
HAL Id: hal-00834412
https://hal.science/hal-00834412

Submitted on 17 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontologies, Agents and the Grid: An Overview
Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki, Richard Olejnik, Ivan

Lirkov, Pavel Telegin, Mehrdad Senobari

To cite this version:
Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki, Richard Olejnik, Ivan Lirkov, et al.. Ontologies,
Agents and the Grid: An Overview. Saxe-Coburg Publications, Stirlingshire, UK. Parallel, Distributed
and Grid Computing for Engineering, Saxe-Coburg Publications, Stirlingshire, UK, pp 117-140, 2009,
Computational & Technology Resources, ISSN 1759-3158. �10.4203/csets.21.7�. �hal-00834412�

https://hal.science/hal-00834412
https://hal.archives-ouvertes.fr

Ontologies, Agents and the Grid—an Overview
M. Drozdowicz1, M. Ganzha1, M. Paprzycki1,2, R. Olejnik3, I. Lirkov4, P. Telegin5

and M. Senobari6,

1System Research Institute Polish Academy of Sciences, Warsaw, Poland
2Warsaw Management Academy, Warsaw, Poland

3University of Sciences and Technologies of Lille, Lille, France
4Institute for Parallel Processing, Bulgarian Academy of Sciences, Sofia, Bulgaria

5SuperComputing Center Russian Academy of Sciences, Moscow, Russia
6Tarbiat Modares University, Tehran, Iran

Keywords: Software agents, Grid, resource brokering and management,ontology,
semantic information processing.

One of the important claims that permeate current view of information management
is that ontological demarcation of data and semantic information processing are going
to allow to infuse “intelligence” into information systems. Separately, it is claimed
that software agents, combined with ontologies will be the foundation of Web 4.0. In
our work we are developing an agent-team-based resource management and brokering
infrastructure for computational Grids. The proposed meta-level middleware is to
utilize both software agents and ontologies. In this context, the aim of this chapter is
twofold. First, we present an overview of found efforts to develop ontologies to be
used in Grid and agent-Grid computing. Second, we analyze which one of them, if
any, should be the base ontology for the system under development.

References

1

Abstract

One of the important claims that permeate current view of information management
is that ontological demarcation of data and semantic information processing are going
to allow to infuse “intelligence” into information systems. Separately, it is claimed
that software agents, combined with ontologies will be the foundation of Web 4.0. In
our work we are developing an agent-team-based resource management and brokering
infrastructure for computational Grids. The proposed meta-level middleware is to
utilize both software agents and ontologies. In this context, the aim of this chapter is
twofold. First, we present an overview of found efforts to develop ontologies to be
used in Grid and agent-Grid computing. Second, we analyze which one of them, if
any, should be the base ontology for the system under development.

Keywords: Software agents, Grid, resource brokering and management,ontology,
semantic information processing.

1 Introduction

Computational Grids are considered one of more promising approaches to the devel-
opment of a global computational infrastructure. Unfortunately, while a continuous
stream of research funding is flowing into Grids, their uptake is not meeting expecta-
tions of their proponents. One of possible reasons is the learning curve of a potential
user, who tries to find out how to use the Grid. In [21] it has been claimed that uti-
lization of software agents may help the Grid reach its potential. The metaphor here
is that while the Grid will provide the resources (data and computational power—
the brawn), software agents will supply the system with “intelligence” (the brain).
Obviously, this claim is somewhat controversial (e.g. because software agents have

1

a number of staunch critics and/or these who claim that thereis no such thing as a
software agent, except for marketing [30]). Separately, according to Hendler [25],
software agents go hand-in hand with ontologies and semantic data processing. Fur-
thermore, in [39] one can find an argument that software agents and ontologies are
going to be the foundation of Web 4.0. Obviously, these claims also need to be taken
with a grain of salt, but the question arises, are the proponents or the critics of agents
and ontologies right? It is our belief that the proof of the pudding is in the eating. One
cannot validate either of these claims without an all out effort to make them work.
This is the context of our current work. Assuming that software agents are one of
the keystones for the development of the Grid and that ontologies and semantic data
processing matches well with utilization of software agents we proceed developing a
meta-level agent-based Grid resource management and brokering infrastructure.

In the proposed approach (theAgents in Grids; AiG project) software agents work
in teams, which allows us to establish Service Level Agreements (SLA) and assure
Quality of Service. Each team is represented by anLMasteragent (its manager). The
LMasteris supported by anLMirror agent, which helps facilitating long-term stability
of the team (by mirroring all of the vital team data). Users negotiate withLMasters
terms of job execution (the SLA), or team joining. Information about all existing
teams, their work and job offers is stored in, and provided by, theClient Information
Centerinfrastructure (represented by theCIC agent). It is assumed that all information
in the system will be ontologically demarcated and semantically processed. Summary
of the results obtained thus far can be found in [18, 23, 31, 17], while the current
version of the code is available at [1].

It should be noted that, initially, after a brief overview ofGrid ontologies, we have
decided to develop and use a very simple one [32, 17]. For instance, the descrip-
tion of a grid node utilized only three of its possible features: (1) CPU specification,
(2) available memory, and (3) available disk space. However, since our project has
reached its initial goals, it becomes necessary to infuse the proposed system with a
robust/complete Grid ontology. Therefore, in this chapterwe provide an overview of
existing efforts in the area of Grid ontologies. Furthermore, we evaluate them from
the perspective of their possible utilization as a core ontology of our system. Let us
start our overview from resource descriptions found in coreGrid projects.

2 Traditional Grid resource descriptions

2.1 Virtual Grid Description Language

The Virtual Grid Description Language (vgDL; [13, 29]) is a language for describing
Grid resources and querying Grid information services. It was developed as a part
of the VGrADS (Virtual Grid Application Development Software) Project [8]. The
project itself is a result of collaboration between severalAmerican universities and is
aimed at creating software systems and frameworks to simplify development of Grid
applications. VGrADS works together with several researchprojects and scientific ap-

2

plications to acquire practical use cases, but its deliverables have not (thus far) gained
significant adoption.

The vgDL is built on the concept ofVirtual Grids—a set of abstractions expressing
the structure of the Grid application. These abstractions are used to enable discovery
of Grid resources satisfying the specific criteria without the need to use concrete and
overly detailed constraints. From the outset, the vgDL was designed to keep the in-
significant details out of the way of the Grid user. Let us stress, that the vgDL does
not serve as a schema for describing resources—it is rather alanguage to describe
requirements and constraints that user imposes on Grid resources (theVirtual Grid) to
complete its task. In this aspect the vgDL is closer to the UNICORE AJO model than
to the GLUE schema (see subsequent Sections).

On the most basic level, the requirements for a single resource in the vgDL lan-
guage are specified by a series of simple attribute value constraints. However, what
makes vgDL powerful is the notion of resourceaggregators:

• LooseBagOf—a set of heterogeneous resources connected in aloose way (e.g.
with ’poor’ connectivity),

• TightBagOf—a set of heterogeneous resources connected in atight way (’good’
connectivity),

• ClusterOf—a set of homogenous resources connected tightly.

Theseaggregatorsspecify also the minimum and the maximum number of nodes in
the set and the constraints put on the nodes. Furthermore, they can be nested to form
hierarchies of nodes.

Another key concept of the vgDL is support for specifying thenetwork connection
type between nodes and aggregates. This is achieved throughthe use of four network
connectivity operators: (i) close, (b) far, (c) lowBW, and (d) highBW that describe
latency and bandwidth.

These features provide users with a way to easily specify even complex needs for
computing and storage nodes; taking into account the physical and geographical ar-
chitecture of the required environment.

Disadvantages of this approach, with regard to its usefulness in theAiG project are:

• Focus on describing requirements and constraints, while missing the description
of the resource itself—no specification how the informationabout resources
should be stored.

• Lack of specification of a standard set of attributes and their values, and/or their
mapping to existing Grid Information Services.

• vgDL does not explicitly handle the description of requirements regarding in-
stalled software or libraries—examples of how this may be implemented use
values of custom attributes.

3

• vgDL is not adopted in core Grid projects and was verified onlyin experimental
conditions.

Bearing this list in mind, we decided not to investigate the vgDL project further.

2.2 Condor

The Condor Grid middleware [11, 41, 42, 43] is a high-throughput computing system,
providing users with an environment for transparent execution of jobs on multiple, ge-
ographically distributed machines. It can run non-interactive jobs on any node under
control of the system without the need to modify the source code. The user sim-
ply submits a job, and Condor handles matching the job to available machine(s) and
executing it. If a node becomes unavailable, Condor can automatically backup the ex-
ecution state of the job and migrate it to another machine satisfying its requirements.
Condor supports single-process and parallel applicationswritten using different MPI
implementations. Furthermore, jobs submitted to Condor can be ordered to enable
sequential execution of dependent tasks.

All entities within Condor are described using the same abstract language—Clas-
sified Advertisement (ClassAd; [37, 38])—that can serve both as a means of describ-
ing elements of the system and as a query language. ClassAd has been designed to
enable efficient and extensible matchmaking of resources torequirements. Providers
of resources can offer them to the system by submitting ads describing their capa-
bilities and constraints regarding jobs they can run. The same language is used by
consumers of resources for describing their needs, requirements and preferences with
regard to hosts their job should be run on, as well as for describing the job itself. Clas-
sAd is a functional language built around the concept of anexpressionevaluated by
the engine. The core expression type in ClassAd is therecord expression, which is
basically a set of name-value pairs, with the value being either a simple literal or a
complex expression, including nested records.

Matchmaking of ClassAd job-machine pairs is done based on the definition of an
attribute calledRequirements. The value of this attribute can be an arbitrary expression
that is evaluated in the environment of the other record expression. Therefore if a job
is to be matched to a machine, the job’s Requirements must evaluate to true against the
machine’s description record, and the machine’s requirements in the job’s description
record.

The Condor manual [2] provides a list of machine descriptionattributes along with
their valid values. This list is very extensive and containsattributes sufficient for
most common usages of the system. The built-in attribute setdoes not, however,
let the job to have requirements concerning specific libraries or software installed or
running on the host machine. In such scenario, machines satisfying these requirements
would need to create and advertise this information as custom attributes. Furthermore,
Condor cannot perform advanced matching by following rulesdefining the relations
between certain attribute values such as a hierarchy of operating system types and

4

their concrete versions (e.g. all Linux kernel version share the same value of the
OpSysattribute).

Looking into usability of the ClassAd language in our project, we conclude, that
the set of attributes describing a machine could certainly be included in the needed on-
tology. On the other hand, the ClassAd language seems too proprietary and restricted
in defining ontological metadata of system resources and relationships between ele-
ments used to describe them. Therefore we cannot consider itas a strong candidate to
be used in our system.

2.3 UNICORE

The motivation for creating another popular Grid middleware—UNICORE (Uniform
Interface to Computing Resources [20]—was completely different than that of Con-
dor. Condor was primarily designed to take advantage of desktop computers’ and
small machines’ idle processor time and to enable executingjobs in a dynamic en-
vironment. UNICORE’s aim, on the other hand, was to provide (originally German)
supercomputer users with uniform access to various resources (scattered around the
country) and to make job scheduling easier and infrastructure independent. In its core
version the user would actually select a single target on which the job should exe-
cute. In contrast with the Condor, UNICORE on its own does notprovide resource
brokering, job checkpointing or migration.

Jobs in UNICORE are described at the user tier of the system using Abstract Job
Objects (AJO)—a collection of Java classes that contain allinformation needed by the
UNICORE target tier to prepare a native batch for execution.Therefore, UNICORE
does not provide a “language” for describing jobs—it relieson plain Java objects that
are serialized and sent to the UNICORE server. Furthermore,users that do not want to
use the provided GUI for job submission can use the UNICORE client API to create a
job description programmatically. Resource descriptionsare stored in theIncarnation
Database(IDB) which contains information needed to transform the abstract job to
a task ready for execution on a specific Grid resource. One of the serious drawbacks
of the IDB was that it contained only static information—software and hardware re-
sources. UNICORE did not provide resource monitoring capabilities and therefore
did not support dynamic Grid utilization.

Unfortunately for our project, UNICORE does not really define a resource ontol-
ogy. Its main focus is on describing jobs that need to be executed and on how to trans-
late these descriptions in a specific environment where the execution is to take place.
Some of deficiencies of the original UNICORE were fixed along with the changes in
the schemas of the AJO and the IDB in UNICORE version 6, thanksto the UniGrids
project, but this topic will be considered separately in section 3.4.

5

2.4 Globus Toolkit

The Globus Toolkit [22] is a set of libraries and programs designed to support creat-
ing distributed applications. It addresses such problems as resource access, resource
management, service discovery, security, data transfer and migration, etc. The core
of the Globus Toolkit is not so much of a complete system for executing computation
jobs (as was the case with Condor or UNICORE) but rather a foundation on which
more specialized services are built. Over the years, GlobusToolkit evolved rather no-
ticeably and in the 4th version its core functionality and interfaces are primarily based
Web Services.

Considering the resource discovery and management, along with new versions of
Globus Toolkit came also a new version of Globus’s implementation of the Grid In-
formation Service—the Meta Directory Service. Globus Toolkit 1 used MDS-1 which
relied on a single LDAP server which held information about all resources in the sys-
tem. Resources would sign up into the server and then periodically send updates of
their state. Users would utilize a single server to query thestate of a given resource as
well as to find nodes satisfying specific requirements. This solution’s main problem
was poor scalability—LDAP was optimized for number of queries but not for fre-
quent updates, which occurred when resources sent information about their load. In
MDS-2 [16] the central server’s role was limited to responding to discovery queries,
while finding information about a specific resource was movedto the resource itself.
Here, Grid resources started carrying their own LDAP servers (GRIS) that contained
information about their state. The server (GIIS) respondedto discovery queries by
sending information requests to all resources and only thenupdating its internal cache
of resource descriptions.

The information about resources contained in the LDAP databases was structured
following the schema defined in [6]. Specifically, it was organized around a small set
of elementary classes and a much wider collection of auxiliary classes that inherited
the baseMDS class and corresponded to concrete resource instances, e.g. the CPU,
memory or file system. Properties of these resources were described using LDAP at-
tributes. In the following snippet a description of memory resource is shown (example
from [6]).
dn : Mds−Device−Group−name=memory , . . .
o b j e c t c l a s s : MdsMemoryRamTotal
o b j e c t c l a s s : MdsMemoryVmTotal
o b j e c t c l a s s : MdsDeviceGroup
Mds−Device−Group−name : memory
Mds−v a l i d f r o m : 200110030128.12 Z
Mds−v a l i d t o : 200110030128.12 Z
Mds−keep to : 200110030128.12 Z
Mds−Memory−Ram−Tota l−sizeMB : 751
Mds−Memory−Ram−Tota l−freeMB : 642
Mds−Memory−Vm−Tota l−sizeMB : 1600
Mds−Memory−Vm−Tota l−freeMB : 1592
Mds−Memory−Ram−sizeMB : 751
Mds−Memory−Ram−freeMB : 642
Mds−Memory−Vm−sizeMB : 1600
Mds−Memory−Vm−freeMB : 1592

Along with the introduction of GT3, the Information Services’ LDAP databases

6

were abandoned in favor of XML based information repositories. Moreover, the de-
scription schemas also underwent major redevelopment—thecustom Globus solution
was replaced by a more generic and interoperable GLUE schema, described next.

2.5 GLUE

GLUE (Grid Laboratory for a Uniform Environment) is a project started in April 2002
as a joint effort between the U.S.-based iVDGL and the European DataTAG teams.
Its main purpose has been to bring interoperability betweenthe U.S. and European
physics Grid projects, through a uniform schema specifyingdescription of Grid re-
sources needed for implementation of Grid Information Services, resource discovery
and brokering systems. The first version of GLUE was releasedin October 2002
and contained definitions of a Grid computing element and storage service. Since
then, subsequent documents (1.1, 1.2, 1.3) have expanded the number of supported
use cases, merged and unified notions of computing and storage element into a single
schema, as well as included additional concepts, e.g. thoserelated to administration
of resources. Since October 2006, the GLUE project has joined the Open Grid Forum
and its efforts, focused on finishing version 2.0 of the schema, are continued within
the GLUE Working Group ([4]).

The schema was published as a description of the conceptual model of a structure
of Grid resources, complemented by UML Class Diagrams and tabular descriptions of
defined entities and their relationships. Notions of the schema are independent of the
technology used to enforce the schema and of data model languages. For the schema
to be usable it needs to be mapped to concrete implementations. Such realizations
exist for Grid resource descriptions modeled in XML (XSD Schema), LDAP and SQL
(data base structure) for both 1.3 and 2.0 versions of GLUE. Version 1.3 for XML was
natively supported by the Globus Toolkit 3 and a mapping to Condor ClassAds also
exists. The following summary of the schema is based on version 2.0.

The GLUE schema is built around a set of abstract entities that define the basic re-
lationships between elements of the system. Users of the system are organized using
a notion of aDomain—a set of actors. TheDomaincan be given access to services
through theAccess Policyentities. There are entities derived from theDomain: User
Domain, which reflects aVirtual Organizationable to access services; andAdmin Do-
mainwith primary goal of hosting services. BothUser DomainandAdmin Domain
can be organized in a hierarchical structure.Servicesare always accessible as one
or severalEndpointsand theAccess Policiesactually define rules of accessingEnd-
points. A Serviceis composed ofManagers—entities managing sets ofResources—
andShares—targets for sets of resources exposed throughEndpoints. A User Domain
submits anActivity using anEndpoint. TheActivity is run on aShareinto which the
User Domainis mapped by the appropriateMapping Policy.

The schema specifies implementation of defined abstract entities—theComputing
Serviceand theStorage Service. Because of the current interest of theAiG project
we will omit theStorage Serviceand focus on the Grid computing resource descrip-

7

tion. TheComputing Servicereifies the abstract concepts of the genericServicein the
following way:

1. The concrete implementation of theManageris theComputing Manager, which
in the simplest case is just the operating system controlling a single node. In
the typical case this might be a batch system (Local ResourceManagement
System). In a more complex scenario, this could also be a metalevel middleware
such as the Condor.

2. TheComputing Activityis an OGSA compliant description of a job submitted
to theComputing Servicethrough one of itsComputing Endpoints.

3. TheComputing Managermanages a set ofExecution Environmentsthat depict
physical or virtual computational resources of the Grid. The Execution En-
vironmentdescription is the element that contains the hardware, software and
network characteristics of the resource. TheExecution Environmentcontains
data properties such as (for a complete description including types of proper-
ties, see [9]):

• type of the platform the machine runs on,

• number of physical CPUs in an instance of theExecution Environment
(one physical CPU per socket),

• number of logical CPUs (i.e. the number of CPUs seen by the OS)in an
instance,

• detailed CPU information, such as the name of the vendor of the CPU, the
model, version and clock speed,

• amount of physical (RAM) and virtual (RAM + swap) memory,

• information about the operating system such as family, nameand version,

• type of the network connection between the instances composing theExe-
cution Environment.

Apart from the system specification, GLUE also specifies a wayof describing
available software. This is achieved through the use ofApplication Environment
entities and their relationships with theExecution Environment. In the XSD
snippet below, we have shown a fragment of the XML Schema describing this
part of the specification of theExecution Environment[10]. We can see that
the ExecutionEnvironmentt type is inheriting theResourcet type. It consists
of a number of optional (minOccurs=“0”) properties describing the platform,
number of instances of the environment, number and details of instances’ CPUs,
memory, details of the operating system and network connectivity. The type
definition ends with a list of relations to other types (theAssociations element)
such as theComputing Share, Application EnvironmentandComputing Activity.

8

<complexType name=” E xecu t ion E n v i r o nm e n tt ”>
<complexContent>

<e x t e n s i o n base =” g l u e : R e s o u r c et ”>
<sequence>

<e lem en t name=” P l a t f o r m ” type =” g l u e : P l a t f o r mt ” />
<e lem en t name=” V i r tua lMach ine ”

t ype =” boo lean ” minOccurs=”0 ” />
<e lem en t name=” T o t a l I n s t a n c e s ”

t ype =” u n s i g n e d I n t ” minOccurs=”0 ” />
<e lem en t name=” U s e d I n s t a n c e s ”

t ype =” u n s i g n e d I n t ” minOccurs=”0 ” />
<e lem en t name=” U n a v a i l a b l e I n s t a n c e s ”

t ype =” u n s i g n e d I n t ” minOccurs=”0 ” />
<e lem en t name=” Phys ica lCPUs ”

type =” u n s i g n e d I n t ” minOccurs=”0 ” />
<e lem en t name=” LogicalCPUs ”

type =” u n s i g n e d I n t ” minOccurs=”0 ” />
<e lem en t name=” CPUMu l t i p l i c i t y ”

t ype =” g l u e : C P U M u l t i p l i c i t y t ” minOccurs=”0 ” />
<e lem en t name=”CPUVendor ”

t ype =” s t r i n g ” minOccurs=”0” />
<e lem en t name=”CPUModel”

t ype =” s t r i n g ” minOccurs=”0” />
<e lem en t name=” CPUVersion ”

t ype =” s t r i n g ” minOccurs=”0” />
<e lem en t name=” CPUClockSpeed ”

type =” u n s i g n e d I n t ” minOccurs=”0 ” />
<e lem en t name=” CPUTimeScal ingFactor ”

t ype =” f l o a t ” minOccurs=”0” />
<e lem en t name=” W a l lT im eSca l ingFac to r ”

t ype =” f l o a t ” minOccurs=”0” />
<e lem en t name=” MainMemorySize ”

t ype =” uns ignedLong ” minOccurs=”0” />

<e lem en t name=” V i r tua lMemoryS ize ”
t ype =” uns ignedLong ” minOccurs=”0” />

<e lem en t name=” OSFamily ”
t ype =” g lue :OSFam i l y t ” minOccurs=”0 ” />

<e lem en t name=”OSName”
type =” glue:OSNamet ” minOccurs=”0” />

<e lem en t name=” OSVersion ”
t ype =” s t r i n g ” minOccurs=”0” />

<e lem en t name=” C o n n e c t i v i t y I n ”
t ype =” boo lean ” minOccurs=”0 ” />

<e lem en t name=” C o n n e c t i v i t y O u t ”
t ype =” boo lean ” minOccurs=”0 ” />

<e lem en t name=” Network In fo ”
t ype =” g l u e : N e t w o r k I n f o t ” minOccurs=”0 ” />

<e lem en t name=” E x t e n s i o n s ”
t ype =” g l u e : E x t e n s i o n st ” minOccurs=”0 ” />

<e lem en t name=” Benchmark ” t ype =” g lue :Benchm arkt ”
minOccurs=”0” maxOccurs=” unbounded ” />

<e lem en t name=” A s s o c i a t i o n s ” minOccurs=”0”>

<complexType>
<sequence>

<e lem en t name=” Comput ingShareLocal ID”
t ype =” s t r i n g ” minOccurs=”0 ”
maxOccurs=” unbounded ” />

<e lem en t name=” App l i ca t i onE nv i ron m en t L oc a l ID ”
t ype =” s t r i n g ” minOccurs=”0 ”
maxOccurs=” unbounded ” />

<e lem en t name=” Com pu t ingAc t i v i t y ID ”
t ype =” g l u e : I D t ” minOccurs=”0”
maxOccurs=” unbounded ” />

< / sequence>
< / complexType>

< / e lem en t>
</ sequence>

9

</ e x t e n s i o n>
< / complexContent>

</ complexType>

With regard to theAiG project, GLUE is interesting and helpful in at least a few
ways. One aspect is the approach to the role of the Grid resource description—it is pri-
marily the input to the resource directory and brokering services. Another important
advantage of the GLUE schema is its wide adoption among Grid projects and native
usage in the Globus Toolkit 4. This comes in pair with the maturity of the schema
and its covering of a large number of real world-use cases. A natural way of utilizing
the schema would be reusing definition of theComputing Serviceelement. In this
case a huge advantage of GLUE is its well-defined, object model as well as the ability
to model not only physical specifications of the resources, but also available applica-
tions and libraries. One clear disadvantage of reusing the GLUE schema is lack of
any ontological (e.g. RDF/OWL [24, 33]) realization. Thus,it would be necessary to
create one from scratch. Another is the fact that while GLUE is compatible with many
Grid middlewares it still does not supportUNICORE’s approach. Therefore, within
the context of theAiG project, we are likely to use the GLUE schema as reference,
especially in the area of description of the physical and virtual computing resources.

3 Semantic Grid description and Grid interoperability

Thus far we were have looked into Grid resource descriptionsfound among traditional
Grid efforts (which have never aimed at utilization of ontologies). Out of them we
have found that only the GLUE schema could be utilized as the foundation of an
ontology needed in theAiG project. However, this would mean starting from scratch
and creating an ontology using an ontology language (e.g. OWL) from existing XML
based descriptions. Therefore, we will now focus our attention on efforts that already
utilize ontological demarcation. Interestingly, many of such projects originate from
efforts to support greater heterogeneity among Grid resources both in terms of attribute
value domains and Grid middleware interoperability (see, [40] for more details).

3.1 Grid resource ontology of Pernas and Dantas

An example of work towards an ontology of Grid resources is found in [36]. Here,
authors’ goal was to create an ontological intermediate layer between the consumer of
Grid services and Grid resources. This was to enable easier and faster discovery of the
resources as well as to provide common vocabulary for different VO’s. The proposed
ontology was implemented in the OWL Full language.

As far as we were able to determine, project described in [36]has been completed
in 2005 and since then the ontology has not been developed further. Furthermore,
the developed ontology comprised of merely 14 classes. Thisbeing the case it was
actually less complete than the one used thus far in theAiG project. These reasons
lead us to disregard this effort from our consideration.

10

3.2 Grid resource ontology of Vidal et al.

The Grid resource ontology described in [44] was created as an effort to support re-
source brokering in a Grid middleware system. Here the focusof the project was to
enhance resource matching processes. The proposed ontology was used by an addi-
tional intermediate layer between the client of the Grid andthe Grid resource manager
to analyze constraints specified by the client and transformthem using automatic rea-
soning to match more resources, not found using traditionalattribute-based matching.
The ontology was based on the OWL DL language and consisted of3 parts:

• Grid Base Ontology—the foundation ontology consisting of basic concepts de-
scribing physical resources (Computer, Cluster, DiskSpace etc.) and software
(Problem, Domain, Algorithm, Application)

• Platform Ontology—an ontology extending the platform related concepts of the
Base Ontologywith the hierarchy of CPU architecture and operating systems

• Grid Resource Management Ontology—a domain ontology specifying prob-
lems and algorithms related to Data Mining

An important aspect of this ontology and its usage is that it is not used as a com-
plete description of the resource or its constraints, but rather as a set of concepts useful
for describing attribute values and enabling reasoning about them. The result of such
approach is that relations contained in the ontology describe the equality or compat-
ibility of concepts. For example in thePlatform Ontologythere is a property stating
that theItanium processorclass has architecture of typeProcessorArch64Bits. There
is, however, no property stating that theComputerclass is related to theProcessor
class. The ontology on its own does not contain data properties such as the amount
of available memory or the speed of the processor. It also cannot be used to describe
jobs to be submitted to the Grid.

A complete set of ontology files can be downloaded from [5] butjudging from
publications related to the project, the ontology itself has not been actively developed
since June 2007. Furthermore, the goal and purpose of this ontology seem to be differ-
ent than needs of our project and therefore we have decided tonot to pursue it further.

3.3 GRIP

The GRid Interoperability Project (GRIP) [12] was aimed at bringing about inter-
operability between UNICORE and Globus Grid middlewares aswell as providing
brokering capabilities for the UNICORE. It was a 2-year project running in 2002-04.
Its results included creating interoperability layers between UNICORE and Globus
Toolkit v2 and v3, an abstract ontology of the resource, and acommon resource bro-
ker for both Globus and UNICORE resources. The project also laid foundations for
the adoption of the OGSA standards in UNICORE.

11

From the point of view of the aim of this chapter, the most interesting aspect of
GRIP is the matching and mapping phase of creating the Globus-UNICORE inter-
mediate layer. Since the process of creating a translator between the two has been
described in a rather detailed way in [12], below we highlight only the most important
points. The resource ontologies for both systems were extracted using the PCPack
tool [7] from the GLUE schema in case of Globus and from the AJOJavaDoc docu-
mentations for the UNICORE. While the PCPack does not natively support the OWL
language, it enabled to easily, graphically customize and refine resulting ontologies.
Afterwards the two ontologies were compared to try to match concepts contained
therein. The most important differences found in the process were these of the scope
of descriptions. UNICORE descriptions contained information about static hardware
and software capabilities of the resource. The GLUE schema,on the other hand, did
not specify software capabilities. However, apart from static hardware capabilities, it
described the dynamic information, e.g. the current load ofthe resource. This being
the case, only the intersection of these two “universes,” i.e. the static description of
hardware capabilities could have been mapped.

Unfortunately we were not able to find the complete PCPack ontologies used in
the course of the project, nor could we acquire the XML files used for mapping the
ontology terms. Therefore, we cannot present an example of how these would describe
a sample resource or discuss details of the implementation.We can, however, discuss
results of two projects following this effort— the Uniform Interface to Grid Services
(UniGrids) and the Grid Ontology project.

3.4 UniGrids, OGSA and the Grid Ontology

UniGrids (Uniform Interface to Grid Services) was a follow-up on the GRIP project.
Its main goal was to design and implement a Grid middleware system compliant with
the Open Grid Service Architecture (OGSA) standards. It wasto be based on the
UNICORE and the results of the GRIP project. However, as the project developed,
it was substantially modified—especially looking into the internal structure of the
proposed ontology.

In terms of resource descriptions and requests, the UniGrids project brought the
adoption of the XML to the description of the incarnation process. Prior to the UNI-
CORE 6, the incarnation process was described using custom formatted text files,
while in version 6 they became XML-formatted and contained elements from the
OGSA JSDL namespace. These were used mostly to describe the resource capa-
bilities description such as the operating system, number of nodes or CPUs per node.
Furthermore, the UniGrids project brought the specification of the Grid Resource On-
tology and the more general Grid Ontology [35]. The ontologywas designed to form
a basis for automatic matching of many different Grid middlewares as well as an easy
addition of new systems.

The proposed ontology was built using the OWL language and was split into sev-
eral layers. The core layer (referenced in [35] as theFoundational Ontology) is a set of

12

classes forming the high-level, common view of Grid elements, such as Virtual Orga-
nizations, abstract resources, security related entities, abstracts actions and tasks. On
top of the base ontology, the OGSA and the S-OGSA ontologies were defined. They
introduce concepts related to these standards as well as middleware specific ontologies
such as the Globus Ontology and the UNICORE ontology.

A very important part of the ontology are classes and object properties representing
the abstract Grid job and the way it is translated to concreteprocesses for the target
machine. Approach presented in the ontology is very similarto the one from the
UNICORE—it is based on the concept of theAbstractJoband the idea of itsIncar-
nation to the local resource. AnAbstractJobcan also contain multipleActions so it
can be used to model workflows. Apart from jobs, the process ofincarnation also cov-
ers concepts such as the file systemDirectories, the systemProcessesand user logins.
The ontology contains also a set of classes related to theQuality of ServiceandSer-
vice Level Agreementsand their negotiation. This functionality is provided by means
of theQoSclass and its subclasses:AdvertisedQoS, AgreedQoS, ObservedQoSand
RequestedQoS. TheQuality of Serviceis defined on the level of singleActions and
ResourceSetsassigned to them and negotiated by theBroker. It should be noted that,
while these classes are joined with relations to other concepts of the ontology, they
lack data properties describing the concrete terms of the agreement, such as for ex-
ample: start time, end time, and cost of running theActionon theResourceSet. Note
that these concepts are used directly in our system when users negotiate jobs with
LMasters [17].

Looking into more details, resources are described using theResourceabstract en-
tity, which is inherited afterwards by more specific resource type entities:Disk, File,
Network, Processing, Resource Collection(which basically is a set of resources) and
Software. Properties of the ontology provide means of describing resource structures
of arbitrary complexity combining computing and storage capabilities. Properties of
resources are specified by theResourceProperty entities which correspond to the
WSRF WS-ResourceProperties standard. TO illustrate the approach, in Figure 1 we
can see the resource hierarchy along with the way they are exposed to clients—through
theServiceclass.

The important thing to note is that the WS-ResourceProperties standard does not
define a set of properties that can be used for describing resources. Instead it defines
a meta-layer of these properties—it includes terminology,concepts and operations
needed to expose the definition of properties and their values; query and update the
property values. Therefore, the ontology itself does not provide concepts needed to
completely describe the physical characteristics and capabilities of the resource. As
noted above, it also does not provide us with the right set of concepts needed for job
contract negotiations. We find these to be a serious deficiency as it would require a
significant effort to extend what exists to the point of usefulness in our project. On
the other hand, we can see here a mature and complete set of concepts describing the
overall structure of the Grid infrastructure as well as the classes related to abstract job
descriptions, which might provide us with very important ideas and insights.

13

Figure 1: The hierarchy of resource concepts in the Grid Ontology

3.5 Core Grid Ontology

Finally, let us describe the effort that seems to be the closest to our needs and that is
likely to be adopted in our project. TheCore Grid Ontology([45], [3]) is an OWL de-
marcated, Grid architecture independent, collection of concepts and relations between
them that could be extended to include middleware specific properties. In this case,
authors did not create an ontology with any specific goal (e.g. ontology of a specific
middleware) but instead wanted to provide a generic ontological Grid description for
further extension and use by Semantic Grid applications.

Proposed ontology does not capture the whole universe of theGrid but was created
by examining various Grid architectures and extracting core concepts common to all
of them. The result of this process is a layered model of the generic Grid architecture,
containing, looking from the top to the bottom:

• Grid VOs and Applications—classes such asVO, GridUser, GridApplication
andPolicydescribing the configuration and application of the Grid,

• Grid Middlewares and Services—Grid middleware, components, libraries and
services enabling core Grid functionality,

• Resources—classes describing resources, such asComputingElement, Work-
erNodeand various resource physical description concepts likeCPU or Stor-
ageInterface.

Apart from the classes, the proposed ontology defines also relations between them,
using object and data properties. Thanks to these properties, it is possible to create
a complete structure of a multi-VO Grid environment with interconnected elements.
TheVO contains registered participants - eitherGridResouces orGridUsers and can
containSites. EachSitecan haveGridComponents such asComputingComponent,
StorageComponentor ResourceBroker. The important class for computing jobs is the

14

ComputingElement—a subclass ofComputingComponent—which can haveQueues
andWorkerNodes as well as installed software such asGridMiddlewareandOperat-
ingSystem. TheWorkerNodeis the resource, which runs the job, and which is likely to
contain aCPU. The vocabulary of concepts representing Grid resources isalso rather
extensive—we have shown it in Figure 2.

Figure 2: The hierarchy of Grid Resource concepts in the CoreGrid Ontology

Figure 3 shows a diagram of the structure of the sample Grid site—that of the
University of Cyprus Grid—based on the instances provided in the ontology OWL
file. We can see that the CY01-LCG2 site has fourGridComponents:

• ui101.grid.ucy.ac.cy—an instance of theUI class

• se101.grid.ucy.ac.cy—aStorageElement

15

Figure 3: The structure of a sample Grid site described usingthe Core Grid Ontology

• rb101.grid.ucy.ac.cy—aResourceBroker

• ce101.grid.ucy.ac.cy—aComputingElement

The ce101.grid.ucy.ac.cy computing element, in turn, handles threeWorkerNodein-
stances, the dteamQQueueand runs two services: openpbsucy which is an instance
of thePBSjob manager and mauice ucy—an instance of the Maui job scheduler.

Worker nodes are described as shown in the following OWL snippet.
<WorkerNode r d f : I D =”wn102 . g r i d . ucy . ac . cy ”>

<belongToVO>
<VO r d f : I D =”Dteam ”>

<hasName r d f : d a t a t y p e =
” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”>

dteam
</ hasName>

< /VO>

< / belongToVO>
<hasID>

<IP r d f : I D =”IP WN102 UCY”>
<hasName xml : lang =” en ”>1 9 4 . 4 2 . 1 7 . 2 3 7< / hasName>

< / IP>

< / hasID>
<hasCPU>

<CPU r d f : I D =” CPU In te l ”>
<avai lab leNum
r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# i n t ”>

2
</ ava i lab leNum>
<hasModel xml : lang =” en ”>Xeon</ hasModel>
<c lockSpeed xml : lang =” en ”>2 . 8GHz< / c lockSpeed>

< /CPU>
< / hasCPU>
<hasName r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”>
< / hasName>
< I n s t a l l e d S o f t w a r e>

<LCG r d f : I D =”LCG 2 . 6 . 0 ” />
< / I n s t a l l e d S o f t w a r e>
< I n s t a l l e d S o f t w a r e>

<Linux r d f : I D =” S c i e n t i f i c L i n u x 3 0 3 ”>
<rd fs :comment

r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r in g ”>
A l i n u x OS .
</ rd fs :comment>
</ L inux>

< / I n s t a l l e d S o f t w a r e>
</ WorkerNode>

16

As can be seen from the above description, relationships between classes are rather
complete, although there are still some missing concepts; e.g. lack of properties re-
lated to many of theGridResourcesubclasses such as theNetworkResource, Memory
or StorageResource. However, the collection of Grid infrastructure related classes is
rather impressive—containing entities such asGridInformationService, JobManager,
JobScheduleror WorkloadManagement.

A very helpful element of the ontology is the provided example set of instances of
the classes corresponding to authentic elements of a Grid environment in the EGEE
project from which we have taken the examples shown in this section.

4 Agent—Grid integration

Thus far we have looked into traditional Grid resource descriptions and attempts at
developing a Grid ontology. However, since our project is going to utilize both on-
tologies and software agents, let us now focus our attentionon efforts to provide on-
tological basis to agent-Grid integration efforts. Here wediscuss two approaches that
we were able to identify.

4.1 Agent Computational Grid

The first example is theAgent Computational Grid(ACG) project [14, 15]. Moti-
vation of this effort was to propose an agent-based computing and service exchange
environment in which agents expose selected core features of the Grid functionality;
e.g. member registration and service discovery. Proposed agents do not introduce
significant cognitive features to the Grid (are not an actual“brain”), but utilize ca-
pabilities such as environment awareness and adaptabilityto improve the robustness
of the Grid and enable Grid functioning under highly dynamicconditions. Another
concept of theACG is interoperability of Grid members. It is suggested that the sys-
tem should be able to accept agents of different platforms aswell as enable exposing
legacy services. Here, agent interoperability is accomplished on the basis of theMo-
bile Agent System Interoperability Facilitystandard [26], while wrapping of legacy
systems is based on the integration ofCORBAdistributed objects technology. The
ACG is designed around two wayCORBAintegration—existingCORBAservices can
be exposed through an agent based interface at the same time agents’ capabilities can
be used asCORBAservices.

Services in theAGC are described by means of XML with a clearly defined DTD
schema. As specified in [15] the description contains the following fields:

• Name: This is an optional string that can be associated with a service

• Service Id: This is a required element that uniquely identifies the service. Each
service has a unique id

17

• Description: describes some features of this service

• Access: describes how to invoke and use a service The access method fields
provide the placeholder for any kinds of service invocationschema. A service
description may contain multiple access method tags as theycould be multi-
ple ways to invoke a service. The intent is for the agent to ultimately decide
which invocation mechanism to use. Some agents may want to use a interface
of services, some may decide to download a client-proxy code, other agent need
migrate to destination node, access the services locally

• Interface: indicate agent can access service by a standard interface

• URL: gives location of services supplied by a legacy system

• Agent platform: The agent platform in which the application was built on

• Service type: informs the user the type of service

• Properties: denotes a list of properties of the service

Looking at the list of service description elements, it can be noted, that authors
concentrated mostly on the aspect of multi platform interoperability, while leaving
the issue of describing the execution environment and Grid node resource capabilities
practically untouched. In fact the only place where one could introduce information
such as the physical specifications of the machine the service is hosted on, or the avail-
able system resources, or libraries, would be thePropertieselement. Unfortunately
for this element authors’ did not provide any list of valid child elements. Therefore,
even though the interoperability-focused approach to agent-Grid integration proposed
within theACGproject seems interesting in many aspects, the Grid resource descrip-
tion has proven to be insufficient to our needs. Furthermore,with the best effort at-
tempt, we could not find traces of this project being extendedpast 2005.

4.2 AGIO

The agent-Grid integration project, described in [27, 28, 19], is build around concepts
of agentandservice. In the proposed model, artificial or humanagentsare engaged
in exchange of services and, for shared access to resources,are composed intoVirtual
Organizations. Integration between the agent and the Grid worlds takes place on the
level of services, i.e. services interface agents’ capabilities using the concept of a
Cognitive Environment. This feature enables Grid services to behave in a completely
stateful manner; not only for the duration of fulfilling a single request but also over the
course of several user conversations. Moreover, thanks to theCognitive Environment
it would be possible to reason about the outcome of service calls and enrich results
returned to clients.

In terms of formalization of the model, this effort has first been modeled using
a specially created diagram language called theAgent Grid Integration Language

18

(AGIL); described in [27]. TheAGIL language enables a graphical representation of an
agent-Grid integrated system along with the relationshipsbetween its elements. The
next step in the formalization of this concept was theAgent Grid Integration Ontology
as presented in [19], which containsOWLdemarcated ontologies of allAGIL concepts
as well as theSWRL([34]) rules enabling machine parsing of the descriptions and
automatic validation of model instances.

To summarize classes forming the ontology we will start withthe concept of an
Agent. Agents, organized intoVOs and identified by theX509certificates, interact with
each other and use or provideServices. AnAgentproviding aServicecan dedicate its
CognitiveEnvironmentto its clients.Services are included inServiceContainers and
handled by aCAS(Community Authorization Service). As mentioned earlier,Ser-
vices interface agents’Capabilities. TheServiceContainerreifies a set ofVirtualize-
dResources which in turn can virtualize a number ofHosts, that can be composed of a
ComputingResourceand aStorageResource. This ontology does not describe detailed
properties of theResourceclasses, nor does it specify the software or libraries acces-
sible to the service clients. In the following XML snippet, we present a sample set of
instances forming a single service.
<C a p a b i l i t y r d f : I D =” Com pu t ingCapab i l i t y ”>

< i s I n t e r f a c e d B y>
<S e r v i c e C o n t a i n e r r d f : I D =” Com pu t ingServ i ceCon ta in e r ”>

< i n t e r f a c e s r d f : r e s o u r c e =”# Com pu t ingCapab i l i t y ” />

< i n c l u d e s>
<NormalServ ice r d f : I D =” Comput ingServ ice ”>

< i s I n c l u d e d I n r d f : r e s o u r c e =”# Com pu t ingServ i ceCon t a i ner ” />
< i n t e r f a c e s r d f : r e s o u r c e =”# Com pu t ingCapab i l i t y ” />

<i sHand ledBy>
<CAS r d f : I D =” ComputingCAS”>

< i s I n c l u d e d I n r d f : r e s o u r c e =”# Com pu t ingServ i ceCon t a i ner ” />
<i sHand ledBy r d f : r e s o u r c e =”#ComputingCAS” />

<h a n d l e s r d f : r e s o u r c e =”# Comput ingServ ice ” />

<h a n d l e s>
<NormalServ ice r d f : I D =” SomeService ”>

<i sHand ledBy r d f : r e s o u r c e =”#ComputingCAS ” />

< i s I n c l u d e d I n r d f : r e s o u r c e =”# Com pu t ingServ i ceCon ta in er ” />
< / NormalServ ice>
< / h a n d l e s>
<h a n d l e s r d f : r e s o u r c e =”#ComputingCAS ” />

</CAS>
</ i sHand ledBy>
<i sP rov idedBy r d f : r e s o u r c e =”# ComputingAgent ” />

< / NormalServ ice>
< / i n c l u d e s>
< i n c l u d e s r d f : r e s o u r c e =”# SomeService ” />

< i n c l u d e s r d f : r e s o u r c e =”#ComputingCAS ” />

< r e i f i e s>
<V i r t u a l i z e d R e s o u r c e r d f : I D =” VRComputingNode ”>

<v i r t u a l i z e s>
<SimpleHos t r d f : I D =” ComputingHost ”>

<isComposedBy>
<Sto rageResourc e r d f : I D =” S to rageRe so ur c e1 ”>

<composes r d f : r e s o u r c e =”# ComputingHost ” />

< / S to rageResourc e>
< / isComposedBy>
<isComposedBy>
<ComputingResource r d f : I D =” Comput ingResource1 ”>

<composes r d f : r e s o u r c e =”# ComputingHost ” />

< / Comput ingResource>
< / isComposedBy>

19

< i s V i r t u a l i z e d B y r d f : r e s o u r c e =”#VRComputingNode ” />

<ho lds>
<X509Host r d f : I D =” X509Host 11 ”>

<i sHeldBy r d f : r e s o u r c e =”# ComputingHost ” />

< / X509Host>
< / ho lds>

</ S impleHos t>
</ v i r t u a l i z e s>
< i s R e i f i e d I n r d f : r e s o u r c e =”# Com pu t ingServ i ceCon t a i ne r” />

< / V i r t u a l i z e d R e s o u r c e>
< / r e i f i e s>

</ S e r v i c e C o n t a i n e r>
</ i s I n t e r f a c e d B y>
< i s I n t e r f a c e d B y r d f : r e s o u r c e =”# Comput ingServ ice ” />

</ C a p a b i l i t y>

Here, we can see theComputingCapability, which we assume enables the agent to
run some client-specified job, is interfaced by theComputingService. TheComput-
ingServiceis included in theComputingServiceContainerand handled by theCom-
putingCAS. The ComputingServiceContainerreifies theVRComputingNode Virtual-
izedResourcethat virtualizes a simpleComputingHostcomposed of theComputin-
gResource1 and theStorageResource1.

The AGIO provides an excellent framework for modeling the structureof multi-
agent-based Grid systems. It contains a very extensive set of concepts describing rela-
tionships between agents operating within the Grid as well as an interesting approach
to enriching Grid services with agents’ intelligence through the use of Cognitive En-
vironments. Unfortunately, it does not contain appropriate classes related to features
such as physical resource description, resource discoveryand brokering, or resource
software requirements and/or capabilities. Therefore, while possibly a good candidate
for future work on modeling the “universe” ofAiG system’s agents, it is not appropri-
ate for use as a resource description ontology. Furthermore, it has to be noted that the
AGIO project was actually an MS Thesis and currently is not pursued further.

5 Concluding remarks

The aim of this chapter was to summarize existing efforts at creating an ontology
of the Grid, and underlying agent-Grid integration. At the same time, the presented
material was viewed from the perspective of theAgents in Gridproject, which we
are working on. Our main question was: is there an ontology ofthe Grid that we
could adopt in our project. Looking at the presented above list of efforts at directly
defining Grid ontology or that could be reverse engineered toextract one, we believe
we should reuse and extend the Core Grid Ontology, which turns out to be the closest
to our needs. Extensions will be based first, on other efforts(or experiences drawn
from them); the GLUE project in particular, and the UniGrid.Second, we will have
to introduce concepts that are specific to our effort, e.g. economic concepts related
to contract negotiations and trust related concepts. We will report on our progress in
subsequent publications.

20

Acknowledgments

Work of the Polish team was in part supported from the “Funds for Science” of the
Polish Ministry for Science and Higher Education for years 2008-2011, as a research
project (contract number N516 382434). Collaboration of the Polish and Bulgarian
teams is partially supported by theParallel and Distributed Computing Practices
grant. Collaboration of Polish and French teams is partially supported by the PICS
grantNew Methods for Balancing Loads and Scheduling Jobs in the Grid and Ded-
icated Systems. Collaboration of the Polish and Russian teams is partiallysupported
by theEfficient use of Computational Gridsgrant.

References

[1] “Agents in the Grid Project”, http://sourceforge.net/projects/
gridagents .

[2] “Condor Manual”,http://www.cs.wisc.edu/condor/manual/ .

[3] “Core Grid Ontology”,http://grid.ucy.ac.cy/grisen/cgo.owl .

[4] “GLUE Working Group Report”,http://forge.gridforum.org/sf/
projects/glue-wg .

[5] “Grid Ontologies: GO”,http://www.deinf.ufma.br/ ˜ vidal/ .

[6] “MDS 2.4 Schemas”, http://globus.org/toolkit/docs/2.4/
mds/Schema.html .

[7] “PCPack”, http://www.epistemics.co.uk/Notes/55-0-0.htm .

[8] “VGrADS—Virtual Grid Application Development Software”, http://
vgrads.rice.edu .

[9] “GLUE Specification v. 2.0”, http://forge.gridforum.org/sf/
docman/do/downloadDocument/projects.glue-wg/docman.
root.public_comment/doc15227 , May 2008.

[10] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya, M. Litmaath,
P. Millar, J. Navarro, “GLUE v. 2.0—Reference Realizationsto Concrete
Data Models”, http://forge.gridforum.org/sf/docman/do/
downloadDocument/projects.glue-wg/docman.root.publi c_
comment/doc15219 , May 2008.

[11] J. Basney, M. Livny, “Deploying a High Throughput Computing Cluster”, in
R. Buyya (Editor),High Performance Cluster Computing: Architectures and
Systems, Volume 1. Prentice Hall PTR, 1999.

21

[12] J. Brooke, D. Fellows, K. Garwood, C. Goble, “Semantic matching of grid
resource descriptions”, inProc. of the European Across Grids Conference, 2004,
pages 240–249. Springer, 2004.

[13] A. Chien, H. Casanova, Y.S. Kee, R. Huang, “The Virtual Grid Description
Language: vgDL”, UCSD Technical Report CS2005-0817, University of Cal-
ifornia San Diego, 2005, URLhttp://www-csag.ucsd.edu/papers/
VirtualGrids8-9-2004_V0.95TR.pdf .

[14] L. Chunlin, L. Layuan, “Integrate software agents and CORBA in computational
grid”, Comput. Stand. Interfaces, 25(4): 357–371, 2003, ISSN 0920-5489.

[15] L. Chunlin, L. Layuan, “Agent framework to support the computational grid”,
Journal of Systems and Software, 70(1-2): 177–187, 2004.

[16] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman,“Grid Information Ser-
vices for Distributed Resource Sharing”, 2001, URLhttp://citeseer.
ist.psu.edu/czajkowski01grid.html .

[17] M. Dominiak, M. Ganzha, M. Paprzycki, “Selecting grid-agent-team to execute
user-job—initial solution”, inProceedings of the Conference on Complex, In-
telligent and Software Intensive Systems, pages 249–256. IEEE CS Press, Los
Alamitos, CA, 2007.

[18] M. Drozdowicz, M. Ganzha, W. Kuranowski, M. Paprzycki,I. Alshabani,
R. Olejnik, M. Taifour, M. Senobari, I. Lirkov, “Software Agents in ADAJ:
Load Balancing in a Distributed Environment”, in M. Todorov(Editor), Appli-
cations of Mathematics in Engineering and Economics’34, Volume 1067 ofAIP
Conf. Proc., pages 527–540. American Institute of Physics, College Park, MD,
2008.

[19] F. Duvert, “An ontology of GRID and Multi-Agent Systemsintegration”, Mas-
ter’s thesis, Universit Montpellier II, 2006.

[20] D.W. Erwin, D.F. Snelling, “UNICORE: A Grid computing environment”, in
R. Sakellariou, J. Keane, J. Gurd, L. Freeman (Editors),Euro-Par 2001 Parallel
Processing, Volume 2150 ofLecture Notes in Computer Science, pages 825–834.
Springer-Verlag, 2001.

[21] I. Foster, N.R. Jennings, C. Kesselman, “Brain Meets Brawn: Why Grid and
Agents Need Each Other”,Autonomous Agents and Multiagent Systems, Inter-
national Joint Conference on, 1: 8–15, 2004.

[22] I.T. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems.”,
in H. Jin, D.A. Reed, W. Jiang (Editors),NPC, Volume 3779 ofLecture Notes in
Computer Science, pages 2–13. Springer, 2005.

22

[23] M. Ganzha, M. Paprzycki, I. Lirkov, “Trust Management in an Agent-based Grid
Resource Brokering System—Preliminary Considerations”,in M. Todorov (Ed-
itor), Applications of Mathematics in Engineering and Economics’33, Volume
946 of AIP Conf. Proc., pages 35–46. American Institute of Physics, College
Park, MD, 2007.

[24] J. Heflin, “OWL Web Ontology Language use cases and requirements. W3C
recommendation.”, Technical report, World Wide Web Consortium, 2004.

[25] J. Hendler, “Agents and the Semantic Web”,IEEE Intelligent Systems, 16(2):
30–37.

[26] I. Join submission, GMD FOKUS, “Mobile Agent System Interoperability Facil-
ities Specification”, Available at http://www.omg.org/docs/orbos/97-10-05.pdf,
November 1997.

[27] C. Jonquet, P. Dugenie, S.A. Cerri, “AGIL Specifications”, Technical report,
LIRMM, CNRS and University Montpellier II, France, 2006.

[28] C. Jonquet, P. Dugenie, S.A. Cerri, “Service-based integration of Grid and
Multi-Agent Systems models”, Technical report, LIRMM, CNRS and University
Montpellier II, France, 2006.

[29] Y.S. Kee, D. Logothetis, R. Huang, H. Casanova, A.A. Chien, “Efficient re-
source description and high quality selection for virtual grids”, in CCGRID ’05:
Proceedings of the Fifth IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’05) - Volume 1, pages 598–606. IEEE Computer Society,
Washington, DC, USA, 2005, ISBN 0-7803-9074-1.

[30] F. Kordon, “Personal Communication”.

[31] W. Kuranowski, M. Ganzha, M. Gawinecki, M. Paprzycki, I. Lirkov,
S. Margenov, “Forming and managing agent teams acting as resource brokers in
the Grid—preliminary considerations”,International Journal of Computational
Intelligence Research, 4(1): 9–16, 2008.

[32] W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawinecki, I. Lirkov,
S. Margenov, “Agents as resource brokers in grids—forming agent teams”, Vol-
ume 4818, pages 472–480. Springer, Berlin, 2007.

[33] D.L. McGuinness, F. van Harmelen, “OWL Web Ontology Language overview.
W3C recommendation”, Technical report, World Wide Web Consortium, 2004.

[34] M. OConnor, H. Knublauch, S. Tu, B. Grosof, M. Dean, W. Grosso, M. Musen,
“Supporting Rule System Interoperability on the Semantic Web with SWRL”, in
The Semantic Web ISWC 2005, pages 974–986. Springer Berlin / Heidelberg,
2005, URLhttp://dx.doi.org/10.1007/11574620_69 .

23

[35] M. Parkin, S. van den Burghe, O. Corcho, D. Snelling, J. Brooke, “The Knowl-
edge of the Grid: A Grid Ontology”, http://www.cyf-kr.edu.pl/
cgw06/presentations/c1-3.pdf , CGW2006.

[36] A.M. Pernas, M.A.R. Dantas, “Using Ontology for Description of Grid Re-
sources”, inProc. of the 19th International Symposium on High Performance
Computing Systems and Applications, pages 223–229. IEEE Computer Society,
Washington, DC, USA, 2005.

[37] R. Raman, M. Livny, M. Solomon, “Matchmaking: Distributed Resource Man-
agement for High Throughput Computing”, inProc. of the 7th IEEE Interna-
tional Symposium on High Performance Distributed Computing. Chicago, IL,
July 1998.

[38] R. Raman, M. Livny, M. Solomon, “Resource Management through Multilateral
Matchmaking”, inProc. of the Ninth IEEE Symposium on High Performance
Distributed Computing (HPDC9), pages 290–291. Pittsburgh, PA, August 2000.

[39] N. Spivak, “Making Sense of the Semantic Web”, http://www.
slideshare.net/syawal/nova-spivack-semantic-web-tal k .

[40] H. Tangmunarunkit, S. Decker, C. Kesselman, “Ontology-based Resource
Matching in the Grid—The Grid meets the Semantic Web”, inProc. of the
Second International Semantic Web Conference, Sanibel-Captiva Islands, 2003.

[41] T. Tannenbaum, D. Wright, K. Miller, M. Livny, “Condor –A Distributed Job
Scheduler”, in T. Sterling (Editor),Beowulf Cluster Computing with Linux. MIT
Press, October 2001.

[42] D. Thain, T. Tannenbaum, M. Livny, “Condor and the Grid”, in F. Berman,
G. Fox, T. Hey (Editors),Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons Inc., December 2002.

[43] D. Thain, T. Tannenbaum, M. Livny, “Distributed computing in practice: the
Condor experience.”,Concurrency—Practice and Experience, 17(2–4): 323–
356, 2005.

[44] A. Vidal, F. da Silva e Silva, S. Kofuji, F. Kon, “Semantics-based grid resource
management”, inProc. of the 5th international workshop on Middleware for
grid computing, pages 1–6. ACM, New York, NY, USA, 2007.

[45] W. Xing, M.D. Dikaiakos, R. Sakellariou, S. Orlando, D.Laforenza, “Design
and Development of a Core Grid Ontology”, inProc. of the CoreGRID Workshop
”Integrated research in Grid Computing,”, pages 21–31, November 2005.

24

	summ
	ResourceOntology

