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Demand outstrips available resources in most situations, which gives rise to competition, interac-
tion and learning. In this article, we review a broad spectrum of multi-agent models of competition
(El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage prob-
lem, Parking space problem and others) and the methods used to understand them analytically. We
emphasize the power of concepts and tools from statistical mechanics to understand and explain
fully collective phenomena such as phase transitions and long memory, and the mapping between
agent heterogeneity and physical disorder. As these methods can be applied to any large-scale
model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear
interaction, they provide a prospective unifying paradigm for many scientific disciplines.
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I. INTRODUCTION

Most resources are in limited supply. How to allocate
them is therefore of great practical importance. The va-
riety of situations is staggering: resources may be tan-
gible (oil, parking space, chocolates) or intangible (time,
energy, bandwidth) and allocation may happen instanta-
neously or over a long period, and may involve a central
authority or none.

The optimal allocation of resources is a core concern
of economics. The problem can be formalized as the si-
multaneous maximization of the utility of each member
of the economy, over the set of achievable allocations.
The key issue is that individuals have typically conflict-
ing goals, as the profit of one goes to the disadvantage
of the others. Therefore, the nature of the problem is
conceptually different from optimization problems where
a single objective function has to be maximized. One
key insight is that markets, under some conditions, can
solve efficiently the problem. This is sharply explained
by Adam Smith in his famous quote:

It is not from the benevolence of the butcher,
the brewer, or the baker, that we expect our
dinner, but from their regard to their own
interest.

Markets, under some conditions, allow individuals to ex-
change goods for money and to reach an optimal alloca-
tion [135], where none can improve her well-being with-
out someone else being worse off. This is called a Pareto
efficient allocation. In the exchanges, prices adjust in
such a way as to reflect the value that goods have for
different individuals – codified in their marginal utilities.

The problem with this solution are that conditions are
rather restrictive: i) assumptions on the convexity of
preferences or production functions have to be made. ii)
The existence of markets for any commodity that indi-
viduals may be interested in, is necessary. Even if mar-
kets exist, access to them typically involves transaction
costs. iii) Markets do not work for the provision of pub-
lic goods, i.e., those goods whose consumption does not

exclude others to draw benefit from them. iv) Markets
require perfect competition where no individual has the
possibility to manipulate prices. One aspect, raised by
Adam Smith himself long ago in The Theory of Moral
Sentiments (1759), is that market functioning requires
coordination on a set of shared norms and reciprocal
trust. This aspect becomes acutely evident in times of
crises, when markets collapse, as we have witnessed in
the 2007-08 financial crisis.

Apart from all these issues, general equilibrium the-
ory has provided remarkable insights on the properties
of economies [135]. Its strength is that it allows to relate
economic behavior to the incentives that motivate the
behavior of individuals, as codified in their utility func-
tions. This opens the way to normative approaches by
which policy makers may intervene in order to achieve
given welfare objectives.

Yet, the predictive power of this approach is rather
limited: the mapping from the observable collective be-
havior to the agents’ utility functions is a one-to-many.
For this reason, economists have focused on specific in-
stances where all individuals are equal, which typically
reduce to problems where the economy is populated by a
single representative individual. The representative agent
approach has also the virtue of allowing for closed form
solution, yet several of its predictions are a direct con-
sequence of its assumptions [100]. Furthermore, this ap-
proach is silent on the critical conditions that determine
the stability of the system, so it provides no hints on the
likelihood that markets may collapse, leading to disrup-
tion of economic activity.

General equilibrium theory is completely silent on how
the equilibrium is reached and on the conditions that al-
lows it to be reached. This aspect has recently been
addressed in the community of computer scientists, who
have developed algorithms for resource allocation. There
the emphasis is on decentralized heuristics for (approxi-
mate) solutions of allocation problems that are efficient
in terms of computer time and can work under imper-
fect information. For instance, operating systems use
so-called schedulers to allocate CPU and input-output
resources in (almost) real time between tasks. Scala-
bility is a primary concern, particularly in a decentral-
ized setting where agents need to do without global opti-
mization. These intrinsically non-equilibrium dynamical
problems are often solved by ad hoc methods [154], some
of them being extensions of the models that we review
below [162].

The collective behavior of systems of many interact-
ing degrees of freedom has also been studied in physics.
There, it has been found that the collective behavior is
remarkably insensitive to microscopic details. For exam-
ple, a law of “corresponding” states has been derived for
gases long ago (see e.g., Huang [89]) that shows that the
macroscopic behavior of real gases is well approximated
by a single curve. This “universality” extends also to sys-
tems of heterogeneous particles, such as disordered alloys
and spin glasses [141], thereby suggesting that a similar
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approach may be useful also for understanding economic
phenomena. This universality allows one to focus on the
simplest possible models that reproduce a particular col-
lective behavior, which may be amenable of analytic ap-
proaches leading to a full-fledged understanding of the
emergence of the collective behavior. Physicists have
therefore applied their tools to analyze problems and
model the behaviour of interacting agents in economics
and sociology [17, 27–30, 120, 164]. Yakovenko and
Rosser Jr. [174] reviewed in a colloquium, statistical mod-
els for wealth and income distributions, inspired from the
kinetic theory of gases in physics, with minimally inter-
acting economic agents exchanging wealth. Another re-
view [20] discussed a wide range of topics from opinion
formation, cultural and language dynamics, crowd be-
havior, etc. where physicists studied the collective phe-
nomena emerging from the interactions of individuals as
elementary units in social structures. Statistical mechan-
ics of optimization problems would be well worth a re-
view in itself (see e.g., Krzakala et al. [104], Mézard and
Montanari [140], and Mézard et al. [142]).

The present review discusses recent attempts to model
and describe resource allocation problems in a population
of individuals within a statistical mechanics approach.
We focus on competitive resource allocation models with
a fully decentralised decision process, that is, without
explicit communication between the agents. We expect
interaction to play a central role and to give rise to col-
lective phenomena, such as interesting fluctuations, long
memory and phase transitions. In addition the agents
have a strong incentive to think and act as differently
as possible in this type of competitive situation and pos-
sibly to revise their strategies [4], which implies strong
heterogeneity and non-equilibrium dynamics. These in-
gredients are very appealing to physicists, who possess
the tools and concepts able to analyse and sometimes
solve the dynamics of such systems, and who feel that
they may contribute in a significant way to the under-
standing of such systems. The usual caveat is that socio-
economical agents may be orders of magnitude harder to
model than, say, electrons since they have no immutable
properties and are adaptive. This, we believe, only adds
to their attractiveness and, since the methods of statisti-
cal mechanics are able to solve complex models of adap-
tive agents, it only makes physicists’ point stronger. Our
aim is to provide an account of the various mathematical
methods used for this family of models and to discuss
their dynamics from the perspective of physics. Due to
brevity of space, we cannot provide many mathematical
details and restrict the bibliography to selected topics
and representative publications, but refer the reader to
books and reviews.

More specifically, we consider a population of N agents
that try to exploit R resources. Generically, we assume
that R denotes the number of possible choices of the
agents, hence that R ≥ 2. Denote the choice of agent
i by ai ∈ {1, · · · , R}; his reward, or payoff, is then
ui({aj}) = ui(ai, a−i), where a−i = {aj}j 6=i contains

the choices of all the agents other than agent i. A Nash
equilibrium (NE) corresponds to a set {a∗k} such that
uk({a∗k}) ≥ uk({ak}) ∀k: it is a maximum of the payoff
function and thus no agent has an incentive to deviate
from his behavior [63].

Section II is devoted to the simplest case R = 2. The
agents must choose which resource to exploit, or alter-
natively, to exploit a resource or to abstain from it. We
shall start with the El Farol Bar Problem (EFBP) [4]:
N customers compete for L < N seats at the bar. At
every time step, they must choose whether to go to the
bar or to stay at home. This section is then mainly de-
voted to the Minority Game (MG) [43], which simplifies
the EFBP in many respects by taking L = N/2. Section
III assumes that the number of resources scales with N
and reviews in particular many results about the Kolkata
Paise Restaurant problem (KPR), in which R restaurants
have a capacity to serve one customer each, the agents
trying to be alone as often as possible [26]. Section IV
extends the discussion to other bipartite problems, where
two distinct types of agents must be matched. The Park-
ing space problem adds space and resource heterogeneity
to KPR: drivers would like to park as close as possible
from their workplace along a linear street and must learn
at what distance they are likely to find a vacant space
[82]. It then briefly shows the connection with the cele-
brated Stable marriage problem, which assumes that N
men and N women have their own ranking of their poten-
tial counterparts, and studies what choosing algorithm
to apply [64]. Finally, it mentions recommendation sys-
tems that try to guess the preference lists and suggest
items (books, movies, etc.) to customers based on par-
tial information [116]. The paper is concluded by some
discussions on the approaches and on the perspective of
the application of physics tools to a larger domain.

II. MINORITY GAMES

A. El Farol Bar Problem

Brian Arthur likes to listen to Irish music on Thurs-
day evenings in El Farol bar Arthur [4]. So do 99 other
potential patrons. Given that there are only 60 seats in
this bar, what should he do? How do his 99 competitors
make up their minds, week after week? If this game is
only played once, the Nash equilibrum consists in attend-
ing the concert with probability L/N . As a side remark,
a careful customer may well count the number of seats
L once he is in the bar, but cannot the total number of
potential patrons, which makes NE really unlikely. Real
fans of Irish music do repeatedly wish to take part in
the fun and use trial and error instead, an example of
bounded rationality.

There are indeed many ways to be imperfect, hence,
to bound rationality, while still retaining reinforcement
learning abilities. Arthur’s agents are endowed with a
small set of personal heuristic attendance predictors that
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base their analyses on the M past attendances. They
include linear predictors such as moving averages and
constant ones, e.g. 42. Adaptivity consists in using
the better predictors with larger likelihood. Arthur as-
sumes that the agents trust their currently best predic-
tors. Adaptivity also includes to discard really bad pre-
dictors and replacing them with new ones, like Darwinian
evolution.

A seemingly remarkable result is that even with such
limited learning abilities, agents are able to self-organize
and to collectively produce an average number of bar go-
ers (attendance) equal to L. It was later realized that this
was a fortunate and generic by-product of the chosen un-
biased strategy space, not the result of self-organization;
other choices are less forgiving in some circumstances
[42].

However, the point of Arthur remains fully valid: im-
perfect agents may reach a socially acceptable outcome
by learning imperfectly from random rules in a compet-
itive setting. Ongoing competition forces the agents to
be adaptive (taken as synonym of learning) in order to
outsmart each other. There is no ideal predictor, the
performance of one of them depending on the those used
by all the agents. Arthur adds that rationality is not ap-
plicable in this setting: if everyone is rational, excluding
the possibility to take random decisions and assuming
that everyone has access to the same analysis tools, ev-
eryone takes the same decision, which is the wrong one.
Thus, negative feed-back mechanisms make heterogene-
ity of beliefs or analyzes a necessary ingredient for effi-
cient resource allocation. In passing, heterogeneity may
also emerge in absence of competition and negative feed-
back because it yields better outcomes to some of the
players, see e.g. Matzke and Challet [137].

The very reasons of bewilderment among economists
and computer scientists who became interested in this
model, were the sames ones which triggered the interest
of physicists:

• This model comprises interacting entities. Since
they all are heterogeneous, interaction may also be
heterogeneous.

• Each run of the game produces a different average
attendance, even when the average is done over an
infinite number of time steps, which reminds of dis-
ordered systems.

• The fact that the agents learn something may be
connected in some way to artificial neural networks.

• It is easy to take large values of N and L. In-
tuitively, taking some kind of thermodynamical
limit should be possible. This particular idea went
against other fields’ intuition at the time, see e.g.
Casti [21].

The icing on the cake was the mean-field nature of this
family of models: everybody interacts with everybody
else because individual rewards depends on the choice of
the whole population and rewards are synchronized.

B. From El Farol to Minority Games

The original version of the EFBP focuses on average
attendance, i.e., equilibrium, and has a loosely defined
strategy space. Fluctuations are potentially much richer
than average attendance. Focusing on on them, i.e, on
efficiency amounts to setting L = N/2 and considering
a symmetric strategy space: this is the Minority Game
[43]. We refer the reader to the nice preface written by
Brian Arthur in Challet et al. [39].

It is useful to think of this model as two separate parts:

• The minority mechanism that is responsible for the
interaction between the players and negative feed-
back.

• The learning scheme that determines the overall
allocation performance.

The minority rule can be formalized as follows: each
one of the N agents must select one of two options; the
winners are those who choose the least popular option,
i.e., who are in the minority. Mathematically, if the ac-
tion of agent i is ai ∈ {−1,+1}, the global action is

A =
∑N
j=1 aj ∈ {−N, · · · ,+N}; being in the minority

is achieved if ai and A have opposite signs; hence, the
payoff is −aiA.

The MG is a negative sum game: the sum of all pay-
offs is −

∑
i aiA = −A2 ≤ 0, with strict inequality if N is

odd. This is why the fluctuations of A are a measure of
global losses. Another important measure is the asym-
metry of the average outcome, i.e., the crumbs left by
the agents, measured by H = 〈A〉2, where the brackets
stand for temporal average in the stationary state. When
H > 0, the outcome is statistically predictable.

Intuitively, a stable situation is reached if no agent has
an incentive to deviate from his current behavior; this is
known as a Nash equilibrium. When all the agents have
the same expected gain, the equilibrium is called sym-
metric, and asymmetric otherwise. The Nash equilibria
of the MG are discussed in Marsili and Challet [124]:

1. A symmetric NE is obtained when all the agents
toss a coin to choose their action; it corresponds
to σ2 =

〈
A2
〉

= N , which yields an imperfect allo-
cation efficiency. Another such NE corresponds to
A = 0 (for N even).

2. An asymmetric NE is obtained when |A| = 1 for
N odd. Other such equilibria are reached when n
agents play −1 and n play +1, while the remaining
N − 2n play randomly. There are very many of
them.

1. Re-inforcement learning and allocation efficiency

Simple Markovian learning schemes are well suited to
familiarize oneself with the interplay between learning
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and fluctuations in MGs. Learning from past actions
depends on receiving positive or negative payoffs, rein-
forcing good actions and punishing bad ones. In minor-
ity games, as mentioned earlier, the reward to agent i
is −aiA. More generally, the rewards may be −aiG(A)
where G is an odd function. The original game had a
sign payoff, i.e. −aisign (A), but linear payoffs are better
suited to mathematics, since they are less discontinuous
[25, 37]. Since learning implies playing repeatedly, it is
wise to store some information about the past in a regis-
ter usually called the score. After t time steps, the score
of agent i that corresponds to playing +1 is

Ui(t+ 1) = −
t∑

t′=1

A(t′)

N
= Ui(t)−

A(t)

N
. (1)

Reinforcement learning is achieved if the probability that
agent i plays +1 increases when Ui increases and vice-
versa. It is common to take a logit model [138],

P [ai(t) = +1] =
1 + tanh[ΓUi(t)]

2
, (2)

where Γ tunes the scale of reaction to a change of score;
in other words, it is a learning rate. The limit of very
reactive agents Γ → ∞ corresponds to Arthur’s pre-
scription of playing the best action at each time step.
This defines a simple MG model introduced and studied
in Challet et al. [40], Marsili [122], Marsili and Challet
[124], and Mosetti et al. [146]. If all the agent scores start
with the same initial condition, they all have the same
score evolution; hence, the dynamics of the whole sys-
tem is determined by Eq. (1) without indices i, whose
fixed point U∗ = 0 is unstable if Γ > Γc = 2. In this
case, learning takes place too rapidly; a finite fraction of
agents reacts strongly to random fluctuations and herds
on them. This produces bimodal A, hence σ2 ∝ N2.
On the other hand, if Γ < Γc, fluctuations are of bino-
mial type, σ2 ∝ N . To perform better, the agents must
behave in a different way. For instance, more heterogene-
ity is good: the more non-uniform the initial conditions
Ui(0), the smaller σ2 and the higher Γc [122].

The simple model described above does reach a sym-
metric equilibrium which is not of the Nash type; one
can think of it as a competitive equilibrium. How to
maximize efficiency is a recurrent theme in the litera-
ture (see Chapter 5 of Challet et al. [39]). A seem-
ingly small modification to the learning scheme described
helps the agents reach an asymmetric NE; the key point
is self-impact: when evaluating the performance of the
choices +1 and −1, the agents should account for their
own impact on their payoff. More precisely, the pay-
off is −aiA = −ai(ai +

∑
j 6=i aj) = −1 + A−i, where

A−i =
∑
j 6=i aj : the chosen action on average yields a

smaller payoff than the other one, a generic feature of
negative feedback mechanisms. This is why Marsili and
Challet [124] proposed to modify Eq. (1) into

Ui(t+ 1) = Ui(t)−
A(t)− ηai(t)

N
,

where η allows agent i to discount his own contribution;
as soon as η > 0, the agents reach an optimal asymmetric
NE (|A| = 1).

There is a simpler way to obtain a similar result, how-
ever: laziness (or inertia). Reents et al. [157] assume
that the agents in the minority do not attempt to change
their decision, while those in the majority do so with
fixed probability p. The process being Markovian, a full

analytical treatment is possible. Since there are N+|A|
2

losers, the number of agents that invert their decisions
is proportional to pN . Accordingly, the three regimes
described above still exist depending on pN .

Quite nicely, the agents never need to know the precise
value of A(t), only whether they won or not; in addition,
the convergence time to |A| = 1 is of order logN when
pN ∼ 1. This performance comes at a cost: the agents
need to choose p as a function of N , i.e., they need to
know the number of players, which assumes some kind of
initial synchronization or central authority.

All the above approaches do not optimize the speed of
convergence to the most efficient state. Dhar et al. [56]
noticed that for a given A(t) the probability of switching
should be such that the expected value of A(t + 1) is 0,
which is achieved when

p(t) =
|A(t)| − 1

N + |A(t)|
. (3)

This dynamics holds the current record for the speed of
convergence to |A = 1|, which scales as O(log logN) time
steps. As an illustration log log 1001 ' 2. The price to
pay was of course to give even more information to the
agents: computing p(t) of Eq. (3) requires the knowledge
of N and |A(t)|. This kind of dynamics was extended
further in Biswas et al. [12]: replacing |A|−1 by q(|A|−1)
in Eq. (3) allows a dynamical phase transition to take
place at qc = 2: when q > qc, σ

2 = q−qc
q N2; when

1 < q < 2, |A| converges to 1 in a time proportional
to (qc − q)−1, which duly diverges at q = qc. A similar
picture emerges when each agent has his own qi.

Finally, all these types of simple conditional dynamics
are very similar to those proposed in the reinforcement
learning literature [166], although nobody ever made ex-
plicit connections. This point is discussed further in Sec.
II C 1.

2. Original Minority Game

The original MG follows the setup of the EFBP: it
adds a layer of strategic complexity to this setup, as the
agents choose which predictors to use rather than what
actions to take. More specifically, a predictor a specifies
what to do for every state of the world (which was a
vector of past attendance in the EFBP). For the sake of
simplicity, we assume that the set of the states of the
world has P elements. A predictor is therefore a fixed
function a that transforms every µ ∈ {1, · · · , P} into
a choice aµ ∈ {−1,+1}, which is nothing else than a
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vector of binary choices that the literature on the MG
prefers to call strategies. There are 2P of them. Since P
does not depend on N in any way this ensures that that
one can define a proper thermodynamic limit, in contrast
with the EFBP. In addition, one already can predict that
fluctuations are likely to be large if there are many more
agents than available strategies: some strategies will be
used by a finite fraction of agents, leading to identical
behavior, or herding.

In the original MG, µ is a number corresponding to
the binary encoding of the last M past winning choices,
M being the history length, hence, P = 2M . Note that
simple MGs discussed in Sec. II B 1 will be referred to as
P = 1 henceforth, since M = 0.

Adaptivity consists of being able change one’s behav-
ior and is highly desirable in a competitive setting. In
the original MG, the agents need therefore at least two
strategies to be adaptive; for the sake of simplicity, we
shall only consider here agents with two strategies ai,s
where s can take two values; it is advantageous to denote
them si ∈ {−1,+1}. The case S > 2 is investigated in
e.g. Manuca et al. [121], Marsili et al. [125], de Martino
et al. [129], and Shayeghi and Coolen [163].

In addition, the agents use reinforcement learning on
the strategies, not on the bare actions. One thus at-
tributes a score Ui,s to each strategy ai,s that evolves
according to

Ui,s(t+ 1) = Ui,s(t)− aµ(t)
i,s (t)

A(t)

N
, (4)

where A(t) =
∑N
i=1 a

µ(t)
i,si(t)

and si(t) denotes the strategy

played by agent i at time t. Using also a logit model, as
in Eq. (1), one writes for S = 2

P [si(t) = +1] =
eΓUi,+(t)

eΓUi,+(t) + eΓUi,−(t)

=
1 + tanh[Γ(Ui,+(t)− Ui,−(t))/2]

2
. (5)

The original MG follows Arthur’s ‘use-the-best’ pre-
scription, which corresponds to Γ → ∞, while finite Γ
was introduced by Cavagna et al. [25] as an inverse tem-
perature. Extrapolating the results for P = 1 in Sec.
II B 1, one expects some herding for Γ larger than some
value provided that N is “large enough”.

Equation (5) shows that the choice of a strategy only
depends on the difference of scores for S = 2. It is
therefore useful to introduce Yi = Γ(Ui,+ − Ui,−)/2 and
ξi = (ai,+ − ai,−)/2; Eq. (4) then becomes

Yi(t+ 1) = Yi(t)− Γξ
µ(t)
i (t)

A(t)

N
. (6)

If one denotes ωi = (ai,+ + ai,−)/2, the individual action
can be written

ai(t) = ω
µ(t)
i + ξ

µ(t)
i si, (7)
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FIG. 1. Scaled fluctuations σ2/N (filled symbols) and scaled
predictability H/N (open symbols) as a function of α = P/N
for P = 32, 64 and 128 (circles, squares and diamonds, re-
spectively); averages over 200 samples taken over 200P time
steps after a waiting time of 200P time steps

and thus A(t) =
∑N
i=1 ω

µ(t)
i +

∑
i ξ
µ(t)
i si(t), which

strongly suggests to introduce Ωµ =
∑
i ω

µ(t)
i ; finally

A(t) = Ωµ(t) +

N∑
i=1

ξ
µ(t)
i si(t). (8)

Savit et al. [161] showed that the control parameter of
the MG is α = P/N . In other words, properly rescaled
macroscopic measurables are invariant at fixed α for in-
stance when both P and N are doubled; this opens the
way to systematic studies and to taking the thermody-
namic limit. When performing numerical simulations,
too many papers overlook the need to account first for
the transient dynamics that leads to the stationary state,
and many more that this model has an intrinsic timescale,
P . Intuitively, this is because the agents need to explore
all answers from both their strategies in order to figure
out which one is better than the other one. As a rule of
thumb, one is advised to wait for 2000P/Γ iterations and
to take averages over the next 2000P/Γ, or 200P each
for Γ = ∞ iterations, although this rough estimate is
probably too small near a critical point (see Sec. II C 3).

Figure 1 reports scaled fluctuations σ2/N for various
values of P as function of α. The generic features of this
kind of plot are the following:

1. The collapse is indeed excellent, up to finite size
effects.

2. In the limit α → ∞, σ2 → N , which corresponds
to random strategy choices; since the latter are ini-
tially attributed randomly, the resulting actions are
also random.
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FIG. 2. Scaled fluctuations σ2/N as a function of Γ at
α = 0.1. Inset: σ2/N vs Γ; continuous line: prediction from
Eq. (26). Averages of 100 samples. From Marsili and Challet
[123].

3. In the limit α → 0, σ2 ∝ N2, which means that a
finite fraction of agents is synchronized, i.e., herds.

4. There is a clear minimum of σ2/N at α ' 0.4 whose
precise location depends on N (see also Fig. 3).

Savit et al. [161] also note that the average sign of
A conditional to a given µ is zero for α < αc and sys-
tematically different from zero for α > αc, which means
that there is some predictability in the asymmetric phase.
Denoting the average of A conditional to µ as 〈A|µ〉, one
defines a smoother conditional predictability

H =
1

P

P∑
µ=1

〈A|µ〉2 . (9)

Figure 1 reports the behavior of H/N as a function of
α: there is a transition at αc where H is cancelled. In
addition H/N behaves in a smooth way close to the tran-
sition α − αc � 1. Since H is a measure of asymmetry,
this behavior is in fact tell-tale of a second-order phase
transition with broken symmetry. Accordingly, the two
phases are known as symmetric (H = 0) and asymmetric
(H > 0), or (un-)predictable.

Provided that the agents are given look-up tables, the
presence of a phase transition is very robust with re-
spect to changes in the choice of strategies and various
sources of noise in the decision-making process. Galla
and de Martino [67] show that MGs with look-up tables
aµ undergo this kind of phase transition as long as a
finite fraction of the agents behaves as those of the orig-
inal MG. The stationary state does not depend on the
value of Γ in the asymmetric phase, nor does the loca-
tion of the phase transition. This is remarkable, as this
parameter was introduced as an inverse temperature, but
it is not able to cause a phase transition. In fact, it is

rather the time scale over which the agents average the
fluctuations of their Yis. In the symmetric phase, how-
ever, as shown in Fig. 2, the fluctuations decrease when Γ
decreases [14, 25]; this is because adding noise to the de-
cision process breaks the herding tendency of the agents
by decreasing the sensitivity of the agents to fluctuations
of their payoffs, exactly as in the P = 1 case. Even more,
one can show (see Sec. II C 3) that the dynamics becomes
deterministic when Γ→ 0. In this limit σ2/N < 1 for all
values of α [123].

Initial conditions, i.e., initial score valuations, have
an influence only the stationary state of the symmetric
phase, i.e., on the emergence of large fluctuations [58, 73].
The insights of the P = 1 case are still valid [122]: large
fluctuations are killed by sufficiently biased initial condi-
tions. This point will be discussed again in Sec. II C.

C. Mathematical approaches

Statistical mechanics has been applied successfully to
two-player games that have a large number of possible
choices [7, 8, 66]. The MG case is exactly the opposite:
two choices, but very many players, with proportionally
many states of the world.

1. Algebra: why is there a critical point?

Before understanding why H = 0 for α < αc, it is wise
to investigate why H = 0 is possible at all [123]. From
Eq. (9), setting H = 0 requires all conditional averages
to be zero, i.e., 〈A|µ〉 = 0, i.e., from Eq. (8),∑

i

ξµi 〈si〉 = −Ωµ. (10)

It helps thinking of 〈si〉 as a continuous variable mi ∈
[−1, 1]: achieving H = 0 requires to solve a system of P
linear equations of N variables.

This set of equations yields surprisingly many insights
on the stationary state of minority game-like models:

1. The fact that αc ' 0.4 < 1 means that one needs
more that P variables to solve this set of equations;
this is because the mis are bounded.

2. The control parameter is the ratio between the
number of equations and the number of variables,
P/N , and not 2P /N , i.e., the total number of pos-
sible strategies per agent.

3. mi = 0 ∀i is always a solution if all Ωµ = 0. In other
words, if all the agents have two opposite strategies,
one predicts that σ2/N = 1 for α > αc, and that
αc = 1; the exact solution confirms this intuition
[38]. What happens for α < αc is similar whatever
the distribution of Ωµ: the degrees of freedom not
needed to cancel H allow the agents to herd and
synchronize; as a consequence, σ2 ∝ N2.
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4. Since mis are bounded, some agents have |mi| = 1
when the equations are not satisfied: those agents
always play the same strategy. They are fittingly
called frozen [34]. Once frozen, the contribution
of an agent is fixed, hence can be incorporated into
the fields Ωµ. Accordingly, the number of degrees of
freedom decreases; denoting the fraction of frozen
agents by φ, the remaining number of degrees of
freedom is (1 − φ)N . At αc, the number of de-
grees of freedom must equate P , i.e., αc = 1 − φc
[123, 125]. This intuition is confirmed by the exact
solution of the model (see Sec. II C 6).

5. This set of equations specifies which subspace is
spanned by the dynamic variables in the stationary
state [123]. De Sanctis and Galla [55] noted that
as long as the dynamics is of the form Yi(t + 1) =
Yi(t)−ξµi F (A(t)) for some function F , a similar set
of equations is solved by the dynamics; however, if
A acquires dependence on i, or if Y (t) is multiplied
by a discount factor, or if a constant is added to
the payoff, no such set of equations holds and no
phase transition is found.

2. Continuous time

Marsili and Challet [123] derive the continuous-time
limit of Eq. (6). The key idea is to average the payoffs
to agents in a time window of length proportional to the
intrinsic time scale of the system, P/Γ, thus, to define
the continuous time τ = Γt/N .1 In the thermodynamic
limit, at fixed α, τ becomes continuous. Finally, setting
yi(τ) = limN,P→∞ Yi(t), one finds

dy

dτ
= −ξµi 〈A(τ)|µ〉y + ζi (11)

= hi +
∑
j

Ji,j tanh(yj) + ζi, (12)

where the average 〈.〉y is over the distribution of the
mis at time τ , i.e., depends on the yis at time τ ,

hi = 1
P

∑
µ ξ

µΩµ = ξµΩµ and Ji,j = ξµi ξ
µ
j and the noise

term is

〈ζi(τ)〉 = 0 (13)

〈ζi(τ)ζj(τ
′)〉 =

Γ

N
ξµi ξ

µ
j 〈A2|µ〉y δ(τ − τ ′). (14)

This shows that the dynamics becomes deterministic
when Γ = 0,.

The autocorrelation of the noise term does not van-
ish in the thermodynamic limit. Even more, it is pro-
portional to the instantaneous fluctuations, which makes

1 Garrahan et al. [73] derives an effective dynamics without taking
timescales into account, which reproduces the global behavior of
σ2/N approximately.

sense: this reflects the uncertainty faced by the agents,
which is precisely σ2. This is in fact a powerful feedback
loop and is responsible for the build-up of fluctuations
near the critical point. Deep in the asymmetric phase,
this feedback is negligible, thus ξiξj 〈A2〉y ' Ji,j 〈A2〉y '
Ji,jσ

2 is a good approximation, which consists of equat-
ing the instantaneous volatility to the stationary volatil-
ity. This is fact is a very good approximation over the
whole range of α. The noise autocorrelation takes then
a form familiar to physicists,

〈ζi(τ)ζj(τ
′)〉 ' 2TJi,jδ(τ

′ − τ), with T =
Γσ2

2N
. (15)

This effective theory is self-consistent: T depends on σ,
which depends on yi, which depends on T . The probabil-
ity distribution function P ({yi}) in the stationary state
is given in Marsili and Challet [123].

The derivation of continuous-time dynamics makes it
possible to apply results from the theory of stochastic dif-
ferential equations. Using Veretennikov’s theorem [172],
Ortisi [148] derives an upper bound to the speed of con-
vergence to the stationary state which expectedly scales
as N/Γ for α > αc.

3. Signal-to-noise ratio, finite size effects and large
fluctuations

Figure 3 shows the existence of finite-size effects near
αc. In particular, the larger the system size, the smaller
the minimum value of σ2/N and the smaller the location
of its minimum. To understand why this happens, one
has to take the point of view of the agents, i.e., of their
perception of the world, which is nothing else than Eq.
(11). The fluctuations of the score of agents i and j be-
come correlated via their noise terms if the strength of
the latter becomes comparable to that of their payoffs,
i.e., when K

√
ΓJi,jσ2/N =

√
H/P , where K is a pro-

portionality factor. Since Ji,j ∝ P−1/2, this condition

becomes, by incorporating
√

Γ into K,

H

σ2
=

K√
P
. (16)

H and σ2 are known from the exact solution for in-
finite systems (see Sec. II C 6). The above intuition is
confirmed by numerical simulations and the exact so-
lution (Fig. 3): one sees that the intersection between

K/
√
P and the ratio H/σ2 given by the exact solution

predicts the point at which σ2/N deviates significantly
from the exact solution, defined as the locus of its min-
imum. Since H ∝ (α − αc)2 for α − αc � 1 (see Sec.
II C 6), the size of this region scales as N−1/4. Similar
transitions are found in all MGs in which the noise may
acquire a sufficient strength, in particular in market-like
grand-canonical games (see Sec. II E); the procedure to
find them is the same: derive continuous time equations,
compute the inter-agent noise correlation strength, and
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FIG. 3. Top panel: scaled fluctuations σ2/N as a func-
tion of α for increasing P ; bottom panel: signal-to-noise ratio
H/σ2 from the exact solution together with continuous lines

at K/
√
P ; K ' 0.39. From Challet et al. [39].

match it with the drift term. This transition is ubiqui-
tous: it happens in any model underlaid by a minority
mechanism when the agents do not account for their im-
pact.2

4. Reduced set of strategies

A naive argument suggests that herding should occur
when a finite fraction of agents adopt the same strate-
gies, hence that α = 2P /N . The problem lies in the
definition of ness: the fraction of different predictions
between strategies a and b is the Hamming distance

d(a, b) =
1 + 1

P

∑
µ a

µbµ

2
. (17)

For large P , two strategies do not differ by much if they
differ by only one of their predictions. Zhang [175] de-
fines three levels of sameness: either same (a = b), oppo-
site (a = −b), or uncorrelated (d(a, b) = 1/2). Starting
from an arbitrary strategy a, there are exactly 2 × 2M

strategies that are either same, opposite, or uncorrelated
with a and with each other [44]; this is called the re-
duced strategy set (RSS). Forcing the agents to draw

their strategies from this set yields very similar σ2

N (α)

[44]. Now, since σ2 = N +
∑
i 6=j 〈aiaj〉, the RSS allows

to decouple the correlation term into the contributions of
uncorrelated, correlated and anti-correlated agents; the

2 A recent generic result about optimal learning and emergence of
anomalous noise when nothing much remains to be learnt leads
to comparable results [152].

latter two are known as herds and anti-herds, or crowds
and anti-crowds. Thus, the final value of the fluctuations
can be seen as the result of competition between herding
and anti-herding. This yields several types of analyti-
cal approximations to the fluctuations that explain the
global shape of σ2/N as a function of α. More generally,
as it reduces much the dimension of the strategy space,
this approach simplifies the dynamics of the model and
allows one to study it in minute details; it has been has
been applied to a variety of extensions [46, 83, 92, 93].
In addition, when the agents only remember the last T
payoffs, the whole dynamics is Markovian of order T ;
simple analytical formulations give many insights about
the origin of large fluctuations [84, 158].

5. The road to statistical mechanics

A great simplification comes from the fact that the
global shapes of σ2/N(α) and H/N(α) are mostly un-
changed if one replaces the bit-string dynamics of µs with
random µ drawn uniformly with equal probability [24].3

In short, two methods are known to produce exact re-
sults: the replica trick and generating functionals à la
De Dominicis [54]. The replica trick is simpler but less
rigorous; in addition it requires to determine what quan-
tity the dynamics minimizes, which is both an advantage
as this quantity reveals great insights about the global
dynamics and a curse as there may be no discernible
minimized quantity, precluding the use of this method.
Generating functionals consist of rigorous ab initio calcu-
lus and does not require the knowledge of the minimized
quantity, which is both regrettable and a great advantage
(invert the above statements about the replica calculus).
The following account aims at giving the spirit of these
methods and what to expect from them, i.e., their main
results, their level of complexity and their limitations.

For lack of space, we can only give the principles of
the methods in question. Detailed calculus is found in
de Martino and Marsili [134], who deal with statisti-
cal mechanics applied to multi-agent models of socio-
economic systems, Galla et al. [68] who review anomalous
dynamics in multi-agent models of financial markets, and
the two books on the MG [39, 50].

3 It was initially believed that only the frequency distribution with
which each µ appears had an influence on H and σ2 [35], hence
that σ2 did not depend on the nature of histories in the sym-
metric phase. Later work showed that finite-size effects where
responsible for this apparent independence and that periodic,
random or real histories lead to different σ2/N (see e.g. Hung
and Liaw [90]). Finally, the exact dynamical solution of MGs
with real histories was derived in a rigorous way in Coolen [49].



10

6. Replica

The drift term in Eq. (11) contains the key to deter-
mine the quantity minimized by the dynamics: one can

write 2ξµi 〈A〉y = ∂H
∂mi

; therefore, the predictability H is

akin to a potential. When Γ = 0, the dynamics is deter-
ministic and H is a Lyapunov function of the system and
is minimized; when Γ > 0, H still tends to its minimum.
A similar line of reasoning applies to non-linear payoffs
−aig(A) and yields more intricate expressions [123].

Let us focus on linear payoffs. Given its mathemati-
cal definition, H possesses a unique minimum as long as
H > 0, which determines the properties of the system
in the stationary state. Regarding H as a cost func-
tion, i.e., an energy, suggests to use a partition function
Z = Tr{mi}e

−βH , which yields the minimum of H at zero
temperature

min
{mi}

H = − lim
β→∞

1

β
logZ. (18)

This only holds for a given realization of the game, i.e.,
for a given set of agents, which is equivalent to fixed
(quenched) disorder in the language of physics. Averag-
ing over all possible strategy attributions is easy in prin-
ciple: one computes 〈H〉{ai} = − limβ→∞

1
β 〈logZ〉{ai}.

Averages of logarithms are devilishly hard to compute,
but the identity logZ = limn→0

Zn−1
n leaves some hope:

one is left with computing 〈Zn〉{ai}, which must be in-

terpreted as n replicas of the same game running simul-
taneously, each with its own set of variables. The limit
n → 0 is to not to be taken as annihilation, but as ana-
lytical continuation.

Finally, one takes the thermodynamic limit, i.e., P ,
N → ∞ at fixed P/N = α. In this limit, the fluctu-
ations of global quantities induced by different strategy
allocations vanish: the system is called self-averaging. In
passing, this implies that numerical simulations require
less samples as the size of the system decreases in order
to achieve similar error bars.

As usual, one loves exponentials of linear terms when
computing partition functions. H is a sum of squared
terms that are transformed into linear terms averaged
over Gaussian auxiliary variables. This finally yields

H0 = lim
N→∞

H

N
=

1 +Q0

2(1 + χ)2
, (19)

where Q0 = limN→∞
1
N

∑N
i=1m

2
i measures strategy-use

‘polarization’ and χ is the integrated ‘response’ to a small
perturbation. These two quantities are defined as

Q0 = 1−
√

2

π

e−ζ2

ζ
−
(

1− 1

ζ2

)
erf

(
ζ√
2

)
, (20)

χ =
erf
(
ζ√
2

)
α− erf

(
ζ√
2

) , (21)

where ζ is determined for α > αc by

α = [1 +Q0(ζ)]ζ2. (22)

Hence, ζ is a function of α and determines all the above
quantities. Since ζ > 0, this equation is easily solved
recursively by writing ζn+1 =

√
α/[1 +Q0(ζn)], with

ζ0 = 0.5.
H0 = 0 is only possible when χ = ∞, i.e., when the

response function diverges. This happens at the phase
transition, which implies that

αc = erf

(
ζc√

2

)
= 0.3374 . . . (23)

and that H ∝ (α − αc)
2 near the critical point in the

asymmetric phase.
The full distribution of mi is given by

P (m) =
φ

2
δ(m− 1) +

φ

2
δ(m+ 1) +

ζ√
2π
e−(ζm)2/2, (24)

where φ = erfc
(
ζ√
2

)
is the fraction of frozen agents.

Incidentally, this confirms that φ = 1−αc at the critical
point, as guessed in Sec. II C 1.

The fluctuations σ2
0 = limN→∞ σ2/N do not depend

on initial conditions for α > αc and are given by

σ2
0 = H0 +

1

2
(1−Q0). (25)

The more rigorous generating functionals discussed below
reproduce all the above equations and bring many more
insights on the dynamics. They also show in what limit
Eq. (25) is correct [51].

The case α < αc is more complex. The good news
is that the above equations equation are still valid when
Γ = 0. By introducing Gaussian fluctuations around the
stationary values of mi, Marsili and Challet [123] give
the first-order expansion

σ2
0 =

1−Q0

2

[
1 +

1−Q0 + α(1− 3Q0)

4α
Γ +O(Γ2)

]
(26)

whose validity can be checked in the inset of Fig. 2. Fur-
thermore, Marsili and Challet [124] derive Γc(α) above
which σ2 becomes of order N2. As shown in Fig. 2, σ2/N
reaches its large value plateau for a finite value of Γ; as
a consequence, the limit Γ → ∞ can be interpreted as
equivalent to large enough Γ.

Replica calculus has been extended to account for bi-
ased initial conditions in the symmetric phase in an in-
direct way; for example, the limit of infinite bias yields
σ2

0 ∝ α for small α [123].
Finally, replica calculus for games with S > 2 is found

in Marsili et al. [125]. Challet and Marsili [35] take into
account the diversity of frequency of the µ in games with
real histories. Replica calculus can also be applied to the
extensions discussed in Sec. II D that have a discernible
cost function.
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7. Generating functionals

Generating functionals keep the full complexity of the
dynamics of the model in an elegant way [54]. The rea-
soning is as follows: the state of a MG at time t is given
by the vector of score differences Y = {Yi}; one is thus
interested in Pt(Y) and in its evolution, written schemat-
ically as

Pt+1(Y′) =

∫
dyP (Y)Wt(Y

′|Y ) (27)

Wt(Y
′|Y) =

∏
i

δ[Y ′i − (Yi − Γξ
µ(t)
i A(t)/N)], (28)

where one recognizes Eq. (6) in Eq. (28). This suggests
a way to describe all the possible paths of the dynamics:
the generating functional of the dynamics is

Z[ψ] =
〈
ei

∑
t

∑
i ψi,t,si,t

〉
paths,disorder

, (29)

from which one can extract meaningful quantities by
taking derivatives of Z with respect to the auxiliary
variables, for instance ∂Z/∂ψi,t = 〈si(t)〉. An im-
portant point is that the really hard work resides in
taking the average over all possible paths. What is
multiplied by ψi,t can be chosen at will depending on
what kind of information one wishes to extract from
Z. In addition, it is very useful to add a perturba-
tion to the dynamical equations, so that Wt(Y

′|Y) =∏
i δ[Y

′
i − (Yi − ξµ(t)

i A(t)/N) + θi,t]: taking derivatives
of Z with respect to θi,t yields response functions of the
system.

Nothing prevents in principle to include the dynam-
ics of µ and thus solve the full original MGs. Given
the length of the calculus, it is worth trying to simplify
further the dynamics of µ and si by assuming that the
agents update si(t) every P time steps, and that the µ’s
appear exactly once during this interval. This is called
the batch minority game [73], while the update of the
{si}’s at each time step is referred to as on-line. Cru-
cially, once again, the global shape of σ2, H and φ are
left intact. Batch games lead to a simpler W , which reads
now Wt(Y

′|Y) =
∏
i δ[Y

′
i − (Yi − ξiA/N) + θi,t].

The calculus is long: after putting the last Dirac and
Heaviside function in an exponential form, and removing
all the non-linear terms of the argument of the exponen-
tial with auxiliary variables, one performs the average of
the disorder (i.e., strategy assignment) and then take the
thermodynamic limit. One is then usually rewarded by
the exact effective agent dynamics

Y (t+ 1) = Y (t) + θ−α
∑
t′≤t

(1+G)−1
tt′ sgnY (t′) +

√
αη(t),

(30)
where Gtt′ = limN→∞

1
N

∑
i

∂
∂θi,t
〈si(t′)〉paths,disorder is

the average response function of the spins encoding strat-
egy choice at time t to a perturbation applied at an
earlier time t′ and η is a Gaussian zero-average noise

with correlation given by 〈ηtηt′〉 = Σtt′ , where Σ =
(1+G)−1(1+C)(1+G>)−1 and Ctt′ is the average spin
autocorrelation between time t and t′. This equation is
not that of a representative agent, but is representative
of all the agents: one agent corresponds to a given real-
ization of the noise η(t).

A further difficulty resides in extracting information
from Eq. (30). In the asymmetric phase, one exploits
the existence of frozen agents, for which Y (t) ∝ t and as-
sumes that the stationary state correspond to time trans-
lation invariance Xtt′ = X(t − t′) for X ∈ G,C,D,Σ.

Thus, introducing the notations X̃ = limt→∞X/t and

X̂ = limt→∞
1
t

∑
t′≤tX(t′),

Ỹ = − α

1 + χ
s+
√
αη̂, (31)

where η̂ ∼ N (0, (1 + χ)−2(1 + Q0))), and Q0 = Ĉ

and χ = ˆtG(t) correspond to the quantities defined
in the replica section; note that generating functions
give a precise mathematical definition of χ. After some
lighter computations, one recovers all the equations of
the replica calculus; in addition, one also can discuss in
greater rigor the validity of simple expressions for σ2

0 .
The symmetric phase still resists full analysis [131], which
prompted the introduction of a further simplified MG, of
the spherical kind [65] (see Sec. II D).

The above sketch shows that the dynamics is ever
present in the equations; reasonable assumptions about
some quantities may be made regarding their time de-
pendence or invariance, etc. This method allows one to
control the approximations; it has confirmed the valid-
ity of the continuous time equations and of the effective
theory introduced in Sec. II C 2.

The original MG gradually yielded to the power of gen-
erating functionals: first batch MGs [86], then on-line
MGs with random histories [51], then on-line MGs with
real histories [49], which is a genuine mathematical tour
de force; the case S > 2 is treated in Shayeghi and Coolen
[163] and was later simplified in de Martino et al. [129].

D. Modifications and extensions

The MG is easily modifiable. Given its simplicity and
many assumptions, a large number of extensions have
been devised and studied. Two types of motivation stand
out: to determine in what respect the global properties,
e.g. herding, phase transition, etc., depend on the strat-
egy space and learning dynamics, and to remedy some
shortcomings of the original model.

1. Payoffs

The original MG has a binary payoff, which is both
a curse for exact mathematical methods and a blessing
for ad-hoc combinatorial methods. Marsili and Challet
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[123] show how to derive the quantity minimized by a
MG with a generic payoff function −aiG(A); Challet [31]
extends this argument to explain why the location of the
critical point is independent on G(A) as long as G is odd
[110], which is confirmed in Papadopoulos and Coolen
[151], who solved the dynamics of the game for any payoff
with generating functionals and add that G should also
be increasing (see also Sec. II E). The dynamics of the
symmetric phase does depends on the choice of payoff.
For instance the game becomes quasi-periodic only when
a sign payoff is used [34, 70], and only for small enough
α [111].

From a mathematical point of view, the majority game
can be considered a MG with another payoff; H is now
maximized, in a way reminiscent of Hopfield neural net-
works [88], which makes possible to use replicas [102] and
generating functionals [151]. Mixing minority and major-
ity players also yields to mathematical analysis [132, 151]
and is discussed further in Sec. II E.

2. Strategy distributions

The thermodynamic limit only keeps the two first
moments of the strategy distribution P (aµi ) (a conse-
quence of the central limit theorem). Its average must

be rescaled, 〈a〉 = γ/
√
N , in order to avoid divergences;

the location of the critical point depends on both vari-
ance and average of P (a) [33, 42].

The agents may draw their strategies in a correlated
manner; for instance, an agent may draw a first strategy
at random as before, but he chooses his second one so
that P (aµi,1 = aµi,2) = c, with c ∈ [0, 1] [38, 70, 74].

Strategies may be used in a different way: Cavagna
et al. [25] propose to perform an inner product between a
given strategy, considered a vector, and a random vector
living on the unity sphere; this model is solved in Coolen
and Shayeghi [52].

Sec. II E deals with strategies that also contain a ‘zero’
choice, i.e., the possibility to refrain from playing.

3. Spherical Minority Games

A special mention goes to spherical MGs [65] whose
dynamics is exactly and explicitly solvable in all phases
while keeping almost the same basic setup of the original
MG; when using a generating function for the latter, cal-
culus is hindered by the non-linearity of si(t) = sgnYi(t):
the boldest way to remove it is to set si = Yi. Because of
Eq. (7), the agents may now use any linear combination
of their two strategies. Since Yi(t) may diverge, one adds
the spherical constraint

∑
i s

2
i = r2N . This family of

models also undergoes phase transitions; its phase space
(α, r) has a quite complex structure.

Many extensions to the MG have been made spherical,
thus, duly solved [13, 65, 69, 70, 131, 150].

4. Impact of used strategies and Nash equilibrium

The agents have several strategies to choose from and
use only one at a time. A key point to understand why
the agents fail to control the fluctuations better in the
symmetric phase is the difference of expected payoff be-
tween the strategies that an agent does not use, and the
one that he plays. The discussion parallels that of the
P = 1 case (see Sec. II B 1 ): separating the contribu-
tion of trader i from A in Eq. (4) shows once again that
self impact results in payoffs that are biased positively
towards the strategies not currently in use and explains
why all the agents are not frozen in the original MG.
Agents may experience difficulties in estimating their ex-
act impact; hence, Marsili et al. [125] proposed to modify
Eq. (4) to

Ui,s(t+ 1) = Ui,s(t)− aµ(t)
i,s (t)A(t)/N + ηδs,si(t). (32)

Remarkably, the agents lose the ability to herd as soon
as η > 0: σ2/N is discontinuous at η = 0 in the symmet-
ric phase; a Nash equilibrium is reached for η = 1 and
all the agents are frozen; there are exponentially (in N)
many of them [133]; the one selected by the dynamics
depends on the initial conditions. The agents minimize
Hη = (1 − η)H + ησ2, which coincides with σ2 when
η = 1. Marsili et al. [125] noted that the difference be-
tween H and σ2 is similar to an Onsager term in spin
glasses [141]. When Hη has no more a single minimum,
the replica calculus is more complex; one needs to use
the so-called 1-step replica symmetry breaking assump-
tion (1-RSB) [141]. de Martino and Marsili [133] applies
this method and reports the line at which Hη ceases to
have a single minimum, also known as the de Ameilda-
Thouless (AT) transition line [53]. Heimel and de Mar-
tino [87] use generating functionals to solve the dynamics
of Eq. (32) and discuss this transition from a dynamical
point of view by focusing on long-term memory and time
translation invariance. A simpler way to compute the AT
line is given in Challet et al. [39].

5. Time scales and synchronization

The original MG has two explicit intrinsic time scales,
P and Γ, which are common to all the agents. There is a
third one, the time during which a payoff is kept in yi, and
is infinite by default. Introducing a finite payoff memory
is easy if one discounts exponentially past payoffs, which
amounts to writing

Ui,s(t+ 1) = Ui,s(t)

(
1− λ

P

)
− aµ(t)

i,s (t)
A(t)

N
, (33)

where λ ∈ [0, P ] and the factor was chosen so as to
introduce λ as a separate timescale; the typical payoff
memory length scales as 1/λ for small λ. This seem-
ingly inconspicuous alteration of the original dynamics
changes very little the dynamics of the asymmetric phase.
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It does however solve the problem of non-ergodicity of
the symmetric phase since initial score valuations are
gradually forgotten [41]. Unfortunately, it also has a
great influence on analytical results, since an infinites-
imal λ has so far prevented from obtaining any mathe-
matical insight about the stationary state from generat-
ing functionals: they still yield the exact effective agent
dynamics but nobody has found a way to extract infor-
mation about the stationary state because there are no
more frozen agents [41, 131]. The spherical MG with
payoff discounting is of course exactly solvable with this
method [13, 131]. Replicas can be applied in some cases:
Marsili et al. [126] study an MG with impact and dis-
counting; the quantity minimized by the dynamics is now
σ2+ λ

Γ

∑
i[log(1−m2

i )+2mi tanh−1(mi)]; as the ratio λ/Γ
between the memory and learning timescales increases,
the system undergoes a dynamical phase transition at
λ/Γ ' 0.46 between a frozen RSB phase and a phase in
which it never reaches a Nash equilibrium. Finally, the
case P = 1 is easily solved with λ > 0. For instance the
critical learning rate is Γc = 2 − λ: forgetting the past
destabilizes the dynamics as this decreases the effective
over which past payoffs are averaged [146].

There is converging evidence that human beings act
at widely different timescales in financial markets [112,
180].4 In the context of the MG, they may therefore differ
in P , Γ or λ. Mosetti et al. [146] split the populations in
subgroups that each have a different set of Γ and/or λ,
for P = 1: it turns out that it is advantageous to have
a smaller Γ and a larger λ. In other words, to learn as
little as possible and to forget it as soon as possible, i.e.,
to behave as randomly as possible. This makes senses, as
a random behavior is a Nash equilibrium. Heterogeneity
of P is studied e.g. in Challet et al. [38], Challet and
Zhang [43, 44], Johnson et al. [95], and Li et al. [110].

Another way to implement heterogeneous time scales is
to assume introduce the possibility of not doing anything
for some µ, i.e., to generalize the probability distribution
of aµi,s to P (a) = f [δ(a− 1)/2 + δ(a+ 1)/2] + (1− f)δ(a)

[127]; each agent has an intrinsic frequency f drawn from
a known distribution; agents that play frequently are less
likely to be frozen. Replicas [127] and generating func-
tionals [128] solve this extension.

Finally, the MG assumes perfect synchronization,
which is a strong assumption, but a useful one. Note that
introducing frequencies as discussed above is a cheap way
to build partial synchronicity, especially for small average
value of f . Mosetti et al. [145] proposed a way to fully
desynchronize agent-based models; the maximally asyn-
chronous MG keeps its phase structure provided that the
temporal structure of interaction is not too noisy.

4 The burstiness of human activity is another explanation to
heavy-tailed activity of agents [5].

6. Learning algorithm

The common rationale of all learning schemes is that
using them should a priori improve the realized pay-
offs. Quite remarkably, the literature on the MG has
mainly considered variations of the theme of the logit
model, most often fixed look-up tables, and simple ad-
hoc Markovian algorithms, ignoring the rest of the vast
reinforcement learning (RL) literature, which in passing
goes against the golden rule of learning: agents (includ-
ing researchers) should find the balance between learning
and exploration [23]; see Sutton and Barto [166] for a su-
perb review written at the time of the introduction of
the MG. In particular, Q-learning is currently thought
to mimic very well how human beings learn; see Mon-
tague et al. [143] for a review. It consists in exploiting
optimally the relationship between one’s actions at time
t and the payoff at future time t+1, conditionally on the
states of the system at times t and t + 1: the payoffs at
time t therefore also comprise some future expected pay-
offs. The definition of states and actions are to be chosen
wisely by the authors: Andrecut and Ali [3] use look-up
tables aµi,s; the possible actions and state space are the

choice of strategy; this means that agent i chooses si(t)
according to a Q-learning rule; the resulting fluctuations
are very similar to a Nash equilibrium for look-up tables,
though nobody has ever checked it accurately. Catteeuw
and Manderick [23] assume instead that the state is µ(t)
(real histories) and possible actions are {−1,+1}; they
also assume that the resource level L(t) is a sinusoid and
show that Q-learning does very well in this context. Cat-
teeuw and Manderick [22] considers a P = 1 setting and
shows that Q-learning also converges to the Nash equi-
librium |A| = 1, as do other very simple schemes from
RL literature that are close to the ad-hoc ones discussed
in Sec. II B 1; interestingly, using Q-learning is a domi-
nant strategy if the agents may select their RL scheme
by Darwinian evolution. No analytical results have so
far been reported about these alternate RL schemes, al-
though obtaining some seems within reach.

Strategy exploration by the agents, i.e., letting the
agents evolve badly performing strategies, has been in-
vestigated in MG literature: a look-up table is akin to a
DNA piece of code, hence changing it is akin to genetic
mutations. Challet and Zhang [44] and Li et al. [108] let
the worst performing agents replace their strategies, ei-
ther at random, or by cloning those of the best players;
Sysi-Aho et al. [167, 168, 169, 170] give to the agents
the possibility of hybridization and genetic crossover of
their own strategies; Challet and Zhang [43] and Li et al.
[109] allow the agents to choose their memory length.
In all these papers, strategy exploration is beneficial to
the agents and to the system as a whole, and sometimes
spectacularly so, see Sysi-Aho et al. [167, 168, 169, 170].

In Kinzel et al. [99], Metzler et al. [139], Kinzel and
Kanter [98], the agents use simple neural networks (per-
ceptrons); the authors derive an analytical expression for
σ2 as a function of the learning rate. They also note
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that the neural networks have the peculiar task of anti-
learning, which tends to produce seemingly random out-
puts, and discuss a possible application to cryptography.

E. Minority Game and financial markets

The connection between financial markets and MGs
is both strikingly intuitive and deceptively hard to for-
malize clearly. At a high level, it rests on the following
observations:

1. Financial markets are competitive and their dy-
namics is similar to Darwinian evolution [61, 114,
176].

2. They are negative sum games, if only because of
transaction costs.

3. They tend to have bursts of fluctuations (called
volatility in this context).

4. They tend to be almost unpredictable because
traders (human beings or algorithms) tend to ex-
ploit and reduce price predictability.

So far, the MG has all the ingredients needed to model
the dynamics of a model of price predictability dynamics,
except a price dynamics. Since A is an excess demand or
offer of something, assume for the time being that it has
some relationship with price evolution (this point is dis-
cussed at length below). Then Fig. 1 provides a very
appealing scenario for the emergence of large fluctua-
tions in financial markets: predictable prices correspond
to mild fluctuations are bound to attract more traders
who then reduce H; once the signal-to-noise ratio be-
comes too small, the agents herd on random fluctuations
and produce large fluctuations. Large price fluctuations
are therefore due to too a small predictability. In other
words, markets are stable as long as they are predictable
and become unstable if the traders (i.e., money) are in
play. Raffaelli and Marsili [156] also find the existence
of a critical amount of invested capital that makes mar-
kets unstable in a very different model. This suggests in
turn that real markets should hover over a critical point,
which explains periods of quiescence and periods of large
fluctuations.

One of the shortcomings of the above picture is that
N is fixed in the game, which implies some sort of adi-
abatic approximation. Adaptive agents should be able
to decide by themselves when they are willing to play.5

In a financial market context, the agents must not only
decide which is the best strategy to play, but also if it
is worth using it. In other words, the agent’s decision

5 Players that decide not to take part to a game are called loners
in game theory. Allowing for this possibility changes much the
dynamics of even simple games, see e.g., Szabó and Hauert [171].

should rest not only on payoff differences (e.g. Yi), but
also on the value of Ui,s(t) [91, 94, 165]: this leads to the
Grand Canonical MG (GCMG), in which a reservoir of
agents may or may not play at a given time step depend-
ing on whether one of their trading strategies is perceived
as profitable. This, in fact, mimics precisely for instance
how quantitative hedge funds behave. The learning algo-
rithms that they apply are hopefully more sophisticated;
for instance, some of them try to account for their impact
on the price dynamics when backtesting a strategy.

In the simplest version of the GCMG, the agents have
only one trading strategy aµi and the possibility of not
playing; this is equivalent to having two strategies, one
drawn at random, and the zero strategy aµ0 = 0 ∀µ [36].
The score difference dynamics is

Yi(t+ 1) = Yi(t+ 1)

(
1− λ

P

)
− aµi (t)

A(t)

P
− ε

P
. (34)

The last term is a benchmark, i.e., the value attributed
to not playing. It is the sum of the interest rate and
transaction costs, and possibly of the willingness to play
of a given agent. When λ = 0, ε = 0 does not make sense
since an agent that comes in and then goes out of the
game experiences a sure net loss. The typical timescale
of the GCMGs is proportional to P/(Γελ).

Since the GCMG is a negative sum game, all the agents
stop playing after a while if the score memory length is
large enough. In other words, they need to feed on some-
thing. Challet et al. [38] introduce additional agents with
fixed behavior, called producers, who use the markets for
other purposes than speculation. The producers play a
negative sum game, but a less negative one thanks to the
speculators, which may play a positive game thanks to
the producers. This defines a kind of market ecology best
described as a symbiosis [33, 38, 176]. One assumes that
there are Ns speculators and Np producers.

For λ = 0 and ε = 0, this model possesses a semi-line of
critical points ns = Ns/P > ncs(P ): in other words, it is
in a critical state as soon as there are enough speculators
in the reservoir. The signal-to-noise transition is still
present, which leads to anomalous fluctuations: using
the method described in Sec. II C 3, one finds

H

σ2
+ 2ε
√
HP

P

σ2
+ ε

P

σ2
' K√

P
, (35)

which is confirmed in Fig. 4; when ε = 0, one recovers
Eq. (16), thus σ2/N behaves as in Fig. 2. When ε > 0, the
region of anomalous fluctuations shrinks as the system
size diverges; see Challet and Marsili [36] and Galla et al.
[68] for more details. The P = 1 version of the GCMG
has additional instabilities compared to a standard P = 1
MG [40].

Not only the distribution of A becomes anomalous,
but the strength of fluctuations acquires a long mem-
ory. This is a feature generically found in MGs where
agents can modulate their activity, either by re-investing
a fraction of their gains, or by deciding to trade or not to
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FIG. 4. Top panel: Scaled fluctuations σ2/N versus
ns = Ns/P , where Ns is the number of speculators and
Np = P is the number of producers, shown for various sys-
tem sizes PNs = 1000 (circles), 2000 (squares), 4000 (dia-
monds), 8000 (up triangles) and 16000 (left triangles). Con-
tinuous line is exact solution for infinite systems. Bottom
panel: LHS of Eq. (35) (continuous line) from the exact so-

lution and K/
√
P = K(ns/L)1/4 (parallel dashed lines) as a

function of ns (K ' 1.1132 in this plot). The intersection
defines nc

s(P ). Inset: Collapse plot of σ2/N as a function of
ns/n

c
s(P ). From Challet and Marsili [36].

trade. This result is even more generic: Bouchaud et al.
[16] shows that any model in which the agents decide to
trade or not depending on the sign of a random walk ac-
quires automatically long memory in its activity and, by
extension, to volatility. In the case of market-like MGs,
whether to trade or not is based on the trading perfor-
mance of a strategy. The agents that switch between
being active and inactive have a strategy score that is
very well approximated by a random walk.

The two possible actions −1 and +1 (and possibly 0)
may mean sell and buy, respectively. In that case A is an
excess demand, which has an impact on price evolution;
Jefferies et al. [91] use a linear price impact function [48,
113], log p(t + 1) = log p(t) + A(t). This implies that A
is a price return.

But this raises the question of why the traders are re-
warded to sell when the majority buys, and reversely.
There are two answers to this. First, when an agent
makes a transaction, being in the minority yields on av-
erage a better transaction price [39]. Why should an
agent transact at every time step, then, unless he is a
market maker?6 Marsili [122] argued that the agents do

6 Market makers are special traders whose task is to propose trans-
actions for buyers and sellers simultaneously, like bureaux de
change for foreign exchange; they are thus most likely to transact
very often.

not know which price they will obtain when they trade,
thus that they need to form expectations on their next
transaction price: the agents who believe that the price
follows a mean-reverting process play a minority game,
while those who believe that prices changes are persistent
play a majority game. de Martino et al. [132] therefore in-
troduced a model with minority and majority traders and
give its solution with replica and generating functions,
later generalized in Papadopoulos and Coolen [151].

There remains, however, an inconsistency: predictabil-
ity is linked to speculation, but the agents cannot really
speculate, as their actions are rewarded instantaneously.
This is why Andersen and Sornette [1] and Bouchaud
et al. [16] proposed to reward current actions with re-
spect to future outcomes, i.e., ai(t)A(t+ 1): this is a de-
layed majority game whose peculiarity is that the agents
active at time t also play at time t + 1; it is known as
the $-game. The nature of this game depends on the
sign of the autocorrelation of A(t): an anticorrelated
A causes an effective minority game, and reversely; left
alone, $-game players tend to be equivalent to majority
players [62, 158]. Bouchaud et al. [16]define a more re-
alistic model and show that the price may be periodic
(i.e., produce bubbles and crashes), stable, or intermit-
tent (i.e. realistic) depending on the ratio Γ/λ < 0.4 and
the contrarian/trend-following nature of the strategies.

And yet, modeling speculation must include at least
two time steps: its somehow counter-intuitive salient fea-
ture is that one possibly makes money when waiting,
that is, when doing nothing. Ferreira and Marsili [62]
stretched single time-step look-up tables to their limit
by assuming that agent i whose action was ai(t) at time
t must play −ai(t) at time t + 1. If all agents act syn-
chronously, A(t+ 1) = −A(t) and the $-game becomes a
minority game. When some people act at even times and
the others at odd times, the nature of the market is more
complex: in a mixed population of minority/majority/$-
game players, the game tends to be a minority game.

Modeling speculation requires to walk away from single
time-step look-up tables. One wishes however to keep a
discrete number of states, which makes it easy to define
price predictability. Challet [32] still assumes that the
market states are µ(t) ∈ {1, · · · , P}, either random or
real; an agent can only recognize a small number of mar-
ket states and may only become active when µ(t) is one of
them; he may invests between pairs of patterns if he think
it worthwhile. Accordingly, global price predictability is
now defined between all pairs of market states. Price
fluctuations, predictability and gains of speculators as a
function of the number of speculators are very similar to
those of GCMGs.

We believe therefore that the MG is the correct fun-
damental model to study the dynamics of predictability,
hence market ecology and their influence on price fluctu-
ations. Reversely, any correct model must contain agents
that learn, exploit and reduce predictability; it therefore
contains some kind of minority mechanism, be it explicit
or hidden. For instance, Hasanhodzic et al. [85] intro-
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duced independently a model of agents learning price
predictability associated to a given binary pattern and
study how information is removed; it is best described as
a minority game. Another attempt to define ab initio a
model with producers and speculators in which the spec-
ulators remove predictability [153] is equivalent to the
MG defined in Galla and Zhang [71].

All MG models are able to reproduce some stylized
facts of financial markets; notably P (A) ∝ A−γ and

〈|A(t)||A(t+ τ)|〉 − 〈|A|〉2 ∝ τ−β allow their agents to
modulate their investments according to their success, as
for instance GCMGs. In addition, evolving capitals and
reinvestment have the same effect and lead to power-law
distributed A at the critical point for S = 2 [33], as well
as for S = 1 [71]. At this critical point, anomalous fluctu-
ations are not finite size effects. Even better, generating
functionals solve the S = 1 model; what happens at the
critical point awaits further investigations.

Since the dynamics of market-like MGs is reasonably
well-understood, one may probe how it reacts to dynam-
ical perturbations. The effect of Tobin-like taxes in a
GCMG is akin to increasing the baseline ε; not only it
reduces the occurrence of anomalous fluctuations in the
stationary state, but the dynamical decrease of anoma-
lous fluctuations in reaction to a sudden increase of ε is
very fast [10]. On the other hand, Papadopoulos and
Coolen [150] introduced a constant or periodic perturba-
tion to A(t) in a spherical MG; the effect of such a per-
turbation is counter-intuitive: A(t) may lock-in in phase
with the perturbation, which increases fluctuations. A
third work investigated the effect of a deterministic per-
turbation that lasts for a given amount of time in the
non-spherical GCMG; this corresponds to a sometimes
long series of transactions of the same kind (e.g., buy)
known as meta-orders; see Bouchaud et al. [15] for a re-
view. Using linear response theory and results from the
exact solution of the game, Barato et al. [6] computed
the temporal shape of the impact on the price to expect
from such transactions.

There is yet another way of understanding the rela-
tionship between the MG and financial markets [32]: on
a abstract level, A(t) = 0 corresponds to perfect coor-
dination, as it is an equilibrium between two opposite
actions. These two actions may be to exploit or not gain
opportunities, labeled by µ. If too few traders exploit
it, more people should be tempted to take this money-
making opportunity; if there are too many doing so, the
realized trading gain is negative. In this sense, the MG
is connected to trading, since market participants use a
trading strategy that exploits a set of gain opportuni-
ties that seems profitable only if under-exploited. In this
cas, a minority mechanism is found because people try
to learn an implicit ressource level.

Lamper et al. [105] apply the GCMG to the predic-
tion of real market prices by reverse-engineering their
time-series. They propose to find the specific realiza-
tion of the GCMG that reproduces some price changes
over a given period most accurately and to run it a few

time-steps in advance. Large cumulative price changes
produced by the game are reportedly easily predictable.
According to Andersen and Sornette [2], these pockets of
predictability come from the fact that sometimes many
agents will take the same decision k time-steps in ad-
vance, irrespective of what happens between now and
then. Some more statistical results about the prediction
performance of minority/majority/$-games are reported
in Wiesinger et al. [173]. A few other papers use modified
MGs in the same quest [103, 118]. The same principle
was used to predict when to propose discounts on the
price of ketchup [80]. As emphasized by Jefferies et al.
[91], the whole point of using non-linear adaptive agent-
based models is to profit from strong constraints on fu-
ture dynamics to predict large price changes; this goes
way beyond the persistence of statistical biases 〈A|µ〉 for
some µ’s.

Making the connection with more traditional mathe-
matical finance, Ortisi and Zuccolo [149] assumed that
the price dynamics of a financial asset is given by the
continuous-time dynamics of the vanilla MG and GCMG,
computed analytical expressions of the price of options,
and proposed a method to calibrate the MG price process
to real market prices.

Finally, all the previous papers focus on a single asset,
but most practitioners wish to understand the origin and
dynamics of price change cross-correlations. Bianconi
et al. [11] gives to the traders the opportunity to choose
in which game, i.e., assets, they wish to take part, both
for the original MG and for the GCMG; more phase tran-
sitions are found depending on how much predictability
is present in either asset; generating functionals solve the
lot; de Martino et al. [129] extended to this calculus to
more generic ways of choosing between many assets .

F. Multichoice Minority Games

Extending the MG to more than two choices seems
easy: it is enough to say that aµi may take R > 2 values.
Ein-Dor et al. [60], Chow and Chau [47], Quan et al.
[155] consider R ≥ 3 and reward agents that select the
least crowded choice; D’Hulst and Rodgers [57] introduce
cyclical trading between three alternatives.

There may also be R types of finite resources, e.g.,
bars: Savit et al. [159, 160] assume that N agents choose
between R = 2 types of resources, each of them able to
accommodate L agents. This situation arises in CPU
task scheduling. Shafique et al. [162] take the reverse
point of view: the agents may be groups of CPU cores
competing for tasks to execute. A more complex struc-
ture underlies multi-assets models: the agents first choose
in which asset to invest, and then play a minority game
with the other agents having made the same asset choice
[11].

Whereas these studies assume that R is fixed while N
may be arbitrarily large, many real-life situations ask for
R to scale linearly with N : this is the assumption of Secs.
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III and IV.

G. Minority mechanism: when?

The definition of the MG is quite specific and seems
to restrict a priori in a rather severe way its relevance.
We wish to suggest a more optimistic point of view.
There are universal relationships between fluctuations
and learning in MGs. Therefore, should a minority mech-
anism be detected in a more generic model, one can ex-
pect to understand which part of its global properties
come from the minority mechanism. This requires to un-
derstand what a minority mechanism really is and where
it may hide.

EFBP does contain one, since it is a MG with a generic
resource level L [42, 96]. This resource level may de-
pend on time [72]; the resulting fluctuations will come
both from the transient convergence to a new L and
from fluctuations around a learned L(t), which are of
the MG type. This view indicates that a minority mech-
anism arises when a population self-organizes collectively
around an explicit resource level. Self-consistent resource
levels sometimes contain minority mechanisms: Challet
[31] considers one population of producers pooling their
contributions A =

∑
i ai and one population of buyers

grouping their monetary offers B =
∑
k bk for the pro-

duction on offer. Producers should decrease their output
if A > B and buyers should do so when A < B. This sug-
gests a payoff −ai(A−B) to producer i and −bi(B −A)
to buyer i, hence, that B is the resource level for the pro-
ducers and A is the resource level for the buyers, both
time-dependent and self-consistently determined. The
stationary state of this model is equivalent to the EFBP
and is exactly solvable.

In conclusion, one may expect a minority mechanism,
hence, MG-like phenomenology in a situation where a
population self-organizes collectively around an explicit
or implicit resource level that it may contribute to deter-
mine.

Let us now mention a few papers which seem a priori
to have little to do with the MG, but that do contain
a minority mechanism. This helps understanding their
phenomenology, but cannot describe quantitatively their
behavior, which may be much more complex and richer.

Cherkashin et al. [45] introduced a game with two
choices (in its simplest form) whose mechanism is
stochastic: the probability that choice +1 is the right one
is P (A/N) (in the notations of this paper), with P (0) =
1/2: this introduces mechanism noise, but the average
nature of the game is easy to determine: indeed, the ex-
pected payoff of agent i is 〈ui〉 = 2ai(t)[P (A(t)/N)−1/2];
introducing G(A) = 2P (A) − 1, and expanding G, one
finds that ui(t) = ai(t)[G

′(0)A/N +O(A3/N3)]. Clearly,
minority games appear when P ′(0) < 0, which is what
the authors call self-defeating games. One thus rightly
expects that learning reduces predictability |A| in the
latter case and increases it in the other case. A closely

related extension of learning in MGs is decision noise,
which causes the agents to invert their decision with some
probability; see e.g. Heimel and Coolen [86].

Berg et al. [9] introduced a model in which agents
receive partial information about the real market state
µ(t): they each are given their own projection function
of µ = 1, · · · , P onto two possible states 0 and 1, de-
noted by fi(µ) and randomly drawn at the beginning of
the game. The resource level is Rµ, the market return
when the global state is µ. Each agent effectively com-
putes two averaged resource levels Rµ|(fi(µ) = 0) and

Rµ|(fi(µ) = 1) and finds out how much to invest con-
ditionally on fi(µ) = 0 or 1. Remarkably, when there
are enough agents, the prices converge to Rµ. The phe-
nomenology of such models is different, but similar to
that of the MGs. Accordingly, some parts of the exact
solution, both with replicas [9] and generating function-
als [130], are quite similar to those for H in the MG.

III. THE KOLKATA PAISE RESTAURANT
PROBLEM

In Kolkata (formerly Calcutta), there used to be cheap
and fixed rate “Paise” 7 restaurants which were popu-
lar among daily workers. During lunch hours, the work-
ers used to walk, to save the transport costs, to one of
these restaurants. They would miss lunch if they got
to a restaurant where there were too many customers,
since walking to the next restaurant would mean failing
to resume work on time!

Chakrabarti et al. [26], Ghosh and Chakrabarti [77],
Ghosh et al. [76], Ghosh et al. [78] proposed the Kolkata
Paise Restaurant (KPR) problem. It is a repeated game
between N prospective customers that choose from R
restaurants each day simultaneously (in parallel). N and
R are both assumed to be large and proportional to each
other. Assuming that each restaurant charges the same
price for a meal eliminates budget constraints for the
agents.

An agent can only visit one restaurant each day, and
every restaurant has the capacity to serve food to one
customer per lunch (generalization to a larger value is
trivial). When many agents arrive at one restaurant, only
one of them, randomly chosen, will be served. The main
measure of global efficiency is the utilization fraction f
defined as the average fraction of restaurants visited by at
least one customer on a given day; following the notations
of the literature on this topic, we denote by f̄ its average
in the steady state.

Two main points have been addressed: how high ef-
ficiency can depend on the learning algorithm and the
relative number of customers per restaurant, denoted by
g = N/R, and at what speed it is reached.

7 Paise, the smallest monetary unit in Indian currency, essentially
synonymous with anything very cheap.
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Additional complications may arise if the restaurants
have different ranks. This situation is found for instance
if there are hospitals (and beds) in every town but the
local patients understandably prefer to go to hospitals of
better rank elsewhere, thereby competing with the local
patients of those hospitals. Unavailability of treatment
in time may be considered as a lack of service for those
people and consequently as social wastage of service by
the unvisited hospitals. This is very similar to the stable
marriage problem briefly reviewed in Sec. IV B.

The most efficient solution to the KPR problem is dic-
tatorship: each customer is assigned a restaurant and
must eat there. If the restaurants have a ranking, the
customers must take turns and sample each of them in
a periodic way, which is socially fair. Dictatorship how-
ever requires a level of synchronization and communica-
tion that is quite unrealistic. This is why the agents need
to learn to try to have meals at the best ranked restau-
rants. Inevitably, these strategies take more time to con-
verge to a less efficient state than under dictatorship, but
some stochastic strategies are better than others, reach-
ing fairly efficient states in O(logN) meals.

The natural benchmark of efficiency is obtained when
all the agents choose at random and with uniform prob-
abilities where to have lunch. The probability that
a given restaurant is chosen by m agents is binomial
∆(m) =

(
N
m

)
pm(1 − p)N−m with p = 1

R . In the limit
N,R → ∞, keeping and g = N/R finite, it becomes

a Poisson distribution ∆(m) = gm

m! exp(−g). Clearly,
the fraction of restaurants not chosen by any agent is
∆(m = 0) = exp(−g). Finally the average fraction of
restaurants occupied on any day is f̄ = 1 − exp(−g); in
particular f̄ ' 0.63 for g = 1 [26].

A. As many restaurants as customers, g = 1

It is worth first to investigate the dynamics of the case
where there are as many restaurants as customers (R =
N , i.e., g = 1).

1. Stochastic rank dependent strategies

Let the restaurants have a well-defined ranking (agreed
by everyone) depending upon quality of food, services,
etc., although the price of a meal is the same for all
restaurants. Thus, all agents will try to get food from
best rank restaurants. But since a restaurant can serve
only one customer, it means that many of the agents in
crowded restaurants will remain unsatisfied. Now, as-
sume that any agent chooses the restaurant of rank k
with probability pk(t) = kζ/

∑
k k

ζ , where ζ is a real
number.

It can be easily shown that the probability that a k-th
ranked restaurant is chosen by no one is ∆k(m = 0) =

exp
(
−k

ζ(ζ+1)
Nζ

)
, and hence the average fraction of agents

enjoying their meal there is given by f̄k = 1−∆k (m = 0).
The limiting case ζ = 0 is equivalent to random choice,
hence, f̄k = 1− e−1, giving f̄ =

∑
k f̄k/N ' 0.63. When

ζ = 1, f̄k = 1− e−2k/N giving f̄ =
∑
k f̄k/N ' 0.57 [78].

2. Crowd-avoiding behaviors

Fully crowd-avoiding case: Assume that all the agents
avoid the restaurants too crowded at the previous lunch.
In the stationary state, there are hence N(1 − f̄) avail-
able restaurants for the next lunch, assumed to be ran-
domly chosen by all the N agents. Using the fact
that N/R = 1/(1− f̄), one can write the recursion

(1 − f̄)
[
1− exp

(
− 1

1−f̄

)]
= f̄ , which gives f̄ ' 0.46

and is worse than random choice, but typical of herding,
as in the MG [76, 78].

Stochastic crowd-avoiding case: Higher efficiency is
reached when the agents do not systematically avoid pre-
viously crowded restaurants. Suppose that restaurant i
was chosen by ni(t−1) customers at time t−1. The prob-
ability to return to restaurant i, denoted by pi, should
be such that pi(1) = 1 and be a decreasing function
of ni(t − 1). The simplest choice is pk = 1/nk(t − 1),
which yields f̄ ≈ 0.79 [78], a sizable improvement over
the fully crowd-avoiding case. The time needed to reach
the steady state is ∼ logN .

A simple argument gives an approximate estimate of f̄
in this case: Let ai be the fraction of restaurants visited
by i agents and assume that the fraction of restaurants
where 3 or more customers arrive on any day are negli-
gible, i.e., ai = 0 for i ≥ 3. One can write a1 + 2a2 = 1
and a0 + a1 + a2 = 1, giving a0 = a2. According to this
strategy, every agent who visited any restaurant alone on
a given day will surely return there next day (p = 1), but
if any restaurant was visited by two then the agents will
return there with probability p = 1/2 the next day. In
this process every time (a2/4− a2

2/4) fraction of restau-
rants will be vacant from the restaurants previously vis-
ited by 2 agents. Similarly a0a2 fraction of restaurants
will be visited by one agent from the restaurants pre-
viously visited by two. Therefore, one can easily write

a0 − a0a2 + a2
4 −

a22
4 = a0. The above three equations

gives a0 = 0.2, a1 = 0.6 and a2 = 0.2. So the average
fraction of restaurants visited by at least one agent is
a1 + a2 = 0.8, close to that obtained in the numerical
simulations.

The above behavior can be generalized by letting pi =

1/nξi (t − 1) where ξ is real and positive. The case dis-
cussed above is recovered with ξ = 1, while ξ = 0 pre-
vents any change of restaurant by the agents. Numerical
simulations show that both the utilization fraction and
the time to reach the steady state increases when ξ de-
creases. The best utilization fraction is obtained when
ξ → 0, while it decreases to f̄ ' 0.676 when ξ →∞ [75].
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B. Plethora of restaurants (g < 1) and phase
transitions

Ghosh et al. [79] considered a KPR problem with more
restaurants than customers. Let ni agents visit restau-
rant i on a particular day. Each restaurant can serve
only one agent in a day. One of the ni agents is chosen
randomly and served while the remaining (ni−1) agents
do not get any lunch for that day. Two variants of the
return probability have been investigated. In model A,
the probability to return to restaurant i for each of the ni
agents is pi = 1/ni, as before. In model B, pi(1) = 1, but
customers of crowded restaurants will return at the same
place with uniform probability (p(ni) = p < 1, ni > 1);
p can be thought of as the ‘patience’ of an agent. Both
models undergo a phase transition at some g = gc be-
low which all the agents will be satisfied; when g > gc,
some are not. Accordingly, the order parameter is the
density of restaurants having more than one customer in
the steady state, and denoted by ρa.

Both mean-field and finite dimensional lattice versions
(1D and 2D) of these model have been studied. They
turn out to belong in the same universality class as fixed
energy sandpiles [59]:

1. Model A has gc = 1 for 1D, but gc < 1 for
higher dimensions. The critical exponent values
for the phase transition in finite dimensions are
in good agreement with those of stochastic fixed-
energy sandpile [59, 117, 119].

2. Model B has two parameters, the density g and the
patience p of agents. The phase diagram has been
numerically investigated. In the mean field case,
the phase boundary is linear: gc = 1

2 (1 + p). For
p = 0, gc = 1/2, as in fixed energy sandpiles [59].
The phase boundary in (g, p) is nonlinear for 1D
and 2D. The critical exponents are the same along
the phase boundary and match with those of model
A.

Note that when g = 1, the system is far from its critical
value gc and the relaxation time τ does not show any
L = N1/d dependence. As long as g ≤ gc, absorbing
frozen configurations are present, and whether they are
accessible or not depends on the underlying dynamics. A
critical point gc was found to exist above which the agents
are unable to find frozen configurations. The role of p in
model B is as follows: when g > gc, the agents fail to
reach satisfactory configurations – they are moving only
if they are unsatisfied (p = 0). More patient agents, i.e.,
those with a larger p, are linked to larger values of the
critical point gc and thus smaller time to reach saturation
(faster-is-slower effect).

IV. GENERIC BIPARTITE ALLOCATION
PROBLEMS

The KPR model is but an example of the more generic
bipartite allocation problems where one type of items
must be associated to another type of items; all the
agents are homogeneous and the restaurants are as well.
More generically, the agents may be heterogeneous and
the items to choose from may also be heterogeneous.

A. Spatial allocation problems

An example of allocation of spatially aligned resources
is the parking lot problem [82]. This model is a styl-
ized version of an everyday experience of the difficulty in
finding a parking spot for a car, as motivated in the work
from the example of the small streets leading to Vieille
Charité in Marseille, and could be the case for any other
street. One has to walk the rest of the way upon finding
a spot, costing both time and effort. It is most enjoyable
to park close to the office, if luck permits, while the un-
lucky ones park far away, regardless of the instant when
they arrive.

Formally, in a hypothetical city, there is a unique one-
way street allowing parking and leads to the center. R
parking spots available along the street are indexed by
their distance from the center s ∈ {1, 2, . . . , R}. In the
beginning of each period t ∈ {0, 1, 2, . . .}, each of N ≥ R
agents can be either outside or in the city, and parked. If
agent i is outside, he drives into the city with probability
pe and looks for a vacant spot. His strategy is first to fix
his comfort distance si(t) ∈ {1, · · · , R} and to take the
first empty spot ki(t) < si(t). The closer to the center,
the more rewarding a parking space is, thus being able to
park at spot k gives a payoff π(k), a decreasing function
with boundary conditions π(1) = 1 and π(R) = 0. Not
finding a parking space yields a penalty of −B < 0 and
is denoted by ki(t) = 0. At then end of each round, each
agent leaves the city with probability pl.

Learning takes place in a familiar way. The agents
update the score they associate with strategy s, U ii,s(t)
and use the logit rule for their next choice

P [si(t) = s] =
eΓUi,s(t)∑R

s′=1 e
ΓUi,s′ (t)

, (36)

Initial scores are equal to the average payoff of parking

along the street, Ui,s(t = 0) = (1/R)
∑R
s′=1 π(s′) ∀i, s.

The attraction of strategy s evolves, if the agent was
trying to find a suitable vacant spot at time t, as

Ui,s(t+ 1) = Ui,s(t)(1− λ) (37)

+λ(π[ki(t)]Θ[ki(t)− si(t) + 1/2]

−BΘ[−1/2 + ki(t)]).

The case N = R = 2 could be exactly solved [82]. One
relevant question is whether the population learns to seg-
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regate itself into lucky people that are almost systemat-
ically able to park close to the center and unlucky ones.
In order words, one should investigate if the steady state
corresponds to a symmetric or asymmetric state. It turns
out that the answer depends on both Γ and B. If Γ > 4,
the symmetric state is stable either for small costB where
both players choose strategy 1, or for very large B, where
both players choose strategy 2. This implies that for
low B, the street parking spots are not fully utilized,
while for high B, they are fully utilized either because
the two players choose different strategies, or otherwise
both choose to park further away. The large N case is
dealt with numerical simulations. The small B symmet-
ric outcomes disappears. There is instead a large degree
of heterogeneity even at B = 0, which becomes small for
large B, and the agents learn to choose strategies with
high s, i.e, park further away. Thus, for high B, agents
are rarely lucky.

B. Stable marriage

A famous a priori symmetric example is the stable mar-
riage problem proposed by Gale and Shapley [64], Knuth
[101] where an equal number of men and women must be
matched according to their private preference list that
ranks all members of the opposite kind. This clearly also
(and rather) applies to other matching problems such as
colleges and students, hospital and doctors, etc. Configu-
rations are deemed stable if no pair of entities have an in-
centive to swap their associated partner/item. Mean-field
analysis of the algorithm proposed by Gale and Shapley
showed that the dissatisfaction, or equivalently, energy,
of both sides obeys a simple scaling law [147]. Later ex-
tensions broke the a priori symmetry in preferences list
by introducing correlations, partial lists, match makers
and bachelors [19, 107, 177].

C. Recommendation systems

The assumption of complete preference lists is indeed
very strong and most real-life situations do not allow for
such a luxury: for instance, merchant websites such as
Amazon or Netflix try to guess what each of their clients
might like and recommend them some other items based
on their previous purchases and browsing history. In this
case, preference lists are necessarily incomplete, both for
the merchant and for the customers, and one must use
recommendation systems to guess their missing parts. It
is beyond our aim to review this sizeable research area;
see Lü et al. [116] for a recent review. We will briefly
review some concepts of physics applied to this family of
problems.

One can think of links between customers and items
as bipartite networks. As the fraction of known opinions
increases, that is, as the network connectivity increases,
prediction undergoes two percolation-type phase transi-

tions, and perfect prediction may be possible in a sim-
ple case, as shown in Maslov and Zhang [136]. Another
idea consists in letting probabilities of liking items dif-
fuse like heat on a suitably defined network [178, 179]. A
recent development emphasizes the role of competition
for items: most recommendation systems assume that
the items to be chosen from are in infinite supply (or
equivalently whose duplication is essentially free, e.g., an
mp3 file) and their recommendations suffer from a lack
of diversity: they tend to recommend the same few items
to everybody. But competition is a fundamental driver
of choice in resource allocation problems. Gualdi et al.
[81] show that assuming infinite supply leads to a kind
of bosonic condensation of recommendations linked to a
degeneracy of the cost function. Competition is intro-
duced by assuming that the potential gain of consuming
some item decreases when more people use them; this
is enough to lift degeneracies, fight biases and improve
much the precision of recommendations even if the items
are infinitely replicable. A single parameter allows for in-
terpolating between the pure bosonic and fermionic cases.

V. DISCUSSION AND OUTLOOK

In this review we applied a variety of concepts from
physics to competitive resource allocation. We emphasize
that our review limits to models which are characterized
by strong heterogeneity and non-equilibrium dynamics
amongst adaptive agents, with minimal or no interaction.
Although a population of traders with minimal interac-
tion in a certain class of problems can be treated as a
gas of atoms [27], here we stress that our systems are
more complex and more sophisticated methods of statis-
tical physics are required to handle them. Methods from
statistical mechanics are well suited to the study of com-
petition for limited resources as shown by the variety of
models reviewed above. This is because most of them
are of mean-field nature and involve many agents and/or
many resources. The ability of generating functionals to
solve the dynamics of minority games with real histories
is quite impressive.

The basic MG model, together with some of its many
extensions, is remarkably well understood. There are
nevertheless areas in which better understanding or exact
solutions would be much welcome:

1. A low-hanging fruit is about MGs where each
agent’s weigth in the game is modulated according
to his past success. They have been only super-
ficially studied. Nevertheless, the coincidence be-
tween power-law distributed agent weights and the
critical point is only alluded to in Galla and Zhang
[71], who even provide the generating functional so-
lution. This point is worth a detailed investigation
in our opinion.

2. The non-ergodicity of the symmetric phase still re-
sists a full solution; it is cured by the introduc-
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tion of a finite score memory 1/λ that is enough to
anihiliate the prowess of generating functionals be-
cause extracting useful information about the sta-
tionary state rests on the assumption that some
agents are frozen, i.e., only use a single strategy.
We believe that the problem lies in the definition
of a frozen agent: instead of assuming that this
means that he sticks forever to his favourite strat-
egy, one should instead regard him as frozen as long
as the typical duration of strategy exclusive use is
larger than 1/λ, which is the typical time scale of
score memory in this kind of games.

3. Investigating more learning rules in the MG is cer-
tainly worth trying. Indeed, the statistical mechan-
ics community working on agent-based models has
stayed too close to the logit model and has insuf-
ficiently explored reinforcement learning literature.
Solving a model where heterogeneous agents use
Q-learning and regret theory stands out as a par-
ticularly tempting problem since this combination
is believed to best describe how human beings learn
[115]. This combination of payoffs and learning
scheme seems to be well within reach of our tools.

Reverse-engineering financial markets with agent-
based models such as the MG is indubitably seducing.
Although this idea was mainly proposed to predict fu-
ture time series, one must realistically first ask oneself if
the instance of the MG obtained by reverse-engineering is
a faithful representation of the reality. When the time se-
ries to approximate is produced by a MG, this works well
[105] and yields a model that can predict future of MGs
[97, 105]. But in the case of financial markets, comparing
the strategies of the resulting best model with those of
real traders has never been performed, for good reasons:
this requires to have data about real traders. Fortunately,
this is becoming ever more common [144].

However, the models used to fit MGs to financial time
series must be modified in two ways. First, assuming
that all the traders react to each state of the market
µ once they are in the market is probably sub-optimal.
One should allow the strategies of the agents not to
play for certain µ along the lines of [127]. In addition,
most market-like models make the pathological assump-
tion that an artificial traders cannot invert strategies are
perform consistently badly, i.e., use −aµ for all µ’s if
that is preferable. In an market-like MG with 1 strat-
egy ai per agent and the possibility of not playing, this
amounts to add −ai to this strategy set. When trying
to reverse-engineer market price time-series, this acceler-
ates the whole process by a factor of two. Talking about
acceleration, the payoff updates of a GCMG with one
strategy (and its inverse) can be written using vectors,

which makes this model an ideal candidate for easy GPU
acceleration.

Physicists are sometimes asked by somewhat skeptical
and possibly conservative economists, statisticians, etc.
what may remain from their incursions in the respective
domains. The two key answers are collective phenomena
caused by the interaction of many agents, and the mathe-
matical methods to understand and solve non-linear and
disordered systems.

Other fields have also devised methods that ex-
ploit the mathematical simplifications provided by the
large-system limit, i.e., by the central limit theorem.
Economists have noticed that in suitably linear mod-
els with logit learning, an effective dynamical equa-
tion may be derived by averaging over population het-
erogeneity [18]. Mathematicians propose the so-called
mean-field games theory that constructs the Hamilton-
Bellman-Jacobi equations equivalent to the dynamics of
interacting optimizing sub-populations over a finite time
horizon [106]. These two methods are more restrictive
than generating functionals which can solve (in prin-
ciple) the dynamics of any mean-field adaptive agent-
based model with complex heterogeneity and complex
learning schemes, without any explicitly optimized func-
tion. They are however under-used, under-understood
and under-publicized beyond the small community of
people knowledgeable about both statistical mechanics
and complex systems. This may come from their appar-
ent mathematical complexity, whereas they involve little
more than very long expressions involving Gaussian inte-
grations and very many auxiliary variables. Part of the
work that lies ahead is to propagate these mathematical
methods beyond our field.
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(2007), J. Stat. Mech.: Theory Exp. 2007, P01006.
[130] de Martino, A., and T. Galla (2005), J. Stat. Mech.:

Theory Exp. 2005, P08008.
[131] de Martino, A., and T. Galla (2011), New Math. Nat.

Comput. 7, 249.
[132] de Martino, A., I. Giardina, and G. Mosetti (2003), J.

Phys. A. 36, 8935.
[133] de Martino, A., and M. Marsili (2001), J. Phys. A. 34,

2525.
[134] de Martino, A., and M. Marsili (2006), J. Phys. A 39,

R465.
[135] Mas-Colell, A., M. D. Whinston, J. R. Green, et al.

(1995), Microeconomic theory, Vol. 1 (Oxford Univer-
sity, New York).

[136] Maslov, S., and Y.-C. Zhang (2001), Phys. Rev. Lett.
87, 248701.

[137] Matzke, C., and D. Challet (2011), Phys. Rev. E 84,
016107.

[138] McFadden, D. (1981), in Structural Analysis of Discrete
Data with Econometric Application, edited by C. F.
Manski and D. McFadden (MIT) pp. 171–260.

[139] Metzler, R., W. Kinzel, and I. Kanter (2000), Phys.
Rev. E 62, 2555.
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