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We propose new scoring rules based on conditional and censored likelihood for assessing the predictive accuracy of competing density forecasts over a specific region of interest, such as the left tail in financial risk management. These scoring rules can be interpreted in terms of Kullback-Leibler divergence between weighted versions of the density forecast and the true density. Existing scoring rules based on weighted likelihood favor density forecasts with more probability mass in the given region, rendering predictive accuracy tests biased towards such densities. Using our novel likelihood-based scoring rules avoids this problem.

Introduction

The interest in density forecasts is rapidly expanding in both macroeconomics and finance. Undoubtedly this is due to the increased awareness that point forecasts are not very informative unless some indication of their uncertainty is provided, see [START_REF] Granger | Economic and statistical measures of forecast accuracy[END_REF] and [START_REF] Garratt | Forecast uncertainties in macroeconomic modelling: An application to the UK economy[END_REF] for discussions of this issue. Density forecasts, representing a full predictive distribution of the random variable in question, provide the most complete measure of this uncertainty. Prominent macroeconomic applications are density forecasts of output growth and inflation obtained from a variety of sources, including statistical time series models [START_REF] Clements | Evaluating the forecast densities of linear and nonlinear models: Applications to output growth and inflation[END_REF], professional forecasters [START_REF] Diebold | Evaluating density forecasts of inflation: The survey of professional forecasters[END_REF], and central banks and other institutions producing so-called 'fan charts' for these variables [START_REF] Clements | Evaluating the Bank of England density forecasts of inflation[END_REF][START_REF] Mitchell | Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR 'fan' charts of inflation[END_REF]. In finance, density forecasts play a pivotal role in risk management as they form the basis for risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES), see [START_REF] Dowd | Measuring Market Risk[END_REF] and [START_REF] Mcneil | Quantitative Risk Management: Concepts, Techniques, and Tools[END_REF] for general overviews and [START_REF] Guidolin | Term structure of risk under alternative econometric specifications[END_REF] for a recent empirical application. 1 The increasing popularity of density forecasts has naturally led to the development of statistical tools for evaluating their accuracy. The techniques that have been proposed for this purpose can be classified into two groups. First, several approaches have been put forward for testing the quality of an individual density forecast, relative to the data-generating process. Following the seminal contribution of [START_REF] Diebold | Evaluating density forecasts with applications to financial risk management[END_REF], the most prominent tests in this group are based on the probability integral transform (PIT) of [START_REF] Rosenblatt | Remarks on a multivariate transformation[END_REF]. 2 We refer to [START_REF] Clements | Evaluating Econometric Forecasts of Economic and Financial Variables[END_REF] and Corradi and Swanson (2006c) for in-depth surveys on specification tests for univariate density forecasts.

The second group of evaluation tests aims to compare two or more competing density forecasts. This problem of relative predictive accuracy has been considered by [START_REF] Sarno | Comparing the accuracy of density forecasts from competing models[END_REF], [START_REF] Mitchell | Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR 'fan' charts of inflation[END_REF], Corradi andSwanson (2005, 2006b), [START_REF] Amisano | Comparing density forecasts via weighted likelihood ratio tests[END_REF] and Bao et al. (2004, 1 In addition, density forecasts are starting to be used in other financial decision problems, such as derivative pricing [START_REF] Campbell | Weather forecasting for weather derivatives[END_REF][START_REF] Taylor | Density forecasting for weather derivative pricing[END_REF][START_REF] Härdle | Dynamics of state price densities[END_REF] and asset allocation [START_REF] Guidolin | Asset allocation under multivariate regime switching[END_REF]. It is also becoming more common to use density forecasts to assess the adequacy of predictive regression models for asset returns, including stocks [START_REF] Perez-Quiros | Business cycle asymmetries in stock returns: Evidence from higher order moments and conditional densities[END_REF], interest rates [START_REF] Hong | Out-of-sample performance of discrete-time spot interest rate models[END_REF][START_REF] Egorov | Validating forecasts of the joint probability density of bond yields: Can affine models beat random walk?[END_REF] and exchange rates [START_REF] Sarno | Empirical exchange rate models and currency risk: Some evidence from density forecasts[END_REF][START_REF] Rapach | The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior[END_REF], as well as measures of financial market volatility [START_REF] Bollerslev | A discrete-time model for daily S&P500 returns and realized variations: Jumps and leverage effects[END_REF][START_REF] Corradi | Predictive density estimators for daily volatility based on the use of realized measures[END_REF].

2 Alternative test statistics based on the PIT are developed in [START_REF] Berkowitz | Testing density forecasts, with applications to risk management[END_REF], [START_REF] Bai | Testing parametric conditional distributions of dynamic models[END_REF], [START_REF] Bai | Tests for skewness, kurtosis, and normality of time series data[END_REF], [START_REF] Hong | Nonparametric specification testing for continuous-time models with applications to term structure of interest rates[END_REF], [START_REF] Li | A consistent bootstrap test for conditional density functions with time-series data[END_REF], and Corradi and Swanson (2006a), mainly to counter the problems caused by parameter estimation uncertainty and the assumption of correct dynamic specification under the null hypothesis.

predictive accuracy of density forecasts based on these scoring rules do not suffer from spurious rejections against densities with more probability mass in that region. This is confirmed by extensive Monte Carlo simulations, in which we assess the finite sample properties of the predictive ability tests for the different scoring rules. Here we also find that the censored likelihood scoring rule, which uses more of the relevant information present, performs better in most, but not all, cases considered.

We wish to emphasize that the framework developed here differs from the evaluation of conditional quantile forecasts as considered in [START_REF] Giacomini | Evaluation and combination of conditional quantile forecasts[END_REF]. That approach focuses on the predictive accuracy of point forecasts for a specific quantile of interest, such as the VaR at a certain level, whereas the conditional and censored likelihood scoring rules intend to cover a broader region of the density. We do not claim that our methodology is a substitute for the quantile forecast evaluation test (or any other predictive accuracy test), but suggest that they may be used in a complementary way. [START_REF] Gneiting | Comparing density forecasts using threshold and quantile weighted scoring rules[END_REF] independently also address the tendency of the weighted LR test of [START_REF] Amisano | Comparing density forecasts via weighted likelihood ratio tests[END_REF] to favor density forecasts with more probability mass in the region of interest, but from a quantile forecast evaluation perspective. They point out that this tendency is a consequence of the scoring rule not being proper [START_REF] Winkler | Good probability assessors[END_REF][START_REF] Gneiting | Strictly proper scoring rules, prediction and estimation[END_REF], meaning that an incorrect density forecast may receive a higher average score than the true conditional density. Exactly this gives rise to the problem of spuriously favoring densities with more probability mass in the region of interest. As an alternative [START_REF] Gneiting | Comparing density forecasts using threshold and quantile weighted scoring rules[END_REF]propose weighted quantile scoring rules. Our aim in this paper is different in that we specifically want to find alternative scoring rules that generalize the unweighted likelihood scoring rule. The two main reasons for pursuing this are, first, that likelihood-based score differences are invariant under transformations of the outcome space and, second, that they lead to LR statistics, which are known to have optimal power properties, as emphasized by [START_REF] Berkowitz | Testing density forecasts, with applications to risk management[END_REF] in the context of density forecast evaluation.

The remainder of this paper is organized as follows. In Section 2, we discuss conventional scoring rules based on the KLIC divergence for evaluating density forecasts and illustrate the problem with the resulting LR tests in case the logarithmic scores are weighted to focus on a particular region of interest. In Section 3 we put forward our alternative scoring rules based on conditional and censored likelihood and show analytically that the new scoring rules are proper. We assess the finite sample properties of tests of equal predictive accuracy of density forecasts based on the different scoring rules by means of extensive Monte Carlo simulation experiments in Section 4. We provide an empirical application concerning density forecasts for daily S&P 500 returns in Section 5, demonstrating the practical usefulness of the new scores. We summarize and conclude in Section 6.

Scoring rules for evaluating density forecasts

We consider a stochastic process {Z t : Ω → R k+1 } T t=1 , defined on a complete probability space

(Ω, F, P), and identify Z t with (Y t , X t ) , where Y t : Ω → R is the real valued random variable of interest and X t : Ω → R k is a vector of observable predictor variables. The information set at time t is defined as F t = σ(Z 1 , . . . , Z t ) . We consider the case where two competing forecast methods are available, each producing one-step ahead density forecasts, i.e. predictive densities of Y t+1 , based on F t .

The competing density forecasts of Y t+1 are denoted by the probability density functions (pdfs) ft (y)

and ĝt (y), respectively. As in [START_REF] Amisano | Comparing density forecasts via weighted likelihood ratio tests[END_REF], by 'forecast method' we mean the set of choices that the forecaster makes at the time of the prediction, including the variables X t , the econometric model (if any), and the estimation method. The only requirement that we impose on the forecast methods is that the density forecasts depend only on a finite number m of most recent observations Z t-m+1 , . . . , Z t . Forecast methods of this type arise naturally, for instance, when density forecasts are obtained from time series regression models, for which parameters are estimated with a moving window of m observations. The reason for focusing on forecast methods rather than on forecast models is that this allows for treating parameter estimation uncertainty as an integral part of the density forecasts. Requiring the use of a finite (rolling) window of m past observations for parameter estimation then considerably simplifies the asymptotic theory of tests of equal predictive accuracy, as demonstrated by [START_REF] Giacomini | Tests of conditional predictive ability[END_REF]. It also turns out to be convenient as it enables comparison of density forecasts based on both nested and non-nested models, in contrast to other approaches such as [START_REF] West | Asymptotic inference about predictive ability[END_REF].

Our interest lies in comparing the relative performance of the one-step-ahead density forecasts ft (y)

and ĝt (y). One of the approaches that has been put forward for this purpose is based on scoring rules, which are commonly used in probability forecast evaluation, see [START_REF] Diebold | Forecast evaluation and combination[END_REF]. In the current context, a scoring rule is a loss function S * ( ft ; y t+1 ) depending on the density forecast and the actually observed value y t+1 , such that a density forecast that is 'better' receives a higher score. Of course, what is considered to be a better forecast among two competing incorrect forecasts depends on the measure used to quantify divergences between distributions. However, as argued by Diebold et al.

(1998) and [START_REF] Granger | Economic and statistical measures of forecast accuracy[END_REF], any rational user would prefer the true conditional density p t of Y t+1 over an incorrect density forecast. This suggests that it is natural to focus, if possible, on scoring rules that are such that incorrect density forecasts ft do not receive a higher average score than the true conditional density, that is,

E t S( ft ; Y t+1 ) ≤ E t (S(p t ; Y t+1 )) , for all t.
Following [START_REF] Gneiting | Strictly proper scoring rules, prediction and estimation[END_REF], a scoring rule satisfying this condition will be called proper.

It is useful to note that the correct density p t includes true parameters (if any). In practice, density forecasts typically involve estimated parameters. This implies that even if the density forecast ft is based on a correctly specified model, but the model includes estimated parameters, the average score The above may seem to suggest that the notion of properness of scoring rules is of limited relevance in practice. Nevertheless, it does appear to be a desirable characteristic. Proper scoring rules are such that density forecasts receive a higher score when they approximate the true conditional density more closely, for example in the Kullback-Leibler sense as with the logarithmic score (2) discussed below. We have to keep in mind though that in the presence of nonvanishing estimation uncertainty, as accounted for in the adopted framework of [START_REF] Giacomini | Tests of conditional predictive ability[END_REF], this may be a density forecast based on a misspecified model.

E t S( ft ; Y t+1 )
Given a scoring rule of one's choice, there are various ways to construct tests of equal predictive ability. [START_REF] Giacomini | Tests of conditional predictive ability[END_REF] distinguish tests for unconditional predictive ability and conditional predictive ability. In the present paper, for clarity of exposition, we focus on tests for unconditional predictive ability. 3 Assume that two competing density forecasts ft and ĝt and corresponding realizations of the variable Y t+1 are available for t = m, m + 1, . . . , T -1. We may then compare ft and ĝt based on their average scores, by testing formally whether their difference is statistically significant. Defining the score difference

d * t+1 = S * ( ft ; y t+1 ) -S * (ĝ t ; y t+1 ),
for a given scoring rule S * , the null hypothesis of equal scores is given by

H 0 : E(d * t+1 ) = 0, for all t = m, m + 1, . . . , T -1. Let d * m,n denote the sample average of the score differences, that is, d * m,n = n -1 T -1 t=m d * t+1 with n = T -m.
In order to test H 0 against the alternative H a : E d * m,n = 0, (or < 0 or > 0) we may use a [START_REF] Diebold | Comparing predictive accuracy[END_REF] type statistic Theorem 1 The statistic t m,n in (1) is asymptotically (as n → ∞ with m fixed) standard normally distributed under the null hypothesis if: (i) {Z t } is φ-mixing of size -q/(2q -2) with q ≥ 2, or αmixing of size -q/(q -2) with q > 2;

t m,n = d * m,n σ2 m,n /n , (1) 
(ii) E|d * t+1 | 2q < ∞ for all t; and (iii) σ 2 m,n = Var √ n d * m,n > 0
for all n sufficiently large.

Proof: This is Theorem 4 of [START_REF] Giacomini | Tests of conditional predictive ability[END_REF], where a proof can also be found. 2

The proof of this theorem as given by [START_REF] Giacomini | Tests of conditional predictive ability[END_REF] is based on the central limit theorems for dependent heterogeneous processes given in [START_REF] Wooldridge | Some invariance principles and central limit theorems for dependent heterogeneous processes[END_REF]. The conditions in Theorem 1 are rather weak in that they allow for nonstationarity and heterogeneity. However, note that conditions (i) and (ii) jointly imply the existence of at least the fourth moment of d * t+1 for all t.

3 The above inequality in terms of conditional expectations implies the same inequality in terms of unconditional expecta-

tions, that is, E " Et " S( ft; Yt+1) "" ≤ E (Et (S(pt; Yt+1))) ⇒ E " S( ft; Yt+1) " ≤ E (S(pt; Yt+1))
Theorem 1.3 of [START_REF] Merlevède | The functional central limit theorem under the strong mixing condition[END_REF] shows that asymptotic normality can also be achieved under weaker distributional assumptions (existence of the second moment plus a condition relating the behavior of the tail of the distribution of |d * t+1 | to the mixing rate). However, strict stationarity is assumed by [START_REF] Merlevède | The functional central limit theorem under the strong mixing condition[END_REF]. The conditions required for asymptotic normality of normalized partial sums of dependent heterogeneous random variables have been further explored by [START_REF] Jong | Central limit theorems for dependent heterogeneous random variables[END_REF].

2.1 The logarithmic scoring rule and the Kullback-Leibler information criterion [START_REF] Mitchell | Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR 'fan' charts of inflation[END_REF], [START_REF] Amisano | Comparing density forecasts via weighted likelihood ratio tests[END_REF], and [START_REF] Bao | A test for density forecast comparison with applications to risk management[END_REF][START_REF] Bao | Comparing density forecast models[END_REF] focus on the logarithmic scoring rule

S l ( ft ; y t+1 ) = log ft (y t+1 ), (2) 
assigning a high score to a density forecast if the observation y t+1 falls within a region with high predictive density ft , and a low score if it falls within a region with low predictive density. Based on the n observations available for evaluation, y m+1 , . . . , y T , the density forecasts ft and ĝt can be ranked according to their average scores n -1 T -1 t=m log ft (y t+1 ) and n -1 T -1 t=m log ĝt (y t+1 ). The density forecast yielding the highest average score would obviously be the preferred one. The sample average of the log score differences d l t+1 = log ft (y t+1 ) -log ĝt (y t+1 ) may be used to test whether the predictive accuracy is significantly different, using the test statistic defined in (1). Note that this coincides with the log-likelihood ratio of the two competing density forecasts.

Intuitively, the logarithmic scoring rule is closely related to information theoretic goodness-of-fit measures such as the Kullback-Leibler Information Criterion (KLIC), which for the density forecast ft is defined as

KLIC( ft ) = E t log p t (Y t+1 ) -log ft (Y t+1 ) = ∞ -∞ p t (y t+1 ) log p t (y t+1 ) ft (y t+1 ) dy t+1 , (3) 
where p t denotes the true conditional density. Obviously, a higher expected value (with respect to the true density p t ) of the logarithmic score in (2) is equivalent to a lower value of the KLIC in (3). Under the constraint ∞ -∞ ft (y) dy = 1, the expectation of log ft (Y t+1 ) with respect to the true density p t is maximized by taking ft = p t . This follows from the fact that for any density ft different from p t ,

E t log ft (Y t+1 ) p t (Y t+1 ) ≤ E t ft (Y t+1 ) p t (Y t+1 ) -1 = ∞ -∞ p t (y) ft (y) p t (y) dy -1 = 0,
where the inequality follows from applying log x ≤ x -1 to ft /p t .

It thus follows that the quality of a normalized density forecast ft can be measured properly by the log-likelihood score S l ( ft ; y t+1 ) and, equivalently, by the KLIC in (3). An advantage of the KLIC is that it has an absolute lower bound equal to zero, which is achieved if and only if the density forecast ft is identical to the true distribution p t . As such, its value provides a measure of the divergence between the candidate density ft and p t . However, since p t is unknown, the KLIC cannot be evaluated directly (but we return to this point below). We can nevertheless use the KLIC to measure the relative accuracy of two competing densities, as discussed in [START_REF] Mitchell | Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR 'fan' charts of inflation[END_REF] and [START_REF] Bao | A test for density forecast comparison with applications to risk management[END_REF][START_REF] Bao | Comparing density forecast models[END_REF]. Taking the difference KLIC(ĝ t ) -KLIC( ft ) the term E t (log p t (Y t+1 )) drops out, solving the problem that the true density p t is unknown. This in fact renders the logarithmic score difference d l t+1 = log ft (y t+1 )log ĝt (y t+1 ).

Summarizing the above, the null hypothesis of equal average logarithmic scores for the density forecasts ft and ĝt actually corresponds with the null hypothesis of equal KLICs. Given that the KLIC measures the divergence of the density forecasts from the true density, the use of the logarithmic scoring rule boils down to assessing which of the competing densities comes closest to the true distribution. [START_REF] Bao | A test for density forecast comparison with applications to risk management[END_REF][START_REF] Bao | Comparing density forecast models[END_REF] discuss an extension to compare multiple density forecasts based on their KLIC values, where the null hypothesis is that none of the available density forecasts is more accurate than a given benchmark, in the spirit of the reality check of [START_REF] White | A reality check for data snooping[END_REF]. [START_REF] Mitchell | Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR 'fan' charts of inflation[END_REF] and [START_REF] Hall | Combining density forecasts[END_REF] also use the relative KLIC values as a basis for combining density forecasts.

It is useful to note that both [START_REF] Mitchell | Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR 'fan' charts of inflation[END_REF] and [START_REF] Bao | A test for density forecast comparison with applications to risk management[END_REF][START_REF] Bao | Comparing density forecast models[END_REF] employ the KLIC for testing the null hypothesis of an individual density forecast being correct, that is, H 0 : KLIC( ft ) = 0. The problem that the true density p t in (3) is unknown then is circumvented by using the result established by [START_REF] Berkowitz | Testing density forecasts, with applications to risk management[END_REF] that the KLIC of the density forecast ft relative to p t is equal to the KLIC of the density of the inverse normal transform of the PIT of ft relative to the standard normal density. Defining z f ,t+1 = Φ -1 ( Ft (y t+1 )) with Ft (y t+1 ) = y t+1

-∞ ft (y) dy and Φ the standard normal distribution function, it holds true that

log p t (y t+1 ) -log ft (y t+1 ) = log q t (z f ,t+1 ) -log φ(z f ,t+1 ),
where q t is the true conditional density of z f ,t+1 and φ is the standard normal density. This result states that the logarithmic scores are invariant to the inverse normal transform of y t+1 , which is essentially a consequence of the general invariance of likelihood ratios under smooth coordinate transformations. Of course, in practice the density q t is not known either, but it may be estimated using a flexible density function. The resulting KLIC estimate then allows testing for departures of q t from the standard normal.

Weighted logarithmic scoring rules

In empirical applications of density forecasting it frequently occurs that a particular region of the density is of most interest. For example, in risk management applications such as VaR and ES estimation, an accurate description of the left tail of the distribution of asset returns obviously is of crucial importance.

In that context, it seems natural to focus on the performance of density forecasts in the region of interest and pay less attention to (or even ignore) the remaining part of the distribution.

Within the framework of scoring rules, an obvious way to pursue this is to construct a weighted scoring rule, using a weight function w t (y) to emphasize the region of interest (see [START_REF] Franses | Selecting a nonlinear time series model using weighted tests of equal forecast accuracy[END_REF] for a similar idea in the context of testing equal predictive accuracy of point forecasts). Along this line [START_REF] Amisano | Comparing density forecasts via weighted likelihood ratio tests[END_REF] propose the weighted logarithmic (wl) scoring rule S wl ( ft ; y t+1 ) = w t (y t+1 ) log ft (y t+1 ) (4)

to assess the quality of density forecast ft on a certain region defined by the properties of w t (y t+1 ). The weighted average scores n -1 T -1 t=m w t (y t+1 ) log ft (y t+1 ) and n -1 T -1 t=m w t (y t+1 ) log ĝt (y t+1 ) can be used for ranking two competing forecasts, while the weighted score difference

d wl t+1 = S wl ( ft ; y t+1 ) -S wl (ĝ t ; y t+1 ) = w t (y t+1 )(log ft (y t+1 ) -log ĝt (y t+1 )), (5) 
forms the basis for testing the null hypothesis of equal weighted scores, H 0 : E d wl t+1 = 0, for all t = m, m + 1, . . . , T , by means of a Diebold-Mariano type statistic of the form (1).

For the sake of argument it is instructive to consider the case of a 'threshold' weight function w t (y) = I(y ≤ r), with a fixed threshold r, where I(A) = 1 if the event A occurs and zero otherwise. This is a simple example of a weight function we might consider for evaluation of the left tail in risk management applications. In this case, however, the weighted logarithmic score results in predictive ability tests that are biased towards densities with more probability mass in the left tail. This can be seen by considering the situation where ĝt (y) > ft (y) for all y smaller than some given value y * , say.

Using w t (y) = I(y ≤ r) for some r < y * in (4) implies that the weighted score difference d wl t+1 in ( 5) is never positive, and strictly negative for observations below the threshold value r, such that E(d wl t+1 )

is negative. Obviously, this can have far-reaching consequences when comparing density forecasts with different tail behavior. In particular, it may happen that a (relatively) fat-tailed distribution ĝt is favored over a thin-tailed distribution ft , even if the latter is the true distribution from which the data are drawn, as the following example illustrates.

Figure 1 about here

Example 1 Suppose we wish to compare the accuracy of two density forecasts for Y t+1 , one being the standard normal distribution with pdf

ft (y) = (2π) -1 2 exp(-y 2 /2),
and the other being the Student-t distribution with ν degrees of freedom, standardized to unit variance, with pdf ,n can never be positive and will be strictly negative whenever there are observations in the tail. Evidently, the test of equal predictive accuracy will then favor the fat-tailed Student-t density ĝt (y), even if the true density is the standard normal ft (y). 2

ĝt (y) = Γ ν+1 2 (ν -2)πΓ( ν 2 ) 1 + y 2 (ν -2) -(ν+1)/2 , with ν > 2.

Weighted probability scores

The issue we are signalling has been reported independently by [START_REF] Gneiting | Comparing density forecasts using threshold and quantile weighted scoring rules[END_REF]. As they point out, the wl score does not satisfy the properness property, in the sense that there can be incorrect density forecasts ft that receive a higher average score than the actual conditional density p t . As a consequence, the associated test of equal predictive accuracy could even suggest that the incorrect density forecast is significantly better than the true density.

As discussed before, it seems reasonable to focus on proper scoring rules to avoid such inconsistencies. However, there are many different proper scoring rules one might use, raising the question which rules are suitable candidates in practice. Our main reason to focus on KLIC-based scoring rules is the close connection with likelihood ratio tests, which are known to perform well in many statistical settings.

As mentioned before, the test for equal predictive ability based on the logarithmic scoring rule is nothing but a likelihood ratio test.

Before introducing our proper likelihood-based scoring rules, we briefly summarize the scoring rules proposed by [START_REF] Gneiting | Comparing density forecasts using threshold and quantile weighted scoring rules[END_REF], which may also be used for comparing density forecasts in specific regions of interest. Their starting point is the continuous ranked probability score (CRPS), which for the density forecast ft is defined as

CRPS( ft , y t+1 ) = ∞ -∞ PS( Ft (r), I(y t+1 ≤ r)) dr, (6) 
where

PS( Ft (r), I(y t+1 ≤ r)) = (I(y t+1 ≤ r) -Ft (r)) 2
is the Brier probability score for the probability forecast

Ft (r) = r -∞ ft (y)dy of the event Y t+1 ≤ r.
Equivalently, the CRPS may be written in terms of α-quantile forecasts qt,α = F -1 t (α), as

CRPS( ft , y t+1 ) = 1 0 QS α (q t,α , y t+1 ) dα, (7) 
where

QS α (q t,α , y t+1 ) = 2(α -I(y t+1 < qt,α ))(y t+1 -qt,α )
is the quantile score (also known as the 'tick' or 'check' score) function, see also [START_REF] Giacomini | Evaluation and combination of conditional quantile forecasts[END_REF]. As suggested by [START_REF] Gneiting | Comparing density forecasts using threshold and quantile weighted scoring rules[END_REF], the CRPS in ( 7) may be generalized to emphasize certain regions of interest in the evaluation of density forecasts. Specifically, a weighted quantile scoring rule (wqs) may be defined as

S wqs ( ft ; y t+1 ) = - 1 0 v(α)QS α (q t,α , y t+1 ) dα,
where v(α) is a nonnegative weight function on the unit interval and the minus sign on the right-hand side is inserted such that density forecasts with higher scores are preferred. Similarly, a weighted probability score (wps) is obtained from (6) as

S wps ( ft ; y t+1 ) = - ∞ -∞ w t (r)PS( Ft (r), I(y t+1 ≤ r)) dr, (8) 
for some weight function w t . Note that the same wps scoring rule was proposed by Corradi and Swanson (2006b) for evaluating density forecasts in case a specific region of the density is of interest rather than its whole support. In the Monte Carlo simulations in Section 4, we include Diebold-Mariano type tests based on S wps ( ft ; y t+1 ) for comparison purposes.

3 Scoring rules based on conditional and censored likelihood KLIC-based scoring rules for evaluating and comparing density forecasts in a specific region of interest A t ⊂ R can be obtained in a relatively straightforward manner. Specifically, it is natural to replace the full likelihood in (2) either by the conditional likelihood, given that the observation lies in the region of interest, or by the censored likelihood.

The conditional likelihood (cl) score function, given a region of interest A t , is given by

S cl ( ft ; y t+1 ) = I(y t+1 ∈ A t ) log ft (y t+1 ) At ft (s)ds . ( 9 
)
The main argument for using this scoring rule would be to evaluate density forecasts based only on their behavior in the region of interest A t . The division by At ft (s)ds serves the purpose of normalizing the density on the region of interest, such that competing density forecasts can be compared in terms of their relative KLIC-values, as discussed before.

However, due to this normalization, the cl scoring rule does not take into account the accuracy of the density forecast for the total probability of the region of interest. For example, in case A t is the left tail y t+1 ≤ r, the conditional likelihood ignores whether the tail probability implied by ft matches with the frequency at which tail observations actually occur. As a result, the scoring rule in (9) attaches comparable scores to density forecasts that have similar tail shapes but may have completely different tail probabilities. This tail probability is obviously relevant for risk management purposes, in particular for VaR evaluation, and therefore it would be useful to include it in the density forecast evaluation. This can be achieved by using the censored likelihood (csl) score function, given by

S csl ( ft ; y t+1 ) = I(y t+1 ∈ A t ) log ft (y t+1 ) + I(y t+1 ∈ A c t ) log A c t ft (s)ds , (10) 
where A c t is the complement of A t . This scoring rule uses the likelihood associated with having an observation outside the region of interest, but apart from that ignores the shape of ft outside A t . In that sense this scoring rule is similar to the log-likelihood used in the Tobit model for random variables that cannot be observed above a certain threshold value (see [START_REF] Tobin | Estimation of relationships for limited dependent variables[END_REF].

The conditional and censored likelihood scoring rules as discussed above focus on a sharply defined region of interest A t . It is possible to adapt these score functions in order to emphasize certain parts of the outcome space more generally, by going back to the original idea of using a weight function w t (y)

as in (4). For this purpose, note that by setting w t (y) = I(y ∈ A t ) the scoring rules in ( 9) and (10) can be rewritten as

S cl ( ft ; y t+1 ) = w t (y t+1 ) log ft (y t+1 ) w t (s) ft (s)ds , (11) 
and

S csl ( ft ; y t+1 ) = w t (y t+1 ) log ft (y t+1 ) + (1 -w t (y t+1 )) log 1 -w t (s) ft (s)ds . ( 12 
)
At this point, we make the following assumptions. Assumption 1 ensures that the expected score differences for the competing density forecasts are finite.

Assumption 2 (c) is needed to avoid cases where w t (y) takes strictly positive values only outside the support of the data.

The following lemma shows that the generalized cl and csl scoring rules in ( 11) and ( 12) are proper, and hence cannot lead to spurious rejections against wrong alternatives just because these have more probability mass in the region(s) of interest.

Lemma 1 Under Assumptions 1 and 2, the generalized conditional likelihood scoring rule given in (11)

and the generalized censored likelihood scoring rule given in (12) are proper.

The proof of this Lemma is given in Appendix A. The proof clarifies that the scoring rules in ( 11) and ( 12) can be interpreted in terms of Kullback-Leibler divergences between weighted versions of the density forecast and the actual density.

We may test the null hypothesis of equal performance of two density forecasts ft (y t+1 ) and ĝt (y t+1 )

based on the conditional likelihood score ( 11 To illustrate the behavior of the scoring rules obtained under smooth weight functions we consider the logistic weight function

w t (y) = 1/(1 + exp(a(y -r))) with a > 0. ( 13 
)
This sigmoidal function changes monotonically from 1 to 0 as Y t+1 increases, while w t (r) = 1 2 and the slope parameter a determines the speed of the transition. In the limit as a → ∞, the threshold weight function I(y ≤ r) is recovered. We fix the center at r = -2. 13) converges to a constant equal to 1 2 for all values of y, so that w t (y)-(1-w t (y)) → 0, and moreover w t (y) ft (y) dy = w t (y)ĝ t (y) dy → 1 2 .

Consequently, both scoring rules converge to the unconditional likelihood (up to a constant factor 2) and the relative scores d cl t+1 and d csl t+1 have the limit 1 2 (log ft (y t+1 ) -log ĝt (y t+1 )).

2

We close this section with some remarks on the weight function w t (y) defining the region that is emphasized in the density forecast evaluation. The conditional and censored likelihood scoring rules may be applied with arbitrary weight functions, subject to the conditions stated in Lemma 1. The appropriate choice of w t (y) obviously depends on the interests of the forecast user. The threshold (or logistic) weight function considered in the example above seems a natural choice in risk management applications, as the left tail behavior of the density forecast is of most concern there. In other applications however the focus may be on different regions. For example, for monetary policymakers aiming to keep inflation within a certain range, the central part of the density may be of most interest, suggesting a weight function such as w t (y) = I(r l ≤ y ≤ r u ), for certain lower and upper bounds r l and r u .

The preceding implies that essentially it is also up to the forecast user to set the parameter(s) in the weight function, such as the threshold r in w t (y) = I(y ≤ r). For example, when Y t represents the return on a given portfolio, r may be set equal to a certain quantile of the return distribution such that it corresponds with a target VaR level. In practice, r will then have to be estimated from historical data and might be set equal to the particular quantile of the m observations in the moving window that is used for constructing the density forecast at time t. This makes the weight function dynamic, i.e.

w t (y) = I(y ≤ r t ), while it also involves estimation uncertainty, namely in the threshold r t . As shown by Lemma 1, as long as the weight function w t is conditionally (given F t ) independent of Y t+1 , the properness property of the conditional and censored likelihood scoring rules is not affected. However, nonvanishing estimation uncertainty in the threshold may affect the power of the test of equal predictive accuracy. In Section 4.3, we verify this numerically with Monte Carlo simulations.

Monte Carlo simulations

In this section we examine the implications of using the weighted logarithmic scoring rule in (4), the conditional likelihood score in (11), the censored likelihood score in (12), and the weighted probability score in (8) for constructing a test of equal predictive ability of two competing density forecasts in finite samples. Specifically, we consider the size and power properties of the Diebold-Mariano type statistic as given in (1) for testing the null hypothesis that the two competing density forecasts have equal expected scores, or . We focus on one-sided rejection rates to highlight the fact that some of the scoring rules may favor a wrong density forecast over a correct one.

H 0 : E d * t+1 =
Concerning the implementation of the wps rule in (8), it is useful to note that it is in fact not essential for the properness of this score function to use an integral. As mentioned by [START_REF] Gneiting | Comparing density forecasts using threshold and quantile weighted scoring rules[END_REF], a weighted sum over a finite number of y-values also renders a suitable scoring rule. With this in mind, we do not attempt to obtain an accurate numerical approximation to the integral in (8), which is computationally very demanding, but simply use a discretized version with a discretization step of the y-variable of 0.1.

Initially, we examine the size and power properties of the test of equal predictive ability in an environment that does not involve parameter estimation uncertainty in Sections 4.1 and 4.2, to demonstrate the pitfalls when using wl scoring rule and the benefits of the cl and csl alternatives most clearly. The role of estimation uncertainty, both in the density forecasts and in the weighting function, are addressed explicitly in Section 4.3.

Size

In order to assess the size properties of the tests a case is required with two competing predictive densities that are both 'equally (in)correct'. However, whether or not the null hypothesis of equal predictive ability holds depends on the weight function w t (y) that is used in the scoring rules. This complicates the simulation design, given the fact that we would like to examine how the behavior of the tests depends on the specific settings of the weight function. values of n show that this holds even for sample sizes as small as n = 100 observations. Hence, the size properties of the predictive ability test appear to be satisfactory.

Power

We evaluate the power of the test based on the various scoring rules by performing simulation experiments where one of the competing density forecasts is correct, i.e. corresponds exactly with the underlying DGP. In that case the true density always is the best possible one, regardless of the region for which the densities are evaluated, that is, regardless of the weight function used in the scoring rules. Given that our main focus in this paper has been on comparing density forecasts in the left tail, in these experiments we first return to the threshold weight function w t (y) = I(y ≤ r).

In order to make the rejection frequencies of the null obtained for different values of r more comparable, we make the sample size n dependent on the threshold value in such a way that the expected number of observations in the region of interest, denoted by c, is constant across the various values of r.

This is achieved by setting n = c/P(Y < r). Given that in typical risk management applications there may be only a few tail observations, we consider relatively small values of c. Figure 7 about here Several interesting conclusions emerge from these graphs. First, the power of the wl scoring rule depends strongly on the threshold parameter r. For the normal DGP, for example, the test has excellent power for values of r between -2 and 0, but for more negative threshold values the rejection rates against the correct alternative drop to zero. In fact, for threshold values less than -2, we observe substantial spurious power in the form of rejection against the incorrect alternative of superior predictive ability of the Student-t density. Comparing Figures 5 and6 shows that this is not a small sample problem. In fact, the spurious power for the wl rule increases as the sample size becomes larger. This behavior of the test based on the wl scoring rule for large negative values of r can be understood from the bottom graph of Figure 1, showing that the logarithmic score is higher for the Student-t density than for the normal density for all values of y below -2.5, approximately. To understand the non-monotonic nature of these power curves more fully, we use numerical integration to obtain the expected relative score E d wl t+1 for various values of the threshold r for i.i.d. standard normal data. The results are shown in Figure 7. It can be observed that the mean changes sign several times, in exact accordance with the patterns in the top panels of Figures 5 and6. Whenever the mean score difference (computed as the score of the standard normal minus the score of the standardized Student-t(5) density) is positive the associated test has high power, while it has high spurious power for negative mean scores. The wl scoring rule thus cannot be relied upon for discriminating between competing density forecasts. For example, a rejection of the null hypothesis in favor of superior predictive accuracy of the Student-t density for r ≈ -2.5 could be due to the considerable 'true' power of the test, as shown in the bottom-right graph in Figure 6. However, it may equally likely be the result of the spurious power problem shown in the bottom-left graph.

Second, the top-right and bottom-left panels of Figure 5 suggest that the wps, cl and csl scores also display some spurious power for certain regions of threshold values. However, in stark contrast to the weighted logarithmic scoring rule, this appears to be due to the extremely small sample size, as it quickly disappears as c increases. Already for c = 40 the rejection rates for these scoring rules against the incorrect alternative remain below the nominal significance level of 5%, see Figure 6. This clearly demonstrates the advantage of using a proper scoring rule for comparing the predictive accuracy of density forecasts.

Third, for small values of the threshold r the power for the csl scoring rule is higher than that of the cl rule, for the standard normal (top left panel) as well as for the standardized Student-t(5) distributions (bottom right panel), especially for c = 5 (see Figure 5). Obviously, the additional information concerning the coverage probability of the left tail region helps to distinguish between the competing density forecasts, in particular when the number of observations in the region of interest is extremely small.

Fourth, for c = 5, the power of the different tests behaves similarly for large values of r. This should be expected on theoretical grounds for the wl, cl and csl scoring rules, since they become identical in the limit as r → ∞. This is not the case for the wps scoring rule though, so its similar power for large r might be coincidental. In fact, for c = 40 it is visible that the wps rule has slightly deviating power from the other rules for large r; it is somewhat smaller for the normal DGP (top left panel of Figure 6) while it appears to be somewhat larger for the Student-t( 5) DGP (lower right panel of Figure 6). 

Estimation uncertainty and time-varying weight functions

In the remaining simulation experiments, we examine the effects of parameter estimation uncertainty.

We start with a simulation addressing the effect of non-vanishing estimation uncertainty on the tests of equal predictive accuracy. In particular, we demonstrate that a forecast method using an incorrect model specification but with limited estimation uncertainty may produce a better density forecast than a forecast method based on the correct model specification but having larger estimation uncertainty.

For brevity, we focus only on the (unweighted) logarithmic scoring rule (2). The results generalize to other scoring considered in the paper. The data generating process is the following AR(2) specification:

y t = 0.8y t-1 + 0.05y t-2 + ε t , ε t ∼ i.i.d
. N(0, 1). We compare the predictive accuracy of the AR(2) specification, which is correct up to two estimated parameters, against a more parsimonious, but incorrect AR(1) specification with one parameter to be estimated. The parameters are estimated by MLE. Recall that we work under a rolling forecast scheme, where the size of the estimation window m is fixed, so that the estimation uncertainty does not vanish asymptotically. Table 1 shows one-sided rejection rates of the test of the equal predictive density for different rolling estimation window sizes m against the alternatives that the average log-score is higher for the AR(2) model relative to the AR(1) model and vice versa. For small estimation windows, m = 100; 250, the estimation uncertainty is relatively important and the test often indicates that the incorrectly specified, but more parsimonious AR(1) model produces better density forecasts. For intermediate values m = 500; 1, 000 the test generally does not reject the null of equal predictive accuracy. For very large estimation windows with m = 2, 500; 5, 000, the estimation error is small enough for the test to favor the correctly specified AR(2) model. We can summarize that with small estimation samples, the density forecasts from the AR(1) model approximate the true density forecast more closely, on average, and this is rightfully detected by the log-score and the associated test.

Table 1 about here Next, in addition to parameter estimation uncertainty in the density forecasts, we investigate the effect of using a weight function that is time-varying and depends on estimated parameters. In particular, we use a threshold weight function w t (y) = I(y ≤ rα t ), where the threshold rα t is given by the empirical α-quantile obtained from a finite window of past observations. As shown by Lemma 1, the cl and csl scoring rules in (11) and in ( 12) remain proper in this case and the properties of the associated tests of equal predictive accuracy should not be affected.

We focus on a DGP which is more relevant for finance applications. The DGP is taken to be a GARCH(1,1) process, specified as y t = √ h t η t , with h t = 0.01 + 0.1y 2 t-1 + 0.8h t-1 and {η t } an i.i.d.

standard normal sequence. We evaluate the performance of the available scoring rules in identifying the correctly specified GARCH density forecast when compared with an alternative density forecast, which differs only in the specification of the distribution of the standardized innovations η t . Specifically, the alternative specification assumes a standardized Student-t(5) distribution for η t . The model for the conditional volatility is correctly specified in both forecast methods, up to the unknown parameters.

The GARCH parameters are estimated by MLE using a rolling window of m = 2, 000 observations and the threshold, rα t , is set equal to the empirical α-quantile of y t-m+1 , y t-m+2 , . . . , y t . Similarly to the previous experiments the number of observations for which density forecasts are constructed varies depending on the number of expected observations falling within the region of interest, i.e. n = c/α.

We report results for c = 40. 

Empirical illustration

We examine the empirical relevance of the proposed scoring rules in the context of the evaluation of density forecasts for daily stock index returns. We consider S&P 500 log-returns y t = ln(P t /P t-1 ), where P t is the closing price on day t, adjusted for dividends and stock splits. The sample period runs from January 1, 1980 until March 14, 2008, giving a total of 7,115 observations (source: Datastream).

For illustrative purposes we define two forecast methods based on GARCH models in such a way that a priori one of the methods is expected to be superior to the other. Examining a large variety of GARCH models for forecasting daily US stock index returns, [START_REF] Bao | Comparing density forecast models[END_REF] conclude that the accuracy of density forecasts depends more on the choice of the distribution of the standardized innovations than on the volatility specification. Therefore, we differentiate our forecast methods in terms of the innovation distribution, while keeping identical specifications for the conditional mean and the conditional variance.

We consider an AR(5) model for the conditional mean return together with a GARCH(1,1) model for the conditional variance, that is

y t = µ t + ε t = µ t + h t η t ,
where the conditional mean µ t and the conditional variance h t are given by

µ t = ρ 0 + 5 j=1 ρ j y t-j , h t = ω + αε 2 t-1 + βh t-1 ,
and the standardized innovations η t are i.i.d. with mean zero and variance one.

Following [START_REF] Bollerslev | A conditionally heteroskedastic time series model for speculative prices and rates of return[END_REF], a common finding in empirical applications of GARCH models has been that a normal distribution for η t is not sufficient to fully account for the kurtosis observed in stock returns. We therefore concentrate on leptokurtic distributions for the standardized innovations. Specifically, for one forecast method the distribution of η t is specified as a (standardized) Student-t distribution with ν degrees of freedom, while for the other forecast method we use the (standardized) Laplace distribution. Note that for the Student-t distribution the degrees of freedom ν is a parameter that is to be estimated. The degrees of freedom directly determines the value of the excess kurtosis of the standardized innovations, which is equal to 6/(ν -4) (assuming ν > 4). Due to its flexibility, the Student-t distribution has been widely used in GARCH modeling (see e.g. [START_REF] Bollerslev | A conditionally heteroskedastic time series model for speculative prices and rates of return[END_REF], [START_REF] Baillie | The message in daily exchange rates: A conditional-variance tale[END_REF]). The standardized Laplace distribution provides a more parsimonious alternative with no additional parameters to be estimated and has been applied in the context of conditional volatility modeling by [START_REF] Granger | Some properties of absolute return, an alternative measure of risk[END_REF] and [START_REF] Mittnik | Unconditional and conditional distributional models for the Nikkei index[END_REF]. The Laplace distribution has excess kurtosis of 3, which exceeds the excess kurtosis of the Student-t(ν) distribution for ν > 6. Because of the greater flexibility in modeling kurtosis, we may expect that the forecast method with Student-t innovations gives superior density forecasts relative to the Laplace innovations. This is indeed indicated by results in [START_REF] Bao | Comparing density forecast models[END_REF], who evaluate these density forecasts 'unconditionally', that is, not focusing on a particular region of the distribution.

Our evaluation of the two forecast methods is based on their one-step ahead density forecasts for daily returns, using a rolling window scheme for parameter estimation. The length of the estimation window is set to m = 2, 000 observations, so that the number of out-of-sample observations is equal to n = 5, 115. For comparing the density forecasts' accuracy we use the Diebold-Mariano type test based on the weighted logarithmic scoring rule in (4), the weighted probability scores in (8), the conditional likelihood in (11), and the censored likelihood in (12). We concentrate on the left tail of the distribution by using the threshold weight function w t (y) = I(y ≤ rα t ) for the wl, wps, cl and csl scoring rules. The predictive ability of the forecast method based on Laplace innovations, while for α = 0.1, it fails to reject the null of equal predictive ability. By contrast, the cl scoring rule suggests that the performance of the GARCH-t density forecasts is superior for all three values of α. The csl scoring rule points towards the same conclusion as the cl rule, although the evidence for better predictive ability of the forecast based on the GARCH-t specification is somewhat weaker. The wps rule also indicates the superior performance of the GARCH-t especially for α = 0.01, but evidence is weak when we consider less extreme quantiles α = 0.05 and 0.1. In the remainder of this section we seek to understand the reasons for these conflicting results, and explore the consequences of selecting either forecast method for risk management purposes.

In addition, this allows us to obtain circumstantial evidence that shows which of the two competing forecast methods is most appropriate.

Figure 10 about here For most estimation windows, the degrees of freedom parameter in the Student-t distribution is estimated to be (slightly) larger than 6, such that the Laplace distribution implies fatter tails than the Student-t distribution. Hence, it may very well be that the wl scoring rule indicates superior predictive ability of the Laplace distribution simply because this density has more probability mass in the region of interest, that is, the problem that motivated our analysis in the first place may be relevant here. To see this from a slightly different perspective, we compute one-day 90%, 95% and 99% VaR and ES estimates as implied by the two forecast methods. The 100 × (1 -α)% VaR is determined as the α-th quantile of the density forecast ft , that is, through

P f ,t Y t+1 ≤ VaR f ,t (α) = α. The ES is defined as the conditional mean return given that Y t+1 ≤ VaR f ,t (α), that is ES f ,t (α) = E f ,t Y t+1 |Y t+1 ≤ VaR f ,t (α) .
Figure 10 shows the VaR estimates against the realized returns. We observe that typically the VaR estimates based on the Laplace innovations are more extreme, confirming that it has fatter tails than the Student-t innovations. The same conclusion follows from the sample averages of the VaR and ES estimates, as

shown in Table 3.

The VaR and ES estimates also enable us to assess which of the two innovation distributions is the most appropriate in a different way. For that purpose, we first of all compute the frequency of 90%, 95% and 99% VaR violations, which should be close to 0.1, 0.05 and 0.01, respectively, if the innovation distribution is correctly specified. We compute the likelihood ratio (LR) test of correct unconditional coverage (CUC) suggested by [START_REF] Christoffersen | Evaluating interval forecasts[END_REF] to determine whether the empirical violation frequencies differ significantly from these nominal levels. Additionally, we use [START_REF] Christoffersen | Evaluating interval forecasts[END_REF] LR tests of independence of VaR violations (IND) and for correct conditional coverage (CCC). Define the indicator variables I f ,t+1 (y t+1 ≤ VaR f ,t (α)) for α = 0.1, 0.05 and 0.01, which take the value 1 if the condition in brackets is satisfied and 0 otherwise. Independence of the VaR exceedances is tested against a first-order Markov alternative, that is, the null hypothesis is given by H 0 :

E(I f ,t+1 |I f ,t ) = E(I f ,t+1 ).
In words, we test whether the probability of observing a VaR violation on day t + 1 is affected by observing a VaR violation on day t or not. The CCC test simultaneously examines the null hypotheses of correct unconditional coverage and of independence, with the CCC test statistic simply being the sum of the CUC and IND LR statistics. For evaluating the adequacy of the ES estimates we employ the test suggested by [START_REF] Mcneil | Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach[END_REF]. For every return y t+1 that falls below the VaR f ,t (α) estimate, define the standardized 'residual' e t+1 = (y t+1 -ES f ,t (α))/h t+1 , where h t+1 is the conditional volatility forecast obtained from the corresponding GARCH model. If the ES predictions are correct, the expected value of e t+1 is equal to zero, which can be assessed by means of a two-sided t-test with HAC variance estimator.

Table 3 about here

The results reported in Table 3 show that the empirical VaR exceedance probabilities are very close to the nominal levels for the Student-t innovation distribution. For the Laplace distribution, they are considerably lower for α = 0.05 and α = 0.01. This is confirmed by the CUC test, which for these quantiles convincingly rejects the null of correct unconditional coverage for the Laplace distribution but not for the Student-t distribution. The null hypothesis of independence is not rejected in any of the cases at the 5% significance level. Finally, the [START_REF] Mcneil | Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach[END_REF] test does not reject the adequacy of the 95% ES estimates for either of the two distributions, but it does for the 90% and 99% ES estimates based on the Laplace innovation distribution. In sum, the VaR and ES estimates suggest that the Student-t distribution is more appropriate than the Laplace distribution, confirming the density forecast evaluation results obtained with the conditional and censored likelihood scoring rules. In terms of risk management, using the GARCH-Laplace forecast method would lead to larger estimates of risk than the GARCH-t forecast method. This, in turn, could result in suboptimal asset allocation and 'over-hedging'.

Conclusions

In this paper we have developed new scoring rules based on conditional and censored likelihood for evaluating the predictive ability of competing density forecasts. It was shown that these scoring rules are useful when the main interest lies in comparing the density forecasts' accuracy for a specific region, such as the left tail in financial risk management applications. Directly weighting the (KLIC-based) logarithmic scoring rule is not suitable for this purpose. By construction this tends to favor density forecasts with more probability mass in the region of interest, rendering the tests of equal predictive accuracy biased towards such densities. Our novel scoring rules do not suffer from this problem.

We argued that likelihood-based scoring rules can be extended for comparing density forecasts on a specific region of interest by using the conditional likelihood, given that the actual observation lies in the region of interest, or the censored likelihood, with censoring of the observations outside the region of interest. Furthermore, we showed that the conditional and censored likelihood scoring rules can be extended in order to emphasize certain parts of the outcome space more generally by using smooth weight functions. Both scoring rules can be interpreted in terms of Kullback-Leibler divergences between weighted versions of the density forecast and the true conditional density.

Monte Carlo simulations demonstrated that the conventional scoring rules may indeed give rise to spurious rejections due to the possible bias in favor of an incorrect density forecast. This phenomenon is virtually non-existent for the new scoring rules, and where present, diminishes quickly upon increasing the sample size. When comparing the scoring rules based on conditional likelihood and censored likelihood it was found that the latter often leads to more powerful tests. This is due to the fact that more information is used by the censored likelihood scores. Additionally, the censored likelihood scoring rule outperforms the weighted probability score function of [START_REF] Gneiting | Comparing density forecasts using threshold and quantile weighted scoring rules[END_REF].

In an empirical application to S&P 500 daily returns we investigated the use of the various scoring rules for density forecast comparison in the context of financial risk management. It was shown that the weighted logarithmic scoring rule and the newly proposed scoring rules can lead to the selection of different density forecasts. The density forecasts preferred by the conditional and censored likelihood scoring rules appear to be more appropriate as they result in more accurate estimates of VaR and ES.

A Appendix

This Appendix provides a proof of Lemma 1. = log ft(yt+1)log ĝt(yt+1). The DGP is an AR(2) process: yt = 0.8yt-1 + 0.05yt-2 + εt,with εt ∼ i.i.d. N(0, 1). The competing density forecasts ft and ĝt are based on AR(2) and AR(1) specifications, respectively. The residuals in both specifications are assumed to be normally distributed and the coefficients are estimated using a moving window of m observations. The estimation window size is varied from m = 100 to 5, 000. The number of out-of-sample evaluations is n = 5, 000 and the number of replications is 10, 000. 11), and the censored likelihood (csl) in ( 12) for series of n = 2, 000 independent observations from a standard normal distribution. The scoring rules are based on the threshold weight function w t (y) = I(y ≤ r) with r = -2.5. The relative score is defined as the score for the (correct) standard normal density minus the score for the standardized Student-t(5) density. The graph is based on 10, 000 replications. Figure 5: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano type test statistic of equal predictive accuracy defined in (1) when using the weighted logarithmic (wl), the conditional likelihood (cl), and the censored likelihood (csl) scoring rules, under the threshold weight function w t (y) = I(y ≤ r) for c = 5 expected observations in the region of interest, based on 10,000 replications. For the graphs in the left and right columns, the DGP is i.i.d. standard normal and i.i.d. standardized Student-t(5), respectively. The test compares the predictive accuracy of the standard normal and the standardized Student-t(5) distributions. The graphs in the top (bottom) panels show rejection rates against superior predictive ability of the standard normal (standardized Student-t(5)) distribution, as a function of the threshold parameter r. 

Generalized

  may not achieve the upper bound E t (S(p t ; Y t+1 )) due to nonvanishing estimation uncertainty. This reflects the fact that a density forecast based on a misspecified model with limited estimation uncertainty may be preferred over a density forecast based on the correct model specification having larger estimation uncertainty. Section 4.3 illustrates this issue with a Monte Carlo simulation.

  where σ2 m,n is a heteroskedasticity and autocorrelation-consistent (HAC) variance estimator of σ 2 mThe following theorem characterizes the asymptotic distribution of the test statistic under the null hypothesis.

Figure 1

 1 Figure1shows these density functions for the case ν = 5, as well as the relative log-likelihood score log ft (y t+1 ) -log ĝt (y t+1 ). The relative score function is negative in the left tail (-∞, y * ), with y * ≈ -2.5. Now consider the situation that we have a sample y m+1 , . . . , y T of n observations from an unknown density on (-∞, ∞) for which ft (y) and ĝt (y) are competing candidates, and we use a threshold weight function w t (y) = I(y ≤ r), with fixed threshold r, to concentrate on the left tail. It follows from the lower panel of Figure1that if the threshold r < y * , the average weighted log-likelihood score difference d wl m,n can never be positive and will be strictly negative whenever there are observations

  ) or the censored likelihood score (12) in the same manner as before. That is, given a sample of density forecasts and corresponding realizations for n time periods t = m, m + 1, . . . , T -1, we may form the relative scores d cl t+1 = S cl ( ft ; y t+1 ) -S cl (ĝ t ; y t+1 ) and d csl t+1 = S csl ( ft ; y t+1 ) -S csl (ĝ t ; y t+1 ) and use these for computing Diebold-Mariano type test statistics as given in (1).
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  5 and vary the slope parameter a among the values 3, 4, 6, and 10. For a = 10, the logistic weight function is already very close to the threshold weight function I(y ≤ r), such that for larger values of a the score distributions essentially do not change anymore. The integrals w t (y) ft (y) dy and w t (y)ĝ t (y) dy are determined numerically by averaging over a large number (10 6 ) of simulated random variables Y t+1 with density ft and ĝt , respectively.

Figure 3

 3 Figure 3 about here

  0, for t = m, m + 1, . . . , T -1 under scoring rule * , where * is either wl, wps, cl or csl. As before m denotes the length of the rolling window used for constructing the density forecast and n = T -m denotes the number of forecasts. Throughout we use a HAC-estimator for the asymptotic variance of the average relative score d * m,n , that is σ2 m,n = γ0 + 2 K-1 k=1 a k γk , where γk denotes the lag-k sample covariance of the sequence {d * t+1 } T -1 t=m and a k are the Bartlett weights a k = 1 -k/K with K = n 1/4

  For the threshold weight function w t (y) = I(y ≤ r) it appears to be impossible to construct an example with two different density forecasts having identical predictive ability regardless of the value of r. We therefore evaluate the size of the tests when focusing on the central part of the distribution by means of the weight function w t (y) = I(-r ≤ y ≤ r). As mentioned before, in some cases this region of the distribution may be of primary interest, for instance to monetary policymakers targeting to keep inflation between certain lower and upper bounds. The data generating process (DGP) is taken to be i.i.d. standard normal, while the two competing density forecasts are normal distributions with different means equal to -0.2 and 0.2 and identical variance equal to 1. In this case, independent of the value of r the competing density forecasts have equal predictive accuracy, as the scoring rules considered here are invariant under a simultaneous reflection about zero of all densities of interest (the true conditional density as well as the density forecasts). In addition, it turns out that for this combination of DGP and predictive densities, the relative scores d * t+1 for the wl, cl and csl rules based on w t (y) = I(-r ≤ y ≤ r) are identical; observations outside the interval [-r, r] do not support evidence in favor of either density forecast, which is reflected in equal scores for the two forecasts, under any of the scoring rules considered.
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  time-varying threshold rα t is set equal to the empirical α-quantile of the return observations in the relevant estimation window, where we consider α = 0.10, 0.05 and 0.01. The score difference d * t+1 is computed by subtracting the score of the GARCH-Laplace density forecast from the score of the GARCH-t density forecast, such that positive values of d * t+1 indicate better predictive ability of the forecast method based on Student-t innovations. Table 2 about here Table 2 shows the average score differences d * m,n with the accompanying tests of equal predictive accuracy as in (1), where we use a HAC estimator for the asymptotic variance σ2 m,n to account for serial dependence in the d * t+1 series. The results clearly demonstrate that different conclusions follow from the different scoring rules. For thresholds based on α = 0.05 and 0.01 the wl scoring rule suggests superior

Figure 1 :Figure 2 :

 12 Figure 1: Probability density functions of the standard normal distribution ft (y t+1 ) and standardized Student-t(5) distribution ĝt (y t+1 ) (upper panel) and corresponding relative log-likelihood scores log ft (y t+1 ) -log ĝt (y t+1 ) (lower panel).
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 34 Figure 3: Empirical CDFs of mean relative scores d * m,n for the generalized conditional likelihood (cl)and censored likelihood (csl) scoring rules for series of n = 2, 000 independent observations from a standard normal distribution. The scoring rules are based on the logistic weight function w t (y) defined in (13) for various values of the slope parameter a. The relative score is defined as the score for (correct) standard normal density minus the score for the standardized Student-t(5) density. The graph is based on 10, 000 replications.
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 6789 Figure6: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano type test statistic of equal predictive accuracy defined in (1) when using the weighted logarithmic (wl), the conditional likelihood (cl), and the censored likelihood (csl) scoring rules, under the threshold weight function w t (y) = I(y ≤ r) for c = 40 expected observations in the region of interest, based on 10,000 replications. For the graphs in the left and right columns, the DGP is i.i.d. standard normal and i.i.d. standardized Student-t(5), respectively. Further details are identical to those given in Figure5.

Figure 10 :

 10 Figure 10: Daily S&P 500 log-returns (black) for the period December 2, 1987 -March 14, 2008 and out-of-sample 95% and 99% VaR forecasts derived from the AR(5)-GARCH(1,1) specification using Student-t innovations (light gray) and Laplace innovations (dark gray).

Table 1 :

 1 conditional likelihood score It is to be shown that E t (d cl t+1 (p t , ft )) ≥ 0, where d cl t+1 (p t , ft ) = S cl (p t ; Y t+1 ) -S cl ( ft , Y t+1 ). Define P t ≡ w t (s)p t (s) ds and Ft ≡ w t (s) ft (s) ds. The time-t conditional expected score difference for the density forecasts p t and ft is Generalized censored likelihood score If d csl t+1 (p t , ft ) = S csl (p t ; Y t+1 ) -S csl ( ft , Y t+1 ), then E t d csl t+1 (p t , ft ) = p t (y) log (p t (y)) wt(y) (1 -P t ) 1-wt(y) dy Tests of equal predictive accuracy under parameter estimation uncertainty The table presents one-sided rejection rates (at nominal significance level 5%) of the null hypothesis of equal predictive accuracy against the indicated alternative by the Diebold-Mariano type test statistic defined in (1) when using the logarithmic scoring rule (2), based on the sample average of the score difference d l t+1

	E t d cl t+1 (p t , ft )	=	p t (y) w t (y) log -p t (y) w t (y) log p t (y) P t	dy ft (y) Ft	dy
		= P t	w t (y)p t (y) P t	log	w t (y)p t (y)/P t w t (y) ft (y)/ Ft	dy
		= P t • K	w t (y)p t (y) P t	,	w t (y) ft (y) Ft	≥ 0,
	where K(•, •) represents the Kullback-Leibler divergence between the pdfs in its arguments, which is
	finite as a consequence of Assumption 1.			

Assumption 1 implies the existence of the Radon-Nikodym derivative of the density forecasts with respect to the true predictive density p t , i.e. 0 ft (y)/p t (y) < ∞ and 0ĝ t (y)/p t (y) < ∞, which in turn implies support( ft ) = support(ĝ t ) = support(p t ). This, together with Assumption 2 (c) guarantees that w t (y)p t (y)/P t and w t (y) ft (y)/ Ft can be interpreted as pdfs, while Assumption 2 (a) ensures that w t (y) can be treated as a given function of y in the calculation of the expectation, which is conditional on F t .

2 t ), Bin(1, Ft ) ≥ 0,

where K Bin(1, P t ), Bin(1, Ft ) is the Kullback-Leibler divergence between two Bernoulli distributions with succes probabilities P t and Ft , respectively. Assumption 2 (b), which requires w t (y) to be scaled between 0 and 1 for the csl rule, is essential for this interpretation because it implies that P t and Ft can be interpreted as probabilities.

Again, Assumptions1 and 2 (c) guarantee that w t (y)p t (y)/P t and w t (y) ft (y)/ Ft can be interpreted as pdfs, while Assumption 2 (a) ensures that w t (y) can be treated as a given function of y in the calculation of the expectation, which is conditional on F t .

2

Note:

Table 2 :

 2 Average score differences and tests of equal predictive accuracy The table presents the average score difference d * and the corresponding test statistics for the weighted logarithmic (wl) scoring rule in (4), the weighted probability score (wps) in (8), the conditional likelihood (cl) in (11), and the censored likelihood (csl) in (12). All scoring rules are based on the indicator weight function wt(y) = I(y ≤ rα t ), where rα t is the α-th quantile of the empirical (in-sample) CDF, where α = 0.1, 0.05 or 0.01. The score difference dt+1 is computed for density forecasts obtained from an AR(5)-GARCH(1,1) model with (standardized) Student-t(ν) innovations relative to the same model but with Laplace innovations, for daily S&P500 returns over the evaluation periodDecember 2, 1987 -March 14, 2008. 

	Scoring rule		α = 0.10		α = 0.05	α = 0.01
		d	*	Test stat.	d	*	Test stat.	d *	Test stat.
	Threshold weight function					
	wl	-1.69 × 10 -4	-0.14	-5.12 × 10 -3	-4.74	-3.21 × 10 -3	-3.75
	wps	4.29 × 10 -7	0.69	7.75 × 10 -7	1.56	8.68 × 10 -7	4.28
	cl	1.47 × 10 -3	1.48	1.58 × 10 -3	2.32	7.78 × 10 -4	1.81
	csl	2.21 × 10 -3	1.89	1.63 × 10 -3	1.53	1.16 × 10 -3	1.35

Note:

Table 3 :

 3 VaR and ES characteristics The average VaRs reported are the observed average 1%, 5% and 10% quantiles of the density forecasts based on the GARCH model with t(ν) and Laplace innovations, respectively. The coverages correspond with the observed fraction of returns below the respective VaRs, which ideally would coincide with the nominal rate α. The rows labeled CUC, IND and CCC provide p-values for Christoffersen's (1998) tests for correct unconditional coverage, independence of VaR violations, and correct conditional coverage, respectively. The average ES values are the ESs (equal to the conditional mean return, given a realization below the predicted VaR) based on the different density forecasts. The bottom two rows report McNeil-Frey test statistics and corresponding p-values for evaluating the expected shortfall estimates ES f ,t (α).

		α = 0.10	α = 0.05	α = 0.01
		t(ν)	Laplace	t(ν)	Laplace	t(ν)	Laplace
	Average VaR	-0.0110 -0.0112	-0.0149 -0.0162	-0.0243 -0.0279
	Coverage (y t ≤ VaR t )	0.1056	0.1001	0.0530	0.0405	0.0104	0.0055
	CUC (p-value)	0.1876	0.9814	0.3324	0.0012	0.7961	0.0004
	IND (p-value)	0.1082	0.2315	0.0465	0.3658	0.5809	0.5788
	CCC (p-value)	0.1156	0.4887	0.0861	0.0036	0.8304	0.0015
	Average ES	-0.0168 -0.0185	-0.0209 -0.0235	-0.0312 -0.0351
	McNeil-Frey (test stat.)	-0.7538	3.1164	-0.8504	0.3639	-1.1899 -2.3174
	McNeil-Frey (p-value)	0.4510	0.0018	0.3951	0.7159	0.2341	0.0205

Note:
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