N

N

Ontologies, Agents and the Grid: An Overview

Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki, Richard Olejnik, Ivan
Lirkov, Pavel Telegin, Mehrdad Senobari

» To cite this version:

Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki, Richard Olejnik, Ivan Lirkov, et al.. Ontologies,
Agents and the Grid: An Overview. Saxe-Coburg Publications, Stirlingshire, UK. Parallel, Distributed
and Grid Computing for Engineering, Saxe-Coburg Publications, Stirlingshire, UK, pp 117-140, 2009,
Computational & Technology Resources, ISSN 1759-3158. 10.4203/csets.21.7 . hal-00834412

HAL Id: hal-00834412
https://hal.science/hal-00834412

Submitted on 17 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00834412
https://hal.archives-ouvertes.fr

Ontologies, Agents and the Grid—an Overview
M. DrozdowicZ, M. Ganzha, M. Paprzycki-2, R. Olejnik, 1. Lirkov?, P. Telegin
and M. Senobalfi

ISystem Research Institute Polish Academy of Sciences,awaPoland
2Warsaw Management Academy, Warsaw, Poland
SUniversity of Sciences and Technologies of Lille, LilleaRce
4Institute for Parallel Processing, Bulgarian Academy déBces, Sofia, Bulgaria
>SuperComputing Center Russian Academy of Sciences, Mo&ugssia
6Tarbiat Modares University, Tehran, Iran

Keywords. Software agents, Grid, resource brokering and manageroettlogy,
semantic information processing.

One of the important claims that permeate current view afrimation management
is that ontological demarcation of data and semantic in&tion processing are going
to allow to infuse “intelligence” into information systemSeparately, it is claimed
that software agents, combined with ontologies will be thenflation of Web 4.0. In
our work we are developing an agent-team-based resourcagaaent and brokering
infrastructure for computational Grids. The proposed rhetal middleware is to
utilize both software agents and ontologies. In this cantée aim of this chapter is
twofold. First, we present an overview of found efforts towelep ontologies to be
used in Grid and agent-Grid computing. Second, we analyzehndne of them, if
any, should be the base ontology for the system under danelop
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Abstract

One of the important claims that permeate current view afrimation management
is that ontological demarcation of data and semantic in&tion processing are going
to allow to infuse “intelligence” into information system$eparately, it is claimed
that software agents, combined with ontologies will be thenflation of Web 4.0. In
our work we are developing an agent-team-based resourcagearent and brokering
infrastructure for computational Grids. The proposed rhetal middleware is to
utilize both software agents and ontologies. In this cantée aim of this chapter is
twofold. First, we present an overview of found efforts towelep ontologies to be
used in Grid and agent-Grid computing. Second, we analyzehndne of them, if
any, should be the base ontology for the system under danelop

Keywords: Software agents, Grid, resource brokering and manageroetalogy,
semantic information processing.

1 Introduction

Computational Grids are considered one of more promisipgagehes to the devel-
opment of a global computational infrastructure. Unfosdigty, while a continuous
stream of research funding is flowing into Grids, their upteknot meeting expecta-
tions of their proponents. One of possible reasons is thailegcurve of a potential
user, who tries to find out how to use the Grid. In [21] it hasrbelaimed that uti-
lization of software agents may help the Grid reach its pgaenThe metaphor here
is that while the Grid will provide the resources (data anchpatational power—
the brawn), software agents will supply the system withéfigence” (the brain).
Obviously, this claim is somewhat controversial (e.g. lbseasoftware agents have



a number of staunch critics and/or these who claim that tisen® such thing as a
software agent, except for marketing [30]). Separatelgpating to Hendler [25],
software agents go hand-in hand with ontologies and semdata processing. Fur-
thermore, in [39] one can find an argument that software agamd ontologies are
going to be the foundation of Web 4.0. Obviously, these cta@ilso need to be taken
with a grain of salt, but the question arises, are the propisnar the critics of agents
and ontologies right? It is our belief that the proof of thelgung is in the eating. One
cannot validate either of these claims without an all oubreéffo make them work.
This is the context of our current work. Assuming that sofevagents are one of
the keystones for the development of the Grid and that ogtedoand semantic data
processing matches well with utilization of software agemé proceed developing a
meta-level agent-based Grid resource management andimgkgrastructure.

In the proposed approach (tAgents in GridsAiG project) software agents work
in teams, which allows us to establish Service Level AgregmESLA) and assure
Quiality of Service. Each team is represented by Basteragent (its manager). The
LMasteris supported by ahMirror agent, which helps facilitating long-term stability
of the team (by mirroring all of the vital team data). Usergat&ate withLMasters
terms of job execution (the SLA), or team joining. Infornoetiabout all existing
teams, their work and job offers is stored in, and providedhoyClient Information
Centerinfrastructure (represented by t8&C agent). Itis assumed that all information
in the system will be ontologically demarcated and semaltyiprocessed. Summary
of the results obtained thus far can be found in [18, 23, 3], W@file the current
version of the code is available at [1].

It should be noted that, initially, after a brief overview®fid ontologies, we have
decided to develop and use a very simple one [32, 17]. Foanst the descrip-
tion of a grid node utilized only three of its possible featur(1) CPU specification,
(2) available memory, and (3) available disk space. Howesiace our project has
reached its initial goals, it becomes necessary to infusgthposed system with a
robust/complete Grid ontology. Therefore, in this chapterprovide an overview of
existing efforts in the area of Grid ontologies. Furtherejave evaluate them from
the perspective of their possible utilization as a core logip of our system. Let us
start our overview from resource descriptions found in ¢ariel projects.

2 Traditional Grid resource descriptions

2.1 Virtual Grid Description Language

The Virtual Grid Description Language (vgDL; [13, 29]) isanbuage for describing
Grid resources and querying Grid information services. dswleveloped as a part
of the VGrADS (Virtual Grid Application Development Softwe Project [8]. The
project itself is a result of collaboration between sevAmlerican universities and is
aimed at creating software systems and frameworks to dyrmg#ivelopment of Grid
applications. VGrADS works together with several reseg@rdjects and scientific ap-



plications to acquire practical use cases, but its delblesshave not (thus far) gained
significant adoption.

The vgDL is built on the concept &firtual Grids—a set of abstractions expressing
the structure of the Grid application. These abstractioasiaed to enable discovery
of Grid resources satisfying the specific criteria withdwe heed to use concrete and
overly detailed constraints. From the outset, the vgDL wesighed to keep the in-
significant details out of the way of the Grid user. Let usssrehat the vgDL does
not serve as a schema for describing resources—it is ratl@rgaiage to describe
requirements and constraints that user imposes on Gridma=®(thevirtual Grid) to
complete its task. In this aspect the vgDL is closer to the CBDIRE AJO model than
to the GLUE schema (see subsequent Sections).

On the most basic level, the requirements for a single resour the vgDL lan-
guage are specified by a series of simple attribute valuetreonis. However, what
makes vgDL powerful is the notion of resouraggregators

e LooseBagOf—a set of heterogeneous resources connectddoseaway (e.g.
with 'poor’ connectivity),

e TightBagOf—a set of heterogeneous resources connectedbimavay ('good’
connectivity),

e ClusterOf—a set of homogenous resources connected tightly

Theseaggregatorsspecify also the minimum and the maximum number of nodes in
the set and the constraints put on the nodes. Furthermenectn be nested to form
hierarchies of nodes.

Another key concept of the vgDL is support for specifying tiedwork connection
type between nodes and aggregates. This is achieved thtloeigise of four network
connectivity operators: (i) close, (b) far, (c) lowBW, ard) highBW that describe
latency and bandwidth.

These features provide users with a way to easily specify esenplex needs for
computing and storage nodes; taking into account the phlyaied geographical ar-
chitecture of the required environment.

Disadvantages of this approach, with regard to its usesslivetheAiG project are:

e Focus on describing requirements and constraints, whasing the description
of the resource itself—no specification how the informatadoout resources
should be stored.

e Lack of specification of a standard set of attributes and tfsues, and/or their
mapping to existing Grid Information Services.

e vgDL does not explicitly handle the description of requissts regarding in-
stalled software or libraries—examples of how this may bplé@mented use
values of custom attributes.



e vgDL is not adopted in core Grid projects and was verified amxperimental
conditions.

Bearing this list in mind, we decided not to investigate th®L project further.

2.2 Condor

The Condor Grid middleware [11, 41, 42, 43] is a high-thrquglcomputing system,
providing users with an environment for transparent exeowdf jobs on multiple, ge-
ographically distributed machines. It can run non-intgévagobs on any node under
control of the system without the need to modify the sourcgecoThe user sim-
ply submits a job, and Condor handles matching the job tdablai machine(s) and
executing it. If a node becomes unavailable, Condor camaatioally backup the ex-
ecution state of the job and migrate it to another machinsfgatg its requirements.
Condor supports single-process and parallel applicatioitgen using different MPI
implementations. Furthermore, jobs submitted to Condarlm ordered to enable
sequential execution of dependent tasks.

All entities within Condor are described using the samerabstanguage—Clas-
sified Advertisement (ClassAd; [37, 38])—that can servénlast a means of describ-
ing elements of the system and as a query language. ClassAdelean designed to
enable efficient and extensible matchmaking of resourcesgquirements. Providers
of resources can offer them to the system by submitting adsrithéng their capa-
bilities and constraints regarding jobs they can run. Theesknguage is used by
consumers of resources for describing their needs, regaimes and preferences with
regard to hosts their job should be run on, as well as for d@agrthe job itself. Clas-
sAd is a functional language built around the concept o&¢pressiorevaluated by
the engine. The core expression type in ClassAd igeberd expressianwhich is
basically a set of name-value pairs, with the value beingeeia simple literal or a
complex expression, including nested records.

Matchmaking of ClassAd job-machine pairs is done based emnidfinition of an
attribute calledRequirementsThe value of this attribute can be an arbitrary expression
that is evaluated in the environment of the other recordesgion. Therefore if a job
is to be matched to a machine, the job’s Requirements mulstagedo true against the
machine’s description record, and the machine’s requinesria the job’s description
record.

The Condor manual [2] provides a list of machine descripéittnbutes along with
their valid values. This list is very extensive and contaatisibutes sufficient for
most common usages of the system. The built-in attributedses not, however,
let the job to have requirements concerning specific libeaar software installed or
running on the host machine. In such scenario, machinesysag these requirements
would need to create and advertise this information as puattributes. Furthermore,
Condor cannot perform advanced matching by following ralefning the relations
between certain attribute values such as a hierarchy ofatpgrsystem types and



their concrete versions (e.g. all Linux kernel version shidwe same value of the
OpSysattribute).

Looking into usability of the ClassAd language in our projege conclude, that
the set of attributes describing a machine could certaialybluded in the needed on-
tology. On the other hand, the ClassAd language seems tpoigtary and restricted
in defining ontological metadata of system resources amdioakhips between ele-
ments used to describe them. Therefore we cannot conseaistrong candidate to
be used in our system.

2.3 UNICORE

The motivation for creating another popular Grid middlesvaftUNICORE (Uniform
Interface to Computing Resources [20]—was completelyediifit than that of Con-
dor. Condor was primarily designed to take advantage oftdps&omputers’ and
small machines’ idle processor time and to enable execiwing in a dynamic en-
vironment. UNICORE'’s aim, on the other hand, was to provimigg(nally German)
supercomputer users with uniform access to various ressyscattered around the
country) and to make job scheduling easier and infrastragtulependent. In its core
version the user would actually select a single target orclvttie job should exe-
cute. In contrast with the Condor, UNICORE on its own doesprovide resource
brokering, job checkpointing or migration.

Jobs in UNICORE are described at the user tier of the systémg ddstract Job
Objects (AJO)—a collection of Java classes that containf@imation needed by the
UNICORE target tier to prepare a native batch for executiimerefore, UNICORE
does not provide a “language” for describing jobs—it rebesplain Java objects that
are serialized and sent to the UNICORE server. Furthernugess that do not want to
use the provided GUI for job submission can use the UNICORECAPI to create a
job description programmatically. Resource descriptamesstored in théncarnation
Database(IDB) which contains information needed to transform thetedet job to
a task ready for execution on a specific Grid resource. Onleeo$erious drawbacks
of the IDB was that it contained only static information—tsedre and hardware re-
sources. UNICORE did not provide resource monitoring cdpials and therefore
did not support dynamic Grid utilization.

Unfortunately for our project, UNICORE does not really defaresource ontol-
ogy. Its main focus is on describing jobs that need to be érdcand on how to trans-
late these descriptions in a specific environment wherexbeution is to take place.
Some of deficiencies of the original UNICORE were fixed alonthwhe changes in
the schemas of the AJO and the IDB in UNICORE version 6, thamkise UniGrids
project, but this topic will be considered separately irtisec3.4.



2.4 Globus Toolkit

The Globus Toolkit [22] is a set of libraries and programsigiesd to support creat-
ing distributed applications. It addresses such problesgsource access, resource
management, service discovery, security, data transfitmagration, etc. The core
of the Globus Toolkit is not so much of a complete system fecexing computation
jobs (as was the case with Condor or UNICORE) but rather adation on which
more specialized services are built. Over the years, Gldbakkit evolved rather no-
ticeably and in the 4th version its core functionality angrfaces are primarily based
Web Services.

Considering the resource discovery and management, alathgrew versions of
Globus Toolkit came also a new version of Globus’s impleragon of the Grid In-
formation Service—the Meta Directory Service. Globus kadl used MDS-1 which
relied on a single LDAP server which held information abdlutesources in the sys-
tem. Resources would sign up into the server and then pealbgisend updates of
their state. Users would utilize a single server to querysthge of a given resource as
well as to find nodes satisfying specific requirements. Taisten’s main problem
was poor scalability—LDAP was optimized for number of gesrbut not for fre-
guent updates, which occurred when resources sent infammabout their load. In
MDS-2 [16] the central server’s role was limited to respaigdio discovery queries,
while finding information about a specific resource was madeetthe resource itself.
Here, Grid resources started carrying their own LDAP sar¢@RIS) that contained
information about their state. The server (GIIS) responediscovery queries by
sending information requests to all resources and onlyudipeating its internal cache
of resource descriptions.

The information about resources contained in the LDAP deteb was structured
following the schema defined in [6]. Specifically, it was argad around a small set
of elementary classes and a much wider collection of auyiliéasses that inherited
the baseVIDS class and corresponded to concrete resource instanceshe.GPU,
memory or file system. Properties of these resources weuogided using LDAP at-
tributes. In the following snippet a description of memaggaurce is shown (example
from [6]).

dn: Mds-Device—Group—name=memory,
objectclass: MdsMemoryRamTotal
objectclass: MdsMemoryVmTotal
objectclass: MdsDeviceGroup
Mds-Device—Group—name: memory
Mds—validfrom: 200110030128.12Z
Mds-validto: 200110030128.12Z
Mds-keepto: 200110030128.12Z
Mds-Memory-Ram-Total—sizeMB: 751
Mds—Memory—Ram-Total—freeMB: 642
Mds-Memory-Vm-Total—sizeMB: 1600
Mds—Memory-Vm-Total—freeMB: 1592
Mds-Memory-Ram-sizeMB: 751
Mds—Memory—Ram-freeMB : 642
Mds—Memory-Vm-sizeMB: 1600
Mds-Memory-Vm-freeMB : 1592

Along with the introduction of GT3, the Information Servicd DAP databases



were abandoned in favor of XML based information repos#®riMoreover, the de-
scription schemas also underwent major redevelopmented$tem Globus solution
was replaced by a more generic and interoperable GLUE schamseribed next.

2.5 GLUE

GLUE (Grid Laboratory for a Uniform Environment) is a projstarted in April 2002
as a joint effort between the U.S.-based iVDGL and the Ewand@ataTAG teams.
Its main purpose has been to bring interoperability betwteenU.S. and European
physics Grid projects, through a uniform schema specifglagcription of Grid re-
sources needed for implementation of Grid Information Bes resource discovery
and brokering systems. The first version of GLUE was releasedctober 2002
and contained definitions of a Grid computing element andag service. Since
then, subsequent documents (1.1, 1.2, 1.3) have expandeatdithber of supported
use cases, merged and unified notions of computing and stefagent into a single
schema, as well as included additional concepts, e.g. ttetested to administration
of resources. Since October 2006, the GLUE project hasddime Open Grid Forum
and its efforts, focused on finishing version 2.0 of the sdeane continued within
the GLUE Working Group ([4]).

The schema was published as a description of the concepaddiraf a structure
of Grid resources, complemented by UML Class Diagrams dnddadescriptions of
defined entities and their relationships. Notions of theeatd are independent of the
technology used to enforce the schema and of data modeldgeguFor the schema
to be usable it needs to be mapped to concrete implemergat®uch realizations
exist for Grid resource descriptions modeled in XML (XSD &cta), LDAP and SQL
(data base structure) for both 1.3 and 2.0 versions of GL&Esivn 1.3 for XML was
natively supported by the Globus Toolkit 3 and a mapping tadoo ClassAds also
exists. The following summary of the schema is based onwez0.

The GLUE schema is built around a set of abstract entitiegdiigne the basic re-
lationships between elements of the system. Users of thersyare organized using
a notion of aDomain—a set of actors. ThBomaincan be given access to services
through theAccess Policentities. There are entities derived from themain User
Domain which reflects &/irtual Organizationable to access services; aidmin Do-
mainwith primary goal of hosting services. Botser Domainand Admin Domain
can be organized in a hierarchical structufervicesare always accessible as one
or severaEndpointsand theAccess Policiesactually define rules of accessiiad-
points A Serviceis composed oManagers—entities managing sets &esources-
andShares—targets for sets of resources exposed thrétmgipoints A User Domain
submits arActivity using anEndpoint The Activity is run on aShareinto which the
User Domains mapped by the appropriatéapping Policy

The schema specifies implementation of defined abstrac¢tesatitheComputing
Serviceand theStorage ServiceBecause of the current interest of tA& project
we will omit the Storage Servicand focus on the Grid computing resource descrip-



tion. TheComputing Serviceeifies the abstract concepts of the gen&eevicein the
following way:

1. The concrete implementation of thkanageris theComputing Managemhich
in the simplest case is just the operating system contgpHirsingle node. In
the typical case this might be a batch system (Local Resddia@agement
System). In a more complex scenario, this could also be alsatbemiddleware
such as the Condor.

2. TheComputing Activityis an OGSA compliant description of a job submitted
to theComputing Servicéhrough one of itsComputing Endpoints

3. TheComputing Managemanages a set &xecution Environmentbat depict
physical or virtual computational resources of the Grid.e Hxecution En-
vironmentdescription is the element that contains the hardwarewaodt and
network characteristics of the resource. THweecution Environmentontains
data properties such as (for a complete description inetutiipes of proper-
ties, see [9]):

¢ type of the platform the machine runs on,

e number of physical CPUs in an instance of tBeecution Environment
(one physical CPU per socket),

e number of logical CPUs (i.e. the number of CPUs seen by theiil®&)
instance,

e detailed CPU information, such as the name of the vendoreo€fU, the
model, version and clock speed,

e amount of physical (RAM) and virtual (RAM + swap) memory,
e information about the operating system such as family, nanageversion,

¢ type of the network connection between the instances compdseExe-
cution Environment

Apart from the system specification, GLUE also specifies a efajescribing
available software. This is achieved through the us&pgflication Environment
entities and their relationships with thl&xecution Environmentin the XSD
snippet below, we have shown a fragment of the XML Schemarib@sg this
part of the specification of thExecution EnvironmertL0]. We can see that
the ExecutionEnvironmertttype is inheriting theResource type. It consists
of a number of optional (minOccurs="0") properties desripthe platform,
number of instances of the environment, number and defainst@ances’ CPUs,
memory, details of the operating system and network coivitgct The type
definition ends with a list of relations to other types (ke&sociations element
such as th€omputing ShareApplication EnvironmersandComputing Activity



<complexType name="ExecutionEnvironmertt>
<complexContent
<extension base="glue:ResourctE>
<sequencg
<element name="Platform” type="glue:Platform”/>
<element name="VirtualMachine”
type="boolean” minOccurs="0"%
<element name="Totallnstances”
type="unsignedInt” minOccurs="0"%
<element name="UsedlInstances”
type="unsignedInt” minOccurs="0"
<element name="Unavailablelnstances”
type="unsignedint” minOccurs="0"%
<element name="PhysicalCPUs"
type="unsignedint” minOccurs="0"%
<element name="LogicalCPUs"
type="unsignedint” minOccurs="0"%
<element name="CPUMultiplicity”
type="glue:CPUMultiplicity-t” minOccurs="0"/>
<element name="CPUVendor”
type="string” minOccurs="0"%
<element name="CPUModel”
type="string” minOccurs="0"%
<element name="CPUVersion”
type="string” minOccurs="0"%
<element name="CPUClockSpeed”
type="unsignedInt” minOccurs="0"%
<element name="CPUTimeScalingFactor”
type="float” minOccurs="0"f
<element name="WallTimeScalingFactor”
type="float” minOccurs="0"f
<element name="MainMemorySize”
type="unsignedLong” minOccurs="0"%f
<element name="VirtualMemorySize”
type="unsignedLong” minOccurs="0"%f
<element name="OSFamily”
type="glue:OSFamilyt” minOccurs="0"/>
<element name="OSName”
type="glue:OSNamet” minOccurs="0"/>
<element name="0OSVersion”
type="string” minOccurs="0"%
<element name="Connectivityln”
type="boolean” minOccurs="0"%
<element name="ConnectivityOut”
type="boolean” minOccurs="0"#
<element name="NetworkInfo”
type="glue:NetworkInfat” minOccurs="0"/>
<element name="Extensions”
type="glue:Extensionst” minOccurs="0"/>
<element name="Benchmark” type="glue:Benchmatk
minOccurs="0" maxOccurs="unbounded®/
<element name="Associations” minOccurs="9"
<complexType
<sequence
<element name="ComputingShareLocallD”
type="string” minOccurs="0"
maxOccurs="unbounded */
<element name="ApplicationEnvironmentLocallD"”
type="string” minOccurs="0"
maxOccurs="unbounded */
<element name="ComputingActivitylD”
type="glue:ID_t” minOccurs="0"
maxOccurs="unbounded */
<l/sequencg
</complexType-
</element
<l/sequencg



</ extension>
</complexContent
</complexType-

With regard to theAiG project, GLUE is interesting and helpful in at least a few
ways. One aspect is the approach to the role of the Grid resal@scription—it is pri-
marily the input to the resource directory and brokerinyises. Another important
advantage of the GLUE schema is its wide adoption among Gaggts and native
usage in the Globus Toolkit 4. This comes in pair with the matwf the schema
and its covering of a large number of real world-use casesatAral way of utilizing
the schema would be reusing definition of Bemputing Servicelement. In this
case a huge advantage of GLUE is its well-defined, object hazdeell as the ability
to model not only physical specifications of the resourcasalso available applica-
tions and libraries. One clear disadvantage of reusing thdEsschema is lack of
any ontological (e.g. RDF/OWL [24, 33]) realization. Thitsyould be necessary to
create one from scratch. Another is the fact that while GL&J&impatible with many
Grid middlewares it still does not suppddNICORES approach. Therefore, within
the context of théAiG project, we are likely to use the GLUE schema as reference,
especially in the area of description of the physical antlaircomputing resources.

3 Semantic Grid description and Grid interoperability

Thus far we were have looked into Grid resource descripfimmsd among traditional
Grid efforts (which have never aimed at utilization of ooigies). Out of them we
have found that only the GLUE schema could be utilized as ddation of an
ontology needed in thaiG project. However, this would mean starting from scratch
and creating an ontology using an ontology language (e.gL)AWm existing XML
based descriptions. Therefore, we will now focus our aitb@ntn efforts that already
utilize ontological demarcation. Interestingly, many athk projects originate from
efforts to support greater heterogeneity among Grid ressuroth in terms of attribute
value domains and Grid middleware interoperability (s4€] for more details).

3.1 Grid resource ontology of Pernas and Dantas

An example of work towards an ontology of Grid resources imfbin [36]. Here,
authors’ goal was to create an ontological intermediaterlagtween the consumer of
Grid services and Grid resources. This was to enable easidaater discovery of the
resources as well as to provide common vocabulary for @iffevO’s. The proposed
ontology was implemented in the OWL Full language.

As far as we were able to determine, project described intja6]been completed
in 2005 and since then the ontology has not been develop#tefurFurthermore,
the developed ontology comprised of merely 14 classes. [#iigy the case it was
actually less complete than the one used thus far inAieproject. These reasons
lead us to disregard this effort from our consideration.
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3.2 Grid resource ontology of Vidal et al.

The Grid resource ontology described in [44] was createchasffart to support re-
source brokering in a Grid middleware system. Here the faduke project was to
enhance resource matching processes. The proposed ontedsgused by an addi-
tional intermediate layer between the client of the Grid #redGrid resource manager
to analyze constraints specified by the client and transtbem using automatic rea-
soning to match more resources, not found using traditiattabute-based matching.
The ontology was based on the OWL DL language and consistégaifts:

¢ Grid Base Ontology-the foundation ontology consisting of basic concepts de-
scribing physical resources (Computer, Cluster, DiskBgc.) and software
(Problem, Domain, Algorithm, Application)

¢ Platform Ontology—an ontology extending the platform related concepts of the
Base Ontologyvith the hierarchy of CPU architecture and operating system

e Grid Resource Management Ontolegg domain ontology specifying prob-
lems and algorithms related to Data Mining

An important aspect of this ontology and its usage is that it used as a com-
plete description of the resource or its constraints, ltieraas a set of concepts useful
for describing attribute values and enabling reasoningietbem. The result of such
approach is that relations contained in the ontology deedhe equality or compat-
ibility of concepts. For example in thelatform Ontologythere is a property stating
that theltanium processoclass has architecture of typeocessorArch64BitsThere
is, however, no property stating that ti@mputerclass is related to thBrocessor
class. The ontology on its own does not contain data pragsestich as the amount
of available memory or the speed of the processor. It alsnatdre used to describe
jobs to be submitted to the Grid.

A complete set of ontology files can be downloaded from [5] jodging from
publications related to the project, the ontology itsel hat been actively developed
since June 2007. Furthermore, the goal and purpose of ttotogy seem to be differ-
ent than needs of our project and therefore we have decidsat to pursue it further.

3.3 GRIP

The GRid Interoperability Project (GRIP) [12] was aimed anhging about inter-

operability between UNICORE and Globus Grid middlewaresvalf as providing

brokering capabilities for the UNICORE. It was a 2-year pojrunning in 2002-04.
Its results included creating interoperability layerswestn UNICORE and Globus
Toolkit v2 and v3, an abstract ontology of the resource, aodramon resource bro-
ker for both Globus and UNICORE resources. The project agbfbundations for

the adoption of the OGSA standards in UNICORE.
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From the point of view of the aim of this chapter, the mostriesting aspect of
GRIP is the matching and mapping phase of creating the GIoObUSORE inter-
mediate layer. Since the process of creating a translatoreles the two has been
described in a rather detailed way in [12], below we highiighly the most important
points. The resource ontologies for both systems were @gttausing the PCPack
tool [7] from the GLUE schema in case of Globus and from the A3@aDoc docu-
mentations for the UNICORE. While the PCPack does not nigtsigpport the OWL
language, it enabled to easily, graphically customize a&fide resulting ontologies.
Afterwards the two ontologies were compared to try to matochcepts contained
therein. The most important differences found in the preeesre these of the scope
of descriptions. UNICORE descriptions contained infolioragbout static hardware
and software capabilities of the resource. The GLUE schem#he other hand, did
not specify software capabilities. However, apart frontistaardware capabilities, it
described the dynamic information, e.g. the current loathefresource. This being
the case, only the intersection of these two “universes,” the static description of
hardware capabilities could have been mapped.

Unfortunately we were not able to find the complete PCPacklogies used in
the course of the project, nor could we acquire the XML filesdutor mapping the
ontology terms. Therefore, we cannot present an examplevofiinese would describe
a sample resource or discuss details of the implementatercan, however, discuss
results of two projects following this effort— the Uniformterface to Grid Services
(UniGrids) and the Grid Ontology project.

3.4 UniGrids, OGSA and the Grid Ontology

UniGrids (Uniform Interface to Grid Services) was a follays-on the GRIP project.
Its main goal was to design and implement a Grid middlewaseesy compliant with

the Open Grid Service Architecture (OGSA) standards. It tease based on the
UNICORE and the results of the GRIP project. However, as togept developed,
it was substantially modified—especially looking into thwternal structure of the
proposed ontology.

In terms of resource descriptions and requests, the UrsGidject brought the
adoption of the XML to the description of the incarnation gess. Prior to the UNI-
CORE 6, the incarnation process was described using cusiomafted text files,
while in version 6 they became XML-formatted and containksinents from the
OGSA JSDL namespace. These were used mostly to describedberce capa-
bilities description such as the operating system, numbeodes or CPUs per node.
Furthermore, the UniGrids project brought the specificatibthe Grid Resource On-
tology and the more general Grid Ontology [35]. The ontolagg designed to form
a basis for automatic matching of many different Grid midglees as well as an easy
addition of new systems.

The proposed ontology was built using the OWL language arglspét into sev-
eral layers. The core layer (referenced in [35] ashtnendational Ontologyis a set of
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classes forming the high-level, common view of Grid elersgstich as Virtual Orga-
nizations, abstract resources, security related entdlestracts actions and tasks. On
top of the base ontology, the OGSA and the S-OGSA ontologezs wefined. They
introduce concepts related to these standards as well adawiare specific ontologies
such as the Globus Ontology and the UNICORE ontology.

A very important part of the ontology are classes and objexigrties representing
the abstract Grid job and the way it is translated to conqueteesses for the target
machine. Approach presented in the ontology is very sinidathe one from the
UNICORE—it is based on the concept of tAbstractJob and the idea of iténcar-
nationto the local resource. AAbstractJobcan also contain multipl&ctiors so it
can be used to model workflows. Apart from jobs, the procegscafnation also cov-
ers concepts such as the file syst@irectories the systeniProcesseand user logins.
The ontology contains also a set of classes related tQtradity of Serviceand Ser-
vice Level Agreemengnd their negotiation. This functionality is provided byane
of theQoSclass and its subclassesdvertisedQoS AgreedQoS ObservedQoSand
Requested)oS The Quality of Servicas defined on the level of singl&ctions and
ResourceSetsassigned to them and negotiated by Breker. 1t should be noted that,
while these classes are joined with relations to other quisocef the ontology, they
lack data properties describing the concrete terms of theeagent, such as for ex-
ample: start time, end time, and cost of running Aotion on theResourceSeiNote
that these concepts are used directly in our system whes nggotiate jobs with
LMasters [17].

Looking into more details, resources are described usieg#sourcebstract en-
tity, which is inherited afterwards by more specific reseurype entitiesDisk, File,
Network ProcessingResource Collectiofwhich basically is a set of resources) and
Software Properties of the ontology provide means of describinguese structures
of arbitrary complexity combining computing and storagpatalities. Properties of
resources are specified by tResourceProperty entities which correspond to the
WSRF WS-ResourceProperties standard. TO illustrate theaph, in Figure 1 we
can see the resource hierarchy along with the way they aresego clients—through
theServiceclass.

The important thing to note is that the WS-ResourcePraggediandard does not
define a set of properties that can be used for describingire=s®. Instead it defines
a meta-layer of these properties—it includes terminolagy)cepts and operations
needed to expose the definition of properties and their salgeery and update the
property values. Therefore, the ontology itself does novie concepts needed to
completely describe the physical characteristics andlnhipes of the resource. As
noted above, it also does not provide us with the right sebotepts needed for job
contract negotiations. We find these to be a serious defigiagdt would require a
significant effort to extend what exists to the point of ussdgs in our project. On
the other hand, we can see here a mature and complete setcept®describing the
overall structure of the Grid infrastructure as well as tlasses related to abstract job
descriptions, which might provide us with very importargag and insights.
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pl:Resource
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pl:Processing plDisk

Figure 1: The hierarchy of resource concepts in the Grid [@gto

3.5 Core Grid Ontology

Finally, let us describe the effort that seems to be the stdseour needs and that is
likely to be adopted in our project. Ti&ore Grid Ontology([45], [3]) is an OWL de-
marcated, Grid architecture independent, collection atepts and relations between
them that could be extended to include middleware specibpgties. In this case,
authors did not create an ontology with any specific goal (ergology of a specific
middleware) but instead wanted to provide a generic ontcéd@rid description for
further extension and use by Semantic Grid applications.

Proposed ontology does not capture the whole universe @tigebut was created
by examining various Grid architectures and extracting @amcepts common to all
of them. The result of this process is a layered model of tikege Grid architecture,
containing, looking from the top to the bottom:

e Grid VOs and Applications-classes such agO, GridUser, GridApplication
andPolicy describing the configuration and application of the Grid,

e Grid Middlewares and ServicesGrid middleware, components, libraries and
services enabling core Grid functionality,

e Resources—classes describing resources, suc@oagutingElementWork-
erNodeand various resource physical description concepts@iR&) or Stor-
agelnterface

Apart from the classes, the proposed ontology defines alataies between them,
using object and data properties. Thanks to these propeities possible to create
a complete structure of a multi-vVO Grid environment witheirtonnected elements.
The VO contains registered participants - eitli@idResouce or GridUsers and can
containSites. EachSite can haveGridComponerg such asComputingComponent
StorageComponeiatr ResourceBrokerThe important class for computing jobs is the
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ComputingElementa subclass o€ComputingComponertwhich can haveQueus
andWorkerNode as well as installed software such@sdMiddlewareandOperat-
ingSystemTheWorkerNodas the resource, which runs the job, and which is likely to
contain aCPU. The vocabulary of concepts representing Grid resourcalsasrather
extensive—we have shown it in Figure 2.
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Figure 2: The hierarchy of Grid Resource concepts in the Goi@ Ontology

Figure 3 shows a diagram of the structure of the sample Gred—ghat of the
University of Cyprus Grid—based on the instances providethe ontology OWL
file. We can see that the CY01-LCG2 site has fGuidComponents

e uil0l.grid.ucy.ac.cy-an instance of th&l class

e sel0l.grid.ucy.ac.eya StorageElement
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Figure 3: The structure of a sample Grid site described usi@gore Grid Ontology

e rb101.grid.ucy.ac.cy-aResourceBroker

e cel01.grid.ucy.ac.eyaComputingElement

The cel01.grid.ucy.ac.cy computing element, in turn, femthreeWorkerNoddan-
stances, the dteamQueueand runs two services: openpbsy which is an instance
of thePBSjob manager and mawie ucy—an instance of the Maui job scheduler.

Worker nodes are described as shown in the following OWLsatip

<WorkerNode rdf:ID="wnl102.grid .ucy.ac.cy’
<belongToVO>
<VO rdf:ID="Dteam™>
<hasName rdf:datatype=
"http: //www.w3.0rg/2001/XMLSchema#string”
dteam
</hasNamg
</IVO>
</belongToVO>
<hasID>
<IP rdf:ID="IP.WN102UCY">
<hasNamexml:lang="en">194.42.17.237</hasNamg
</IP>
</l hasl|D>
<hasCPW
<CPU rdf:ID="CPU__Intel ">
<availableNum
rdf:datatype="http: //www.w3.0rg/2001/XMLSchema#int”
2

</availableNum>
<hasModel xml:lang="en">Xeon</ hasMode}
<clockSpeed xml:lang="en">2.8GHz/clockSpeed
<ICPUY>
</hasCPWB
<hasName rdf:datatype="http://www.w3.0rg/2001/XMLSpl@#tstring’
</hasNamg
<InstalledSoftwarg
<LCG rdf:ID="LCG-2.6.0"/>
</InstalledSoftwarg
<InstalledSoftwarge
<Linux rdf:ID="Scientific_Linux_303">
<rdfs:comment
rdf:datatype="http: //www.w3.0rg/2001/XMLSchema# s trg ">
A linux OS.
</rdfs:comment
</Linux>
<l/lInstalledSoftwarg
</WorkerNode-
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As can be seen from the above description, relationshipedast classes are rather
complete, although there are still some missing concepys;lack of properties re-
lated to many of th&ridResourcesubclasses such as tNetworkResourgéviemory
or StorageResourceHowever, the collection of Grid infrastructure relatedsdes is
rather impressive—containing entities suchGglinformationServiceJobManagey
JobScheduleor WorkloadManagement

A very helpful element of the ontology is the provided exaenget of instances of
the classes corresponding to authentic elements of a Gvicdbement in the EGEE
project from which we have taken the examples shown in tlus®se

4 Agent—Grid integration

Thus far we have looked into traditional Grid resource dpsions and attempts at
developing a Grid ontology. However, since our project i;igdo utilize both on-
tologies and software agents, let us now focus our attewtioefforts to provide on-
tological basis to agent-Grid integration efforts. Herediscuss two approaches that
we were able to identify.

4.1 Agent Computational Grid

The first example is thé&gent Computational GrigACG) project [14, 15]. Moti-
vation of this effort was to propose an agent-based comguatina service exchange
environment in which agents expose selected core featfitbg &rid functionality;
e.g. member registration and service discovery. Propogedts do not introduce
significant cognitive features to the Grid (are not an actbedin”), but utilize ca-
pabilities such as environment awareness and adaptaioilitgprove the robustness
of the Grid and enable Grid functioning under highly dynaroaditions. Another
concept of theACGis interoperability of Grid members. It is suggested thatgks-
tem should be able to accept agents of different platfornvgedisas enable exposing
legacy services. Here, agent interoperability is accashplil on the basis of thdo-
bile Agent System Interoperability Facilistandard [26], while wrapping of legacy
systems is based on the integrationG®RBAdistributed objects technology. The
ACGis designed around two wayORBAintegration—existingCORBAservices can
be exposed through an agent based interface at the sameg@mis’acapabilities can
be used a€ORBAservices.

Services in theAGC are described by means of XML with a clearly defined DTD
schema. As specified in [15] the description contains tHewahg fields:

e Name This is an optional string that can be associated with acerv

e Service Id This is a required element that uniquely identifies theiservEach
service has a unique id
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e Description describes some features of this service

e Access describes how to invoke and use a service The access medhdsl fi
provide the placeholder for any kinds of service invocasohema. A service
description may contain multiple access method tags asdbeld be multi-
ple ways to invoke a service. The intent is for the agent tonaltely decide
which invocation mechanism to use. Some agents may waneta userface
of services, some may decide to download a client-proxy cuoftther agent need
migrate to destination node, access the services locally

¢ Interface indicate agent can access service by a standard interface

e URL: gives location of services supplied by a legacy system

e Agent platform The agent platform in which the application was built on
e Service typeinforms the user the type of service

e Properties denotes a list of properties of the service

Looking at the list of service description elements, it cannoted, that authors
concentrated mostly on the aspect of multi platform interapility, while leaving
the issue of describing the execution environment and Grittmesource capabilities
practically untouched. In fact the only place where one @auifroduce information
such as the physical specifications of the machine the sais/feosted on, or the avail-
able system resources, or libraries, would beRnhapertieselement. Unfortunately
for this element authors’ did not provide any list of validldrelements. Therefore,
even though the interoperability-focused approach totaGeid integration proposed
within the ACG project seems interesting in many aspects, the Grid resal@scrip-
tion has proven to be insufficient to our needs. Furthermoitl the best effort at-
tempt, we could not find traces of this project being extermhest 2005.

4.2 AGIO

The agent-Grid integration project, described in [27, 28, s build around concepts
of agentandservice In the proposed model, artificial or humagentsare engaged

in exchange of services and, for shared access to resoareagymposed intgirtual
Organizations Integration between the agent and the Grid worlds take=pa the
level of services, i.e. services interface agents’ cafiedsilusing the concept of a
Cognitive EnvironmentThis feature enables Grid services to behave in a completel
stateful manner; not only for the duration of fulfilling a gla request but also over the
course of several user conversations. Moreover, thanketGdgnitive Environment

it would be possible to reason about the outcome of servilie @ad enrich results
returned to clients.

In terms of formalization of the model, this effort has firgelm modeled using
a specially created diagram language called Algent Grid Integration Language
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(AGIL); described in [27]. ThAGIL language enables a graphical representation of an
agent-Grid integrated system along with the relationshgisveen its elements. The
next step in the formalization of this concept wasAgent Grid Integration Ontology

as presented in [19], which contai@$VLdemarcated ontologies of #AGIL concepts

as well as theSWRL([34]) rules enabling machine parsing of the descriptiond a
automatic validation of model instances.

To summarize classes forming the ontology we will start vifite concept of an
Agent Agens, organized int&¥Os and identified by th¥509certificates, interact with
each other and use or provi@ervics. An Agentproviding aServicecan dedicate its
CognitiveEnvironmento its clients. Servics are included irServiceContainer and
handled by aCAS(Community Authorization Service). As mentioned earliger-
vices interface agentapabilities The ServiceContainereifies a set oVirtualize-
dResource which in turn can virtualize a number Hbsts, that can be composed of a
ComputingResourcaand aStorageResourcd his ontology does not describe detailed
properties of th&kesourceelasses, nor does it specify the software or libraries acces
sible to the service clients. In the following XML snippete\wresent a sample set of
instances forming a single service.

<Capability rdf:ID="ComputingCapability*
<islnterfacedBy
<ServiceContainer rdf:ID="ComputingServiceContainer”
<interfaces rdf:resource="#ComputingCapability®/
<includes>
<NormalService rdf:ID="ComputingService"
<islncludedIn rdf:resource="#ComputingServiceContatrie>
<interfaces rdf:resource="#ComputingCapability®/
<isHandledBy
<CAS rdf:ID="ComputingCAS*>
<islncludedln rdf:resource="#ComputingServiceContairié>
<isHandledBy rdf:resource="#ComputingCAS%/
<handles rdf:resource="#ComputingService’/
<handles
<NormalService rdf:ID="SomeService”
<isHandledBy rdf:resource="#ComputingCAS?%/
<islncludedIn rdf:resource="#ComputingServiceContairie>
</NormalService-
</handles
<handles rdf:resource="#ComputingCAS?/
<I/CAS>
<lisHandledBy
<isProvidedBy rdf:resource="#ComputingAgent?/
</NormalService-
<lincludes>
<includes rdf:resource="#SomeService*/
<includes rdf:resource="#ComputingCAS%/
<reifies>
<VirtualizedResource rdf:ID="VRComputingNodge”
<virtualizes>
<SimpleHost rdf:ID="ComputingHost>
<isComposedBy
<StorageResource rdf:ID="StorageResourdé&>
<composes rdf:resource="#ComputingHost'/
</ StorageResource
<lisComposedBy
<isComposedBy
<ComputingResource rdf:ID="ComputingResourdé>
<composes rdf:resource="#ComputingHost’/
</ ComputingResource
</isComposedBy
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<isVirtualizedBy rdf:resource="#VRComputingNode%/
<holds>
<X509Host rdf:ID="X509Host11">
<isHeldBy rdf:resource="#ComputingHost>/
</ X509Host>
</holds>
</SimpleHost
<lvirtualizes>
<isReifiedln rdf:resource="#ComputingServiceContairfér
<l/VirtualizedResource
<lreifies>
</ ServiceContaines
<lislnterfacedBy
<islnterfacedBy rdfiresource="#ComputingService’/
</ Capability>

Here, we can see t@omputingCapabilitywhich we assume enables the agent to
run some client-specified job, is interfaced by emputingServiceThe Comput-
ingServiceis included in theComputingServiceContainand handled by th€om-
putingCAS The ComputingServiceContaineeifies theVRComputingNode Virtual-
izedResourc¢hat virtualizes a simpl€omputingHostomposed of th€€omputin-
gResourcel and theStorageResourcg.

The AGIO provides an excellent framework for modeling the strucifrenulti-
agent-based Grid systems. It contains a very extensivd sehoepts describing rela-
tionships between agents operating within the Grid as veedirainteresting approach
to enriching Grid services with agents’ intelligence thgbuhe use of Cognitive En-
vironments. Unfortunately, it does not contain appropridasses related to features
such as physical resource description, resource discavehprokering, or resource
software requirements and/or capabilities. Thereforéleyossibly a good candidate
for future work on modeling the “universe” @G system'’s agents, it is not appropri-
ate for use as a resource description ontology. Furthermdras to be noted that the
AGIO project was actually an MS Thesis and currently is naspad further.

5 Concluding remarks

The aim of this chapter was to summarize existing effortsraating an ontology
of the Grid, and underlying agent-Grid integration. At tlzene time, the presented
material was viewed from the perspective of thgents in Gridproject, which we
are working on. Our main question was: is there an ontologthefGrid that we
could adopt in our project. Looking at the presented abateoli efforts at directly
defining Grid ontology or that could be reverse engineeresktmact one, we believe
we should reuse and extend the Core Grid Ontology, whiclstout to be the closest
to our needs. Extensions will be based first, on other effat®xperiences drawn
from them); the GLUE project in particular, and the UniGrisecond, we will have
to introduce concepts that are specific to our effort, e.ganemic concepts related
to contract negotiations and trust related concepts. We@pbrt on our progress in
subsequent publications.
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