
HAL Id: hal-00834409
https://hal.science/hal-00834409v1

Submitted on 17 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource Management in Grids: Overview and a
discussion of a possible approach for an Agent-Based

Middleware
Mehrdad Senobari, Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki,

Richard Olejnik, Ivan Lirkov, Pavel Telegin, Nasrollah Moghadam Charkari

To cite this version:
Mehrdad Senobari, Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki, Richard Olejnik, et al..
Resource Management in Grids: Overview and a discussion of a possible approach for an Agent-Based
Middleware. Saxe-Coburg Publications, Stirlingshire, UK. PARALLEL, DISTRIBUTED AND GRID
COMPUTING FOR ENGINEERING, Saxe-Coburg Publications, Stirlingshire, UK, pp 141-164, 2009,
Computational Science, Engineering & Technology Series, ISSN 1759-3158. �10.4203/csets.21.8�. �hal-
00834409�

https://hal.science/hal-00834409v1
https://hal.archives-ouvertes.fr

Resource management in Grids—overview and a
discussion of a possible approach for an agent-based

middleware
M. Senobari1, M. Drozdowicz2, M. Ganzha2, M. Paprzycki2,3, R. Olejnik4, I.

Lirkov5, P. Telegin6 and N. M. Charkari1

1Tarbiat Modares University, Tehran, Iran2System Research Institute Polish
Academy of Sciences, Warsaw, Poland

3Warsaw Management Academy, Warsaw, Poland
4University of Sciences and Technologies of Lille, Lille, France

5Institute for Parallel Processing, Bulgarian Academy of Sciences, Sofia, Bulgaria
6SuperComputing Center Russian Academy of Sciences, Moscow, Russia

Keywords: Grid computing, agent-based resource management, resource manage-
ment, job scheduling, meta scheduling.

Resource management and job scheduling are important research issue in computa-
tional Grids. When software agents are used as resource managers and brokers in the
Grid a number of additional issues and possible approaches materialize. The aim of
this chapter is twofold. First, we discuss traditional job scheduling in Grids, and when
agents are utilized as Grid middleware. Second, we use this as a context for discussion
of how job scheduling can be done in the agent-based system under development.

References

1

Abstract

Resource management and job scheduling are important research issue in computa-
tional Grids. When software agents are used as resource managers and brokers in the
Grid a number of additional issues and possible approaches materialize. The aim of
this chapter is twofold. First, we discuss traditional job scheduling in Grids, and when
agents are utilized as Grid middleware. Second, we use this as a context for discussion
of how job scheduling can be done in the agent-based system under development.

Keywords: Grid computing, agent-based resource management, resource manage-
ment, job scheduling, meta-schedulers

1 Introduction

According to [42], “computational Grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to computational
resources.” In general, resources (also named services; see [33]) can include super-
computers, data repositories, clusters, sensors, workstations, programs, or individual
PCs. However, in this chapter we are interested in Grid as a collection of computa-
tional (rather than data / software) resources, which have to be effectively managed.
However, the heterogeneous highly dynamic nature of the Grid makes development of
Grid Resource Management Systems (GRMS) a challenge. Therehave been many
projects focused on designing and implementing GRMSs. As ithas been argued
in [62], the most important issues in the process are: (a) supporting adaptability, ex-
tensibility, and scalability, (b) allowing systems with different administrative policies
to inter-operate while preserving site autonomy, (c) co-allocating resources, (d) sup-
porting quality of service, and (e) meeting computational cost constraints.

1

In the case of Grid computing scheduling means allocation (matching) resources to
incoming jobs (we use terms task and job interchangeably). While there exists exhaus-
tive work on scheduling in “traditional” parallel and distributed systems, it is rarely
applicable to the Grid. The main reason is that they often assume that tasks are com-
pleted utilizing homogeneous dedicated resources residing in a single administrative
domain [62]. However, the vision of the Grid assumes that it consists of heterogeneous
non-dedicated resources residing in multiple administrative domains.

One of interesting approaches to resource management in theGrid is based on soft-
ware agents. While arguments presented in [41, 68] there arenot without critics, we
are in the process of developing a GRMS, where agent teams arethe basic manage-
rial infrastructure [35]. Thus far we have concentrated ourattention on interactions
between users and the team leader (theLMasteragent) [48], and interactions between
Workeragents and the actual Grid infrastructure [65]. Currently,we need to address
the question: how will theLMasterselect theWorker to execute a given job (for the
time being we assume that a singleWorker will execute a single job). In this con-
text, first, we presents an overview of approaches to Grid resource management and
scheduling. Second, we discuss how understanding these approaches can help us to
solve the load distribution problem within our agent-basedinfrastructure.

2 Grid resource managers and schedulers

An early survey of Grid resource management systems was compiled in 2002 by
Buyya et.al. [62]. There, three basic approaches to job scheduling were distinguished:
(i) centralized, (ii) hierarchical, and (iii) decentralized. The centralized scheduling
is easiest to manage and deploy, but is not well suited for theGrid. Its main dis-
advantages are lack of scalability and fault-tolerance. Inthe hierarchical approach,
schedulers at higher levels manage larger sets of resources(and utilize schedulers at
lower levels). Hierarchical schedulers are utilized, for instance, in the 2K distributed
operating system [46], as well as in Darwin [31] and Legion [32] resource manage-
ment systems. On the other hand, Ninf [53], MOL [45], and Bond[23] projects adopt
decentralized scheduling. Note that Grid schedulers usually cannot control Grid re-
sources directly. They mostly work asbrokers(or agents). However, Grid schedulers
can also be tightly coupled with applications (application-level scheduling; see [36]).

While Grid heterogeneity includes applications, resources, as well as middleware
components and their relations, it is possible to generalize processes involved in Grid
scheduling. For instance, in [36] it is argued that Grid scheduling consist of: (1) re-
source discovering and filtering, (2) resource selecting and scheduling according to
certain objectives, and (3) job submission. In [36] we can find a bird-eye view of the
structure of the Grid resource management. Here, the Grid Scheduler (GS) receives
jobs from Grid Users, performs matchmaking (utilizing an Information Service—IS),
and generates a schedule. In other words, result of scheduling is a map between jobs
and available resources. Note that in the Grid multiple schedulers may exist in sep-
arate administrative domains, and may be organized in different structures. Delivery

2

of a feasible schedule requires detailed information about(a) properties of the job and
(b) of available resources, and (c) current state of the system. Here, the Grid Informa-
tion Service (GIS) provides system state information. After the schedule is prepared,
submitting a task to selected resource(s) and monitoring execution is the responsibility
of the Launching and Monitoring (LM) service. Another functionality of the LM is
staging necessary executables and input data. Local Resource Manager (LRM) per-
forms the final scheduling and submission inside of a specificdomain. The LRM has
additional control over the available resources (e.g. it enforces administrative policies
over resource usages, and reports the resource status information to the GIS). Let us
now look into some details of popular schedulers.

2.1 AppLeS

The AppLeS project [1] was based at UC San Diego and was focused on develop-
ment of scheduling agents for applications running in Grids. The AppLeS system
collects resource information from the Network Weather Service (NWS) running at
each computing node, and dispatches tasks to lighter loadednodes; while scheduling
actual execution of applications is local. AppLeS uses other RMSs, e.g. Globus, Le-
gion, or NetSolve, to execute actual jobs (i.e. it can be viewed as a meta-middleware
placed above the standard Grid middleware). Each application has embedded Ap-
pLeS agents that perform resource scheduling. AppLeS applications utilize templates
that define specific computational models and thus allow reuse of application patterns
(e.g. parametric and master-slave application templates have been provided). AppLeS
facilitates predictive heuristic state estimation model,online rescheduling and fixed
application-oriented scheduling policy [26, 62]. According to our best assessment the
AppLeS project is no longer active. All of its publications and the WWW site were
completed before 2001 and most of its participants have moved out of UC San Diego.

2.2 Nimrod/G

Nimrod/G is a Grid resource broker based on an economy-driven approach to man-
age resources and schedule jobs. It utilizes services provided by other Grid middle-
ware (e.g. Globus, Legion, Condor), and the GRACE [5] trading mechanisms. More
detailed explanation of economical methods used in Nimrod/G is presented in sec-
tion 3.2. Note that, while at the Nimrod/G site there are references to work completed
in 2007, the latest version of this middleware v3.0.1 was released in October, 2005.
Thus, to the best of our knowledge, today this project is no longer active.

2.3 OpenPBS

OpenPBS [10, 11] is a simple workload management solution intended for small clus-
ters of dedicated homogeneous nodes. Here, computers are federated into a virtual
pool of resources. Workload is scheduled to run within this virtual pool, based on

3

simple scheduling algorithms. OpenPBS is one of workload managers accessible from
the CSF meta-scheduler (see, Section 2.6). However, the last release of the OpenPBS
as an independent project (v2.3.16) happened in 2001. At thesame time, the PBS
Professional, is the commercial product developed and soldby the Altair corporation.

2.4 NetSolve

The NetSolve project [37] was focused on execution of scientific applications in het-
erogeneous environments, while utilizing different scheduling algorithms for differ-
ent applications. Job completion time estimation was basedon performance and
load models, while a dynamic job queue was used for job ordering. Length of this
queue was adaptively adjusted based on historical performance data (an example of
a system-level scheduling [26]). In addition, mechanisms for scheduling multi-step,
data-dependent jobs have been implemented [20]. Recently,the NetSolve project has
been extended to Grids through the GridSolve infrastructure [9]. Both projects are
active; for instance, a new release of GridSolve software appeared on 2008-12-18.

2.5 Condor

Condor [2] is a high-throughput computing environment thatmanages large collec-
tions of diversely owned machines. It utilizes a centralized scheduler based on the
ClassAd matchmaker. To overcome the disadvantages of centralized scheduling, Con-
dor allows the matchmaker (and/or the user) to forward requests to another match-
maker through the gateway flocking mechanism. The Condor project is still under
development and has a large community of users.

2.6 Community Scheduler Framework

The Community Scheduler Framework (CSF) is an open source Web Services Re-
source Framework compliant [15] metascheduler built for the Globus Toolkit [3, 66,
40]. The CSF provides interface and tools for Globus users tocreate reservations,
define scheduling policies and submit jobs to the Grid. CSF functionalities can be
extended to utilize other schedulers and support differentGrid deployment models.
For instance, using CSF allows a single interface access to (i) Load Sharing Facility
(LSF); [8]), (ii) OpenPBS, (iii) Condor, and (iv) Sun Grid Engine (SGE [12]). The
CSF is the default metascheduler for the Globus Toolkit 4. This indicates that the CSF
is not only active, but likely to be developed further (with the development of Globus).

2.7 ADAJ and SOAJA

The aim of the ADAJ (Adaptative Application in Java) and the SOAJA (Service Ori-
ented Adaptive Java Applications) projects is to develop aninfrastructure to run ap-
plications in “desktop Grids” [57, 49]. ADAJ is a programming and execution envi-

4

ronment, which contains mechanisms for dynamic re-distribution of components of
an applications (in response to load imbalances among Grid nodes). The SOAJA is a
WSRF-based ([61]) service oriented extension of ADAJ. It isbeing developed on top
of ADAJ, by adding the webservices layer. Furthermore, in SOAJA adjustments are
to be made to make it less dependent on proprietary solutions(e.g. the Enterprise Ser-
vice Bus and the JavaParty); see [44] for more details. Similarly to ADAJ, SOADAJ
is to facilitate workload measurement and component-levelload balancing.

3 Approaches to task scheduling in Grids

Job/task scheduling has a long history of research in parallel and distributed com-
puting systems. Obviously, a large number of methods developed in that context have
been adapted to Grid scheduling. Since a thorough summary ofGrid scheduling meth-
ods can be found in [36, 52], we will focus our attention only on economic methods,
which fit very well with agent systems (see literature related to utilization of software
agents in e-commerce scenarios, for instance [18, 19]).

3.1 Economic models

Metaphorically speaking, computational Grids and the power grid share the same gen-
eral economic model. In the power grid, we use electricity and pay for usage of a “unit
of electricity.” In the computational Grid we are to use computational resources and
pay for their usage (possibly, one day a “unit of computing” will be established and
globally accepted). Therefore, in the computational Grid we can distinguish produc-
ers and consumers (with their objectives) and commodities (resources) that are traded
(e.g. programs, data, storage, CPU cycles, etc.). To support this aspect of the Grid
(Grid economy), we need infrastructure (algorithms/policies) similar to that in the e-
commerce. In other words, we need to be ale to establish priceof resource, service
level agreement (SLA) and its enforcement, secure payment,etc. [26]. Similarly
to the case of the (commodity) market, it is possible to utilize transactions based on
both bartering and commodity prices. In the case of bartering, exchange of resources
takes place (e.g., storage space for CPU time). When pricingis used, price of services
should be based on supply, demand and possibly other economic factors.

For the Grid economy to materialize, Grid users need both: (1) to be able to spec-
ify resource requirements, and (2) to establish their preferences (e.g. that a given job
should be high priority and price is not important). At the same time the Grid infras-
tructure (acting as a resource broker) has to be able to select resources that meet these
requirements. Obviously, what is also needed are effectivemechanisms for price /
SLA negotiations. Mechanisms of this type have been studiedin research in broadly
understood e-commerce. For instance, when resource price is considered alone, mech-
anisms for establishing price equilibrium should be utilized.

According to [26], service providers and users can be functionalized as represented

5

by Grid Service Providers (GSPs) and Grid Resource Brokers (GRBs). The GSPs
deliver Grid enabled resources (e.g. Globus or ADAJ) as wellas Grid Trading Services
(GTS) to facilitate resource usage negotiations (based on user requests delivered by
the GRBs). Interactions between GRBs and GSPs during contract negotiations are
mediated by a Grid Market Directory (GMD).

Depending on the mechanism used for establishing transaction details (negotiating
the Service Level Agreement, the price, etc.) either GRBs orGSPs can initiate the
negotiation. For instance, a GRB may invite proposals from GSPs’ and select one that
satisfies its requirements (e.g. job will be done before the deadline and within cost
constraints). Alternatively, a GSP may invite bids from prospective users and offer
its services to the highest bidder. Note that both GSPs and GRBs have constraints to
be satisfied and utility functions to be maximized. Let us look into details of selected
mechanisms that can be used to negotiate transaction details (for more information, as
well as a list of projects that, before 2002, used economic models, see [26]).

3.1.1 Bargaining Mechanism

In the bargaining model, GBRs bargain with GSPs, for instance for lower access price
and/or higher usage duration. In the e-commerce literaturethis model is also known as
iterative bargaining[58]. Here, GBRs and GSPs have objective functions and negoti-
ate as long as their objectives are met or until it is established that finding an agreement
is not possible. Negotiation can involve a single item (e.g.price), or multiple items
(e.g. price and deadline). According to [26] this model is particularly useful when
market supply-and-demand and service prices are not clearly established.

3.1.2 Tender/Contract-Net Mechanism

Tender/Contract-Net model is one of the popular models for service negotiations (see,
also [4]). Here, the GRB announces its requirements (using aspecific template) and
invites bids from GSPs. Interested GSPs evaluate the announcement and respond by
submitting their bids. The GRB awards the contract to the GSPthat submitted the best
offer. In the case when no (satisfactory) offer is obtained the GRB may adjust and re-
submit its call for proposals. The negotiation template mayinclude, among others,
addressee, requirements specifications (e.g. Linux, x86arch, and 1024MB memory),
task/service description (e.g a Matlab job), maximum price(optional), bid specifi-
cation (what should offer contain), expiration time (deadline for receiving bids), etc.
Note that the Tender/Contract-Net allows finalizing contracts without bargaining. This
simplifies interactions and can improve the efficiency of thesystem (e.g. it is easy to
imagine a very long sequence of iterations taking place in the case of Bargaining).

3.1.3 Auction Model

According to [26] the Auction model involves one-to-many negotiations, between a
GPS and multiple GRBs, and reduces negotiation to a single value (i.e., price). Note

6

that this view is a clear oversimplification of what has been discussed in the e-com-
merce literature, see for instance [18, 50, 21]. Let, us however accept this view as an
approximation of what could be used in this case. Here, the basic process involves:
(a) start of the Auction, (b) bid submission, (c) agreement formation, or establishing
that agreement cannot be formed (see, also [19]). Most popular forms of Auctions
are: English Auction, First-price sealed-bid, Vickrey Auction, and Dutch Auction.
However, the literature concerning single and multi-item auctions considers a much
broader spectrum of contract negotiation mechanisms.

3.2 Job scheduling in Nimrod/G

To illustrate application of an economic model in Grid resource management, let us
look into the Nimrod/G approach. In [27], three economy-based algorithm used in the
Nimrod/G are presented (note that neither one of them utilizes the elaborate economic
mechanisms presented above):

• Time Minimization—complete job(s) within time and budget constraints,

• Cost Minimization—complete job(s) within time and budget constraints,

• None Minimization—complete job(s) within time and budget constraints.

Let us assume that a task to be completed consists of one or more jobs. When
the Time Minimization algorithm is used, the goal is to complete the task as quickly
as possible (within the available budget). The key steps of this algorithm are as fol-
lows [27]:

1. For each available resource, use information about previously assigned jobs to
estimate the completion time for a new job.

2. Sort resources according to the expected completion times.

3. Assign a given job to the resource for which the completiontime is the “short-
est,” while the cost is less than the remaining budget per job.

4. Repeat until all jobs are assigned.

In the case of the Cost Minimization, the goal is to complete the task as cheaply as
possible, while still satisfying the deadline constraint ([27]):

• Sort available resources according to the advertised cost (cheapest first).

• Utilize estimates of job execution times to assign as many jobs as possible to
cheapest resources; without exceeding the deadline.

7

Finally, for the None Minimization algorithm, the goal is tocomplete the task
within the deadline and cost constraints, but no minimization of either is attempted [27]:

• Divide resources in such a way that in each case cost per job isless than budget
available per job.

• In the case of the cheaper resources, assign jobs (inverse) proportionally to the
estimated job completion time (e.g. “cheap resource” with estimated completion
time = 4 received twice as many jobs as resource with estimated completion
time = 8).

• In the case of more expensive resources, repeat steps (untilall jobs are assigned),
but use recalculated budget per job (budget based on money left after cheaper
resources have been contracted).

Note that implementation of either one of these three strategies involves taking care
of special situations. For instance, during systems startup completion times estimates
are unknown, and thus a supplemental strategy has to be used.Similarly, when there
are “too many” jobs in the task and they cannot beall assigned to available resources
(an example of an infeasible schedule), system has to be ableto manage such situation.

4 Agent based scheduling systems

Since in our project we utilize software agents as Grid resource managers, let us now
focus our attention on approaches to Grid resource scheduling appearing in the context
of agent-Grid integration.

4.1 ARMS

ARMS was an agent-based Grid RMS. It used agents for resourceadvertisement and
discovery [28]. It utilized performance prediction mechanisms provided by the Per-
formance Analysis and Characterise Environment (PACE) toolkit [56]. Furthermore,
scheduling was focused on QoS requirements; e.g. users had to specify an explicit job
execution deadline.

In ARMS homogeneous cooperating agents are organized in a hierarchy, and their
goal is to manage and schedule applications over available Grid resources. Each agent
acts as a representative for a single Grid resource, while PACE is used to create a
hardware characterization template. Next, hardware modeland services information
is spread across the agent hierarchy. This information is utilized to build the Agent
Capability Table (ACT). Each ACT item is a tuple containing the agent ID, informa-
tion about services as well as performance. ACTs are updatedperiodically and both
pull and push methods are used to maintain them.

8

When an application is submitted to the system, it includes an associated perfor-
mance model and requirements related to its execution (e.g.start time, deadline, etc.).
Service discovery involves communicating with agents neighboring in the hierarchy
(upward and downward). It is claimed that this approach is therefore more scalable
when the Grid becomes large.

ARMS agents consist of three layers: (i) communication layer, (ii) coordination
layer, and (iii) local management layer. The communicationlayer acts as an inter-
face to the external world. It receives service advertisements and discovery messages
and forwards them to appropriate modules in the coordination layer, which perform
matchmaking and scheduling. For the service discovery message, agent tries to find
an available Grid resource. This involves utilization of the (a) application model,
(b) job requirements, and (c) the PACE engine. Specifically,the expected execution
time of a given application on a selected resources is estimated and compared with the
requirements. If time constraints are satisfied for one of them, process is completed.
Otherwise agent forwards the request to other agents (higher or lower in the hierarchy)
to find resource that will satisfy user defined constraints.

In [29], an ant-based self-organizing mechanism is utilized to perform load balanc-
ing for batch jobs with no explicit execution deadlines. It is shown that application
of such mechanism improves global load balancing in the system (given large enough
number of ants). Separately, in [30], scheduling dependentjobs and executing work-
flows in ARMS was discussed.

It should be noted, that while this approach seems very interesting, work on the
PACE framework and the ARMS system is not pursued further since approximately
2003. What is left are only papers reporting results (no agent code pertinent to any
part of the system can be found).

4.2 JADE Extensions

In their work, Poggi et al. extended the JADE agent frameworkto be used in Grid
applications [59]. They argued that realizing an agent-Grid integration is possible
through: (i) extending Grid middleware to support agent features, or (ii) extending
agent-based middleware to support functionalities of the Grid. They follow the sec-
ond approach by attempting at adding new features to JADE to realize a Grid environ-
ment. Considered extensions are mechanisms for: code distribution, reconfiguration,
goal delegation, load balancing optimization and QoS definition. To realize these
goals new types of agents are proposed. They are to support: (i) rule-based creation
and composition of tasks, and (ii) mobility of the code at thetask level (i.e., JADE
behaviors or rules are exchanged by agents). First, aDrools agentis developed, which
uses the Drools rule engine, to receive and execute rules (coming from other agents).
The BeanShell agentreceives and executes behaviors coming from other agents. It
integrates the BeanShell engine, which allows usage of Javaas a scripting language.
Here, each rule can contains scripts in its condition, consequence or extractor fields.
When a rule is scheduled for execution (its preconditions are satisfied), Drools invokes

9

the BeanShell interpreter to execute the code contained in the consequence of the rule.
To address security issues in the Grid, the JadeS security framework is used.

Work on extending JADE agent framework was originally reported in 2004. Since
then the following three papers, in some way related to the subject, have been pub-
lished [54, 55, 60]. It is thus difficult to see this project asbeing actively pursued.
This is even more so, as there is no Grid related add-on listedamong JADE add-on
software [6].

4.3 Bond

Bond is a Java-based object-oriented middleware for network computing. Bond was
developed to create an infrastructure for a Virtual Laboratory. It was to support
scheduling of complex tasks and data annotation for data intensive applications. One
of the goals of the Bond system was to facilitate collaborative activities through sup-
port for knowledge and workflow management. These functionalities are based on a
distributed object system [22] (e.g. to store and process resource information). Re-
sources exchange information using messaging and utilizing the KQML language.
Dissemination of resource information is achieved throughperiodic data pushes. In
Bond, mechanism called distributed awareness is used to learn about existence of
other agents. Specifically, each node maintains information about nodes it has com-
municated with, and periodically exchanges it with other agents. In this way, infor-
mation about existing agents is propagated in the system. Finally, job scheduling is
decentralized and utilizes predictive pricing models for state estimation [22].

Again, situation is similar to the two other systems described thus far. All pub-
lications related to the Bond system have appeared in the 1999–2003 time frame.
Therefore, we have to conclude that the project is no longer active.

4.4 Agent-based Scheduling Framework

Agent-based Scheduling Framework (ASF) is an agent-centered scheduling approach
applied to Grid scheduling [63]. ASF is composed of a metascheduler and autonomous
agents attached to computing resources. The main idea of theASF is to reduce the
responsibilities of a conventional metascheduler. Specifically, the main issues that the
ASF attempts to address are ([63]):

• The workload of the metascheduler grows when the number of computing re-
sources grows.

• If the metacheduler is overloaded, accuracy of scheduling degrades as it is going
to be based on incomplete information (not all information can be processed in
time to make accurate predictions).

• What is needed is a new approach to managing large numbers of heterogeneous
computers; especially, when many domains with various operation policies are

10

combined in a Grid as a VO (conventional frameworks are not ready to deal with
such complex issues).

To achieve its goals the ASF relies on agents that autonomously search for jobs;
instead of jobs being assigned to them by the metascheduler.Thus, the ASF is “dual”
to conventional metaschedulers, which continuously collect state information of re-
sources under their control, decide about the scheduling policy and pushjobs to se-
lected resources. In the ASF, instead, each agent discoversjobs that can be processed
by its resource and retrieves them from the metascheduler (apull based approach).

A prototype of the ASF has been implemented based on the Globus Toolkit 4.
Experimental results of utilization of the ASF metascheduler have been discussed in
[63]. It was shown, that for a relatively small environment (a heterogeneous cluster
with 3 nodes(!)) utilization of the ASF resulted in an 11% reduction of the total
elapsed time of job processing.

4.5 MAGDA

Mobile Agent based Grid Architecture (MAGDA; [16]) is a Java-based mobile agent
toolkit designed to overcome some of the limitations of existing Grid middlewares.
According to its creators [16], these include:

• Lack of ability to migrate an application from one system to another.

• Low level of abstraction of the heterogeneity of the environment.

• Lack robust fault tolerance.

• Existing information and monitoring frameworks do not scale to the Grid level
(or are focused only on specific issues).

• Lack of support of task migration, monitoring and execution(with adequate
checkpointing).

MAGDA supports (1) resource discovery, (2) performance monitoring and load
balancing, and (3) task execution within the Grid. It has a layered architecture fol-
lowing the Layered Grid Model [43] and thus it should be possible to implement or
integrate MAGDA components with other systems that are based on the same model.

In the current release of MAGDA, service discovery is performed by help of Web
Services and Web Services technologies (such as UDDI) are used to implement this
component. Application-level load balancing is provided by means of aCoordina-
tor Agent. This agent manages lists of registered workers and of available free hosts.
When an agent is initialized, coordinator updates list of registered agents. It stores
information about their state of computation, and their relative speed. In this way, the
Coordinator Agentcan recognize imbalance in the system and ask the most loaded

11

worker to split its workload, part of which will then be assigned to the less loaded
worker.

After migration from Aglets [14] to JADE [6], MAGDA is continually being de-
veloped with the aim of maximization of integration with WebServices, workflow
management, service orchestration and choreography [17].

5 Job scheduling in the Agents in Grid project

Let us now look how issues discussed above can be utilized in the Agents in Grid
project. In our approach it is assumed that agents work in teams [35]. Each team
is managed by theLMaster agent. This agent also represents the team to the out-
side world. In other words, agents representingUsers, namedLAgentsinteract with
LMasterseither to contract job execution [34], or to join the team andto become a
Worker[48]. EachLMasteris supported by anLMirror agent, which stores copies of
crucial team data (e.g. list of workers, list of contracts, status of job execution, etc.).
In the context of this chapter, we are interested in processes that take place when a job
is contracted and forwarded to a selectedWorkerto be actually executed.

5.1 Forming the team

To start we need to consider the way that workers join the team. As described in [48],
the process consists of the following steps: (a)Userspecifies conditions of joining to
its LAgent, (b) theLAgentinteracts with theClient Information Center, represented by
theCIC agent, to obtain list of teams that seek workers satisfying certain conditions
(e.g. CPU power, available memory. etc.), (c) upon receiving such list, theLAgent
eliminates these that are not trustworthy [38], (d) next it utilizes the FIPA Contract Net
Protocol [13] to negotiate which team to join (note that, in the context of this chapter,
we omit details of contract negotiations; e.g. how theLMasterestablishes the optimal
price; we simply assume that one of bargaining mechanisms described in Section 3.1
is used), (e) negotiations can result in a success (joining ateam), or in a failure (no
acceptable team was found). Here, we are particularly interested in: (i) description of
capabilities of resource(s) represented by theLAgent, and (ii) details of the contract.
To illustrate them, let us consider the ACL message in Figure5.1. It could have been
sent by theLAgentas a call for proposals (within the Contract Net Protocol).

Here, agent (demi), representing machine (barszcz) with CPU running at 2.6 GHz,
2 Gbytes of RAM and 8 Gbytes of disc space available for Grid applications, is
sending atake-memessage to agentbruce(LMasterof some team residing on node
tequila). Agentdemiis proposing the following contract conditions: availability each
day between 22:00 and 7:55 (next day in the morning), and contract duration 14 days.

It is obvious that this is the information that matches what is utilized by the above
described schedulers. First, provided are capabilities ofthe machine (Grid node) rep-
resented by agentdemi. They are needed to be able to estimate job completion time.

12

(c fp
: sender (agent− i d e n t i f i e r : name demi@barszcz : 1 0 9 9 / JADE)
: r e c e i v e r (agent− i d e n t i f i e r : name bruce@tequ i l a : 1 0 9 9 / JADE)
: c o n t e n t

((a c t i o n
(agent− i d e n t i f i e r : name bruce@tequ i la : 1 0 9 9 / JADE)
(take−me

: c o n f i g u r a t i o n (hardware
: cpu 2 . 6
: memory 2048
: quo ta 8000)

: c o n d i t i o n s (c o n d i t i o n
: a v a i l a b i l i t y (f r equency

: u n i t (day)
: day−t ime (p e r i o d

: from 00000000 T22000000
: to 00000000 T07550000))

: c o n t r a c t−d u r a t i o n +00000014T000000000))
: l anguage f ipa−s l 0
: on to logy j o i n i n g−on to logy
: p r o t o c o l f i pa−c o n t r a c t−n e t

)

Figure 1: Sample call for proposals, containing description of available resources and
conditions of joining

Second, let us assume thatbruce “takes” demi to be aWorker in the team. In this
case, contract details allowbruceto approximate if a task contracted by its team can
be completed while the Grid node that agentdemirepresents will be still available. It
would be very bad for the reputation of the “bruce-team” if a job was to be paused
until the “demi-node” comes back online, and as a result contact conditions would not
be fulfilled. Observe that this form of utilization of available information follows the
Nimrod/G-based approach.

5.2 Contracting job execution

The second aspect that needs to be considered is: what happens whenUser would
like a job to be executed in our system. As described in [34] the process consists
of the following steps: (a)User specifies to itsLAgentacceptable conditions of job
execution, (b) theLAgentcontacts theCIC agent to obtain the list of teams that have
the required resources, (c) this list is then adjusted on thebasis of trust considerations
([38]), (d) as in the previous case, FIPA Contract Net protocol is utilized as a negoti-
ation mechanism to find the best team to execute the task, (e) process can result in a
success (finding a team to do the job), or in a failure (no acceptable team is found).
Here, of particular interest is available information concerning the job. This informa-
tion is a part of the Contract Net CFP. To illustrate our initial approach let us present
a snippet of our ontology of constraints:
: N e g o t i a t i o n S e t a owl : C lass .
: n e g o t i a t i o n P a r a m a owl : O b j e c t P r o p e r t y ;

r d f s : domain : N e g o t i a t i o n S e t ;
r d f s : range Nego t ia t i onParam .

: Nego t ia t i onParam a owl : C lass .

13

: paramWeight
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : Nego t ia t i onParam ;
r d f s : range xsd : f l o a t .

: Cos t a owl : C lass ;
r d f s : subClassOf : Nego t ia t i onParam .

: c o s t C o n s t r a i n t
a owl : O b j e c t P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : Cos t ;
r d f s : range : F l o a t C o n s t r a i n t .

: cos tVa lue
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : Cos t ;
r d f s : range xsd : f l o a t .

: JobS ta r tT im e a owl : C lass ;
r d f s : subClassOf : Nego t ia t i onParam .

: j obS ta r tT im eV a lu e
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : JobS ta r tT im e ;
r d f s : range xsd : dateT ime .

: j o b S t a r t T i m e C o n s t r a i n t
a owl : O b j e c t P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : JobS ta r tT im e ;
r d f s : range : T im eCons t ra i n t .

: JobEndTime a owl : C lass ;
r d f s : subClassOf : Nego t ia t i onParam .

: jobEndTimeValue
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : JobEndTime ;
r d f s : range xsd : dateT ime .

: j obE ndT im eCons t ra in t
a owl : O b j e c t P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : JobEndTime ;
r d f s : range : T im eCons t ra i n t .

Here, we can see that three constraints of job execution wereconceptualized: (i)cost
(as a constraint, this value is private to theLAgent, but is also used in the contract),
(ii) job start time, and (iii) job end time. It is obvious, thatjob start timeandjob end
timemay provide useful information for job schedulers, but thisneeds to be consid-
ered further. Note that, it is possible to use thejob start timeconstraint also in the
case when there is no estimate as to how long this job is going to take. However, in
this case we cannot have thejob end timespecified as well, as there is no feasible way
to estimate if this constraint can be satisfied. Furthermore, in this case (job start time
only), job has to be scheduled on a node with non-stop contract for an extended time
(e.g. constant contract). Utilization of thejob end timerequires existence of at least
some estimate of the job execution time. This information may originate from: (a) job
description (could be provided by theUseras a part of the CFP), or (b) could be based
on past execution times. However, the latter case requires that information about the
“type of the job” has to be a part of the CFP. Only then theLMasterwould be able
to estimate job execution time utilizing historical data. These considerations show
clearly that the question of description of jobs, resources, constraints has to be revis-
ited. Being aware of this, in another chapter of this book ([39]), we have presented an
overview of resource descriptions utilized in various Gridsystems, as well as attempts
at creating an ontology of the Grid. As a result we have found that the Core Grid
ontology is the one that is most likely going to be utilized inour system. However,

14

we have established also that it will have to be extended to include additional aspects
of resource management, brokering and scheduling, necessary for our system (e.g. to
deal with various constraints discussed above and support trust management).

Let us now assume that an appropriate Grid ontology has been selected an ex-
tended to facilitate robust descriptions of: (1) resources, (2) job characteristics, (3) job
execution constraints, and (4) trust related concepts. It should be obvious that such
ontology will support advanced contract negotiation scenarios. In this context let us
stress that following [42, 33], we believe that one of the keyaspects of future Grid
computing will be the economic model (involvingUserswho pay for job execution,
or are paid for usage of their resources). This being the case, we consider economic
mechanisms described in Sections 3.1 and 3.2 as necessary for high-level resource
management in the Grid. In this context, we expect that development of a robust Grid
ontology will allow us to utilize semantic reasoning and thus opens the Grid up to a
large number of autonomic contract negotiations mechanisms considered, among oth-
ers, in e-commerce research (see, also [18, 64, 67, 51]). However, we will omit the
very process of contract negotiations as outside of scope ofthis chapter.

Now, let us see what happens when a CFP reaches theLMaster. The first thing that
it has to do is to check job execution constraints. Let us assume that on the basis of
available data, theLMaster(i) can obtain an estimate of job execution time; or (ii) es-
tablishes, that there is a contradiction in constraints—open ended job (no completion
time estimate available) combined with thejob end timeconstraint; or (iii) finds out
that it has to deal with an open ended job. In the case of constraint contradiction, the
LMastercan send an ACLREFUSEmessage to the CFP originator. In the remaining
two cases theLMastercan combine the job and constraint information with its knowl-
edge of: (a) all “job execution contracts” that have been signed thus far, (b) current
“work contracts” of all teamWorkers, and (c) current status of teamWorkers(which
Workersare available, what is their workload etc.) to decide whether the proposed job
can be executed within specified constraints or not. For instance, theLMastershould
not contract an open ended job if it does not have a trustworthy Workerwith non-stop
contract. Similarly, it cannot contract a job with deadlinein 24 hours, if all of its
Workersare 100% utilized for the next 36 hours. In such cases, theLMasterresponds
with an ACL REFUSEmessage. If job execution is feasible (i.e, constraints canbe
satisfied), then theLMastersends a “positive” response to the originator of the CFP.
This response may contain a detailed final proposal (e.g. in the case of contract net
negotiations) or may be a part of more elaborate contract negotiations.

Recall that we assume thatWorkeragents work within their contract and are paid
on its basis and thus do not posses access to the information what price does the
LMastercharge for their work (however, they may explore offers frommultiple teams
to find the market price of resources they offer). In this way the sole responsibility for
contract negotiation is on theLMaster. Obviously, in a different scenario it could be
assumed that theLMasterwould negotiate “subcontracts” with itsWorkers (e.g. use
a local Contract Net protocol) and use results of these (sub)negotiations to prepare a
response to theUser. However, we consider this approach unnecessarily complicated

15

and stay with the model in which theLMasteris the only contract negotiator.

5.3 Selecting worker to execute a task

Thus far we have established that, during the process of accepting team members
(Workers), the LMaster obtains a complete description of resources represented by
each one of them. Furthermore, for eachWorker it knows details of its contract. Ad-
ditionally, during evaluation of the Call for Proposals, theLMasteris able to establish
that its team is capable of fulfilling the request within specified constraints. Let us
now assume that theLMasterwas able to successfully complete contract negotiations.
Now, it has to obtain all information/data necessary to complete the job (including,
for instance, needed files or information about their locations; see, [65], for more de-
tails). Recall that theLMaster is theonly representative of the team known to the
outside world. Here we follow basic tenets of agent system design [69] and reduce the
number of possible agent interactions (i.e.LAgentsrepresentingUsersdo not know
individualWorkers). Assuming that theLMasterhas all the information ready for the
job execution to be initiated, the following two questions arise: (1) which agent should
actually execute the job, and (2) when should it receive it.

In general, we have identified three possible responses to the first question. The
first one is based on the ASF approach (see, Section 4.4). Here, the LMaster acts
as a meta-scheduler, whileWorkerscontact it to obtain the next task to be executed.
While this approach has some potential advantages (e.g. reducing the workload of the
LMasterand givingWorkersmore autonomy), it does not seem to work well in the
case of Grid economy, as it is not able to handle complex SLA’s. For instance, let us
assume that a special job-contract has been successfully negotiated. This task requires
specific resources and immediate commencement of execution. In return, price is
substantially higher than a typical one. In this case theLMastercannot wait until the
right resource becomes available and requests that job (recall, that in the ASF, agents
pull tasks from the meta-scheduler “at their will”). Instead, theLMastershould be
able to “act” and rearrange work of the team in such a way that the high-priority high-
paying job would start executing immediately while using the right resources. This
illustrates that the ASF approach is not easy to combine withthe economic model.

The second possible approach is conceptually based on [24, 25]. Here theLMaster
andWorkersnegotiate job execution. Note that, as specified above, we assume that the
LMaster is the sole contract negotiator, whileWorkersact in a non-competitive way.
As a matter of fact, they should support each other, as the success of the team means
also their (financial) success. Obviously, this assumptionmay need to be changed
(introducing agent spoilers and/or competitive/selfish behaviors ofWorkers), but this
would require reexamination of all trust-focused considerations (see [38]) and thus, for
the time being, will not be pursued further. In the negotiation-based approach, when
theLMasterwins a contract, it could utilize the FIPA Contract Net to informWorkers
and to find out which of them could execute it. In response to the CFP,Workerswould
inform about their conditions of job execution. Answers received from eachWorker

16

could be evaluated on the basis of their resources, contracts and trust to establish which
should execute the given job. Here, trust is used to attempt at avoiding (or at least to
minimize the impact of) failures ofWorkers(see, [38] for more details). While in
[24, 25] improvement of order of 10% resulting from utilizing this method has been
reported, we can see also some problems with this approach. Basically, this is the
problem discussed in the previous solution. Let us assume that a high-paying job has
been negotiated and has to start immediately. In the currentscenario it is possible to
envision that as a result of internal negotiations this job may be started immediately
on an appropriate machine. The selectedWorker stops executing its current job to
work on the special task. However, this situation may have a domino effect. Now,
the job that has been executed on that machine may need to be moved to another
one (it also has a relatively high priority and a close deadline), and so on. Now, it is
extremely difficult to envision how such job movement can be achieved in the situation
when eachWorker is an autonomous entity that may or may not agree to the change.
And, even if they do agree, the process of job-alignment may involve large number of
additional negotiations, or will actually be realized using the third approach (discussed
in the next paragraph). Overall, in this approach, autonomygiven toWorkersmay turn
against the capability of the team to efficiently complete some jobs, and thus compete
in the marketplace.

Finally, theLMasteritself can decide about the task assignment without any com-
munication with itsWorkers. In other words, theLMastercan act as a meta-scheduler.
This being the case, following examples of meta-schedulersdescribed above, the
LMastercan use, historical performance data for eachWorker, information about their
current load, etc., to establish which resource should execute which job. We can as-
sume here that theLMasternot only can decide whichWorkerwill execute which job,
but also can issue anorder that a givenWorkershould send its job to another, while
the recipient has to accept it. In other words, we functionalize theLMaster as an
omnipotent meta-scheduler. It is easy to observe that this approach minimizes com-
munication between theLMasterandWorkersand overall programmatic complexity
of interactions within the team; only orders are send toWorkers, who report their com-
pletion. Furthermore, this means thatWorkersdo not have to have special reasoning
capacities (required in the second approach, in particular). Finally, this approach pro-
vides an easy way to deal with jobs that come at various priorities and deadlines (it
is theLMasterthat takes care of them). Unfortunately, we can find also an important
disadvantage: requirements placed on theLMaster increase considerably as it has to
be able to deal with all possible scenarios without any “help” from Workers. This, in
turn, substantially increases hardware requirements of the node it runs on. This re-
quirement propagates also to theLMirror , which has to be as good as theLMasteras
it may take its place at any moment. Furthermore, theLMastermay become the bot-
tleneck of the team (it will not scale with increasing team-size), which was one of the
important disadvantages of the centralized scheduling pointed above. However, our
proposed system is to be adaptive. Thus, theLMasterthat cannot handle the load will
loose both clients andWorkers. As a result its team will either decrease in size (to the
size it can manage successfully), or disappear completely.We can thus assume that, as

17

the time passes, eachLMasterwill be able to establish size of the team it can manage.
The question that remains open is, will the size of the team belarge enough for this
approach to be feasible in a long run? However, an answer to this question can be
established only experimentally. Summarizing, we believethat the advantages of this
approach outweigh its potential disadvantages. We are thuslikely to pursue this ap-
proach as the first attempt at introducing job scheduling into agent teams in our system.

As far as the second question is concerned (when should the job be transferred to
the selectedWorker), taking into account the dynamic nature of the Grid, there is no
easy answer to it. First, recall that we assume that each nodecan disappear without
warning. This means that staging a job at nodeX as soon as it is contracted may result
in a wasted effort if this node crashes. However, since theLMastercan crash as well,
it means that data needs not only to be kept until it is released to the selectedWorker,
but also has to be mirrored by theLMirror . We will thus leave this question open,
pending further analysis.

5.3.1 Monitoring in the system

One of the important issues in most schedulers is monitoringthe workload. In the
case of our system not only the workload ofWorkershas to be monitored. More
importantly, their very existence needs to be established.Recall that we assume that
Grid nodes can disappear without any warning. However, monitoring existence of
nodes has been addressed in [47]. There, we have reported howwe have implemented
a mechanism (based on principles derived from network management) in which the
LMaster is “pinging” its Workersand expects that they respond in time to a certain
number of pings. Lack of response is an indication of a problem with theWorker.

Let us now assume that theLMastermonitors existence of team members. What it
needs is information about their workloads. Since Java doesnot have a direct method
to access the load information of the underlying system, an external library had to
be used to fulfill this requirement.Jsysmonis a Java library (which works both in
Linux and Windows) that permits Java applications to accesssystem monitoring in-
formation, e.g. the CPU or the Memory usage [7]. This libraryis used by theWorker
agent. Specifically, in theWorkeragent, we have added a new behavior (UsageRe-
porterBehaviour), which has been implemented as a subclass of the standard JADE
TickerBehaviour. At predefined intervals, this behavior collects the load information
from the local system (using theJsysmonlibrary commands), and sends it as an ACL
message to theLMaster. At the same time, theLMasterhas been extended by adding
a workload data collecting behavior (MonitorStatusBehaviour), which is a subclass of
standard JADECyclicBehaviour, which receives the load messages from team mem-
bers and stores them for future use.

18

6 Concluding remarks

The aim of this chapter was three-fold. First, to presented abrief overview of Grid
resource management techniques found in standard Grid middlewares. Second, we
have considered attempts at utilizing software agents as a Grid middleware, and thus
as resource brokers and job (meta-)schedulers. Finally, wehave discussed how the
knowledge gathered in the first two parts of the chapter influences our thinking about
job scheduling within our system. We have realized, again, that time has come to
infuse our system with a robust Grid ontology (see also, [39]). This ontology will
not only allow us to utilize a broad range of possible SLA negotiation mechanisms. It
will also provide the scheduler with the necessary information about the resources, the
job and its execution constraints. Finally, analysis of available scheduling techniques
performed within the context of our system (based heavily onthe Grid economy based
vision of the nature of Grid computing of the future) pointedout that at this stage we
should proceed with making theLMasteran omnipotent manager and meta-scheduler,
which has total command overWorkersin its team. We will report on our progress in
subsequent publications.

Acknowledgments

Work of the Polish team was in part supported from the “Funds for Science” of the
Polish Ministry for Science and Higher Education for years 2008-2011, as a research
project (contract number N N516 382434). Collaboration of the Polish and Bulgar-
ian teams is partially supported by theParallel and Distributed Computing Practices
grant. Collaboration of Polish and French teams is partially supported by the PICS
grantNew Methods for Balancing Loads and Scheduling Jobs in the Grid and Ded-
icated Systems. Collaboration of the Polish and Russian teams is partiallysupported
by theEfficient use of Computational Gridsgrant.

References

[1] “About AppLeS”, http://www.cs.ucsd.edu/groups/hpcl/
apples/hetpubs.html#AppLeS.

[2] “Condor Manual”,http://www.cs.wisc.edu/condor/manual/.

[3] “CSF”, http://www.globus.org/grid_software/computation/
csf.php.

[4] “FIPA Contract Net Interaction Protocol Specication”,http://www.fipa.
org/specs/fipa00029/SC00029H.html.

[5] “GRACE—GRid seArch & Categorization Engine”, http://www.
grace-ist.org/.

19

[6] “Homepage of the JADE project”,http://jade.tilab.com/.

[7] “Jsysmon—JAVA library for system monitoring”, http://jsysmon.
sourceforge.net/.

[8] “Load Sharing Facilitiy”,http://help.unc.edu/4484.

[9] “NetSolve(GridSolve) Overview”, http://icl.cs.utk.edu/
netsolve/overview/index.html.

[10] “OpenPBS homepage”,http://www.openpbs.org/.

[11] “PBS Pro homepage”,http://www.pbsgridworks.com/.

[12] “Sun Grid Engine Project”, http://www.sun.com/software/
gridware/.

[13] “Welcome to the FIPA”,http://www.fipa.org/.

[14] “Wikipedia: Aglets”, http://en.wikipedia.org/wiki/Aglets.

[15] “The WS-Resource Framework”.

[16] R. Aversa, B. Di Martino, N. Mazzocca, S. Venticinque, “MAGDA: A Mobile
Agent based Grid Architecture”,Journal of Grid Computing, 4(4): 395–412,
2006, 10.1007/s10723-006-9049-1.

[17] R. Aversa, B. Di Martino, N. Mazzocca, S. Venticinque, “A skeleton based
programming paradigm for mobile multi-agents on distributed systems and its
realization within the MAGDA Mobile Agents platform”,Mobile Information
Systems, 4(2): 131–146, 2008.

[18] C. Badica, M. Ganzha, M. Paprzycki, “Implementing Rule-Based Automated
Price Negotiation in an Agent System”,Journal of Universal Computer Science,
13(2): 244–266, 2007.

[19] C. Bartolini, C. Preist, N. Jennings, “Architecting for Reuse: A Software Frame-
work for Automated Negotiation”, inProceedings of AOSE, Volume 2585, pages
88–100. Springer, Berlin, 2002.

[20] M. Beck, H. Casanova, J. Dongarra, T. Moore, J. Plank, F.Berman, R. Wolski,
“Logistical quality of service in NetSolve”,Computer Communications, 22(11):
1034–1044, 1999.

[21] H. Benameur, B. Chaib-draa, P. Kropf, “Multi-item auctions for automatic nego-
tiation”, Journal of Information and Software Technology, 44: 291–301, 2002.

20

[22] L. Boloni, K. Jun, K. Palacz, R. Sion, D. Marinescu, “TheBond Agent System
and Applications”, inProceedings of the Second International Symposium on
Agent Systems and Applications and Fourth International Symposium on Mobile
Agents, Volume 1882, pages 99–112. Springer-Verlag, London, UK, 2000.

[23] L. Boloni, D. Marinescu, “An object-oriented framework for building collabora-
tive network agents”, inIntelligent systems and interfaces, pages 31–64. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[24] H.J. Burckert, K. Fischer, G. Vierke, “Holonic Transport Scheduling with
Teletruck”, Applied Artificial Intelligence, 14(7): 697–725, August 2000.

[25] S. Bussmann, K. Schild, “An Agent-Based Approach to theControl of Flexible
Production Systems”, inProc. of the 8th IEEE Int. Conf. on Emergent Technolo-
gies and Factory Automation (ETFA 2001), Volume 2, pages 481–488. IEEE CS
Press, Los Alamitos, CA, 2001.

[26] R. Buyya, D. Abramson, J. Giddy, H. Stockinger, “Economic models for re-
source management and scheduling in Grid computing”,Concurrency and Com-
putation: Practice and Experience, 14(13–15): 1507–1542, 2002.

[27] R. Buyya, J. Giddy, D. Abramson, “An Evaluation of Economy-based Resource
Trading and Scheduling on Computational Power Grids for Parameter weep Ap-
plications”, inProceedings of the Second Workshop on Active Middleware Ser-
vices (AMS 2000). Kluwer Academic Press, Pittsburgh, USA, August 2000.

[28] J. Cao, “ARMS: An agent-based resource management system for grid comput-
ing”, Scientific Programming, 10(2): 135–148, 2002.

[29] J. Cao, “Self-organizing agents for grid load balancing”, in Proceedings of the
Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04), 2004.

[30] J. Cao, S.A. Jarvis, S. Saini, G.R. Nudd, “GridFlow: Workflow Management
for Grid Computing”, in3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID’03), 2003.

[31] P. Chandra, A. Fisher, C. Kosak, T. Ng, P. Steenkiste, E.Takahashi, H. Zhang,
“Darwin: Customizable Resource Management for Value-Added Network Ser-
vices”, in Network Protocols, IEEE International Conference on, pages 177–
188. IEEE Computer Society, Los Alamitos, CA, USA, Oct 1998.

[32] S. Chapin, D. Katramatos, J. Karpovich, A. Grimshaw, “The Legion Resource
Management System”, inJob Scheduling Strategies for Parallel Processing,
pages 162–178. 1999.

[33] K. Czajkowski, I. Foster, C. Kesselman, “Agreement-based resource manage-
ment”, Volume 93(3), pages 631–643, 2005.

21

[34] M. Dominiak, M. Ganzha, M. Paprzycki, “Selecting grid-agent-team to execute
user-job—initial solution”, inProceedings of the Conference on Complex, In-
telligent and Software Intensive Systems, pages 249–256. IEEE CS Press, Los
Alamitos, CA, 2007.

[35] M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, M.Paprzycki, “Uti-
lizing agent teams in grid resource management—preliminary considerations”,
in Proceedings of the IEEE J. V. Atanasoff Conference, pages 46–51. IEEE CS
Press, Los Alamitos, CA, 2006.

[36] F. Dong, S.G. Akl, “Scheduling Algorithms for Grid Computing: State of the
Art and Open Problems”, Technical report, Queen’s University School of Com-
puting, January 2006.

[37] J. Dongarra, “NetSolve: A network server for solving computational science
problems”,The International Journal of Supercomputer Applications and High
Performance Computing, 11(3): 212–223, 1997.

[38] M. Drozdowicz, M. Ganzha, W. Kuranowski, M. Paprzycki,I. Alshabani,
R. Olejnik, M. Taifour, M. Senobari, I. Lirkov, “Software Agents in ADAJ:
Load Balancing in a Distributed Environment”,Applications of Mathematics in
Engineering and Economics’34, pages 527–540, 2008.

[39] M. Drozdowicz, M. Ganzha, M. Paprzycki, R. Olejnik, I. Lirkov, P. Telegin,
M. Senobari, “Ontologies, Agents and the Grid—an Overview”, in Profeedings
of the PARENG’2009 Conference, 2009, in press.

[40] L. Ferreira, M. Batista, S. Fibra, C.Y. Lee, C.A.Q. Silva, J. Almeida, F. Lucchese,
N. Keung,Grid Computing Products and Services, IBM Redbooks, 2005.

[41] I. Foster, N. Jennings, C. Kesselman, “Brain Meets Brawn: Why Grid and
Agents Need Each Other”,Autonomous Agents and Multiagent Systems, In-
ternational Joint Conference on, 1: 8–15, 2004.

[42] I. Foster, C. Kesselman,The Grid: Blueprint for a Future Computing Infrastruc-
ture, Morgan Kaufmann Publishers Inc., 1999.

[43] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations”,International Journal of High Performance Com-
puting Applications, 15(3): 200–222, 2001.

[44] M. Ganzha, M. Paprzycki, I. Lirkov, “Trust Management in an Agent-based Grid
Resource Brokering System—Preliminary Considerations”,in M. Todorov (Ed-
itor), Applications of Mathematics in Engineering and Economics’33, Volume
946 of AIP Conf. Proc., pages 35–46. American Institute of Physics, College
Park, MD, 2007.

22

[45] J. Gehring, A. Streit, “Robust Resource Management forMetacomput-
ers”, in HPDC, pages 105–112, 2000, URLciteseer.ist.psu.edu/
gehring00robust.html.

[46] F. Kon, R. Campbell, M. Mickunas, K. Nahrstedt, F. Ballesteros, “2K: A
Distributed Operating System for Dynamic Heterogeneous Environments”, in
HPDC’00: Proceedings of the 9th IEEE International Symposium on High
Performance Distributed Computing, pages 201–210. IEEE Computer Society,
Washington, DC, USA, 2000, ISBN 0-7695-0783-2.

[47] W. Kuranowski, M. Ganzha, M. Paprzycki, I. Lirkov, “Supervising Agent Team
an Agent-based Grid Resource Brokering System—Initial Solution”, in F. Xhafa,
L. Barolli (Editors),Proceedings of the Conference on Complex, Intelligent and
Software Intensive Systems, pages 321–326. IEEE CS Press, Los Alamitos, CA.

[48] W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawinecki, I. Lirkov,
S. Margenov, “Agents as resource brokers in grids—forming agent teams”,
in Proceedings of the LSSC Meeting, Volume 4818 ofLNCS. Springer, Berlin,
2007.

[49] E. Laskowski, M. Tudruj, R. Olejnik, B. Toursel, “Bytecode Scheduling of Java
Programs with Branches for Desktop Grid”,Future Generation Computer Sys-
tem (FGCS) -The International Journal of Grid Computing: Theory, methods
and Applications, 23(8): 977–982, November 2007.

[50] B.Q. Li, J.C. Zeng, M. Wang, G.M. Xia, “A negotiation model through multi-
item auction in multi-agent system”, inMachine Learning and Cybernetics,
2003 International Conference on, Volume 3, pages 1866–1870, 2003.

[51] J. Li, R. Yahyapour, “Negotiation Strategies for Grid Scheduling”, inAdvances
in Grid and Pervasive Computing, pages 42–52. 2006.

[52] Y. Li, Z. Lan, “A Survey of Load Balancing in Grid Computing”, Computational
and Information Science, pages 280–285, 2005.

[53] H. Nakada, M. Sato, S. Sekiguchi, “Design and Implementation of Ninf: To-
wards a Global Computing Infrastructure. Future Generation Computing Sys-
tems (Metacomputing Special Issue)”, 1999.

[54] A. Negri, A. Poggi, M. Tomaiuolo, “Intelligent Task Composition and Allocation
through Agents”, pages 255–260, 2005.

[55] A. Negri, A. Poggi, M. Tomaiuolo, P. Turci, “Dynamic Grid tasks composition
and distribution through agents”,Concurrency and Computation: Practice and
Experience, 18(8): 875–885, 2006.

23

[56] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, J. Harper, D. Wilcox,
“Pace—A Toolset for the Performance Prediction of Paralleland Distributed
Systems”, Int. J. High Perform. Comput. Appl., 14(3): 228–251, 2000, ISSN
1094-3420.

[57] R. Olejnik, E. Laskowski, B. Toursel, M. Tudruj, I. Alshabani, “DG-ADAJ: a
Java Computing Platform for Desktop Grid”, in K.W. Marian Bubak, Michal Tu-
rala (Editor), Cracow Grid Workshop ’05 Proceedings. Academic Computer
Centre CYFRONET AGH, Cracow, Poland, April 2006.

[58] M. Paprzycki, M. Ganzha, “Adapting Price Negotiationsto an E-commerce
System Scenario”, in K. Saeed, et.al. (Editors),Proceedings of the CISIM Con-
ference, pages 380–386. IEEE CS Press, Los Alamitos, CA, 2007.

[59] A. Poggi, M. Tomaiuolo, P. Turci, “Extending JADE for Agent Grid Applica-
tions”, in Proceedings of the 13th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2004.

[60] A. Poggi, M. Tomaiuolo, P. Turci, “An Agent-Based Service Oriented Architec-
ture”, in Proceedings of the WOA’07, pages 157–165, 2007.

[61] R. Prodan, T. Fahringer, “From Web Services to OGSA: Experiences in Imple-
menting an OGSA-based Grid Application”,Grid, 00: 2, 2003, ISBN 0-7695-
2026-X.

[62] K.K. Rajkumar Buyya, M. Maheswaran, “A taxonomy and survey of grid re-
source management systems for distributed computing”,Software Practical Ex-
perience, 32(2): 135–164, 2002.

[63] K. Sakamoto, H. Sato, “A Resource-Oriented Grid Meta-Scheduler Based on
Agents”, inProceedings of the 25th IASTED International Multi-Conference,
Parallel and Distributed Computing and Networks. Innsbruck, Austria, 2007.

[64] B. Schnizler,Resource Allocation in the Grid, A Market Engineering Approach,
PhD thesis, 2007.

[65] M. Senobari, M. Drozdowicz, M. Paprzycki, W. Kuranowski, M. Ganzha,
R. Olejnik, I. Lirkov, “Combining an JADE-agent-based Gridinfrastructure with
the Globus middlewareInitial Solution”, in M. Mohammadian(Editor),Proceed-
ings of the CIMCA-IAWITC 2008 Conference, pages 890–895. IEEE CS Press,
Los Alamitos, CA, 2008.

[66] C. Smith, “Open source metascheduling for Virtual Organizations with the Com-
munity Scheduler Framework (CSF)”, 2003, Techical Whitepaper.

[67] Z. Tan, Market-Based Grid Resource Allocation Using A Stable Continuous
Double Auction, PhD thesis, 2007.

24

[68] H. Tianeld, R. Unland, “Towards self-organization in multi-agent systems and
Grid computing”,Multiagent and Grid Systems, 1(2): 89–95, 2005.

[69] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley & Sons
(Chichester, England), 2002.

25

	summ
	ResourceManagement

