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Abstract

We propose new scoring rules based on conditional and censored likelihood for assessing the predic-
tive accuracy of competing density forecasts over a specific region of interest, such as the left tail in
financial risk management. These scoring rules can be interpreted in terms of Kullback-Leibler diver-
gence between weighted versions of the density forecast and the true density. Existing scoring rules
based on weighted likelihood favor density forecasts with more probability mass in the given region,
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1 Introduction

The interest in density forecasts is rapidly expanding in both macroeconomics and finance. Undoubtedly

this is due to the increased awareness that point forecasts are not very informative unless some indication

of their uncertainty is provided, see Granger and Pesaran (2000) and Garratt et al. (2003) for discussions

of this issue. Density forecasts, representing a full predictive distribution of the random variable in ques-

tion, provide the most complete measure of this uncertainty. Prominent macroeconomic applications are

density forecasts of output growth and inflation obtained from a variety of sources, including statisti-

cal time series models (Clements and Smith, 2000), professional forecasters (Diebold et al., 1999), and

central banks and other institutions producing so-called ‘fan charts’ for these variables (Clements, 2004;

Mitchell and Hall, 2005). In finance, density forecasts play a pivotal role in risk management as they

form the basis for risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES), see Dowd

(2005) and McNeil et al. (2005) for general overviews and Guidolin and Timmermann (2006) for a

recent empirical application.1

The increasing popularity of density forecasts has naturally led to the development of statistical tools

for evaluating their accuracy. The techniques that have been proposed for this purpose can be classified

into two groups. First, several approaches have been put forward for testing the quality of an individual

density forecast, relative to the data-generating process. Following the seminal contribution of Diebold et

al. (1998), the most prominent tests in this group are based on the probability integral transform (PIT) of

Rosenblatt (1952).2 We refer to Clements (2005) and Corradi and Swanson (2006c) for in-depth surveys

on specification tests for univariate density forecasts.

The second group of evaluation tests aims to compare two or more competing density forecasts. This

problem of relative predictive accuracy has been considered by Sarno and Valente (2004), Mitchell and

Hall (2005), Corradi and Swanson (2005, 2006b), Amisano and Giacomini (2007) and Bao et al. (2004,

1In addition, density forecasts are starting to be used in other financial decision problems, such as derivative pricing
(Campbell and Diebold, 2005; Taylor and Buizza, 2006; Härdle and Hlávka, 2009) and asset allocation (Guidolin and Tim-
mermann, 2007). It is also becoming more common to use density forecasts to assess the adequacy of predictive regres-
sion models for asset returns, including stocks (Perez-Quiros and Timmermann, 2001), interest rates (Hong et al., 2004;
Egorov et al., 2006) and exchange rates (Sarno and Valente, 2005; Rapach and Wohar, 2006), as well as measures of financial
market volatility (Bollerslev et al., 2009; Corradi et al., 2009).

2Alternative test statistics based on the PIT are developed in Berkowitz (2001), Bai (2003), Bai and Ng (2005), Hong and Li
(2005), Li and Tkacz (2006), and Corradi and Swanson (2006a), mainly to counter the problems caused by parameter estimation
uncertainty and the assumption of correct dynamic specification under the null hypothesis.
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2007). All statistics in this group compare the relative distance between the competing density forecasts

and the true (but unobserved) density, albeit in different ways. Sarno and Valente (2004) consider the

integrated squared difference between the density forecast and the true density as distance measure, while

Corradi and Swanson (2005, 2006b) employ the mean squared error between the cumulative distribution

function (CDF) of the density forecast and the true CDF. The other studies in this group develop tests

of equal predictive ability based on a comparison of the Kullback-Leibler Information Criterion (KLIC).

Amisano and Giacomini (2007) provide an interesting interpretation of the KLIC-based comparison

in terms of scoring rules, which are loss functions depending on the density forecast and the actually

observed data. In particular, it is shown that the difference between the logarithmic scoring rule for two

competing density forecasts corresponds exactly to their relative KLIC values.

In many applications of density forecasts, we are mostly interested in a particular region of the

density. Financial risk management is an example in case, where the main concern is obtaining an

accurate description of the left tail of the distribution of asset returns. Bao et al. (2004) and Amisano

and Giacomini (2007) suggest likelihood ratio (LR) tests based on weighting the KLIC-type logarithmic

scoring rule for the purpose of evaluating and comparing density forecasts over a particular region.

However, as mentioned by Corradi and Swanson (2006c) the accuracy of density forecasts in a specific

region cannot be measured in a straightforward manner using the KLIC. The problem that occurs is

that by construction the weighted logarithmic scoring rule favors density forecasts with more probability

mass in the region of interest, rendering the resulting tests of equal predictive ability biased towards such

density forecasts.

In this paper we demonstrate that two density forecasts can still be compared on a specific region of

interest by means of likelihood-based scoring rules in a natural way. Our proposed solution is to replace

the full likelihood by the conditional likelihood, given that the actual observation lies in the region of

interest, or by the censored likelihood, with censoring of the observations outside the region of inter-

est. We show analytically that these new scoring rules can be interpreted in terms of Kullback-Leibler

divergences between weighted versions of the density forecast and the actual density. This implies that

the conditional likelihood and censored likelihood scoring rules favor density forecasts that approximate

the true conditional density as closely as possible in the region of interest. Consequently, tests of equal
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predictive accuracy of density forecasts based on these scoring rules do not suffer from spurious rejec-

tions against densities with more probability mass in that region. This is confirmed by extensive Monte

Carlo simulations, in which we assess the finite sample properties of the predictive ability tests for the

different scoring rules. Here we also find that the censored likelihood scoring rule, which uses more of

the relevant information present, performs better in most, but not all, cases considered.

We wish to emphasize that the framework developed here differs from the evaluation of conditional

quantile forecasts as considered in Giacomini and Komunjer (2005). That approach focuses on the

predictive accuracy of point forecasts for a specific quantile of interest, such as the VaR at a certain level,

whereas the conditional and censored likelihood scoring rules intend to cover a broader region of the

density. We do not claim that our methodology is a substitute for the quantile forecast evaluation test (or

any other predictive accuracy test), but suggest that they may be used in a complementary way.

Gneiting and Ranjan (2008) independently also address the tendency of the weighted LR test of

Amisano and Giacomini (2007) to favor density forecasts with more probability mass in the region of

interest, but from a quantile forecast evaluation perspective. They point out that this tendency is a con-

sequence of the scoring rule not being proper (Winkler and Murphy, 1968; Gneiting and Raftery, 2007),

meaning that an incorrect density forecast may receive a higher average score than the true conditional

density. Exactly this gives rise to the problem of spuriously favoring densities with more probability mass

in the region of interest. As an alternative Gneiting and Ranjan (2008)propose weighted quantile scoring

rules. Our aim in this paper is different in that we specifically want to find alternative scoring rules that

generalize the unweighted likelihood scoring rule. The two main reasons for pursuing this are, first, that

likelihood-based score differences are invariant under transformations of the outcome space and, second,

that they lead to LR statistics, which are known to have optimal power properties, as emphasized by

Berkowitz (2001) in the context of density forecast evaluation.

The remainder of this paper is organized as follows. In Section 2, we discuss conventional scoring

rules based on the KLIC divergence for evaluating density forecasts and illustrate the problem with the

resulting LR tests in case the logarithmic scores are weighted to focus on a particular region of interest. In

Section 3 we put forward our alternative scoring rules based on conditional and censored likelihood and

show analytically that the new scoring rules are proper. We assess the finite sample properties of tests of
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equal predictive accuracy of density forecasts based on the different scoring rules by means of extensive

Monte Carlo simulation experiments in Section 4. We provide an empirical application concerning

density forecasts for daily S&P 500 returns in Section 5, demonstrating the practical usefulness of the

new scores. We summarize and conclude in Section 6.

2 Scoring rules for evaluating density forecasts

We consider a stochastic process {Zt : Ω → Rk+1}Tt=1, defined on a complete probability space

(Ω,F ,P), and identify Zt with (Yt, X ′t)′, where Yt : Ω → R is the real valued random variable of

interest and Xt : Ω → Rk is a vector of observable predictor variables. The information set at time t

is defined as Ft = σ(Z ′1, . . . , Z ′t)′. We consider the case where two competing forecast methods are

available, each producing one-step ahead density forecasts, i.e. predictive densities of Yt+1, based on Ft.

The competing density forecasts of Yt+1 are denoted by the probability density functions (pdfs) f̂t(y)

and ĝt(y), respectively. As in Amisano and Giacomini (2007), by ‘forecast method’ we mean the set

of choices that the forecaster makes at the time of the prediction, including the variables Xt, the econo-

metric model (if any), and the estimation method. The only requirement that we impose on the forecast

methods is that the density forecasts depend only on a finite number m of most recent observations

Zt−m+1, . . . , Zt. Forecast methods of this type arise naturally, for instance, when density forecasts are

obtained from time series regression models, for which parameters are estimated with a moving window

ofm observations. The reason for focusing on forecast methods rather than on forecast models is that this

allows for treating parameter estimation uncertainty as an integral part of the density forecasts. Requiring

the use of a finite (rolling) window of m past observations for parameter estimation then considerably

simplifies the asymptotic theory of tests of equal predictive accuracy, as demonstrated by Giacomini and

White (2006). It also turns out to be convenient as it enables comparison of density forecasts based on

both nested and non-nested models, in contrast to other approaches such as West (1996).

Our interest lies in comparing the relative performance of the one-step-ahead density forecasts f̂t(y)

and ĝt(y). One of the approaches that has been put forward for this purpose is based on scoring rules,

which are commonly used in probability forecast evaluation, see Diebold and Lopez (1996). In the

current context, a scoring rule is a loss function S∗(f̂t; yt+1) depending on the density forecast and the
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actually observed value yt+1, such that a density forecast that is ‘better’ receives a higher score. Of

course, what is considered to be a better forecast among two competing incorrect forecasts depends on

the measure used to quantify divergences between distributions. However, as argued by Diebold et al.

(1998) and Granger and Pesaran (2000), any rational user would prefer the true conditional density pt of

Yt+1 over an incorrect density forecast. This suggests that it is natural to focus, if possible, on scoring

rules that are such that incorrect density forecasts f̂t do not receive a higher average score than the true

conditional density, that is,

Et
(
S(f̂t;Yt+1)

)
≤ Et (S(pt;Yt+1)) , for all t.

Following Gneiting and Raftery (2007), a scoring rule satisfying this condition will be called proper.

It is useful to note that the correct density pt includes true parameters (if any). In practice, den-

sity forecasts typically involve estimated parameters. This implies that even if the density forecast f̂t

is based on a correctly specified model, but the model includes estimated parameters, the average score

Et
(
S(f̂t;Yt+1)

)
may not achieve the upper bound Et (S(pt;Yt+1)) due to nonvanishing estimation un-

certainty. This reflects the fact that a density forecast based on a misspecified model with limited es-

timation uncertainty may be preferred over a density forecast based on the correct model specification

having larger estimation uncertainty. Section 4.3 illustrates this issue with a Monte Carlo simulation.

The above may seem to suggest that the notion of properness of scoring rules is of limited relevance

in practice. Nevertheless, it does appear to be a desirable characteristic. Proper scoring rules are such

that density forecasts receive a higher score when they approximate the true conditional density more

closely, for example in the Kullback-Leibler sense as with the logarithmic score (2) discussed below. We

have to keep in mind though that in the presence of nonvanishing estimation uncertainty, as accounted

for in the adopted framework of Giacomini and White (2006), this may be a density forecast based on a

misspecified model.

Given a scoring rule of one’s choice, there are various ways to construct tests of equal predictive

ability. Giacomini and White (2006) distinguish tests for unconditional predictive ability and conditional

predictive ability. In the present paper, for clarity of exposition, we focus on tests for unconditional
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predictive ability.3 Assume that two competing density forecasts f̂t and ĝt and corresponding realizations

of the variable Yt+1 are available for t = m,m + 1, . . . , T − 1. We may then compare f̂t and ĝt based

on their average scores, by testing formally whether their difference is statistically significant. Defining

the score difference

d∗t+1 = S∗(f̂t; yt+1)− S∗(ĝt; yt+1),

for a given scoring rule S∗, the null hypothesis of equal scores is given by

H0 : E(d∗t+1) = 0, for all t = m,m+ 1, . . . , T − 1.

Let d
∗
m,n denote the sample average of the score differences, that is, d

∗
m,n = n−1

∑T−1
t=m d

∗
t+1 with

n = T −m. In order to test H0 against the alternative Ha: E
(
d
∗
m,n

)
6= 0, (or < 0 or > 0) we may use

a Diebold and Mariano (1995) type statistic

tm,n =
d
∗
m,n√
σ̂2
m,n/n

, (1)

where σ̂2
m,n is a heteroskedasticity and autocorrelation-consistent (HAC) variance estimator of σ2

m,n =

Var
(√

nd
∗
m,n

)
, which satisfies σ̂2

m,n−σ2
m,n

P−→ 0. The following theorem characterizes the asymptotic

distribution of the test statistic under the null hypothesis.

Theorem 1 The statistic tm,n in (1) is asymptotically (as n → ∞ with m fixed) standard normally

distributed under the null hypothesis if: (i) {Zt} is φ-mixing of size −q/(2q − 2) with q ≥ 2, or α-

mixing of size−q/(q−2) with q > 2; (ii) E|d∗t+1|2q <∞ for all t; and (iii) σ2
m,n = Var

(√
nd
∗
m,n

)
> 0

for all n sufficiently large.

Proof: This is Theorem 4 of Giacomini and White (2006), where a proof can also be found. 2

The proof of this theorem as given by Giacomini and White (2006) is based on the central limit

theorems for dependent heterogeneous processes given in Wooldridge and White (1988). The conditions

in Theorem 1 are rather weak in that they allow for nonstationarity and heterogeneity. However, note

that conditions (i) and (ii) jointly imply the existence of at least the fourth moment of d∗t+1 for all t.

3The above inequality in terms of conditional expectations implies the same inequality in terms of unconditional expecta-

tions, that is, E
“
Et

“
S(f̂t;Yt+1)

””
≤ E (Et (S(pt;Yt+1)))⇒ E

“
S(f̂t;Yt+1)

”
≤ E (S(pt;Yt+1))
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Theorem 1.3 of Merlevède and Peligrad (2000) shows that asymptotic normality can also be achieved

under weaker distributional assumptions (existence of the second moment plus a condition relating the

behavior of the tail of the distribution of |d∗t+1| to the mixing rate). However, strict stationarity is assumed

by Merlevède and Peligrad (2000). The conditions required for asymptotic normality of normalized

partial sums of dependent heterogeneous random variables have been further explored by De Jong (1997).

2.1 The logarithmic scoring rule and the Kullback-Leibler information criterion

Mitchell and Hall (2005), Amisano and Giacomini (2007), and Bao et al. (2004, 2007) focus on the

logarithmic scoring rule

Sl(f̂t; yt+1) = log f̂t(yt+1), (2)

assigning a high score to a density forecast if the observation yt+1 falls within a region with high pre-

dictive density f̂t, and a low score if it falls within a region with low predictive density. Based on the

n observations available for evaluation, ym+1, . . . , yT , the density forecasts f̂t and ĝt can be ranked

according to their average scores n−1
∑T−1

t=m log f̂t(yt+1) and n−1
∑T−1

t=m log ĝt(yt+1). The density fore-

cast yielding the highest average score would obviously be the preferred one. The sample average of

the log score differences dlt+1 = log f̂t(yt+1) − log ĝt(yt+1) may be used to test whether the predictive

accuracy is significantly different, using the test statistic defined in (1). Note that this coincides with the

log-likelihood ratio of the two competing density forecasts.

Intuitively, the logarithmic scoring rule is closely related to information theoretic goodness-of-fit

measures such as the Kullback-Leibler Information Criterion (KLIC), which for the density forecast f̂t

is defined as

KLIC(f̂t) = Et
(

log pt(Yt+1)− log f̂t(Yt+1)
)

=
∫ ∞
−∞

pt(yt+1) log

(
pt(yt+1)

f̂t(yt+1)

)
dyt+1, (3)

where pt denotes the true conditional density. Obviously, a higher expected value (with respect to the

true density pt) of the logarithmic score in (2) is equivalent to a lower value of the KLIC in (3). Under

the constraint
∫∞
−∞ f̂t(y) dy = 1, the expectation of log f̂t(Yt+1) with respect to the true density pt is

maximized by taking f̂t = pt. This follows from the fact that for any density f̂t different from pt,

Et

(
log

(
f̂t(Yt+1)
pt(Yt+1)

))
≤ Et

(
f̂t(Yt+1)
pt(Yt+1)

)
− 1 =

∫ ∞
−∞

pt(y)
f̂t(y)
pt(y)

dy − 1 = 0,

7



where the inequality follows from applying log x ≤ x− 1 to f̂t/pt.

It thus follows that the quality of a normalized density forecast f̂t can be measured properly by the

log-likelihood score Sl(f̂t; yt+1) and, equivalently, by the KLIC in (3). An advantage of the KLIC is that

it has an absolute lower bound equal to zero, which is achieved if and only if the density forecast f̂t is

identical to the true distribution pt. As such, its value provides a measure of the divergence between the

candidate density f̂t and pt. However, since pt is unknown, the KLIC cannot be evaluated directly (but

we return to this point below). We can nevertheless use the KLIC to measure the relative accuracy of

two competing densities, as discussed in Mitchell and Hall (2005) and Bao et al. (2004, 2007). Taking

the difference KLIC(ĝt) − KLIC(f̂t) the term Et (log pt(Yt+1)) drops out, solving the problem that the

true density pt is unknown. This in fact renders the logarithmic score difference dlt+1 = log f̂t(yt+1) −

log ĝt(yt+1).

Summarizing the above, the null hypothesis of equal average logarithmic scores for the density fore-

casts f̂t and ĝt actually corresponds with the null hypothesis of equal KLICs. Given that the KLIC

measures the divergence of the density forecasts from the true density, the use of the logarithmic scoring

rule boils down to assessing which of the competing densities comes closest to the true distribution.

Bao et al. (2004, 2007) discuss an extension to compare multiple density forecasts based on their

KLIC values, where the null hypothesis is that none of the available density forecasts is more accurate

than a given benchmark, in the spirit of the reality check of White (2000). Mitchell and Hall (2005) and

Hall and Mitchell (2007) also use the relative KLIC values as a basis for combining density forecasts.

It is useful to note that both Mitchell and Hall (2005) and Bao et al. (2004, 2007) employ the KLIC

for testing the null hypothesis of an individual density forecast being correct, that is, H0 : KLIC(f̂t) =

0. The problem that the true density pt in (3) is unknown then is circumvented by using the result

established by Berkowitz (2001) that the KLIC of the density forecast f̂t relative to pt is equal to the

KLIC of the density of the inverse normal transform of the PIT of f̂t relative to the standard normal

density. Defining zf̂ ,t+1 = Φ−1(F̂t(yt+1)) with F̂t(yt+1) =
∫ yt+1

−∞ f̂t(y) dy and Φ the standard normal

distribution function, it holds true that

log pt(yt+1)− log f̂t(yt+1) = log qt(zf̂ ,t+1)− log φ(zf̂ ,t+1),
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where qt is the true conditional density of zf̂ ,t+1 and φ is the standard normal density. This result states

that the logarithmic scores are invariant to the inverse normal transform of yt+1, which is essentially a

consequence of the general invariance of likelihood ratios under smooth coordinate transformations. Of

course, in practice the density qt is not known either, but it may be estimated using a flexible density

function. The resulting KLIC estimate then allows testing for departures of qt from the standard normal.

2.2 Weighted logarithmic scoring rules

In empirical applications of density forecasting it frequently occurs that a particular region of the density

is of most interest. For example, in risk management applications such as VaR and ES estimation, an

accurate description of the left tail of the distribution of asset returns obviously is of crucial importance.

In that context, it seems natural to focus on the performance of density forecasts in the region of interest

and pay less attention to (or even ignore) the remaining part of the distribution.

Within the framework of scoring rules, an obvious way to pursue this is to construct a weighted

scoring rule, using a weight function wt(y) to emphasize the region of interest (see Franses and van Dijk

(2003) for a similar idea in the context of testing equal predictive accuracy of point forecasts). Along

this line Amisano and Giacomini (2007) propose the weighted logarithmic (wl) scoring rule

Swl(f̂t; yt+1) = wt(yt+1) log f̂t(yt+1) (4)

to assess the quality of density forecast f̂t on a certain region defined by the properties of wt(yt+1). The

weighted average scores n−1
∑T−1

t=mwt(yt+1) log f̂t(yt+1) and n−1
∑T−1

t=mwt(yt+1) log ĝt(yt+1) can be

used for ranking two competing forecasts, while the weighted score difference

dwlt+1 = Swl(f̂t; yt+1)− Swl(ĝt; yt+1) = wt(yt+1)(log f̂t(yt+1)− log ĝt(yt+1)), (5)

forms the basis for testing the null hypothesis of equal weighted scores, H0 : E
(
dwlt+1

)
= 0, for all

t = m,m+ 1, . . . , T , by means of a Diebold-Mariano type statistic of the form (1).

For the sake of argument it is instructive to consider the case of a ‘threshold’ weight function

wt(y) = I(y ≤ r), with a fixed threshold r, where I(A) = 1 if the event A occurs and zero other-

wise. This is a simple example of a weight function we might consider for evaluation of the left tail in

risk management applications. In this case, however, the weighted logarithmic score results in predictive
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ability tests that are biased towards densities with more probability mass in the left tail. This can be

seen by considering the situation where ĝt(y) > f̂t(y) for all y smaller than some given value y∗, say.

Using wt(y) = I(y ≤ r) for some r < y∗ in (4) implies that the weighted score difference dwlt+1 in (5)

is never positive, and strictly negative for observations below the threshold value r, such that E(dwlt+1)

is negative. Obviously, this can have far-reaching consequences when comparing density forecasts with

different tail behavior. In particular, it may happen that a (relatively) fat-tailed distribution ĝt is favored

over a thin-tailed distribution f̂t, even if the latter is the true distribution from which the data are drawn,

as the following example illustrates.

Figure 1 about here

Example 1 Suppose we wish to compare the accuracy of two density forecasts for Yt+1, one being the

standard normal distribution with pdf

f̂t(y) = (2π)−
1
2 exp(−y2/2),

and the other being the Student-t distribution with ν degrees of freedom, standardized to unit variance,

with pdf

ĝt(y) =
Γ
(
ν+1
2

)√
(ν − 2)πΓ(ν2 )

(
1 +

y2

(ν − 2)

)−(ν+1)/2

, with ν > 2.

Figure 1 shows these density functions for the case ν = 5, as well as the relative log-likelihood score

log f̂t(yt+1) − log ĝt(yt+1). The relative score function is negative in the left tail (−∞, y∗), with

y∗ ≈ −2.5. Now consider the situation that we have a sample ym+1, . . . , yT of n observations from

an unknown density on (−∞,∞) for which f̂t(y) and ĝt(y) are competing candidates, and we use a

threshold weight function wt(y) = I(y ≤ r), with fixed threshold r, to concentrate on the left tail. It

follows from the lower panel of Figure 1 that if the threshold r < y∗, the average weighted log-likelihood

score difference d
wl
m,n can never be positive and will be strictly negative whenever there are observations

in the tail. Evidently, the test of equal predictive accuracy will then favor the fat-tailed Student-t density

ĝt(y), even if the true density is the standard normal f̂t(y). 2
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2.3 Weighted probability scores

The issue we are signalling has been reported independently by Gneiting and Ranjan (2008). As they

point out, the wl score does not satisfy the properness property, in the sense that there can be incorrect

density forecasts f̂t that receive a higher average score than the actual conditional density pt. As a

consequence, the associated test of equal predictive accuracy could even suggest that the incorrect density

forecast is significantly better than the true density.

As discussed before, it seems reasonable to focus on proper scoring rules to avoid such inconsisten-

cies. However, there are many different proper scoring rules one might use, raising the question which

rules are suitable candidates in practice. Our main reason to focus on KLIC-based scoring rules is the

close connection with likelihood ratio tests, which are known to perform well in many statistical settings.

As mentioned before, the test for equal predictive ability based on the logarithmic scoring rule is nothing

but a likelihood ratio test.

Before introducing our proper likelihood-based scoring rules, we briefly summarize the scoring rules

proposed by Gneiting and Ranjan (2008), which may also be used for comparing density forecasts in

specific regions of interest. Their starting point is the continuous ranked probability score (CRPS),

which for the density forecast f̂t is defined as

CRPS(f̂t, yt+1) =
∫ ∞
−∞

PS(F̂t(r), I(yt+1 ≤ r)) dr, (6)

where

PS(F̂t(r), I(yt+1 ≤ r)) = (I(yt+1 ≤ r)− F̂t(r))2

is the Brier probability score for the probability forecast F̂t(r) =
∫ r
−∞ f̂t(y)dy of the event Yt+1 ≤ r.

Equivalently, the CRPS may be written in terms of α-quantile forecasts q̂t,α = F̂−1
t (α), as

CRPS(f̂t, yt+1) =
∫ 1

0
QSα(q̂t,α, yt+1) dα, (7)

where

QSα(q̂t,α, yt+1) = 2(α− I(yt+1 < q̂t,α))(yt+1 − q̂t,α)

is the quantile score (also known as the ‘tick’ or ‘check’ score) function, see also Giacomini and Ko-

munjer (2005). As suggested by Gneiting and Ranjan (2008), the CRPS in (7) may be generalized to
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emphasize certain regions of interest in the evaluation of density forecasts. Specifically, a weighted

quantile scoring rule (wqs) may be defined as

Swqs(f̂t; yt+1) = −
∫ 1

0
v(α)QSα(q̂t,α, yt+1) dα,

where v(α) is a nonnegative weight function on the unit interval and the minus sign on the right-hand side

is inserted such that density forecasts with higher scores are preferred. Similarly, a weighted probability

score (wps) is obtained from (6) as

Swps(f̂t; yt+1) = −
∫ ∞
−∞

wt(r)PS(F̂t(r), I(yt+1 ≤ r)) dr, (8)

for some weight function wt. Note that the same wps scoring rule was proposed by Corradi and Swanson

(2006b) for evaluating density forecasts in case a specific region of the density is of interest rather than

its whole support. In the Monte Carlo simulations in Section 4, we include Diebold-Mariano type tests

based on Swps(f̂t; yt+1) for comparison purposes.

3 Scoring rules based on conditional and censored likelihood

KLIC-based scoring rules for evaluating and comparing density forecasts in a specific region of interest

At ⊂ R can be obtained in a relatively straightforward manner. Specifically, it is natural to replace the

full likelihood in (2) either by the conditional likelihood, given that the observation lies in the region of

interest, or by the censored likelihood.

The conditional likelihood (cl) score function, given a region of interest At, is given by

Scl(f̂t; yt+1) = I(yt+1 ∈ At) log

(
f̂t(yt+1)∫
At
f̂t(s)ds

)
. (9)

The main argument for using this scoring rule would be to evaluate density forecasts based only on their

behavior in the region of interest At. The division by
∫
At
f̂t(s)ds serves the purpose of normalizing the

density on the region of interest, such that competing density forecasts can be compared in terms of their

relative KLIC-values, as discussed before.

However, due to this normalization, the cl scoring rule does not take into account the accuracy of

the density forecast for the total probability of the region of interest. For example, in case At is the

left tail yt+1 ≤ r, the conditional likelihood ignores whether the tail probability implied by f̂t matches
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with the frequency at which tail observations actually occur. As a result, the scoring rule in (9) attaches

comparable scores to density forecasts that have similar tail shapes but may have completely different

tail probabilities. This tail probability is obviously relevant for risk management purposes, in particular

for VaR evaluation, and therefore it would be useful to include it in the density forecast evaluation. This

can be achieved by using the censored likelihood (csl) score function, given by

Scsl(f̂t; yt+1) = I(yt+1 ∈ At) log f̂t(yt+1) + I(yt+1 ∈ Act) log

(∫
Act

f̂t(s)ds

)
, (10)

where Act is the complement of At. This scoring rule uses the likelihood associated with having an

observation outside the region of interest, but apart from that ignores the shape of f̂t outside At. In that

sense this scoring rule is similar to the log-likelihood used in the Tobit model for random variables that

cannot be observed above a certain threshold value (see Tobin, 1958).

The conditional and censored likelihood scoring rules as discussed above focus on a sharply defined

region of interest At. It is possible to adapt these score functions in order to emphasize certain parts of

the outcome space more generally, by going back to the original idea of using a weight function wt(y)

as in (4). For this purpose, note that by setting wt(y) = I(y ∈ At) the scoring rules in (9) and (10) can

be rewritten as

Scl(f̂t; yt+1) = wt(yt+1) log

(
f̂t(yt+1)∫
wt(s)f̂t(s)ds

)
, (11)

and

Scsl(f̂t; yt+1) = wt(yt+1) log f̂t(yt+1) + (1− wt(yt+1)) log
(

1−
∫
wt(s)f̂t(s)ds

)
. (12)

At this point, we make the following assumptions.

Assumption 1 The density forecasts f̂t and ĝt satisfy KLIC(f̂t) < ∞ and KLIC(ĝt) < ∞, where

KLIC(ht) =
∫
pt(y) log (pt(y)/ht(y)) dy is the Kullback-Leibler divergence between the density fore-

cast ht and the true conditional density pt.

Assumption 2 The weight function wt(y) is such that (a) it is determined by the information available

at time t, and hence a function of Ft, (b) 0 ≤ wt(y) ≤ 1, and (c)
∫
wt(y)pt(y) dy > 0.

Assumption 1 ensures that the expected score differences for the competing density forecasts are finite.
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Assumption 2 (c) is needed to avoid cases where wt(y) takes strictly positive values only outside the

support of the data.

The following lemma shows that the generalized cl and csl scoring rules in (11) and (12) are proper,

and hence cannot lead to spurious rejections against wrong alternatives just because these have more

probability mass in the region(s) of interest.

Lemma 1 Under Assumptions 1 and 2, the generalized conditional likelihood scoring rule given in (11)

and the generalized censored likelihood scoring rule given in (12) are proper.

The proof of this Lemma is given in Appendix A. The proof clarifies that the scoring rules in (11)

and (12) can be interpreted in terms of Kullback-Leibler divergences between weighted versions of the

density forecast and the actual density.

We may test the null hypothesis of equal performance of two density forecasts f̂t(yt+1) and ĝt(yt+1)

based on the conditional likelihood score (11) or the censored likelihood score (12) in the same manner

as before. That is, given a sample of density forecasts and corresponding realizations for n time periods

t = m,m + 1, . . . , T − 1, we may form the relative scores dclt+1 = Scl(f̂t; yt+1) − Scl(ĝt; yt+1) and

dcslt+1 = Scsl(f̂t; yt+1)− Scsl(ĝt; yt+1) and use these for computing Diebold-Mariano type test statistics

as given in (1).

Figure 2 about here

Example 1 (continued) We revisit the example from the previous section in order to illustrate the

properties of the various scoring rules and the associated tests for comparing the accuracy of competing

density forecasts. We generate 10, 000 series of n = 2, 000 independent observations yt+1 from a

standard normal distribution. For each sequence we compute the weighted logarithmic scores in (4), the

conditional likelihood scores in (11), and the censored likelihood scores in (12). We use the threshold

weight function wt(y) = I(y ≤ r), with the threshold fixed at r = −2.5. The scores are computed for

the (correct) standard normal density f̂t and for the standardized Student-t density ĝt with five degrees

of freedom. Figure 2 shows the empirical CDF of the mean relative scores d
∗
m,n, where ∗ is wl, cl or

csl. The average wl scores take almost exclusively negative values, which means that, on average, they
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attach a lower score to the correct normal distribution than to the Student-t distribution, cf. Figure 1,

indicating a bias in the corresponding test statistic towards the incorrect, fat-tailed distribution. The cl

and csl scoring rules both correctly favor the true normal density. The censored likelihood rule appears to

be better at detecting the inadequacy of the Student-t distribution, in that its relative scores stochastically

dominate those based on the conditional likelihood.

To illustrate the behavior of the scoring rules obtained under smooth weight functions we consider

the logistic weight function

wt(y) = 1/(1 + exp(a(y − r))) with a > 0. (13)

This sigmoidal function changes monotonically from 1 to 0 as Yt+1 increases, while wt(r) = 1
2 and the

slope parameter a determines the speed of the transition. In the limit as a → ∞, the threshold weight

function I(y ≤ r) is recovered. We fix the center at r = −2.5 and vary the slope parameter a among

the values 3, 4, 6, and 10. For a = 10, the logistic weight function is already very close to the threshold

weight function I(y ≤ r), such that for larger values of a the score distributions essentially do not change

anymore. The integrals
∫
wt(y)f̂t(y) dy and

∫
wt(y)ĝt(y) dy are determined numerically by averaging

over a large number (106) of simulated random variables Yt+1 with density f̂t and ĝt, respectively.

Figure 3 about here

Figure 3 shows the empirical CDFs of the mean relative scores d
∗
m,n obtained with the conditional

likelihood and censored likelihood scoring rules for the different values of a. It can be observed that the

difference between the scores increases as a becomes larger. In fact, for the smoothest weight function

considered (a = 1) the two score distributions are very similar. The cl and csl score distributions become

more alike for smaller values of a because, as a→ 0, wt(y) in (13) converges to a constant equal to 1
2 for

all values of y, so thatwt(y)−(1−wt(y))→ 0, and moreover
∫
wt(y)f̂t(y) dy =

∫
wt(y)ĝt(y) dy → 1

2 .

Consequently, both scoring rules converge to the unconditional likelihood (up to a constant factor 2) and

the relative scores dclt+1 and dcslt+1 have the limit

1
2

(log f̂t(yt+1)− log ĝt(yt+1)).

2
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We close this section with some remarks on the weight function wt(y) defining the region that is

emphasized in the density forecast evaluation. The conditional and censored likelihood scoring rules may

be applied with arbitrary weight functions, subject to the conditions stated in Lemma 1. The appropriate

choice ofwt(y) obviously depends on the interests of the forecast user. The threshold (or logistic) weight

function considered in the example above seems a natural choice in risk management applications, as the

left tail behavior of the density forecast is of most concern there. In other applications however the focus

may be on different regions. For example, for monetary policymakers aiming to keep inflation within a

certain range, the central part of the density may be of most interest, suggesting a weight function such

as wt(y) = I(rl ≤ y ≤ ru), for certain lower and upper bounds rl and ru.

The preceding implies that essentially it is also up to the forecast user to set the parameter(s) in

the weight function, such as the threshold r in wt(y) = I(y ≤ r). For example, when Yt represents

the return on a given portfolio, r may be set equal to a certain quantile of the return distribution such

that it corresponds with a target VaR level. In practice, r will then have to be estimated from historical

data and might be set equal to the particular quantile of the m observations in the moving window that

is used for constructing the density forecast at time t. This makes the weight function dynamic, i.e.

wt(y) = I(y ≤ rt), while it also involves estimation uncertainty, namely in the threshold rt. As shown

by Lemma 1, as long as the weight function wt is conditionally (given Ft) independent of Yt+1, the

properness property of the conditional and censored likelihood scoring rules is not affected. However,

nonvanishing estimation uncertainty in the threshold may affect the power of the test of equal predictive

accuracy. In Section 4.3, we verify this numerically with Monte Carlo simulations.

4 Monte Carlo simulations

In this section we examine the implications of using the weighted logarithmic scoring rule in (4), the

conditional likelihood score in (11), the censored likelihood score in (12), and the weighted probability

score in (8) for constructing a test of equal predictive ability of two competing density forecasts in finite

samples. Specifically, we consider the size and power properties of the Diebold-Mariano type statistic as

given in (1) for testing the null hypothesis that the two competing density forecasts have equal expected
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scores, or

H0 : E
(
d∗t+1

)
= 0, for t = m,m+ 1, . . . , T − 1

under scoring rule ∗, where ∗ is either wl, wps, cl or csl. As before m denotes the length of the rolling

window used for constructing the density forecast and n = T − m denotes the number of forecasts.

Throughout we use a HAC-estimator for the asymptotic variance of the average relative score d
∗
m,n, that

is σ̂2
m,n = γ̂0 +2

∑K−1
k=1 akγ̂k, where γ̂k denotes the lag-k sample covariance of the sequence {d∗t+1}T−1

t=m

and ak are the Bartlett weights ak = 1− k/K with K = bn1/4c. We focus on one-sided rejection rates

to highlight the fact that some of the scoring rules may favor a wrong density forecast over a correct one.

Concerning the implementation of the wps rule in (8), it is useful to note that it is in fact not essential

for the properness of this score function to use an integral. As mentioned by Gneiting and Ranjan

(2008), a weighted sum over a finite number of y-values also renders a suitable scoring rule. With this

in mind, we do not attempt to obtain an accurate numerical approximation to the integral in (8), which

is computationally very demanding, but simply use a discretized version with a discretization step of the

y-variable of 0.1.

Initially, we examine the size and power properties of the test of equal predictive ability in an envi-

ronment that does not involve parameter estimation uncertainty in Sections 4.1 and 4.2, to demonstrate

the pitfalls when using wl scoring rule and the benefits of the cl and csl alternatives most clearly. The

role of estimation uncertainty, both in the density forecasts and in the weighting function, are addressed

explicitly in Section 4.3.

4.1 Size

In order to assess the size properties of the tests a case is required with two competing predictive densities

that are both ‘equally (in)correct’. However, whether or not the null hypothesis of equal predictive

ability holds depends on the weight function wt(y) that is used in the scoring rules. This complicates the

simulation design, given the fact that we would like to examine how the behavior of the tests depends

on the specific settings of the weight function. For the threshold weight function wt(y) = I(y ≤ r) it

appears to be impossible to construct an example with two different density forecasts having identical

predictive ability regardless of the value of r. We therefore evaluate the size of the tests when focusing
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on the central part of the distribution by means of the weight function wt(y) = I(−r ≤ y ≤ r). As

mentioned before, in some cases this region of the distribution may be of primary interest, for instance

to monetary policymakers targeting to keep inflation between certain lower and upper bounds. The data

generating process (DGP) is taken to be i.i.d. standard normal, while the two competing density forecasts

are normal distributions with different means equal to −0.2 and 0.2 and identical variance equal to 1. In

this case, independent of the value of r the competing density forecasts have equal predictive accuracy, as

the scoring rules considered here are invariant under a simultaneous reflection about zero of all densities

of interest (the true conditional density as well as the density forecasts). In addition, it turns out that

for this combination of DGP and predictive densities, the relative scores d∗t+1 for the wl, cl and csl rules

based on wt(y) = I(−r ≤ y ≤ r) are identical; observations outside the interval [−r, r] do not support

evidence in favor of either density forecast, which is reflected in equal scores for the two forecasts, under

any of the scoring rules considered.

Figure 4 about here

Figure 4 displays one-sided rejection rates at nominal significance levels of 1, 5 and 10% of the null

hypothesis against the alternative that theN(0.2, 1) distribution has better predictive ability as a function

of the threshold value r, based on 10, 000 replications for sample size n = 500. The rejection rates of the

tests are quite close to the nominal significance levels for all values of r. Unreported results for different

values of n show that this holds even for sample sizes as small as n = 100 observations. Hence, the size

properties of the predictive ability test appear to be satisfactory.

4.2 Power

We evaluate the power of the test based on the various scoring rules by performing simulation experi-

ments where one of the competing density forecasts is correct, i.e. corresponds exactly with the underly-

ing DGP. In that case the true density always is the best possible one, regardless of the region for which

the densities are evaluated, that is, regardless of the weight function used in the scoring rules. Given that

our main focus in this paper has been on comparing density forecasts in the left tail, in these experiments

we first return to the threshold weight function wt(y) = I(y ≤ r).
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In order to make the rejection frequencies of the null obtained for different values of r more com-

parable, we make the sample size n dependent on the threshold value in such a way that the expected

number of observations in the region of interest, denoted by c, is constant across the various values of r.

This is achieved by setting n = c/P(Y < r). Given that in typical risk management applications there

may be only a few tail observations, we consider relatively small values of c.

Figure 5 about here

Figure 6 about here

Figures 5 and 6 show the observed rejection rates for c = 5 and c = 40, respectively, based on

10, 000 replications, for data drawn from the standard normal distribution (left column) or the standard-

ized Student-t(5) distribution (right column). In both cases, the null hypothesis being tested is equal

predictive accuracy of the standard normal and standardized Student-t(5) density forecasts. The top

(bottom) panels in these Figures show rejection rates at nominal significance level 5% against superior

predictive ability of the standard normal (standardized Student-t(5)) distribution, as a function of the

threshold parameter r. Hence, the top left and bottom right panels report true power (rejections in favor

of the correct density), while the top right and bottom left panels report spurious power (rejections in

favor of the incorrect density).

Figure 7 about here

Several interesting conclusions emerge from these graphs. First, the power of the wl scoring rule

depends strongly on the threshold parameter r. For the normal DGP, for example, the test has excellent

power for values of r between−2 and 0, but for more negative threshold values the rejection rates against

the correct alternative drop to zero. In fact, for threshold values less than −2, we observe substantial

spurious power in the form of rejection against the incorrect alternative of superior predictive ability of

the Student-t density. Comparing Figures 5 and 6 shows that this is not a small sample problem. In

fact, the spurious power for the wl rule increases as the sample size becomes larger. This behavior of the

test based on the wl scoring rule for large negative values of r can be understood from the bottom graph

of Figure 1, showing that the logarithmic score is higher for the Student-t density than for the normal
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density for all values of y below −2.5, approximately. To understand the non-monotonic nature of these

power curves more fully, we use numerical integration to obtain the expected relative score E
(
dwlt+1

)
for

various values of the threshold r for i.i.d. standard normal data. The results are shown in Figure 7. It can

be observed that the mean changes sign several times, in exact accordance with the patterns in the top

panels of Figures 5 and 6. Whenever the mean score difference (computed as the score of the standard

normal minus the score of the standardized Student-t(5) density) is positive the associated test has high

power, while it has high spurious power for negative mean scores. The wl scoring rule thus cannot be

relied upon for discriminating between competing density forecasts. For example, a rejection of the null

hypothesis in favor of superior predictive accuracy of the Student-t density for r ≈ −2.5 could be due

to the considerable ‘true’ power of the test, as shown in the bottom-right graph in Figure 6. However, it

may equally likely be the result of the spurious power problem shown in the bottom-left graph.

Second, the top-right and bottom-left panels of Figure 5 suggest that the wps, cl and csl scores

also display some spurious power for certain regions of threshold values. However, in stark contrast

to the weighted logarithmic scoring rule, this appears to be due to the extremely small sample size,

as it quickly disappears as c increases. Already for c = 40 the rejection rates for these scoring rules

against the incorrect alternative remain below the nominal significance level of 5%, see Figure 6. This

clearly demonstrates the advantage of using a proper scoring rule for comparing the predictive accuracy

of density forecasts.

Third, for small values of the threshold r the power for the csl scoring rule is higher than that of the

cl rule, for the standard normal (top left panel) as well as for the standardized Student-t(5) distributions

(bottom right panel), especially for c = 5 (see Figure 5). Obviously, the additional information concern-

ing the coverage probability of the left tail region helps to distinguish between the competing density

forecasts, in particular when the number of observations in the region of interest is extremely small.

Fourth, for c = 5, the power of the different tests behaves similarly for large values of r. This should

be expected on theoretical grounds for the wl, cl and csl scoring rules, since they become identical in the

limit as r → ∞. This is not the case for the wps scoring rule though, so its similar power for large r

might be coincidental. In fact, for c = 40 it is visible that the wps rule has slightly deviating power from

the other rules for large r; it is somewhat smaller for the normal DGP (top left panel of Figure 6) while
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it appears to be somewhat larger for the Student-t(5) DGP (lower right panel of Figure 6).

Figure 8 about here

Next, we perform the same simulation experiments but with the weight function wt(y) = I(−r ≤

y ≤ r) to study the power properties of the tests when they are used to compare density forecasts on the

central part of the distribution. Figure 8 shows rejection rates obtained for an i.i.d. standard normal DGP,

when we test the null of equal predictive ability of theN(0, 1) and standardized Student-t(5) distributions

against the alternative that either of these density forecasts has better predictive ability, for c = 200 (the

number of observations in the region of interest needed to obtain a reasonable power strongly depends

on the relative differences between densities). The format is the same as in Figures 5 and 6, with the

left (right) column showing results when the DGP is the standard normal (standardized Student-t(5))

distribution. The top (bottom) panels in these Figures show rejection rates at nominal significance level

5% against superior predictive ability of the standard normal (standardized Student-t(5)) distribution,

as a function of the threshold parameter r. It can be clearly observed that the wl rule displays spurious

power, and that in the full information case (i.e. large values of r) the likelihood-based rules provide

more powerful tests than the wps rule.

4.3 Estimation uncertainty and time-varying weight functions

In the remaining simulation experiments, we examine the effects of parameter estimation uncertainty.

We start with a simulation addressing the effect of non-vanishing estimation uncertainty on the tests

of equal predictive accuracy. In particular, we demonstrate that a forecast method using an incorrect

model specification but with limited estimation uncertainty may produce a better density forecast than

a forecast method based on the correct model specification but having larger estimation uncertainty.

For brevity, we focus only on the (unweighted) logarithmic scoring rule (2). The results generalize to

other scoring considered in the paper. The data generating process is the following AR(2) specification:

yt = 0.8yt−1 + 0.05yt−2 + εt, εt ∼ i.i.d. N(0, 1). We compare the predictive accuracy of the AR(2)

specification, which is correct up to two estimated parameters, against a more parsimonious, but incorrect

AR(1) specification with one parameter to be estimated. The parameters are estimated by MLE. Recall

that we work under a rolling forecast scheme, where the size of the estimation windowm is fixed, so that
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the estimation uncertainty does not vanish asymptotically. Table 1 shows one-sided rejection rates of the

test of the equal predictive density for different rolling estimation window sizesm against the alternatives

that the average log-score is higher for the AR(2) model relative to the AR(1) model and vice versa. For

small estimation windows, m = 100; 250, the estimation uncertainty is relatively important and the

test often indicates that the incorrectly specified, but more parsimonious AR(1) model produces better

density forecasts. For intermediate values m = 500; 1, 000 the test generally does not reject the null of

equal predictive accuracy. For very large estimation windows with m = 2, 500; 5, 000, the estimation

error is small enough for the test to favor the correctly specified AR(2) model. We can summarize that

with small estimation samples, the density forecasts from the AR(1) model approximate the true density

forecast more closely, on average, and this is rightfully detected by the log-score and the associated test.

Table 1 about here

Next, in addition to parameter estimation uncertainty in the density forecasts, we investigate the

effect of using a weight function that is time-varying and depends on estimated parameters. In particular,

we use a threshold weight function wt(y) = I(y ≤ r̂αt ), where the threshold r̂αt is given by the empirical

α-quantile obtained from a finite window of past observations. As shown by Lemma 1, the cl and csl

scoring rules in (11) and in (12) remain proper in this case and the properties of the associated tests of

equal predictive accuracy should not be affected.

We focus on a DGP which is more relevant for finance applications. The DGP is taken to be a

GARCH(1,1) process, specified as yt =
√
htηt, with ht = 0.01 + 0.1y2

t−1 + 0.8ht−1 and {ηt} an i.i.d.

standard normal sequence. We evaluate the performance of the available scoring rules in identifying

the correctly specified GARCH density forecast when compared with an alternative density forecast,

which differs only in the specification of the distribution of the standardized innovations ηt. Specifically,

the alternative specification assumes a standardized Student-t(5) distribution for ηt. The model for the

conditional volatility is correctly specified in both forecast methods, up to the unknown parameters.

The GARCH parameters are estimated by MLE using a rolling window of m = 2, 000 observations

and the threshold, r̂αt , is set equal to the empirical α-quantile of yt−m+1, yt−m+2, . . . , yt. Similarly to

the previous experiments the number of observations for which density forecasts are constructed varies
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depending on the number of expected observations falling within the region of interest, i.e. n = c/α.

We report results for c = 40.

Figure 9 about here

Given the same number of parameters in the model specifications underlying the competing forecasts

and the relatively large rolling window size, m = 2000, we may expect that the density forecasts based

on the correct specification with standard normal innovations are closer to the true conditional density

than the forecasts using the standardized Student-t(5) innovations. Figure 9 shows one-sided rejection

rates of the null hypothesis of equal predictive abilities against better predictive ability of the forecast

based on the standard normal innovations compared to the forecast based on standardized Student-t(5)

innovations and vice versa for values of α ranging between 0.01 and 0.5. The right panel shows that the

cl and csl scoring rules do not display spurious power, while the wl rule has rejection rates substantially

above the nominal level of 5%, in particular for small threshold values. This confirms that the cl and

csl scoring rules can be used in combination with time-varying weight functions without introducing

spurious rejections of the null hypothesis. The cl and csl scoring rules display comparable power for

quantiles α > 0.10, approximately. For lower quantiles, thus focusing more on the left tail, the additional

information used by the csl rule again leads to improved power compared to the cl rule. While the wps

scoring rule has power comparable to the csl rule for the lowest quantiles, its (relative) performance

rapidly deteriorates as α becomes larger.

5 Empirical illustration

We examine the empirical relevance of the proposed scoring rules in the context of the evaluation of

density forecasts for daily stock index returns. We consider S&P 500 log-returns yt = ln(Pt/Pt−1),

where Pt is the closing price on day t, adjusted for dividends and stock splits. The sample period runs

from January 1, 1980 until March 14, 2008, giving a total of 7,115 observations (source: Datastream).

For illustrative purposes we define two forecast methods based on GARCH models in such a way that

a priori one of the methods is expected to be superior to the other. Examining a large variety of GARCH

models for forecasting daily US stock index returns, Bao et al. (2007) conclude that the accuracy of
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density forecasts depends more on the choice of the distribution of the standardized innovations than on

the volatility specification. Therefore, we differentiate our forecast methods in terms of the innovation

distribution, while keeping identical specifications for the conditional mean and the conditional variance.

We consider an AR(5) model for the conditional mean return together with a GARCH(1,1) model for the

conditional variance, that is

yt = µt + εt = µt +
√
htηt,

where the conditional mean µt and the conditional variance ht are given by

µt = ρ0 +
5∑
j=1

ρjyt−j ,

ht = ω + αε2t−1 + βht−1,

and the standardized innovations ηt are i.i.d. with mean zero and variance one.

Following Bollerslev (1987), a common finding in empirical applications of GARCH models has

been that a normal distribution for ηt is not sufficient to fully account for the kurtosis observed in stock

returns. We therefore concentrate on leptokurtic distributions for the standardized innovations. Specifi-

cally, for one forecast method the distribution of ηt is specified as a (standardized) Student-t distribution

with ν degrees of freedom, while for the other forecast method we use the (standardized) Laplace dis-

tribution. Note that for the Student-t distribution the degrees of freedom ν is a parameter that is to be

estimated. The degrees of freedom directly determines the value of the excess kurtosis of the standard-

ized innovations, which is equal to 6/(ν − 4) (assuming ν > 4). Due to its flexibility, the Student-t

distribution has been widely used in GARCH modeling (see e.g. Bollerslev (1987), Baillie and Boller-

slev (1989)). The standardized Laplace distribution provides a more parsimonious alternative with no

additional parameters to be estimated and has been applied in the context of conditional volatility model-

ing by Granger and Ding (1995) and Mittnik et al. (1998). The Laplace distribution has excess kurtosis

of 3, which exceeds the excess kurtosis of the Student-t(ν) distribution for ν > 6. Because of the greater

flexibility in modeling kurtosis, we may expect that the forecast method with Student-t innovations gives

superior density forecasts relative to the Laplace innovations. This is indeed indicated by results in Bao

et al. (2007), who evaluate these density forecasts ‘unconditionally’, that is, not focusing on a particular

region of the distribution.
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Our evaluation of the two forecast methods is based on their one-step ahead density forecasts for

daily returns, using a rolling window scheme for parameter estimation. The length of the estimation

window is set to m = 2, 000 observations, so that the number of out-of-sample observations is equal to

n = 5, 115. For comparing the density forecasts’ accuracy we use the Diebold-Mariano type test based

on the weighted logarithmic scoring rule in (4), the weighted probability scores in (8), the conditional

likelihood in (11), and the censored likelihood in (12). We concentrate on the left tail of the distribution

by using the threshold weight function wt(y) = I(y ≤ r̂αt ) for the wl, wps, cl and csl scoring rules. The

time-varying threshold r̂αt is set equal to the empirical α-quantile of the return observations in the relevant

estimation window, where we consider α = 0.10, 0.05 and 0.01. The score difference d∗t+1 is computed

by subtracting the score of the GARCH-Laplace density forecast from the score of the GARCH-t density

forecast, such that positive values of d∗t+1 indicate better predictive ability of the forecast method based

on Student-t innovations.

Table 2 about here

Table 2 shows the average score differences d
∗
m,n with the accompanying tests of equal predictive

accuracy as in (1), where we use a HAC estimator for the asymptotic variance σ̂2
m,n to account for serial

dependence in the d∗t+1 series. The results clearly demonstrate that different conclusions follow from the

different scoring rules. For thresholds based on α = 0.05 and 0.01 the wl scoring rule suggests superior

predictive ability of the forecast method based on Laplace innovations, while for α = 0.1, it fails to reject

the null of equal predictive ability. By contrast, the cl scoring rule suggests that the performance of the

GARCH-t density forecasts is superior for all three values of α. The csl scoring rule points towards the

same conclusion as the cl rule, although the evidence for better predictive ability of the forecast based on

the GARCH-t specification is somewhat weaker. The wps rule also indicates the superior performance

of the GARCH-t especially for α = 0.01, but evidence is weak when we consider less extreme quantiles

α = 0.05 and 0.1. In the remainder of this section we seek to understand the reasons for these conflicting

results, and explore the consequences of selecting either forecast method for risk management purposes.

In addition, this allows us to obtain circumstantial evidence that shows which of the two competing

forecast methods is most appropriate.
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Figure 10 about here

For most estimation windows, the degrees of freedom parameter in the Student-t distribution is es-

timated to be (slightly) larger than 6, such that the Laplace distribution implies fatter tails than the

Student-t distribution. Hence, it may very well be that the wl scoring rule indicates superior predictive

ability of the Laplace distribution simply because this density has more probability mass in the region of

interest, that is, the problem that motivated our analysis in the first place may be relevant here. To see this

from a slightly different perspective, we compute one-day 90%, 95% and 99% VaR and ES estimates as

implied by the two forecast methods. The 100× (1−α)% VaR is determined as the α-th quantile of the

density forecast f̂t, that is, through Pf̂ ,t

(
Yt+1 ≤ VaRf̂ ,t(α)

)
= α. The ES is defined as the conditional

mean return given that Yt+1 ≤ VaRf̂ ,t(α), that is ESf̂ ,t(α) = Ef̂ ,t

(
Yt+1|Yt+1 ≤ VaRf̂ ,t(α)

)
. Figure

10 shows the VaR estimates against the realized returns. We observe that typically the VaR estimates

based on the Laplace innovations are more extreme, confirming that it has fatter tails than the Student-t

innovations. The same conclusion follows from the sample averages of the VaR and ES estimates, as

shown in Table 3.

The VaR and ES estimates also enable us to assess which of the two innovation distributions is the

most appropriate in a different way. For that purpose, we first of all compute the frequency of 90%,

95% and 99% VaR violations, which should be close to 0.1, 0.05 and 0.01, respectively, if the innovation

distribution is correctly specified. We compute the likelihood ratio (LR) test of correct unconditional

coverage (CUC) suggested by Christoffersen (1998) to determine whether the empirical violation fre-

quencies differ significantly from these nominal levels. Additionally, we use Christoffersen’s (1998) LR

tests of independence of VaR violations (IND) and for correct conditional coverage (CCC). Define the

indicator variables If̂ ,t+1(yt+1 ≤ VaRf̂ ,t(α)) for α = 0.1, 0.05 and 0.01, which take the value 1 if the

condition in brackets is satisfied and 0 otherwise. Independence of the VaR exceedances is tested against

a first-order Markov alternative, that is, the null hypothesis is given by H0 : E(If̂ ,t+1|If̂ ,t) = E(If̂ ,t+1).

In words, we test whether the probability of observing a VaR violation on day t + 1 is affected by ob-

serving a VaR violation on day t or not. The CCC test simultaneously examines the null hypotheses of

correct unconditional coverage and of independence, with the CCC test statistic simply being the sum

of the CUC and IND LR statistics. For evaluating the adequacy of the ES estimates we employ the test
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suggested by McNeil and Frey (2000). For every return yt+1 that falls below the VaRf̂ ,t(α) estimate, de-

fine the standardized ‘residual’ et+1 = (yt+1 − ESf̂ ,t(α))/ht+1, where ht+1 is the conditional volatility

forecast obtained from the corresponding GARCH model. If the ES predictions are correct, the expected

value of et+1 is equal to zero, which can be assessed by means of a two-sided t-test with HAC variance

estimator.

Table 3 about here

The results reported in Table 3 show that the empirical VaR exceedance probabilities are very close

to the nominal levels for the Student-t innovation distribution. For the Laplace distribution, they are

considerably lower for α = 0.05 and α = 0.01. This is confirmed by the CUC test, which for these

quantiles convincingly rejects the null of correct unconditional coverage for the Laplace distribution but

not for the Student-t distribution. The null hypothesis of independence is not rejected in any of the cases

at the 5% significance level. Finally, the McNeil and Frey (2000) test does not reject the adequacy of the

95% ES estimates for either of the two distributions, but it does for the 90% and 99% ES estimates based

on the Laplace innovation distribution. In sum, the VaR and ES estimates suggest that the Student-t

distribution is more appropriate than the Laplace distribution, confirming the density forecast evaluation

results obtained with the conditional and censored likelihood scoring rules. In terms of risk management,

using the GARCH-Laplace forecast method would lead to larger estimates of risk than the GARCH-t

forecast method. This, in turn, could result in suboptimal asset allocation and ‘over-hedging’.

6 Conclusions

In this paper we have developed new scoring rules based on conditional and censored likelihood for

evaluating the predictive ability of competing density forecasts. It was shown that these scoring rules

are useful when the main interest lies in comparing the density forecasts’ accuracy for a specific region,

such as the left tail in financial risk management applications. Directly weighting the (KLIC-based)

logarithmic scoring rule is not suitable for this purpose. By construction this tends to favor density

forecasts with more probability mass in the region of interest, rendering the tests of equal predictive

accuracy biased towards such densities. Our novel scoring rules do not suffer from this problem.
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We argued that likelihood-based scoring rules can be extended for comparing density forecasts on

a specific region of interest by using the conditional likelihood, given that the actual observation lies in

the region of interest, or the censored likelihood, with censoring of the observations outside the region

of interest. Furthermore, we showed that the conditional and censored likelihood scoring rules can

be extended in order to emphasize certain parts of the outcome space more generally by using smooth

weight functions. Both scoring rules can be interpreted in terms of Kullback-Leibler divergences between

weighted versions of the density forecast and the true conditional density.

Monte Carlo simulations demonstrated that the conventional scoring rules may indeed give rise to

spurious rejections due to the possible bias in favor of an incorrect density forecast. This phenomenon is

virtually non-existent for the new scoring rules, and where present, diminishes quickly upon increasing

the sample size. When comparing the scoring rules based on conditional likelihood and censored like-

lihood it was found that the latter often leads to more powerful tests. This is due to the fact that more

information is used by the censored likelihood scores. Additionally, the censored likelihood scoring rule

outperforms the weighted probability score function of Gneiting and Ranjan (2008).

In an empirical application to S&P 500 daily returns we investigated the use of the various scoring

rules for density forecast comparison in the context of financial risk management. It was shown that

the weighted logarithmic scoring rule and the newly proposed scoring rules can lead to the selection of

different density forecasts. The density forecasts preferred by the conditional and censored likelihood

scoring rules appear to be more appropriate as they result in more accurate estimates of VaR and ES.
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A Appendix

This Appendix provides a proof of Lemma 1.

Generalized conditional likelihood score It is to be shown thatEt(dclt+1(pt, f̂t)) ≥ 0, where dclt+1(pt, f̂t) =

Scl(pt;Yt+1)− Scl(f̂t, Yt+1). Define Pt ≡
∫
wt(s)pt(s) ds and F̂t ≡

∫
wt(s)f̂t(s) ds.

The time-t conditional expected score difference for the density forecasts pt and f̂t is

Et
(
dclt+1(pt, f̂t)

)
=

∫
pt(y)

(
wt(y) log

(
pt(y)
Pt

))
dy

−
∫
pt(y)

(
wt(y) log

(
f̂t(y)
F̂t

))
dy

= Pt

∫
wt(y)pt(y)

Pt
log

(
wt(y)pt(y)/Pt
wt(y)f̂t(y)/F̂t

)
dy

= Pt ·K
(
wt(y)pt(y)

Pt
,
wt(y)f̂t(y)

F̂t

)
≥ 0,

where K(·, ·) represents the Kullback-Leibler divergence between the pdfs in its arguments, which is

finite as a consequence of Assumption 1.

Assumption 1 implies the existence of the Radon-Nikodym derivative of the density forecasts with

respect to the true predictive density pt, i.e. 0f̂t(y)/pt(y) < ∞ and 0ĝt(y)/pt(y) < ∞, which in turn

implies support(f̂t) = support(ĝt) = support(pt). This, together with Assumption 2 (c) guarantees that

wt(y)pt(y)/Pt and wt(y)f̂t(y)/F̂t can be interpreted as pdfs, while Assumption 2 (a) ensures that wt(y)

can be treated as a given function of y in the calculation of the expectation, which is conditional on Ft.

2
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Generalized censored likelihood score If dcslt+1(pt, f̂t) = Scsl(pt;Yt+1)− Scsl(f̂t, Yt+1), then

Et
(
dcslt+1(pt, f̂t)

)
=

∫
pt(y) log

(
(pt(y))wt(y) (1− Pt)1−wt(y)

)
dy

−
∫
pt(y) log

((
f̂t(y)

)wt(y)
(1− F̂t)1−wt(y)

)
dy

=
∫
pt(y) log

(pt(y)

f̂t(y)

)wt(y)(
1− Pt
1− F̂t

)1−wt(y)
 dy

=
∫
pt(y) log

(pt(y)F̂t
Ptf̂t(y)

)wt(y)(
Pt

F̂t

)wt(y)(1− Pt
1− F̂t

)1−wt(y)
 dy

=
∫
pt(y)

(
wt(y) log

(
pt(y)F̂t
Ptf̂t(y)

)
+ wt(y) log

Pt

F̂t
+ (1− wt(y)) log

(
1− Pt
1− F̂t

))
dy

= Pt

∫
pt(y)wt(y)

Pt
log

(
wt(y)pt(y)/Pt
wt(y)f̂t(y)/F̂t

)
dy

+Pt log
Pt

F̂t
+ (1− Pt) log

(
1− Pt
1− F̂t

)
= Pt ·K

(
wt(y)pt(y)

Pt
,
wt(y)f̂t(y)

F̂t

)
+K

(
Bin(1, Pt),Bin(1, F̂t)

)
≥ 0,

where K
(

Bin(1, Pt),Bin(1, F̂t)
)

is the Kullback-Leibler divergence between two Bernoulli distribu-

tions with succes probabilities Pt and F̂t, respectively. Assumption 2 (b), which requires wt(y) to be

scaled between 0 and 1 for the csl rule, is essential for this interpretation because it implies that Pt and

F̂t can be interpreted as probabilities.

Again, Assumptions1 and 2 (c) guarantee that wt(y)pt(y)/Pt and wt(y)f̂t(y)/F̂t can be interpreted

as pdfs, while Assumption 2 (a) ensures that wt(y) can be treated as a given function of y in the calcula-

tion of the expectation, which is conditional on Ft.

2

30



Acknowledgments

We would like to thank the associate editor and two anonymous referees, Michael Clements, Frank
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Table 1: Tests of equal predictive accuracy under parameter estimation
uncertainty

m 100 250 500 1000 2500 5000

Ha : E(dlt+1) > 0 0.000 0.000 0.024 0.134 0.339 0.463
Ha : E(dlt+1) < 0 0.982 0.239 0.026 0.004 0.001 0.000

Note: The table presents one-sided rejection rates (at nominal significance level 5%) of
the null hypothesis of equal predictive accuracy against the indicated alternative by the
Diebold-Mariano type test statistic defined in (1) when using the logarithmic scoring
rule (2), based on the sample average of the score difference dlt+1 = log f̂t(yt+1) −
log ĝt(yt+1). The DGP is an AR(2) process: yt = 0.8yt−1 + 0.05yt−2 + εt,with
εt ∼ i.i.d. N(0, 1). The competing density forecasts f̂t and ĝt are based on AR(2) and
AR(1) specifications, respectively. The residuals in both specifications are assumed to
be normally distributed and the coefficients are estimated using a moving window of
m observations. The estimation window size is varied from m = 100 to 5, 000. The
number of out-of-sample evaluations is n = 5, 000 and the number of replications is
10, 000.



Table 2: Average score differences and tests of equal predictive accuracy

Scoring rule α = 0.10 α = 0.05 α = 0.01

d
∗

Test stat. d
∗

Test stat. d
∗

Test stat.

Threshold weight function
wl −1.69× 10−4 −0.14 −5.12× 10−3 −4.74 −3.21× 10−3 −3.75
wps 4.29× 10−7 0.69 7.75× 10−7 1.56 8.68× 10−7 4.28
cl 1.47× 10−3 1.48 1.58× 10−3 2.32 7.78× 10−4 1.81
csl 2.21× 10−3 1.89 1.63× 10−3 1.53 1.16× 10−3 1.35

Note: The table presents the average score difference d
∗

and the corresponding test statistics for the weighted logarithmic (wl)
scoring rule in (4), the weighted probability score (wps) in (8), the conditional likelihood (cl) in (11), and the censored likelihood
(csl) in (12). All scoring rules are based on the indicator weight function wt(y) = I(y ≤ r̂αt ), where r̂αt is the α-th quantile of the
empirical (in-sample) CDF, where α = 0.1, 0.05 or 0.01. The score difference dt+1 is computed for density forecasts obtained
from an AR(5)-GARCH(1,1) model with (standardized) Student-t(ν) innovations relative to the same model but with Laplace
innovations, for daily S&P500 returns over the evaluation period December 2, 1987 – March 14, 2008.



Table 3: VaR and ES characteristics

α = 0.10 α = 0.05 α = 0.01
t(ν) Laplace t(ν) Laplace t(ν) Laplace

Average VaR −0.0110 −0.0112 −0.0149 −0.0162 −0.0243 −0.0279
Coverage (yt ≤ VaRt) 0.1056 0.1001 0.0530 0.0405 0.0104 0.0055
CUC (p-value) 0.1876 0.9814 0.3324 0.0012 0.7961 0.0004
IND (p-value) 0.1082 0.2315 0.0465 0.3658 0.5809 0.5788
CCC (p-value) 0.1156 0.4887 0.0861 0.0036 0.8304 0.0015

Average ES −0.0168 −0.0185 −0.0209 −0.0235 −0.0312 −0.0351
McNeil-Frey (test stat.) −0.7538 3.1164 −0.8504 0.3639 −1.1899 −2.3174
McNeil-Frey (p-value) 0.4510 0.0018 0.3951 0.7159 0.2341 0.0205

Note: The average VaRs reported are the observed average 1%, 5% and 10% quantiles of the density forecasts based on
the GARCH model with t(ν) and Laplace innovations, respectively. The coverages correspond with the observed fraction
of returns below the respective VaRs, which ideally would coincide with the nominal rate α. The rows labeled CUC,
IND and CCC provide p-values for Christoffersen’s (1998) tests for correct unconditional coverage, independence of VaR
violations, and correct conditional coverage, respectively. The average ES values are the ESs (equal to the conditional mean
return, given a realization below the predicted VaR) based on the different density forecasts. The bottom two rows report
McNeil-Frey test statistics and corresponding p-values for evaluating the expected shortfall estimates ESf̂ ,t(α).
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Figure 1: Probability density functions of the standard normal distribution f̂t(yt+1) and standard-
ized Student-t(5) distribution ĝt(yt+1) (upper panel) and corresponding relative log-likelihood scores
log f̂t(yt+1)− log ĝt(yt+1) (lower panel).
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Figure 2: Empirical CDFs of mean relative scores d
∗
m,n for the weighted logarithmic (wl) scoring rule

in (4), the conditional likelihood (cl) in (11), and the censored likelihood (csl) in (12) for series of
n = 2, 000 independent observations from a standard normal distribution. The scoring rules are based
on the threshold weight function wt(y) = I(y ≤ r) with r = −2.5. The relative score is defined as the
score for the (correct) standard normal density minus the score for the standardized Student-t(5) density.
The graph is based on 10, 000 replications.
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Figure 3: Empirical CDFs of mean relative scores d
∗
m,n for the generalized conditional likelihood (cl)

and censored likelihood (csl) scoring rules for series of n = 2, 000 independent observations from a
standard normal distribution. The scoring rules are based on the logistic weight function wt(y) defined
in (13) for various values of the slope parameter a. The relative score is defined as the score for (correct)
standard normal density minus the score for the standardized Student-t(5) density. The graph is based
on 10, 000 replications.
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Figure 4: One-sided rejection rates of the Diebold-Mariano type test statistic of equal predictive accuracy
defined in (1) when using the weighted logarithmic (wl), the conditional likelihood (cl), and the censored
likelihood (csl) scoring rules, under the weight function wt(y) = I(−r ≤ y ≤ r) for sample size
n = 500, based on 10,000 replications. The DGP is i.i.d. standard normal. The test compares the
predictive accuracy of N(−0.2, 1) and N(0.2, 1) distributions. The graph shows rejection rates against
the alternative that the N(0.2, 1) distribution has better predictive ability.
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Figure 5: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano type
test statistic of equal predictive accuracy defined in (1) when using the weighted logarithmic (wl), the
conditional likelihood (cl), and the censored likelihood (csl) scoring rules, under the threshold weight
function wt(y) = I(y ≤ r) for c = 5 expected observations in the region of interest, based on 10,000
replications. For the graphs in the left and right columns, the DGP is i.i.d. standard normal and i.i.d.
standardized Student-t(5), respectively. The test compares the predictive accuracy of the standard normal
and the standardized Student-t(5) distributions. The graphs in the top (bottom) panels show rejection
rates against superior predictive ability of the standard normal (standardized Student-t(5)) distribution,
as a function of the threshold parameter r.
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Figure 6: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano type
test statistic of equal predictive accuracy defined in (1) when using the weighted logarithmic (wl), the
conditional likelihood (cl), and the censored likelihood (csl) scoring rules, under the threshold weight
function wt(y) = I(y ≤ r) for c = 40 expected observations in the region of interest, based on 10,000
replications. For the graphs in the left and right columns, the DGP is i.i.d. standard normal and i.i.d.
standardized Student-t(5), respectively. Further details are identical to those given in Figure 5.
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Figure 7: Mean relative wl score E[dwlt+1] with threshold weight function wt(y) = I(y ≤ r) for the
standard normal versus the standardized Student-t(5) density as a function of the threshold value r, for
the standard normal DGP.
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Figure 8: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano type
test statistic of equal predictive accuracy defined in (1) when using the weighted logarithmic (wl), the
conditional likelihood (cl), and the censored likelihood (csl) scoring rules, under the weight function
wt(y) = I(−r ≤ y ≤ r) for c = 200 expected observations in the region of interest, based on 10,000
replications. The DGP is i.i.d. standard normal. The graphs on the left and right show rejection rates
against better predictive ability of the standard normal distribution compared to the standardized Student-
t(5) distribution and vice versa, respectively.
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Figure 9: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano type
test statistic of equal predictive accuracy defined in (1) when using the weighted logarithmic (wl), the
weighted probability wps, the conditional likelihood (cl), and the censored likelihood (csl) scoring rules
for c = 40 expected observations in the region of interest, based on 1,000 replications. The data follow
an GARCH(1)-process with the standard normal innovations. The competing model is based on the
standardized Student-t(5) innovations. The graphs on the left and right show rejection rates against better
predictive ability of the forecast based on the standard normal innovations compared to the forecast based
on standardized Student-t(5) innovations and vice versa, respectively.



Figure 10: Daily S&P 500 log-returns (black) for the period December 2, 1987 – March 14, 2008 and
out-of-sample 95% and 99% VaR forecasts derived from the AR(5)-GARCH(1,1) specification using
Student-t innovations (light gray) and Laplace innovations (dark gray).


