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One of the important claims that permeate current view of information management is that ontological demarcation of data and semantic information processing are going to allow to infuse "intelligence" into information systems. Separately, it is claimed that software agents, combined with ontologies will be the foundation of Web 4.0. In our work we are developing an agent-team-based resource management and brokering infrastructure for computational Grids. The proposed meta-level middleware is to utilize both software agents and ontologies. In this context, the aim of this chapter is twofold. First, we present an overview of found efforts to develop ontologies to be used in Grid and agent-Grid computing. Second, we analyze which one of them, if any, should be the base ontology for the system under development.

One of the important claims that permeate current view of information management is that ontological demarcation of data and semantic information processing are going to allow to infuse "intelligence" into information systems. Separately, it is claimed that software agents, combined with ontologies will be the foundation of Web 4.0. In our work we are developing an agent-team-based resource management and brokering infrastructure for computational Grids. The proposed meta-level middleware is to utilize both software agents and ontologies. In this context, the aim of this chapter is twofold. First, we present an overview of found efforts to develop ontologies to be used in Grid and agent-Grid computing. Second, we analyze which one of them, if any, should be the base ontology for the system under development.

References 1 Introduction

Computational Grids are considered one of more promising approaches to the development of a global computational infrastructure. Unfortunately, while a continuous stream of research funding is flowing into Grids, their uptake is not meeting expectations of their proponents. One of possible reasons is the learning curve of a potential user, who tries to find out how to use the Grid. In [START_REF] Foster | Brain Meets Brawn: Why Grid and Agents Need Each Other[END_REF] it has been claimed that utilization of software agents may help the Grid reach its potential. The metaphor here is that while the Grid will provide the resources (data and computational powerthe brawn), software agents will supply the system with "intelligence" (the brain). Obviously, this claim is somewhat controversial (e.g. because software agents have a number of staunch critics and/or these who claim that there is no such thing as a software agent, except for marketing [START_REF] Kordon | Personal Communication[END_REF]). Separately, according to Hendler [START_REF] Hendler | Agents and the Semantic Web[END_REF], software agents go hand-in hand with ontologies and semantic data processing. Furthermore, in [START_REF] Spivak | Making Sense of the Semantic Web[END_REF] one can find an argument that software agents and ontologies are going to be the foundation of Web 4.0. Obviously, these claims also need to be taken with a grain of salt, but the question arises, are the proponents or the critics of agents and ontologies right? It is our belief that the proof of the pudding is in the eating. One cannot validate either of these claims without an all out effort to make them work. This is the context of our current work. Assuming that software agents are one of the keystones for the development of the Grid and that ontologies and semantic data processing matches well with utilization of software agents we proceed developing a meta-level agent-based Grid resource management and brokering infrastructure.

In the proposed approach (the Agents in Grids; AiG project) software agents work in teams, which allows us to establish Service Level Agreements (SLA) and assure Quality of Service. Each team is represented by an LMaster agent (its manager). The LMaster is supported by an LMirror agent, which helps facilitating long-term stability of the team (by mirroring all of the vital team data). Users negotiate with LMasters terms of job execution (the SLA), or team joining. Information about all existing teams, their work and job offers is stored in, and provided by, the Client Information Center infrastructure (represented by the CIC agent). It is assumed that all information in the system will be ontologically demarcated and semantically processed. Summary of the results obtained thus far can be found in [START_REF] Drozdowicz | Software Agents in ADAJ: Load Balancing in a Distributed Environment[END_REF][START_REF] Ganzha | Trust Management in an Agent-based Grid Resource Brokering System-Preliminary Considerations[END_REF][START_REF] Kuranowski | Forming and managing agent teams acting as resource brokers in the Grid-preliminary considerations[END_REF][START_REF] Dominiak | Selecting grid-agent-team to execute user-job-initial solution[END_REF], while the current version of the code is available at [START_REF]Agents in the Grid Project[END_REF].

It should be noted that, initially, after a brief overview of Grid ontologies, we have decided to develop and use a very simple one [START_REF] Kuranowski | Agents as resource brokers in grids-forming agent teams[END_REF][START_REF] Dominiak | Selecting grid-agent-team to execute user-job-initial solution[END_REF]. For instance, the description of a grid node utilized only three of its possible features: (1) CPU specification, (2) available memory, and (3) available disk space. However, since our project has reached its initial goals, it becomes necessary to infuse the proposed system with a robust/complete Grid ontology. Therefore, in this chapter we provide an overview of existing efforts in the area of Grid ontologies. Furthermore, we evaluate them from the perspective of their possible utilization as a core ontology of our system. Let us start our overview from resource descriptions found in core Grid projects.

Traditional Grid resource descriptions 2.1 Virtual Grid Description Language

The Virtual Grid Description Language (vgDL; [START_REF] Chien | The Virtual Grid Description Language: vgDL[END_REF][START_REF] Kee | Efficient resource description and high quality selection for virtual grids[END_REF]) is a language for describing Grid resources and querying Grid information services. It was developed as a part of the VGrADS (Virtual Grid Application Development Software) Project [START_REF]VGrADS-Virtual Grid Application Development Software[END_REF]. The project itself is a result of collaboration between several American universities and is aimed at creating software systems and frameworks to simplify development of Grid applications. VGrADS works together with several research projects and scientific ap-plications to acquire practical use cases, but its deliverables have not (thus far) gained significant adoption.

The vgDL is built on the concept of Virtual Grids-a set of abstractions expressing the structure of the Grid application. These abstractions are used to enable discovery of Grid resources satisfying the specific criteria without the need to use concrete and overly detailed constraints. From the outset, the vgDL was designed to keep the insignificant details out of the way of the Grid user. Let us stress, that the vgDL does not serve as a schema for describing resources-it is rather a language to describe requirements and constraints that user imposes on Grid resources (the Virtual Grid) to complete its task. In this aspect the vgDL is closer to the UNICORE AJO model than to the GLUE schema (see subsequent Sections).

On the most basic level, the requirements for a single resource in the vgDL language are specified by a series of simple attribute value constraints. However, what makes vgDL powerful is the notion of resource aggregators:

• LooseBagOf-a set of heterogeneous resources connected in a loose way (e.g.

with 'poor' connectivity),

• TightBagOf-a set of heterogeneous resources connected in a tight way ('good' connectivity),

• ClusterOf-a set of homogenous resources connected tightly.

These aggregators specify also the minimum and the maximum number of nodes in the set and the constraints put on the nodes. Furthermore, they can be nested to form hierarchies of nodes.

Another key concept of the vgDL is support for specifying the network connection type between nodes and aggregates. This is achieved through the use of four network connectivity operators: (i) close, (b) far, (c) lowBW, and (d) highBW that describe latency and bandwidth.

These features provide users with a way to easily specify even complex needs for computing and storage nodes; taking into account the physical and geographical architecture of the required environment.

Disadvantages of this approach, with regard to its usefulness in the AiG project are:

• Focus on describing requirements and constraints, while missing the description of the resource itself-no specification how the information about resources should be stored.

• Lack of specification of a standard set of attributes and their values, and/or their mapping to existing Grid Information Services.

• vgDL does not explicitly handle the description of requirements regarding installed software or libraries-examples of how this may be implemented use values of custom attributes.

• vgDL is not adopted in core Grid projects and was verified only in experimental conditions.

Bearing this list in mind, we decided not to investigate the vgDL project further.

Condor

The Condor Grid middleware [START_REF] Basney | Deploying a High Throughput Computing Cluster[END_REF][START_REF] Tannenbaum | Condor -A Distributed Job Scheduler[END_REF][START_REF] Thain | Condor and the Grid[END_REF][START_REF] Thain | Distributed computing in practice: the Condor experience[END_REF] is a high-throughput computing system, providing users with an environment for transparent execution of jobs on multiple, geographically distributed machines. It can run non-interactive jobs on any node under control of the system without the need to modify the source code. The user simply submits a job, and Condor handles matching the job to available machine(s) and executing it. If a node becomes unavailable, Condor can automatically backup the execution state of the job and migrate it to another machine satisfying its requirements.

Condor supports single-process and parallel applications written using different MPI implementations. Furthermore, jobs submitted to Condor can be ordered to enable sequential execution of dependent tasks.

All entities within Condor are described using the same abstract language-Classified Advertisement (ClassAd; [START_REF] Raman | Matchmaking: Distributed Resource Management for High Throughput Computing[END_REF][START_REF] Raman | Resource Management through Multilateral Matchmaking[END_REF])-that can serve both as a means of describing elements of the system and as a query language. ClassAd has been designed to enable efficient and extensible matchmaking of resources to requirements. Providers of resources can offer them to the system by submitting ads describing their capabilities and constraints regarding jobs they can run. The same language is used by consumers of resources for describing their needs, requirements and preferences with regard to hosts their job should be run on, as well as for describing the job itself. Clas-sAd is a functional language built around the concept of an expression evaluated by the engine. The core expression type in ClassAd is the record expression, which is basically a set of name-value pairs, with the value being either a simple literal or a complex expression, including nested records.

Matchmaking of ClassAd job-machine pairs is done based on the definition of an attribute called Requirements. The value of this attribute can be an arbitrary expression that is evaluated in the environment of the other record expression. Therefore if a job is to be matched to a machine, the job's Requirements must evaluate to true against the machine's description record, and the machine's requirements in the job's description record.

The Condor manual [START_REF]Condor Manual[END_REF] provides a list of machine description attributes along with their valid values. This list is very extensive and contains attributes sufficient for most common usages of the system. The built-in attribute set does not, however, let the job to have requirements concerning specific libraries or software installed or running on the host machine. In such scenario, machines satisfying these requirements would need to create and advertise this information as custom attributes. Furthermore, Condor cannot perform advanced matching by following rules defining the relations between certain attribute values such as a hierarchy of operating system types and their concrete versions (e.g. all Linux kernel version share the same value of the OpSys attribute).

Looking into usability of the ClassAd language in our project, we conclude, that the set of attributes describing a machine could certainly be included in the needed ontology. On the other hand, the ClassAd language seems too proprietary and restricted in defining ontological metadata of system resources and relationships between elements used to describe them. Therefore we cannot consider it as a strong candidate to be used in our system.

UNICORE

The motivation for creating another popular Grid middleware-UNICORE (Uniform Interface to Computing Resources [START_REF] Erwin | UNICORE: A Grid computing environment[END_REF]-was completely different than that of Condor. Condor was primarily designed to take advantage of desktop computers' and small machines' idle processor time and to enable executing jobs in a dynamic environment. UNICORE's aim, on the other hand, was to provide (originally German) supercomputer users with uniform access to various resources (scattered around the country) and to make job scheduling easier and infrastructure independent. In its core version the user would actually select a single target on which the job should execute. In contrast with the Condor, UNICORE on its own does not provide resource brokering, job checkpointing or migration.

Jobs in UNICORE are described at the user tier of the system using Abstract Job Objects (AJO)-a collection of Java classes that contain all information needed by the UNICORE target tier to prepare a native batch for execution. Therefore, UNICORE does not provide a "language" for describing jobs-it relies on plain Java objects that are serialized and sent to the UNICORE server. Furthermore, users that do not want to use the provided GUI for job submission can use the UNICORE client API to create a job description programmatically. Resource descriptions are stored in the Incarnation Database (IDB) which contains information needed to transform the abstract job to a task ready for execution on a specific Grid resource. One of the serious drawbacks of the IDB was that it contained only static information-software and hardware resources. UNICORE did not provide resource monitoring capabilities and therefore did not support dynamic Grid utilization.

Unfortunately for our project, UNICORE does not really define a resource ontology. Its main focus is on describing jobs that need to be executed and on how to translate these descriptions in a specific environment where the execution is to take place. Some of deficiencies of the original UNICORE were fixed along with the changes in the schemas of the AJO and the IDB in UNICORE version 6, thanks to the UniGrids project, but this topic will be considered separately in section 3.4.

Globus Toolkit

The Globus Toolkit [START_REF] Foster | Globus Toolkit Version 4: Software for Service-Oriented Systems[END_REF] is a set of libraries and programs designed to support creating distributed applications. It addresses such problems as resource access, resource management, service discovery, security, data transfer and migration, etc. The core of the Globus Toolkit is not so much of a complete system for executing computation jobs (as was the case with Condor or UNICORE) but rather a foundation on which more specialized services are built. Over the years, Globus Toolkit evolved rather noticeably and in the 4th version its core functionality and interfaces are primarily based Web Services.

Considering the resource discovery and management, along with new versions of Globus Toolkit came also a new version of Globus's implementation of the Grid Information Service-the Meta Directory Service. Globus Toolkit 1 used MDS-1 which relied on a single LDAP server which held information about all resources in the system. Resources would sign up into the server and then periodically send updates of their state. Users would utilize a single server to query the state of a given resource as well as to find nodes satisfying specific requirements. This solution's main problem was poor scalability-LDAP was optimized for number of queries but not for frequent updates, which occurred when resources sent information about their load. In MDS-2 [START_REF] Czajkowski | Grid Information Services for Distributed Resource Sharing[END_REF] the central server's role was limited to responding to discovery queries, while finding information about a specific resource was moved to the resource itself. Here, Grid resources started carrying their own LDAP servers (GRIS) that contained information about their state. The server (GIIS) responded to discovery queries by sending information requests to all resources and only then updating its internal cache of resource descriptions.

The information about resources contained in the LDAP databases was structured following the schema defined in [START_REF]MDS 2.4 Schemas[END_REF]. Specifically, it was organized around a small set of elementary classes and a much wider collection of auxiliary classes that inherited the base MDS class and corresponded to concrete resource instances, e.g. the CPU, memory or file system. Properties of these resources were described using LDAP attributes. In the following snippet a description of memory resource is shown (example from [START_REF]MDS 2.4 Schemas[END_REF]). Along with the introduction of GT3, the Information Services' LDAP databases were abandoned in favor of XML based information repositories. Moreover, the description schemas also underwent major redevelopment-the custom Globus solution was replaced by a more generic and interoperable GLUE schema, described next.

GLUE

GLUE (Grid Laboratory for a Uniform Environment) is a project started in April 2002 as a joint effort between the U.S.-based iVDGL and the European DataTAG teams. Its main purpose has been to bring interoperability between the U.S. and European physics Grid projects, through a uniform schema specifying description of Grid resources needed for implementation of Grid Information Services, resource discovery and brokering systems. The first version of GLUE was released in October 2002 and contained definitions of a Grid computing element and storage service. Since then, subsequent documents (1.1, 1.2, 1.3) have expanded the number of supported use cases, merged and unified notions of computing and storage element into a single schema, as well as included additional concepts, e.g. those related to administration of resources. Since October 2006, the GLUE project has joined the Open Grid Forum and its efforts, focused on finishing version 2.0 of the schema, are continued within the GLUE Working Group ( [START_REF]GLUE Working Group Report[END_REF]).

The schema was published as a description of the conceptual model of a structure of Grid resources, complemented by UML Class Diagrams and tabular descriptions of defined entities and their relationships. Notions of the schema are independent of the technology used to enforce the schema and of data model languages. For the schema to be usable it needs to be mapped to concrete implementations. Such realizations exist for Grid resource descriptions modeled in XML (XSD Schema), LDAP and SQL (data base structure) for both 1.3 and 2.0 versions of GLUE. Version 1.3 for XML was natively supported by the Globus Toolkit 3 and a mapping to Condor ClassAds also exists. The following summary of the schema is based on version 2.0.

The GLUE schema is built around a set of abstract entities that define the basic relationships between elements of the system. Users of the system are organized using a notion of a Domain-a set of actors. The Domain can be given access to services through the Access Policy entities. There are entities derived from the Domain: User Domain, which reflects a Virtual Organization able to access services; and Admin Domain with primary goal of hosting services. Both User Domain and Admin Domain can be organized in a hierarchical structure. Services are always accessible as one or several Endpoints and the Access Policies actually define rules of accessing Endpoints. A Service is composed of Managers-entities managing sets of Resourcesand Shares-targets for sets of resources exposed through Endpoints. A User Domain submits an Activity using an Endpoint. The Activity is run on a Share into which the User Domain is mapped by the appropriate Mapping Policy.

The schema specifies implementation of defined abstract entities-the Computing Service and the Storage Service. Because of the current interest of the AiG project we will omit the Storage Service and focus on the Grid computing resource descrip-tion. The Computing Service reifies the abstract concepts of the generic Service in the following way:

1. The concrete implementation of the Manager is the Computing Manager, which in the simplest case is just the operating system controlling a single node. In the typical case this might be a batch system (Local Resource Management System). In a more complex scenario, this could also be a meta level middleware such as the Condor.

2. The Computing Activity is an OGSA compliant description of a job submitted to the Computing Service through one of its Computing Endpoints.

3. The Computing Manager manages a set of Execution Environments that depict physical or virtual computational resources of the Grid. The Execution Environment description is the element that contains the hardware, software and network characteristics of the resource. The Execution Environment contains data properties such as (for a complete description including types of properties, see [START_REF]GLUE Specification v. 2.0[END_REF]):

• type of the platform the machine runs on,

• number of physical CPUs in an instance of the Execution Environment (one physical CPU per socket),

• number of logical CPUs (i.e. the number of CPUs seen by the OS) in an instance,

• detailed CPU information, such as the name of the vendor of the CPU, the model, version and clock speed,

• amount of physical (RAM) and virtual (RAM + swap) memory,

• information about the operating system such as family, name and version,

• type of the network connection between the instances composing the Execution Environment.

Apart from the system specification, GLUE also specifies a way of describing available software. This is achieved through the use of Application Environment entities and their relationships with the Execution Environment. In the XSD snippet below, we have shown a fragment of the XML Schema describing this part of the specification of the Execution Environment [START_REF] Andreozzi | GLUE v. 2.0-Reference Realizations to Concrete Data Models[END_REF]. We can see that the ExecutionEnvironment t type is inheriting the Resource t type. It consists of a number of optional (minOccurs="0") properties describing the platform, number of instances of the environment, number and details of instances' CPUs, memory, details of the operating system and network connectivity. The type definition ends with a list of relations to other types (the Associations element) such as the Computing Share, Application Environment and Computing Activity.

<complexType name=" E x e c u t i o n E n v i r o n m e n t t "> <c o m p l e x C o n t e n t> <e x t e n s i o n b a s e =" g l u e : R e s o u r c e t "> <s e q u e n c e> <e l e m e n t name=" P l a t f o r m " t y p e =" g l u e : P l a t f o r m t " /> <e l e m e n t name=" V i r t u a l M a c h i n e " t y p e =" b o o l e a n " m in O ccu r s =" 0 " /> <e l e m e n t name=" T o t a l I n s t a n c e s " t y p e =" u n s i g n e d I n t " m in O ccu r s =" 0 " /> <e l e m e n t name=" U s e d I n s t a n c e s " t y p e =" u n s i g n e d I n t " m in O ccu r s =" 0 " /> <e l e m e n t name=" U n a v a i l a b l e I n s t a n c e s " t y p e =" u n s i g n e d I n t " m in O ccu r s =" 0 " /> <e l e m e n t name=" P h y s i c a l C P U s " t y p e =" u n s i g n e d I n t " m in O ccu r s =" 0 " /> <e l e m e n t name=" L o g icalC P U s " t y p e =" u n s i g n e d I n t " m in O ccu r s =" 0 " /> <e l e m e n t name=" C P U M u l t i p l i c i t y " t y p e =" g l u e : C P U M u l t i p l i c i t y t " m in O ccu r s =" 0 " /> <e l e m e n t name=" CPUVendor " t y p e =" s t r i n g " m in O ccu r s =" 0 " /> <e l e m e n t name=" CPUModel" t y p e =" s t r i n g " m in O ccu r s =" 0 " /> <e l e m e n t name=" CPUVersion " t y p e =" s t r i n g " m in O ccu r s =" 0 " /> <e l e m e n t name=" CPUClockSpeed " t y p e =" u n s i <e l e m e n t name=" C o m p u t i n g A c t i v i t y I D " t y p e =" g l u e : I D t " m in O ccu r s =" 0 " maxOccurs=" unbounded " /> </ s e q u e n c e> </ complexType> </ e l e m e n t> </ s e q u e n c e> </ e x t e n s i o n> </ c o m p l e x C o n t e n t> </ complexType> With regard to the AiG project, GLUE is interesting and helpful in at least a few ways. One aspect is the approach to the role of the Grid resource description-it is primarily the input to the resource directory and brokering services. Another important advantage of the GLUE schema is its wide adoption among Grid projects and native usage in the Globus Toolkit 4. This comes in pair with the maturity of the schema and its covering of a large number of real world-use cases. A natural way of utilizing the schema would be reusing definition of the Computing Service element. In this case a huge advantage of GLUE is its well-defined, object model as well as the ability to model not only physical specifications of the resources, but also available applications and libraries. One clear disadvantage of reusing the GLUE schema is lack of any ontological (e.g. RDF/OWL [START_REF] Heflin | OWL Web Ontology Language use cases and requirements. W3C recommendation[END_REF][START_REF] Mcguinness | OWL Web Ontology Language overview. W3C recommendation[END_REF]) realization. Thus, it would be necessary to create one from scratch. Another is the fact that while GLUE is compatible with many Grid middlewares it still does not support UNICORE's approach. Therefore, within the context of the AiG project, we are likely to use the GLUE schema as reference, especially in the area of description of the physical and virtual computing resources.

Semantic Grid description and Grid interoperability

Thus far we were have looked into Grid resource descriptions found among traditional Grid efforts (which have never aimed at utilization of ontologies). Out of them we have found that only the GLUE schema could be utilized as the foundation of an ontology needed in the AiG project. However, this would mean starting from scratch and creating an ontology using an ontology language (e.g. OWL) from existing XML based descriptions. Therefore, we will now focus our attention on efforts that already utilize ontological demarcation. Interestingly, many of such projects originate from efforts to support greater heterogeneity among Grid resources both in terms of attribute value domains and Grid middleware interoperability (see, [START_REF] Tangmunarunkit | Ontology-based Resource Matching in the Grid-The Grid meets the Semantic Web[END_REF] for more details).

Grid resource ontology of Pernas and Dantas

An example of work towards an ontology of Grid resources is found in [START_REF] Pernas | Using Ontology for Description of Grid Resources[END_REF]. Here, authors' goal was to create an ontological intermediate layer between the consumer of Grid services and Grid resources. This was to enable easier and faster discovery of the resources as well as to provide common vocabulary for different VO's. The proposed ontology was implemented in the OWL Full language.

As far as we were able to determine, project described in [START_REF] Pernas | Using Ontology for Description of Grid Resources[END_REF] has been completed in 2005 and since then the ontology has not been developed further. Furthermore, the developed ontology comprised of merely 14 classes. This being the case it was actually less complete than the one used thus far in the AiG project. These reasons lead us to disregard this effort from our consideration.

Grid resource ontology of Vidal et al.

The Grid resource ontology described in [START_REF] Vidal | Semantics-based grid resource management[END_REF] was created as an effort to support resource brokering in a Grid middleware system. Here the focus of the project was to enhance resource matching processes. The proposed ontology was used by an additional intermediate layer between the client of the Grid and the Grid resource manager to analyze constraints specified by the client and transform them using automatic reasoning to match more resources, not found using traditional attribute-based matching. The ontology was based on the OWL DL language and consisted of 3 parts:

• Grid Base Ontology-the foundation ontology consisting of basic concepts describing physical resources (Computer, Cluster, DiskSpace etc.) and software (Problem, Domain, Algorithm, Application)

• Platform Ontology-an ontology extending the platform related concepts of the Base Ontology with the hierarchy of CPU architecture and operating systems

• Grid Resource Management Ontology-a domain ontology specifying problems and algorithms related to Data Mining An important aspect of this ontology and its usage is that it is not used as a complete description of the resource or its constraints, but rather as a set of concepts useful for describing attribute values and enabling reasoning about them. The result of such approach is that relations contained in the ontology describe the equality or compatibility of concepts. For example in the Platform Ontology there is a property stating that the Itanium processor class has architecture of type ProcessorArch64Bits. There is, however, no property stating that the Computer class is related to the Processor class. The ontology on its own does not contain data properties such as the amount of available memory or the speed of the processor. It also cannot be used to describe jobs to be submitted to the Grid.

A complete set of ontology files can be downloaded from [START_REF]Grid Ontologies: GO[END_REF] but judging from publications related to the project, the ontology itself has not been actively developed since June 2007. Furthermore, the goal and purpose of this ontology seem to be different than needs of our project and therefore we have decided to not to pursue it further.

GRIP

The GRid Interoperability Project (GRIP) [START_REF] Brooke | Semantic matching of grid resource descriptions[END_REF] was aimed at bringing about interoperability between UNICORE and Globus Grid middlewares as well as providing brokering capabilities for the UNICORE. It was a 2-year project running in 2002-04. Its results included creating interoperability layers between UNICORE and Globus Toolkit v2 and v3, an abstract ontology of the resource, and a common resource broker for both Globus and UNICORE resources. The project also laid foundations for the adoption of the OGSA standards in UNICORE.

From the point of view of the aim of this chapter, the most interesting aspect of GRIP is the matching and mapping phase of creating the Globus-UNICORE intermediate layer. Since the process of creating a translator between the two has been described in a rather detailed way in [START_REF] Brooke | Semantic matching of grid resource descriptions[END_REF], below we highlight only the most important points. The resource ontologies for both systems were extracted using the PCPack tool [START_REF]PCPack[END_REF] from the GLUE schema in case of Globus and from the AJO JavaDoc documentations for the UNICORE. While the PCPack does not natively support the OWL language, it enabled to easily, graphically customize and refine resulting ontologies. Afterwards the two ontologies were compared to try to match concepts contained therein. The most important differences found in the process were these of the scope of descriptions. UNICORE descriptions contained information about static hardware and software capabilities of the resource. The GLUE schema, on the other hand, did not specify software capabilities. However, apart from static hardware capabilities, it described the dynamic information, e.g. the current load of the resource. This being the case, only the intersection of these two "universes," i.e. the static description of hardware capabilities could have been mapped.

Unfortunately we were not able to find the complete PCPack ontologies used in the course of the project, nor could we acquire the XML files used for mapping the ontology terms. Therefore, we cannot present an example of how these would describe a sample resource or discuss details of the implementation. We can, however, discuss results of two projects following this effort-the Uniform Interface to Grid Services (UniGrids) and the Grid Ontology project.

UniGrids, OGSA and the Grid Ontology

UniGrids (Uniform Interface to Grid Services) was a follow-up on the GRIP project. Its main goal was to design and implement a Grid middleware system compliant with the Open Grid Service Architecture (OGSA) standards. It was to be based on the UNICORE and the results of the GRIP project. However, as the project developed, it was substantially modified-especially looking into the internal structure of the proposed ontology.

In terms of resource descriptions and requests, the UniGrids project brought the adoption of the XML to the description of the incarnation process. Prior to the UNI-CORE 6, the incarnation process was described using custom formatted text files, while in version 6 they became XML-formatted and contained elements from the OGSA JSDL namespace. These were used mostly to describe the resource capabilities description such as the operating system, number of nodes or CPUs per node. Furthermore, the UniGrids project brought the specification of the Grid Resource Ontology and the more general Grid Ontology [START_REF] Parkin | The Knowledge of the Grid: A Grid Ontology[END_REF]. The ontology was designed to form a basis for automatic matching of many different Grid middlewares as well as an easy addition of new systems.

The proposed ontology was built using the OWL language and was split into several layers. The core layer (referenced in [START_REF] Parkin | The Knowledge of the Grid: A Grid Ontology[END_REF] as the Foundational Ontology) is a set of classes forming the high-level, common view of Grid elements, such as Virtual Organizations, abstract resources, security related entities, abstracts actions and tasks. On top of the base ontology, the OGSA and the S-OGSA ontologies were defined. They introduce concepts related to these standards as well as middleware specific ontologies such as the Globus Ontology and the UNICORE ontology.

A very important part of the ontology are classes and object properties representing the abstract Grid job and the way it is translated to concrete processes for the target machine. Approach presented in the ontology is very similar to the one from the UNICORE-it is based on the concept of the Abstract Job and the idea of its Incarnation to the local resource. An Abstract Job can also contain multiple Actions so it can be used to model workflows. Apart from jobs, the process of incarnation also covers concepts such as the file system Directories, the system Processes and user logins. The ontology contains also a set of classes related to the Quality of Service and Service Level Agreements and their negotiation. This functionality is provided by means of the QoS class and its subclasses: Advertised QoS, Agreed QoS, Observed QoS and Requested QoS. The Quality of Service is defined on the level of single Actions and Resource Sets assigned to them and negotiated by the Broker. It should be noted that, while these classes are joined with relations to other concepts of the ontology, they lack data properties describing the concrete terms of the agreement, such as for example: start time, end time, and cost of running the Action on the ResourceSet. Note that these concepts are used directly in our system when users negotiate jobs with LMasters [START_REF] Dominiak | Selecting grid-agent-team to execute user-job-initial solution[END_REF].

Looking into more details, resources are described using the Resource abstract entity, which is inherited afterwards by more specific resource type entities: Disk, File, Network, Processing, Resource Collection (which basically is a set of resources) and Software. Properties of the ontology provide means of describing resource structures of arbitrary complexity combining computing and storage capabilities. Properties of resources are specified by the Resource Property entities which correspond to the WSRF WS-ResourceProperties standard. TO illustrate the approach, in Figure 1 we can see the resource hierarchy along with the way they are exposed to clients-through the Service class.

The important thing to note is that the WS-ResourceProperties standard does not define a set of properties that can be used for describing resources. Instead it defines a meta-layer of these properties-it includes terminology, concepts and operations needed to expose the definition of properties and their values; query and update the property values. Therefore, the ontology itself does not provide concepts needed to completely describe the physical characteristics and capabilities of the resource. As noted above, it also does not provide us with the right set of concepts needed for job contract negotiations. We find these to be a serious deficiency as it would require a significant effort to extend what exists to the point of usefulness in our project. On the other hand, we can see here a mature and complete set of concepts describing the overall structure of the Grid infrastructure as well as the classes related to abstract job descriptions, which might provide us with very important ideas and insights. 

Core Grid Ontology

Finally, let us describe the effort that seems to be the closest to our needs and that is likely to be adopted in our project. The Core Grid Ontology ([45], [START_REF]Core Grid Ontology[END_REF]) is an OWL demarcated, Grid architecture independent, collection of concepts and relations between them that could be extended to include middleware specific properties. In this case, authors did not create an ontology with any specific goal (e.g. ontology of a specific middleware) but instead wanted to provide a generic ontological Grid description for further extension and use by Semantic Grid applications.

Proposed ontology does not capture the whole universe of the Grid but was created by examining various Grid architectures and extracting core concepts common to all of them. The result of this process is a layered model of the generic Grid architecture, containing, looking from the top to the bottom:

• Grid VOs and Applications-classes such as VO, GridUser, GridApplication and Policy describing the configuration and application of the Grid,

• Grid Middlewares and Services-Grid middleware, components, libraries and services enabling core Grid functionality,

• Resources-classes describing resources, such as ComputingElement, Work-erNode and various resource physical description concepts like CPU or Stor-ageInterface.

Apart from the classes, the proposed ontology defines also relations between them, using object and data properties. Thanks to these properties, it is possible to create a complete structure of a multi-VO Grid environment with interconnected elements.

The VO contains registered participants -either GridResouces or GridUsers and can contain Sites. Each Site can have GridComponents such as ComputingComponent, StorageComponent or ResourceBroker. The important class for computing jobs is the ComputingElement-a subclass of ComputingComponent-which can have Queues and WorkerNodes as well as installed software such as GridMiddleware and Operat-ingSystem. The WorkerNode is the resource, which runs the job, and which is likely to contain a CPU. The vocabulary of concepts representing Grid resources is also rather extensive-we have shown it in Figure 2. 

ac.cy-a ComputingElement

The ce101.grid.ucy.ac.cy computing element, in turn, handles three WorkerNode instances, the dteamQ Queue and runs two services: openpbs ucy which is an instance of the PBS job manager and maui ce ucy-an instance of the Maui job scheduler.

Worker nodes are described as shown in the following OWL snippet. As can be seen from the above description, relationships between classes are rather complete, although there are still some missing concepts; e.g. lack of properties related to many of the GridResource subclasses such as the NetworkResource, Memory or StorageResource. However, the collection of Grid infrastructure related classes is rather impressive-containing entities such as GridInformationService, JobManager, JobScheduler or WorkloadManagement.

A very helpful element of the ontology is the provided example set of instances of the classes corresponding to authentic elements of a Grid environment in the EGEE project from which we have taken the examples shown in this section.

Agent-Grid integration

Thus far we have looked into traditional Grid resource descriptions and attempts at developing a Grid ontology. However, since our project is going to utilize both ontologies and software agents, let us now focus our attention on efforts to provide ontological basis to agent-Grid integration efforts. Here we discuss two approaches that we were able to identify.

Agent Computational Grid

The first example is the Agent Computational Grid (ACG) project [START_REF] Chunlin | Integrate software agents and CORBA in computational grid[END_REF][START_REF] Chunlin | Agent framework to support the computational grid[END_REF]. Motivation of this effort was to propose an agent-based computing and service exchange environment in which agents expose selected core features of the Grid functionality; e.g. member registration and service discovery. Proposed agents do not introduce significant cognitive features to the Grid (are not an actual "brain"), but utilize capabilities such as environment awareness and adaptability to improve the robustness of the Grid and enable Grid functioning under highly dynamic conditions. Another concept of the ACG is interoperability of Grid members. It is suggested that the system should be able to accept agents of different platforms as well as enable exposing legacy services. Here, agent interoperability is accomplished on the basis of the Mobile Agent System Interoperability Facility standard [START_REF]Mobile Agent System Interoperability Facilities Specification[END_REF], while wrapping of legacy systems is based on the integration of CORBA distributed objects technology. The ACG is designed around two way CORBA integration-existing CORBA services can be exposed through an agent based interface at the same time agents' capabilities can be used as CORBA services.

Services in the AGC are described by means of XML with a clearly defined DTD schema. As specified in [START_REF] Chunlin | Agent framework to support the computational grid[END_REF] the description contains the following fields:

• Name: This is an optional string that can be associated with a service

• Service Id: This is a required element that uniquely identifies the service. Each service has a unique id

• Description: describes some features of this service

• Access: describes how to invoke and use a service The access method fields provide the placeholder for any kinds of service invocation schema. A service description may contain multiple access method tags as they could be multiple ways to invoke a service. The intent is for the agent to ultimately decide which invocation mechanism to use. Some agents may want to use a interface of services, some may decide to download a client-proxy code, other agent need migrate to destination node, access the services locally

• Interface: indicate agent can access service by a standard interface

• URL: gives location of services supplied by a legacy system

• Agent platform: The agent platform in which the application was built on

• Service type: informs the user the type of service

• Properties: denotes a list of properties of the service Looking at the list of service description elements, it can be noted, that authors concentrated mostly on the aspect of multi platform interoperability, while leaving the issue of describing the execution environment and Grid node resource capabilities practically untouched. In fact the only place where one could introduce information such as the physical specifications of the machine the service is hosted on, or the available system resources, or libraries, would be the Properties element. Unfortunately for this element authors' did not provide any list of valid child elements. Therefore, even though the interoperability-focused approach to agent-Grid integration proposed within the ACG project seems interesting in many aspects, the Grid resource description has proven to be insufficient to our needs. Furthermore, with the best effort attempt, we could not find traces of this project being extended past 2005.

AGIO

The agent-Grid integration project, described in [START_REF] Jonquet | AGIL Specifications[END_REF][START_REF] Jonquet | Service-based integration of Grid and Multi-Agent Systems models[END_REF][START_REF] Duvert | An ontology of GRID and Multi-Agent Systems integration[END_REF], is build around concepts of agent and service. In the proposed model, artificial or human agents are engaged in exchange of services and, for shared access to resources, are composed into Virtual Organizations. Integration between the agent and the Grid worlds takes place on the level of services, i.e. services interface agents' capabilities using the concept of a Cognitive Environment. This feature enables Grid services to behave in a completely stateful manner; not only for the duration of fulfilling a single request but also over the course of several user conversations. Moreover, thanks to the Cognitive Environment it would be possible to reason about the outcome of service calls and enrich results returned to clients.

In terms of formalization of the model, this effort has first been modeled using a specially created diagram language called the Agent Grid Integration Language (AGIL); described in [START_REF] Jonquet | AGIL Specifications[END_REF]. The AGIL language enables a graphical representation of an agent-Grid integrated system along with the relationships between its elements. The next step in the formalization of this concept was the Agent Grid Integration Ontology as presented in [START_REF] Duvert | An ontology of GRID and Multi-Agent Systems integration[END_REF], which contains OWL demarcated ontologies of all AGIL concepts as well as the SWRL ( [START_REF] Oconnor | Supporting Rule System Interoperability on the Semantic Web with SWRL[END_REF]) rules enabling machine parsing of the descriptions and automatic validation of model instances.

To summarize classes forming the ontology we will start with the concept of an Agent. Agents, organized into VOs and identified by the X509 certificates, interact with each other and use or provide Services. An Agent providing a Service can dedicate its CognitiveEnvironment to its clients. Services are included in ServiceContainers and handled by a CAS (Community Authorization Service). As mentioned earlier, Services interface agents' Capabilities. The ServiceContainer reifies a set of Virtualize-dResources which in turn can virtualize a number of Hosts, that can be composed of a ComputingResource and a StorageResource. This ontology does not describe detailed properties of the Resource classes, nor does it specify the software or libraries accessible to the service clients. In the following XML snippet, we present a sample set of instances forming a single service. The AGIO provides an excellent framework for modeling the structure of multiagent-based Grid systems. It contains a very extensive set of concepts describing relationships between agents operating within the Grid as well as an interesting approach to enriching Grid services with agents' intelligence through the use of Cognitive Environments. Unfortunately, it does not contain appropriate classes related to features such as physical resource description, resource discovery and brokering, or resource software requirements and/or capabilities. Therefore, while possibly a good candidate for future work on modeling the "universe" of AiG system's agents, it is not appropriate for use as a resource description ontology. Furthermore, it has to be noted that the AGIO project was actually an MS Thesis and currently is not pursued further.

Concluding remarks

The aim of this chapter was to summarize existing efforts at creating an ontology of the Grid, and underlying agent-Grid integration. At the same time, the presented material was viewed from the perspective of the Agents in Grid project, which we are working on. Our main question was: is there an ontology of the Grid that we could adopt in our project. Looking at the presented above list of efforts at directly defining Grid ontology or that could be reverse engineered to extract one, we believe we should reuse and extend the Core Grid Ontology, which turns out to be the closest to our needs. Extensions will be based first, on other efforts (or experiences drawn from them); the GLUE project in particular, and the UniGrid. Second, we will have to introduce concepts that are specific to our effort, e.g. economic concepts related to contract negotiations and trust related concepts. We will report on our progress in subsequent publications.
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