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Approximation of the two-dimensional Dirichlet problem by one-dimensional continuous and discrete problems on one-dimensional networks

Introduction

Approximation of multidimensional boundary value problems by discrete problems or by boundary value problems set on less dimensional ones is very important in practice. For discrete approximations, the most popular methods are the finite difference method or the finite element method, for which a lot of convergence results are proved [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF][START_REF] Quarteroni | Numerical approximation of partial differential equations[END_REF]. By the less dimensional approximation, we mean that a n-dimensional problem is approximated by a family of k-dimensional ones with k < n. For instance the approximation of boundary value problems set on objects of R 3 with a small thickness by boundary value problems set on objects of dimension 1 or 2 was largely considered in the literature, see for instance [START_REF] Destuynder | Mathematical analysis of thin plate models[END_REF][START_REF] Ciarlet | Plates and junctions in elastic multi-structures[END_REF][START_REF] Panasenko | Multi-scale modelling for structures and composites[END_REF]. In the same spirit, let us also mention homogenization techniques that analyze the limit process of problems set on n-dimensional domains of thickness to problems still set on domains of dimension n [START_REF] Cioranescu | Homogenization of reticulated structures[END_REF].

The problems studied in this paper have some common properties with the above approaches since we will approach a two-dimensional problem by a family of continuous 1-dimensional problems but as each continuous 1-dimensional problem can be approximated by a discrete one, we also examine the limit of these discrete problems. The approximation of the low frequency spectrum of such problems was performed in [START_REF] Komarov | On the spectrum of a uniform network of strings[END_REF][START_REF] Komarov | On the spectrum of a nonperiodic woven membrane[END_REF] (see also [START_REF] Nicaise | Relationship between the lower frequency spectrum of plates and networks of beams[END_REF] for the plate problem), but to our best knowledge the approximation of the boundary value problem itself was not yet performed. Hence our goal is to fill this gap and to show that indeed the solutions of the continuous and discrete 1-dimensional problems convergence to the solution of the two-dimensional problem.

The schedule of the paper is as follows: We recall in Section 2 the Dirichlet problem in the unit square as well as its continuous counterparts on networks that approach the square as the size goes to zero. An error estimate between the solutions of these continuous problems is proved in section 3 by using the second Strang lemma. Similarly section 4 is devoted to the error analysis between the exact solution in the unit square with the finite element approximations on the networks. In section 5 we extend some of our previous results to the Dirichlet problem set on an arbitrary domain of the plane. Finally in section 6 some numerical tests are presented that confirm our theoretical results.

Let us finish this introduction with some notations used in the remainder of the paper: On D, the L 2 (D)-norm will be denoted by • D . The usual norm and seminorm of H s (D) (s > 0) are denoted by • s,D and | • | s,D , respectively. Finally, the notation a b means the existence of a positive constants C, which is independent of the size h of the edges of the network (see below) and of the considered quantities a and b such that a ≤ Cb.

The continuous problems 2.1 The continuous two-dimensional problem

Let S denote the unit square ]0; 1[×]0; 1[ and ∂S its boundary. On this domain, we consider the Dirichlet problem -∆u = f in S u = 0 on ∂S

with f ∈ C(S).

According to Lax-Milgram lemma, there exists a unique weak solution u ∈ H 1 0 (S) of this problem, namely u ∈ H 1 0 (S) is the unique solution of

S ∇u • ∇v dx = S f v dx, ∀v ∈ H 1 0 (S).
According to Theorem 5.1.3.5 of [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], this solution belongs to W 2,p (S), for all p > 2, and if f belongs to W 1,p (S), with p > 2, is such that f is zero at each corner of S, then this solution belongs to W 3,p (S), hence in particular to H 3 (S).

The associated problem on networks

Now we intend to consider a similar problem set on a family of networks included in S. Let us introduce some notation to define these networks: For any n ∈ N, n ≥ 2, let h = 1/n and introduce the network R h defined by

R h = {]ih; (i + 1)h[×{jh}; ∀i ∈ {0, . . . , n -1}, ∀j ∈ {1, . . . , n -1}} ∪ {{ih}×]jh; (j + 1)h[; ∀i ∈ {1, . . . , n -1}, ∀j ∈ {0, . . . , n -1}}.
The edges of R h are the intervals ]ih; (i + 1)h[×{jh} or {ih}×]jh; (j + 1)h[ but will be quite simply denoted by e i , in other words,

R h = {e i ; i = 1, . . . , N h }, with N h = 2n(n -1).
We directly check that the size (or length) of each edge of the network R h is h. We further write N h for the set of nodes of R h . Moreover we need to distinguish between nodes included into S or into ∂S, so we set

N int h = {(ih; jh); ∀i, j ∈ {1, . . . , n -1}}, N ext h = {(0; ih); (1; ih); (ih; 0); (ih; 1); ∀i ∈ {0, . . . , n}}, N h = N int h ∪ N ext h .
It remains a last notation to indicate the set of edges adjacent to a given node:

∀v ∈ N h , I v = {i ∈ {1, . . . , N h } such that v ∈ e i }.
Our aim is to approximate the solution u of the continuous problem (1) by the solution

u h = (u i ) i=1,...,N ∈ N i=1
H 2 (e i ) of the following problem:

                 -u i = f i on e i ∀i = 1 • • • N, u i (v) = 0 ∀v ∈ N ext h , ∀i ∈ I v , u i (v) = u j (v) ∀v ∈ N int h , ∀i, j ∈ I v , i∈Iv ∂u i ∂ν i (v) = 0 ∀v ∈ N int h , (2) 
where

f i = 1 2 γ i f. (3) 
In these equations, ∂ ∂ν i and γ i represent respectively the outer normal derivative operator and the trace operator on the edge e i . The last equation of problem ( 2) is nothing else but Kirchoff's law. The system (2) is a Dirichlet problem on the network R h that was largely studied in the literature, see [START_REF] Mehmeti | A characterisation of generalized c ∞ notion on nets[END_REF][START_REF] Mehmeti | Nonlinear wave in networks[END_REF][START_REF] Below | A characteristic equation associated to an eigenvalue problem on c 2 -networks[END_REF][START_REF] Below | Parabolic network equations[END_REF][START_REF] Lumer | Espaces ramifiés, et diffusions sur les réseaux topologiques[END_REF][START_REF] Lumer | Connecting of local operators and evolution equations on networks[END_REF][START_REF] Nicaise | Diffusion sur les espaces ramifiés[END_REF][START_REF] Nicaise | Spectre des réseaux topologiques finis[END_REF][START_REF] Penkin | Some qualitative properties of the boundary values problems on graphs[END_REF] and the references there.

Variational formulation on the networks

The variational space associated with problem (2) is

V h = {u h = (u i ) i=1,...,N ∈ N i=1 H 1 (e i ) s.t. u i (v) = u j (v) ∀v ∈ N int h , ∀i, j ∈ I v , u i (v) = 0 ∀v ∈ N ext h , ∀i ∈ I v }, (4) 
equipped with the norm:

||u|| h = |u| 1,R h = N i=1 e i (u i (x)) 2 dx 1/2 . ( 5 
)
Due to the Dirichlet boundary conditions, the H 1 -norm and its semi-norm are equivalent on

V h . Lemma 1. For every w ∈ V h , we have ||w|| R h ≤ |w| 1,R h , (6) 
as well as w ∞,R h := sup

(x,y)∈R h |w(x, y)| ≤ |w| 1,R h . (7) 
Proof. Let us denote L i = {(x, ih), 0 < x < 1} and C j = {(jh, y), 0 < y < 1}. Then

R h = n-1 i=1 L i ∪ n-1 j=1 C j . (8) 
As w(0, ih) = 0, we have for all x ∈]0; 1[

|w(x, ih)| = x 0 ∂w ∂x (t, ih)dt ≤ ∂w ∂x L i , (9) 
according to the Cauchy-Schwarz inequality. Then

||w|| 2 L i = 1 0 |w(x, ih)| 2 dx ≤ ∂w ∂x 2 L i ≤ |w| 2 1,L i . (10) 
In the same way, we can check that w 2 C j ≤ |w| 2 1,C j and by summing up these two inequalities we obtain the expected estimate [START_REF]FreeFEM++ finite element programming environment[END_REF]. The estimate ( 7) is a direct consequence of (9) and its counterpart in C j . Now we define a bilinear form a h on V h by

a h : V h × V h → R : (u h , w h ) → a h (u h , w h ) = N i=1 e i u i (x)w i (x)dx, (11) 
that is clearly continuous and coercive on V h according to Lemma 1.

Proposition 2. The variational formulation of problem (2) is to find u h ∈ V h solution of

∀w h ∈ V h , a h (u h , w h ) = F (w h ), (12) 
with

F (w h ) = N i=1 e i f i (x)w i (x)dx. ( 13 
)
Proof. The proof is quite standard (cf. Lemma 2.2.12 in [START_REF] Mehmeti | Nonlinear wave in networks[END_REF] for instance), we give it for the sake of completeness. Let us assume that there exists a solution

u h = (u i ) i=1,...,N ∈ N i=1 H 2 (e i )
of problem [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. Obviously u h belongs to V h . Moreover u h is solution of [START_REF] Lumer | Espaces ramifiés, et diffusions sur les réseaux topologiques[END_REF]. Indeed, let w h = (w i ) i=1,...,N ∈ V h , then we have for all i ∈ {1, ..., N }, -

e i u i (x)w i (x)dx = e i f i (x)w i (x)dx.
Integrating by parts, we obtain

e i u i (x)w i (x)dx -[u i (v)w i (v)] v=v i2 v=v i1 = e i f i (x)w i (x)dx, (14) 
where

v i1 and v i2 ∈ N h are such that i ∈ I v i1 ∩ I v i2 . We claim that N i=1 [u i (v)w i (v)] v=v i2 v=v i1 = 0. ( 15 
)
In fact, we have

[u i (v)w i (v)] v=v i2 v=v i1 = ∂u i ∂ν i (v i1 )w i (v i1 ) + ∂u i ∂ν i (v i2 )w i (v i2 ). (16) 
Consequently,

N i=1 [u i (v)w i (v)] v=v i2 v=v i1 = v∈N ext h i∈Iv ∂u i ∂ν i (v)w i (v) + v∈N int h i∈Iv ∂u i ∂ν i (v)w i (v). Let v ∈ N h , if v ∈ N ext h , then w i (v) = 0, for all i ∈ I v . If v ∈ N int h , then i∈Iv ∂u i ∂ν i (v)w i (v) = w j (v) i∈Iv ∂u i ∂ν i (v) (17) 
for any j ∈ I v , since w h is continuous at the nodes. Then, using Kirchoff's law, the right-hand side of the identity ( 17) is equal to zero. Hence ( 15) is established and we conclude with ( 14) and [START_REF] Nicaise | Diffusion sur les espaces ramifiés[END_REF].

An approximation result between the continuous problems

In this section, we analyze the error between the solution u of problem (1) and the solutions u h of [START_REF] Lumer | Espaces ramifiés, et diffusions sur les réseaux topologiques[END_REF]. For that purpose, we make use of the second Strang lemma (see below). Hence we first estimate the consistency error:

Theorem 3. Let u denote the solution of (1), and u h the solution of [START_REF] Lumer | Espaces ramifiés, et diffusions sur les réseaux topologiques[END_REF]. If u ∈ H 3 (S), then

sup w∈V h |a h (u, w) -F (w)| ||w|| h √ h||u|| 3,S . (18) 
Proof. Since u ∈ H 3 (S), for all i = 1, ..., N , u i = γ i u has a meaning and since u is also continuous, its restriction to R h , still denoted by u, belongs to V h . Fix w = (w i ) i=1,...,N ∈ V h . It can be shown, as in the proof of Proposition 2, that

a h (u, w) = - N i=1 e i u i (x)w i (x)dx.
Then, thanks to [START_REF] Mehmeti | A characterisation of generalized c ∞ notion on nets[END_REF],

a h (u, w) -F (w) = - N i=1 e i (u i (x) + f i (x))w i (x)dx. ( 19 
)
For every v ∈ N h , if (ξ, ϕ) are the coordinates of v, we define the rectangle

C h v = ]ξ - h 2 , ξ + h 2 [×]ϕ - h 2 , ϕ + h 2 [ ∩ S
and its intersection with

R h R h v = C h v ∩ R h . ( 20 
) If v ∈ N int h , R h v is a cross, while if v ∈ N ext h , R h v is a half edge.
The identity [START_REF] Penkin | Some qualitative properties of the boundary values problems on graphs[END_REF] can be rewritten as

a h (u, w) -F (w) = - v∈N int h R h v (u + f )(x)w(x)dx - v∈N ext h R h v (u + f )(x)w(x)dx, (21) 
with the abuse of notation u , that means ∂ 2 u ∂x 2 or ∂ 2 u ∂y 2 according to the kind of the edge (horizontal or vertical).

Step 1 : Case of the interior nodes Fix v ∈ N int h . We define the reference square

C =] -1 2 ; + 1 2 [×] -1 2 ; + 1 2 [ and the reference cross R = ({0}×] -1 2 ; + 1 2 [) ∪ (] -1 2 ; + 1 2 [×{0}). We consider the change of variables φ : C → C h v : x → x = φ(x) = v + hx. Note that φ( R) = R h v and R h v (u + f )(x)w(x)dx = R (u (φ(x)) + f (φ(x)))w(φ(x)) hdx. Let us set û = u • φ, ŵ = w • φ, then û = h(u • φ)
always with the same abuse of notation. In the same way,

u • φ = 1 h 2 û and (∆u) • φ = 1 h 2 ∆û. ( 22 
)
Owing to the definition (3

) of f , f • φ = -1 2 1 h 2 ∆û and finally R h v (u + f )(x)w(x)dx = 1 h R (û - 1 2 ∆û)(x) ŵ(x)dx = h -1 (I 1 + I 2 ), (23) 
where

I 1 = R (û - 1 2 ∆û)(x)( ŵ(x) -M ŵ)dx (24) 
and

I 2 = R (û - 1 2 ∆û)(x)(M ŵ)dx, (25) 
with the constant

M ŵ = R ŵ(x)dx. ( 26 
)
Let us begin with the estimate of I 1 . With (24) and the Cauchy-Schwarz inequality,

|I 1 | ≤ ||û - 1 2 ∆û|| R || ŵ -M ŵ|| R . (27) 
Moreover we have

||û - 1 2 ∆û|| R |α|=2 ||D α û|| R |α|=2 ||D α û|| 1, C . (28) 
by using a trace theorem [7, Thm 1.5.1.2]. We recall that due to the Poincaré-Friedrichs inequality,

|| ŵ -M ŵ|| R | ŵ| 1, R . (29) 
Thanks to ( 27), ( 28) and (29), we have shown

|I 1 | | ŵ| 1, R |α|=2 ||D α û|| 1, C . (30) 
Now in order to estimate I 2 , we need the following lemma that can be proved by easy computations.

Lemma 4.

∀p ∈ P 2 ( R), R (p - 1 2 ∆p)(x)dx = 0, ( 31 
)
where P 2 ( R) represents the set of polynomials of degree at most 2 on R.

Owing to (25) and ( 31), for all p ∈ P 2 ( R),

I 2 = R [(û -p) - 1 2 ∆(û -p)](x)(M ŵ)dx.
According to the Cauchy-Schwarz inequality, and since M ŵ is a constant,

|I 2 | |M ŵ| (û -p) - 1 2 ∆(û -p) R |M ŵ| |α|=2 ||D α (û -p)|| R |M ŵ| |α|=2 ||D α (û -p)|| 1, C |M ŵ| ||û -p|| 3, C
by using the same trace theorem as previously. Let p be the orthogonal projection of û on

P 2 ( R) for the H 3 ( C)-norm, then ||û -p|| 3, C |û| 3, C . (32) 
Moreover, due to (26), |M ŵ| || ŵ|| R , so the three last inequalities imply that

|I 2 | || ŵ|| R |û| 3, C . (33) 
Now we recall the next lemma that specifies the change of H m -semi-norms from a domain to a reference domain [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF].

Lemma 5. Consider m ∈ N and let us denote

f = f • φ. Then ∀f ∈ H m (R h v ), |f | m,R h v = 1 h m-1/2 | f | m, R and ∀f ∈ H m (C h v ), |f | m,C h v = 1 h m-1 | f | m, C . By (30), |I 1 | | ŵ| 1, R   |α|=2 ||D α û|| C + |α|=2 |D α û| 1, C   . ( 34 
)
It follows from Lemma 5 and ( 22) that

|I 1 | h 2 √ h|w| 1,R h v   |α|=2 h -1 ||D α u|| C h v + |α|=2 |D α u| 1,C h v   ,
and finally,

|I 1 | h 3/2 |w| 1,R h v ||u|| 3,C h v . (35) 
According to Lemma 5, (33) leads to

|I 2 | h 3/2 ||w|| R h v |u| 3,C h v . (36) 
Gathering the results ( 23), ( 35) and (36), we have proved that

R h v (u + f )(x)w(x)dx √ h |w| 1,R h v ||u|| 3,C h v + ||w|| R h v |u| 3,C h v . ( 37 
)
Step 2 : Case of the exterior nodes

Fix v ∈ N ext h and let us denote R 1/2 = φ -1 (R h v ) and C 1/2 = φ -1 (C h v ). We show as (23) that R h v (u + f )(x)w(x)dx = 1 h R 1/2 (û - 1 2 ∆û)(x) ŵ(x)dx. ( 38 
)
Using the Cauchy-Schwarz inequality, this implies

R h v (u + f )(x)w(x)dx ≤ 1 h ||û - 1 2 ∆û|| R 1/2 || ŵ|| R 1/2 . ( 39 
)
Arguing as for (28), since u ∈ H 3 (S), we get

||û - 1 2 ∆û|| R 1/2 |α|=2 ||D α û|| 1, C 1/2 . ( 40 
)
On the other hand, w ∈ V h implies that ŵ(0) = 0, so it can be proved as in Lemma 1 that

|| ŵ|| R 1/2 | ŵ| 1, R 1/2 . ( 41 
)
Thanks to (39), ( 40) and (41), we have

R h v (u + f )(x)w(x)dx 1 h | ŵ| 1, R 1/2   |α|=2 ||D α û|| C 1/2 + |α|=2 |D α û| 1, C 1/2   . (42) 
Using Lemma 5 and the identity [START_REF] Below | A characteristic equation associated to an eigenvalue problem on c 2 -networks[END_REF], it comes

R h v (u + f )(x)w(x)dx 1 h √ h|w| 1,R h v h 2   |α|=2 h -1 ||D α u|| C h v + |α|=2 |D α u| 1,C h v   . √ h|w| 1,R h v ||u|| 3,C h v . (43) 
Step 3 : Conclusion

The identity (21) leads to

|a h (u, w) -F (w)| ≤ v∈N int h R h v (u + f )(x)w(x)dx + v∈N ext h R h v (u + f )(x)w(x)dx . ( 44 
)
Summing (37) for all v ∈ N int h and (43) for all v ∈ N ext h , we deduce from the previous inequality

|a h (u, w) -F (w)| √ h v∈N int h |w| 1,R h v ||u|| 3,C h v + ||w|| R h v |u| 3,C h v + √ h v∈N ext h |w| 1,R h v ||u|| 3,C h v √ h v∈N int h ||w|| R h v |u| 3,C h v + √ h v∈N h |w| 1,R h v ||u|| 3,C h v .
By the discrete Cauchy-Schwarz inequality, we obtain

|a h (u, w) -F (w)| √ h (|w| 1,R h ||u|| 3,S + ||w|| R h |u| 3,S ) . ( 45 
)
We conclude the proof thanks to Lemma 1 and inequality (45).

Now we recall the following result which is a consequence of the second Strang Lemma and can be found for example in [2, Thm 4.2.2].

Lemma 6. Let u denote the solution of (1) supposed to belong to V h , and let u h be the solution of [START_REF] Lumer | Espaces ramifiés, et diffusions sur les réseaux topologiques[END_REF]. Then

||u -u h || h sup w h ∈V h |a h (u, w h ) -F (w h )| ||w h || h . ( 46 
)
Remark 7. Note that the upper bound in the second Strang Lemma contains in general another term, namely inf v h ∈V h ||u -v h || h , called the "interpolation error". Here only the "consistency error" term appears as we have assumed that u ∈ V h , the interpolation error being obviously equal to zero.

Corollary 8. Let u denote the solution of (1), and let u h be the solution of [START_REF] Lumer | Espaces ramifiés, et diffusions sur les réseaux topologiques[END_REF].

If u ∈ H 3 (S), then ||u -u h || 1,R h √ h||u|| 3,S , (47) 
and ||u -u h || ∞,R h √ h||u|| 3,S . (48) 
Proof. We deduce from Theorem 3 and Lemma 6 that

|u -u h | 1,R h √ h||u|| 3,S . (49) 
Now inequalities (47) and ( 48) are a direct consequence of Lemma 1 since u -u h ∈ V h .

4 The finite element method on the networks

In the previous section, we have checked that u h is a good approximation of u. However, problem (2) is still set in an infinite dimensional space and except for some specific right-hand sides f , its solution u h cannot be computed analytically. Hence in practice problem (2) has to be discretized. Here we choose the finite element method and propose to deal with two different cases according to the regularity H 3 (S) or C 3 ( S) of the solution u.

A less regular solution

Here we assume that the solution of the continuous problem (1) u belongs to H 3 (S) and f is a continuous function in S. Let P 1 (e i ) denote the set of polynomials of degree at most 1 on e i , for all i ∈ {1, . . . , N }. We define the discrete variational space

W h = {w h = (w i ) i=1,...,N ∈ V h s.t. w i ∈ P 1 (e i ), ∀i = 1, . . . , N }. ( 50 
)
Let U h ∈ W h be the solution of the finite element problem

a h (U h , w h ) = F (w h ), ∀w h ∈ W h . (51) 
In order to compare u and U h in S, we will use an interpolant I h u of u and a lifting R h U h of U h defined as follows: Let us denote K h i,j =]ih, (i + 1)h[×]jh, (j + 1)h[, for each i, j ∈ {0, . . . , n -1}. Observe that

S = n-1 i=0 n-1 j=0 K h i,j ∪ R h , (52) 
and therefore the set of Kh i,j is a triangulation of S. Hence let I h u denote the Lagrange interpolation of u related to this triangulation, namely I h u is the function such that its restriction to K h i,j belongs to Q 1 (K h i,j ) (where Q 1 is the space of polynomials in (x, y) of degree at most 1 in each variable x and y) and that coincides with u at each node v ∈ N h . As a consequence

I h u is continuous on S. Finally R h U h = I h U h in the sense that its restriction to K h i,j fulfils R h U h ∈ Q 1 (K h i,j ) and R h U h (v) = U h (v), ∀v ∈ K h i,j ∩ N h . (53) 
Thus R h U h coincides with U h on R h and is continuous on S. Now we aim at approximating u by U h . The estimate of the error is made with the help of the following three lemmas.

Lemma 9. |I h u -R h U h | 1,S √ h|I h u -U h | 1,R h . ( 54 
)
Proof. According to Lemma 5, with Φ :

Ĉ → K h i,j : x → (ih, jh) + h(x + 1 2 ) |I h u -R h U h | 1,K h i,j | I h u -R h U h | 1, C . (55) 
Let us denote

Q 0 1 ( C) = {q ∈ Q 1 ( C), ∂ C q = 0}. Take q ∈ Q 1 ( C), then |q| 1, C = |πq| 1, C ≤ πq 1, C , where πq = q -∂ C q ∈ Q 0 1 ( C). Note that Q 0 1 ( C) is a finite dimensional space and | • | 1,∂ C is a norm on this space. So πq 1, C |πq| 1,∂ C = |q| 1,∂ C .
We have thus proved that

∀q ∈ Q 1 ( C), |q| 1, C |q| 1,∂ C . (56) 
But

I h u -R h U h ∈ Q 1 ( C).
Thanks to (55) and (56), we have

|I h u -R h U h | 1,K h i,j | I h u -R h U h | 1,∂ C ,
and owing to Lemma 5 again,

|I h u -R h U h | 1,K h i,j √ h|I h u -U h | 1,∂K h i,j . (57) 
Collecting the pieces, we obtain

|I h u -R h U h | 2 1,S = i,j |I h u -R h U h | 2 1,K h i,j h i,j |I h u -U h | 2 1,∂K h i,j h|I h u -U h | 2 1,R h ,
the last inequality following from the fact that each edge of R h is in the boundary of two domains K h i,j .

Lemma 10. If u ∈ H 2 (S), then

|I h u -u| 1,R h √ h|u| 2,S . (58) 
Proof. Using Lemma 5,

|I h u -u| 1,∂K h i,j = h -1/2 | I h u -u| 1,∂ C ≤ h -1/2 || I h u -u|| 1,∂ C .
Thanks to a trace theorem (see Theorem 1.5.2.1 in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] for instance), this leads to

|I h u -u| 1,∂K h i,j h -1/2 || I h u -u|| 2, C . (59) 
By the classical interpolation error estimate (see for instance Theorem 3.1.6 in [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]), we have

|| I h u -u|| 2, C |û| 2, C .
Owing to Lemma 5 again,

|| I h u -u|| 2, C h|u| 2,K h i,j . (60) 
Then ( 59) and (60) imply

|I h u -u| 1,∂K h i,j √ h|u| 2,K h i,j
. We conclude the proof by squaring this inequality and summing up for i, j ∈ {0, . . . , n -1}.

Lemma 11. Let us assume that f ∈ C(S). Then

||f || R h ≤ √ 2 h -1/2 ||f || ∞,S . (61) 
Proof. Let us use the notation of the proof of Lemma 1. Then

||f || 2 L i = 1 0 |f (x, ih)| 2 dx ≤ ||f || 2 ∞,S (62) 
Obviously we have the same estimate for ||f || 2 C j . This leads to

||f || 2 R h = n-1 i=1 ||f || 2 L i + n-1 j=1 ||f || 2 C j ≤ 2n||f || 2 ∞,S .
Since h = 1/n, we obtain the expected result.

Proposition 12. Let u h ∈ V h denote the solution of ( 12) and U h ∈ W h the solution of (51).

Let us assume that the datum f belongs to C(S). Then

||u h -U h || 1,R h √ h||f || ∞,S . (63) 
Proof. It can be proven (see for example Theorem 3.1.6 in [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]) that

||u h -U h || 1,R h h|u h | 2,R h . ( 64 
)
But u h is a solution of (2), so

|u h | 2,R h = | f | R h = 1 2 ||f || R h . (65) 
Due to Lemma 11,

|u h | 2,R h h -1/2 ||f || ∞,S . (66) 
The aim then follows from (64) and (66).

Theorem 13. Let U h ∈ W h denote the solution of (51), and R h U h be defined by (53). Let us assume that the solution u of the continuous problem (1) belongs to H 3 (S), and the datum f belongs to C(S). Then

||u -R h U h || 1,S h (||u|| 3,S + ||f || ∞,S ) . (67) 
Proof. As the trace of I h u -R h U h is equal to 0 on ∂S, we have

||I h u -R h U h || 1,S |I h u -R h U h | 1,S . (68) 
Lemma 9 leads to

||I h u -R h U h || 1,S √ h|I h u -U h | 1,R h √ h (|I h u -u| 1,R h + |u -u h | 1,R h + |u h -U h | 1,R h ) . (69) 
We deduce from Lemma 10, Corollary 8 and Proposition 12 that

||I h u -R h U h || 1,S h (||u|| 3,S + ||f || ∞,S ) . ( 70 
)
On the other hand, thanks to Theorem 3.1.6 of [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF],

||u -I h u|| 1,S h|u| 2,S . (71) 
We conclude with (70) and (71).

A more regular solution

For more regular solutions, we will exploit the analogy with a finite difference scheme to get a pointwise convergence result.

For every v ∈ N int h , we define

λ v ∈ W h such that λ v (v) = 1 and λ v (v ) = 0, for all v ∈ N h such that v = v.
Remark that the support of λ v is included in {ē i ; i ∈ I v } and that the set {λ v , v ∈ N int h } forms a basis of the space W h . The stiffness matrix M h of problem (51) is easily computed. More precisely, we enumerate the interior nodes v ∈ N int h line by line, namely let us denote v 1 = (h, h), v 2 = (2h, h), . . . , v n-1 = ((n -1)h, h), v n = (h, 2h), v n+1 = (2h, 2h), . . . , v 2n-2 = ((n -1)h, 2h), . . . v (n-1) 2 = ((n -1)h, (n -1)h). Let M h denote the stiffness matrix such that (M h ) i,j = a h (λ v i , λ v j ), ∀i, j ∈ {1, . . . , (n -1) 2 }.

Then M h is a symmetric matrix that can be written

M h = 1 h Ãh ( 72 
)
where

Ãh =         A 1,1 A 1,2 0 ... 0 A 2,1 A 2,2 A 2,3 . . . 0 0 A 3,2 A 3,3 . . . 0 . . . . . . . . . . . . . . . 0 . . . 0 A n-1,n-2 A n-1,n-1         . ( 73 
)
Each block A k,l is a symmetric matrix of dimension (n -1) and satisfy for all k ∈ {1, . . . , n -1},

A k,k-1 = A k-1,k = -I n-1 (I n-1
is the identity matrix of dimension (n -1)), and

A k,k =      4 -1 ... 0 -1 4 . . . . . . . . . . . . . . . -1 0 . . . -1 4      . ( 74 
)
Set m = (n -1) 2 (for shortness we skip the dependence of m on h), as U h belongs to W h , it can be expressed in the basis (λ v k ) k=1...m as follows:

U h = m k=1 U h (v k )λ v k .
As usual, U h is the solution of problem (51) if and only if

M h U h = F h ( 75 
)
where U h = (U h (v 1 ), ..., U h (v m )) and F h = (F (λ v 1 ), ..., F (λ vm )) .

Now we want to check that the values of U h at the nodes are a good approximation of the values of u. To this end, we observe that M h is closely related to the matrix obtained by using the finite difference method to approximate the continuous problem [START_REF] Axelsson | Iterative solution methods[END_REF]. Indeed if D h denote the approximation of the solution u of (1) with the finite difference method, then D h is solution of the linear system [START_REF] Lascaux | Analyse numérique matricielle appliquée à l'art de l'ingénieur[END_REF] A

h D h = F h , (76) 
where

A h = 1 h M h = 1 h 2 Ãh ( 77 
)
with Ãh defined by ( 73) and

F h = (f (v 1 ), ..., f (v m )) .
For further purposes, we state the following two results (see Lemma 6.2 of [START_REF] Axelsson | Iterative solution methods[END_REF] for the proof of the first result, the second one being proved in a fully similar way, see also Property 1.20 of [START_REF] Quarteroni | Numerical mathematics[END_REF]). Proposition 14. Let A ∈ R n×n satisfying the following conditions (1) ∀i = j, a ij ≤ 0, and (2) ∀i = 1, . . . , n, n j=1 a ij > 0, then A is a monotone matrix, i. e., if X = (x i ) n i=1 ∈ R n is such that AX ≥ 0 (in the sense that (Ax) i ≥ 0, for all i = 1, . . . , n), then X ≥ 0.

Remark 15. The result of Proposition 14 still holds if the assumption (2) is replaced by (2') A is a regular matrix and for all i = 1, . . . , n, n j=1 a ij ≥ 0. Corollary 16. Ãh and A h given by (77) are monotone matrices.

Proof. Since Ãh is symmetric and positive definite, Ãh is a regular matrix. Moreover, Ãh fulfils condition (1) of Proposition 14 and condition (2') of Remark 15.

Proposition 17. Consider u the solution of Problem (1) and suppose that u ∈ C 3 (S). Set U = (u(v 1 ), ..., u(v m )) and let D h be the solution of equation (76). Then

A h (U -D h ) = η(u), with η(u) = (η(u)(v 1 ), ..., η(u)(v m )) , where η(u)(x i , y i ) = - h 6 
∂ 3 u ∂x 3 (x i + θ i,1 h, y i ) - ∂ 3 u ∂x 3 (x i -θ i,2 h, y i ) + ∂ 3 u ∂y 3 (x i , y i + θ i,3 h) - ∂ 3 u ∂y 3 (x i , y i -θ i,4 h)
with some θ i,j ∈]0; 1[ and (x i , y i ) being the coordinates of v i . Moreover, one has

||η(u)|| ∞ = max i=1,...,m |η(u)(x i , y i )| hM 3 ,
where

M 3 = ||D 3 u|| ∞ = max (x, y) ∈ S |α| = 3 |D α u(x, y)|.
Proof. This result is just a consequence of Taylor's formula. We refer the reader to [START_REF] Lascaux | Analyse numérique matricielle appliquée à l'art de l'ingénieur[END_REF] for the details.

Lemma 18. Let W = (w 1 , . . . , w m ) , G = (g 1 , . . . , g m ) ∈ R m be such that A h W = G. Then, for all i = 1, . . . , m,

|w i | ≤ 1 4 [x i (1 -x i ) + y i (1 -y i )] ||G|| ∞ (78) 
where (x i , y i ) are the coordinates of v i and ||G|| ∞ = max i=1,...,m

|g i |.
Proof. Let us consider w defined by w(x, y)

= 1 4 (x(1 -x) + y(1 -y)) h, with h = ||G|| ∞ . We notice that ∂ 2 w ∂x 2 = ∂ 2 w ∂y 2 = -1 2 h
, and thus w ∈ C 4 (S) is solution of

-∆ w = h in S w = 0 on ∂S.
We write D w h for the solution of the following finite difference problem:

A h D w h = H where H = h(1, • • • , 1)
. Owing to Proposition 17 and noticing that η( w) = 0, we get

A h ( W -D w h ) = 0
where W = ( w 1 , ..., w m ) with w i = w(v i ), for every i ∈ {1, . . . , m}. Comparing the two last identities, we obtain

A h W = H. (79) 
Since for all i ∈ {1, . . . , m}, h

= ||G|| ∞ ≥ |g i |, we deduce from (79) that (A h W ) i ≥ |(A h W ) i |.
This implies that A h ( W -W ) ≥ 0 and A h ( W + W ) ≥ 0. As A h is a monotone matrix, this leads to W -W ≥ 0 and W + W ≥ 0. In other words, for every i = 1, ..., m, w i ≥ |w i | and thanks to the definition of w, we finally get (78).

Proposition 19. The finite difference problem (76) admits a unique solution D h . Assume that u ∈ C 3 (S) and set

D h = (D h (v 1 ), ..., D h (v m )) , then for every i = 1, . . . , m, we have |u(v i ) -D h (v i )| M 3 h[x i (1 -x i ) + y i (1 -y i )], (80) 
with M 3 = ||D 3 u|| ∞ , (x i , y i ) denotes the coordinates of v i , and the numerical constant appearing here (and below) is independent of u, h and i.

Proof. Due to Corollary 16, A h is a monotone matrix and consequently A h is regular. This implies that there exists a unique solution D h of (76).

Owing to Proposition 17,

A h (U -D h ) = η(u).
Let us apply Lemma 18 with W = U -D h and G = η(u). Then

|(U -D h )(v i )| ≤ 1 4 [x i (1 -x i ) + y i (1 -y i )]||η(u)|| ∞ .
The conclusion follows directly from the estimates of ||η(u)|| ∞ given in Proposition 17.

Proposition 20. If f ∈ C 1 (S), then F (λ v ) h -f (v) h ∇f ∞,S , ∀v ∈ N int h .
Proof. Let v ∈ N int h , it is easy to prove that for all i ∈ I v ,

e i λ v (x)dx = h 2 . (81) 
Thus we get successively

F (λ v ) h -f (v) = 1 h i∈Iv e i f i (x)λ v (x)dx -hf (v) ≤ 1 h i∈Iv e i f i (x)λ v (x)dx - h 4 f (v) ≤ 1 h i∈Iv e i f i (x)λ v (x)dx - f (v) 2 e i λ v (x)dx ≤ 1 h i∈Iv max x∈e i f i (x) - f (v) 2 e i λ v (x)dx ≤ 1 h i∈Iv max x∈e i f i (x) - f (v) 2 h 2 . ( 82 
)
Since

f i = 1 2 γ i f ,we have max x∈e i f i (x) - f (v) 2 ≤ sup z∈B(v,h) f (z) 2 - f (v) 2 (83) 
where

B(v, h) = {z ∈ S s.t. ||z -v|| 2 < h}. And since card(I v ) = 4, (82) and (83) imply 
F (λ v ) h -f (v) ≤ 2 sup z∈B(v,h) f (z) 2 - f (v) 2 . ( 84 
)
As f ∈ C 1 (S), we have

∀z ∈ B(v, h), |f (z) -f (v)| ≤ h max ξ∈S |∇f (ξ)|. ( 85 
)
The aim follows from (84) and (85).

Theorem 21. If u ∈ C 3 (S), then |(u -U h )(v i )| h u C 3 (S) , ∀i = 1, • • • , m.
Proof. Equalities (75) and (77) imply

A h U h = F h h .
Owing to (76), this leads to

A h (D h -U h ) = F h - F h h .
Thanks to Lemma 18, this implies

|(D h -U h )(v i )| ≤ 1 4 [x i (1 -x i ) + y i (1 -y i )] max i F h - F h h i ≤ 1 4 [x i (1 -x i ) + y i (1 -y i )] max v∈N int h f (v) - 1 h F (λ v ) .
Thanks to Proposition 20, since f ∈ C 1 (S),

|(D h -U h )(v i )| h[x i (1 -x i ) + y i (1 -y i )] u C 3 (S) .
Combining this estimate with (80) we obtain the expected estimate.

5 Some results for an arbitrary domain

Our goal is to extend some of the previous results to an arbitrary domain of the plane. Let us start with some notation. Let Ω ⊂ R 2 denote a bounded open domain with a smooth boundary.

Without loss of generality we can assume that Ω ⊂ S, where S denotes the square ]0; 1[×]0; 1[. We here consider the Dirichlet problem in Ω:

-∆u = f in Ω u = 0 on ∂Ω (86) 
with f ∈ C(Ω).

To approximate this problem by similar ones on a family of networks, we cut the square S as previously and use the same notation as before. Let us further denote

N int h,Ω = N int h ∩ Ω, N ext h,Ω = ∂Ω ∩ R h , N h,Ω = N int h,Ω ∪ N ext h,Ω , R h,Ω = R h ∩ Ω and R h,Ω = {e Ω i ; i = 1, . . . , N Ω }
, where e Ω i = Ω ∩ e i , ∀i = 1, ..., N Ω . We define the variational space

V Ω h = {u h = (u i ) i=1,...,N Ω ∈ N Ω i=1 H 1 (e Ω i ) s.t. u i (v) = u j (v) ∀v ∈ N int h,Ω , ∀i, j ∈ I v , u i (v) = 0 ∀v ∈ N ext h,Ω , ∀i ∈ I v }, (87) 
equipped with the norm

||u|| h,Ω = |u| 1,R h,Ω = N Ω i=1 e Ω i (u i (x)) 2 dx 1/2 . ( 88 
)
Introducing the bilinear and linear forms on

V Ω h a Ω h : V Ω h × V Ω h → R : (u h , w h ) → a Ω h (u h , w h ) = N Ω i=1 e Ω i u i (x)w i (x)dx, (89) 
F Ω (w h ) = N Ω i=1 e Ω i f i (x)w i (x)dx, ∀w h ∈ V Ω h , (90) 
we can consider the solution u Ω h ∈ V Ω h of (compare with [START_REF] Lumer | Espaces ramifiés, et diffusions sur les réseaux topologiques[END_REF])

∀w h ∈ V Ω h , a Ω h (u Ω h , w h ) = F Ω (w h ). ( 91 
)
5.1 An approximation result between the continuous problems Lemma 6 still holds : for all u ∈ V Ω h , one has

||u -u Ω h || h,Ω sup w h ∈V Ω h |a Ω h (u, w h ) -F Ω (w h )| ||w h || h,Ω . (92) 
Therefore we only need to estimate the consistency error.

Theorem 22. Let u denote the solution of (86) supposed to belong to H 3 (Ω), then sup

w h ∈V Ω h |a Ω h (u, w h ) -F Ω (w h )| ||w h || h,Ω √ h||u|| 3,Ω . (93) 
Proof. As we have assumed Ω ⊂ S, there exists h 0 > 0 small enough such that Ω ⊂] h 0 2 , 1 -

h 0 2 [×] h 0 2 , 1 -h 0 2 [
. From now on, we suppose that h ∈]0, h 0 [. For w ∈ V Ω h , we write w for the extension of w by 0 outside Ω. Then w ∈ V h . Owing to Theorem 1.4.3.1 of [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], there exists an extension Eu ∈ H 1 0 (S) ∩ H 3 (S) of u such that

||Eu|| 3,S ≤ c||u|| 3,Ω , (94) 
where c is a positive constant independent of u and that depends only on Ω and most importantly, Eu coincides with u on Ω. Then for w ∈

V Ω h , a Ω h (u, w) -F Ω (w) = N Ω i=1 e Ω i u i (x)w i (x)dx - N Ω i=1 e Ω i fi (x)w i (x)dx = - N Ω i=1 e Ω i u i (x)w i (x)dx - N Ω i=1 e Ω i fi (x)w i (x)dx
where we have used Kirchoff's law satisfied by u at each interior nodes. Consequently,

a Ω h (u, w) -F Ω (w) = - N Ω i=1 e Ω i (u i + f i )(x)w i (x)dx = - N i=1 e i ((Eu) i + f i )(x) w i (x)dx since w = 0 in S \ Ω and Eu = u in Ω. As h < h 0 , w = 0 in R h v defined by (20) for v ∈ N ext h and hence a Ω h (u, w) -F Ω (w) = - v∈N int h R h v ((Eu) + f )(x) w(x)dx.
Thanks to (37),

a Ω h (u, w) -F Ω (w) ≤ v∈N int h R h v ((Eu) + f )(x) w(x)dx √ h v∈N int h | w| 1,R h v ||Eu|| 3,C h v + || w|| R h v |Eu| 3,C h v .
The Cauchy-Schwarz inequality leads to

a Ω h (u, w) -F Ω (w) √ h (| w| 1,R h ||Eu|| 3,S + || w|| R h |Eu| 3,S ) .
Applying Lemma 1 to w ∈ V h , we get

a Ω h (u, w) -F Ω (w) √ h| w| 1,R h ||Eu|| 3,S .
As | w| 1,R h = |w| 1,R Ω h , and thanks to (94), we have shown a

Ω h (u, w) -F Ω (w) √ h|w| 1,R Ω h ||u|| 3,Ω .
The estimates (92) and (93) directly lead to the Corollary 23. Let u denote the solution of (86), and let u Ω h be the solution of (91

). If u ∈ H 3 (S), then ||u -u Ω h || h,Ω √ h||u|| 3,Ω . (95) 

The finite element method on the networks

Let us define the discrete variational space

W Ω h = {w h = (w i ) i=1,...,N Ω ∈ V Ω h s.t. w i ∈ P 1 (e Ω i ), ∀i = 1, . . . , N Ω }. (96) 
We write U Ω h ∈ W Ω h for the unique solution of the finite element problem

a Ω h (U Ω h , w h ) = F Ω (w h ), ∀w h ∈ W Ω h . (97) 
Proposition 24. Let u Ω h ∈ V Ω h denote the solution of (91) and let U Ω h ∈ W Ω h be the solution of (97). Let us assume that the datum f belongs to C(Ω). Then

||u Ω h -U Ω h || h,Ω √ h||f || ∞,Ω . (98) 
Proof. As in the proof of Lemma 11, we can show that

||f || 2 L i ∩Ω ≤ ||f || 2 ∞,Ω . (99) 
So the equivalent of Lemma 11 holds:

||f || R h,Ω ≤ √ 2 h -1/2 ||f || ∞,Ω . (100) 
Then we argue exactly as in the proof of Proposition 12, replacing Lemma 11 with inequality (100).

Note that under the assumptions u ∈ H 3 (Ω) and f ∈ C(Ω), the estimates (95) and (98)

yield ||u -U Ω h || h,Ω √ h(||u|| 3,Ω + ||f || ∞,Ω ),
which shows the convergence of U Ω h to u. Note further that a similar estimate in the H 1 -norm of Ω (i.e. an estimate like (67)) seems difficult to obtain since the estimate of ũ -I h ũ (where ũ is the extension of u by zero outside Ω) is problematic near the boundary of Ω. Nevertheless such an estimate holds far from the boundary, namely if we set Ω h = ∪ i,j: Ki,j ⊂Ω K i,j , then, with the same assumptions as before, as in Theorem 13 we can prove that

||u -R h Ũ Ω h || 1,Ω h h (||u|| 3,Ω + ||f || ∞,Ω
) , where Ũ Ω h is the extension by zero of U Ω h outside Ω. Remark 25. In comparison with a standard finite element method based on a triangulation of Ω, our method that consists to approach u by U Ω h is much simpler because the networks R Ω h are easily built. The associated stiffness matrix being still symmetric, positive definite and sparse, our method can be considered as an attractive alternative to the standard method. We refer to the next section for a comparison.

Numerical results

To illustrate our theoretical results we propose some numerical tests. First we take as exact solution:

u(x, y) = (x(1 -x)y(1 -y)) α , with a parameter α > 1.5. Note that this solution belongs to H 3 (S) whenever α > 2.5. First of all, we want to compare the solution u h of problem (2) and the approximation of u (solution of problem (1)) by the P1-finite element method in S, called u F E . On the one hand, we easily compute u h since for example, on a horizontal edge y = y 0

u h (x, y 0 ) = f (•, y 0 ) + Q(x)
where Q is a linear polynomial. By imposing Dirichlet boundary conditions, the continuity at the nodes and Kirchoff's law, we obtain that the coefficients of those polynomials are solutions of a linear system. On the other hand, u F E is computed with the help of the FreeFem++ software [START_REF]FreeFEM++ finite element programming environment[END_REF] using a triangular mesh with as many nodes as there are in the network. First for α = 3, we observe in Figure 1 that the contour lines of u h and of u F E at the same level of resolution are very similar.

In Figures 2 and3, we have plotted the L ∞ -error and the H 1 -error between the exact solution u and the solution u h (defined on the network) on a log-log scale for different values of α.

As expected, straight lines are obtained with different slopes specified in Table 1. We recover the expected rate of convergence 1/2 for the H 1 error whenever α > 2.5 whereas the results regarding the L ∞ norm are better than those stated by Corollary 8. It is even better than the case of a regular solution treated by Theorem 21 that predicted a converence rate of one. Actually for the chosen solution this improvement is caused by the small size of the term estimated in Proposition 20. That is why a second example is considered where the exact solution is defined by u(x, y) = sin(10πx) sin(10πy). In Figure 4, we see that the experimental rate of convergence of the L ∞ -norm is 1, as asserted in Theorem 21. 
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Table 1 :

 1 Convergence rates of L ∞ and H 1 errors

	α	L ∞ error H 1 error
	2.505	1.988	0.502
	1.9	1.767	0.474
	1.6	1.443	0.371