,z) is small enough. (3.83)
(For this last statement, see (2.42) in [42].) We prove ([B.83) in the next section.

4 Dynamic on the center manifold
In this section, we prove ([B.83]), which concludes the proof of Theorem [Tl
Proof. Let yo € G. Let, for t € [0, +00), y(t)(x) :== y(t,z) := (S(t)yo)(x). We write
y(t,x) = p(H)p(x) +y*(t, ), (4.1)

where ¢(r) is defined in (BI9) and y*(¢,z) € M*+. By 3I9) and ([B.20), we have, at least if

|y(t)]| z2(0,z) is small enough which will be always assumed in this proof,

y(

:/o y(t,x)go(a:)dx—/o y(t, x)y.(t, v)p(x)dx + t, )Pz (x)d

0

= %/0 Y2 (t, 2) . (z)dx. (4.2)

We can also obtain the system for y*(¢, z) as the following

yr +ys + (I — P)yye + Yhpw = 0,
y*(t,0) = y*(t, L) = 0, (4.3)
ym(t L)=0.

It follows from (A1) that

= (p(O)e(x) + (1, 2)) (p() e () + 3 (¢, 7))
= p*(t) ()¢ (56) + Py (8 ) pa(2) + p(O)p(2)y;(E, ) + 3™ (L, 2)yi (¢, ).

Consequently, we have
(I = Plyy. = p*(t)p(x Oy (L, 2)pa(x) + () e(x)yr(t ) + v (¢ )i, )
- )

(@)pala) +p
o) / () s (2)dz — plt) () / Y (b, 2)p (@) ()
() / 2

p(t)
or 2 () (t, 1) — () / o@Dt o)de. (44)
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By using (.19) and integrations by parts, we have

/0<p2(x)<px(:c)d:v:0, (4.5)
| rtae@iwis = =5 [ F@ua. (1.6
| et onitaiie == [ o) (o) (4.7

It can be deduced from (£L4), (£H), ([AL0) and (L7) that
(I = P)yys = p*()p(x)pa(x) + p()y* (£ 2)¢u(2) + p(t)p(2)y;(t 2) + y* (¢, 2)y; (¢, o)

pe(@) [ Pt ade+ 5el@) [ o) o) dn @)

1
2
According to the existence and smoothness of the center manifold, we can set

y(t,z) = a(z)p*(t) + O(p*(t)), as |p(t)| — 0. (4.9)

Then, by using (E3), (£8)) and by comparing the coefficients of p?(t), we obtain

m(l‘) + azxz( ) + 90@)%(90) =0,
a(0) = ( ) 0, (4.10)

az(L) =
The solution of ([EI0) is

1 1 1
a(x) = Cy + Cycosx — 3 sinx + 6—7Tx sin x + 36n cos(2x),

where 1
Cy+Cy=——-. 4.11
1+ 02 36 (4.11)

Note that y*(t,r) € M+, we have

1.e.
2T 1 —3m
—_— +

\/3 \/3 67T 231

which leads to

1
27'('01 - 7TCQ - Z = 0. (412)
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Combining (A1) and ([@I2)), we get

9 11
Cl=-— Cy=——.
! a2 1087

Therefore,

(1) = =~ 1 Lsinz 4+ —osing + -~ cos(2z) (4.13)
a\xr) = — — COSX — —SInx —X S1Nn T — COS| 2T ). .
27 1087 3 o 361

Combining (A1), [@2]), [E3) and (EI3), we obtain

dz;—? - % /0 ((t)p() + al@)p* (1) + OW* (1)) palw)da

= p(0) / a() () pa(x)dz + O (1))

_r® <—%w + GLTFQ) +O(p(1))
)

3m s
= 20 0, as o] -0

This concludes the proof of ([B.83) and the proof of Theorem [T =
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