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Abstract Learning to rank is usually reduced to learning to score individual
objects, leaving the “ranking” step to a sorting algorithm. In that context, the sur-
rogate loss used for training the scoring function needs to behave well with respect
to the target performance measure which only sees the final ranking. A character-
ization of such a good behavior is the notion of calibration, which guarantees that
minimizing (over the set of measurable functions) the surrogate risk allows us to
maximize the true performance.

In this paper, we consider the family of order-preserving (OP) losses which
includes popular surrogate losses for ranking such as the squared error and pair-
wise losses. We show that they are calibrated with performance measures like
the Discounted Cumulative Gain (DCG), but also that they are not calibrated
with respect to the widely used Mean Average Precision and Expected Recipro-
cal Rank. We also derive, for some widely used OP losses, quantitative surrogate
regret bounds with respect to several DCG-like evaluation measures.

Keywords Learning to rank; calibration; surrogate regret bounds

1 Introduction

Learning to rank has emerged as a major field of research in machine learning
due to its wide range of applications. Typical applications include creating the
query-dependent document ranking in search engines, where one learns to order
sets of documents, each of these sets being attached to a query, using relevance
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judgments for each document as supervision. This task is known as subset ranking
[14]. Another application is label ranking (see e.g. [16, 31]), where one learns to
order a fixed set of labels depending on an input with a training set composed
of observed inputs and the corresponding weak or partial order over the label
set. Label ranking is a widely used framework to deal with multiclass/multilabel
classification when the application accepts a ranking of labels according to the
posterior probability of class membership instead of a hard decision about class
membership.

In a similar way to other prediction problems in discrete spaces like classifica-
tion, the optimization of the empirical ranking performance over a restricted class
of functions is most frequently an intractable problem. Just like one optimizes the
hinge loss or the log-loss in binary classification as surrogate for the classification
error, the usual approach in learning to rank is to replace the original performance
measure by a continuous, preferably differentiable and convex function of the pre-
dictions. This has lead many researchers to reduce the problem of learning to rank
to learning a scoring function which assigns a real value to each individual item of
the input set. The final ranking is then produced with a sorting algorithm. Many
existing learning algorithms follow this approach both for label ranking (see e.g.
[33, 15, 16]) and subset ranking [21, 4, 34, 14, 25, 5, 9]. This relaxation has two
advantages. First, the sorting algorithm is a very efficient way to obtain a rank-
ing (without scores, obtaining a full ranking is usually a very difficult problem).
Second, defining a continuous surrogate loss on the space of predicted scores is a
much easier task than defining one in the space of permutations.

While the computational advantage of such surrogate formulations is clear, one
needs to have guarantees that minimizing the surrogate formulation (i.e. what the
learning algorithm actually does) also enables us to maximize the ranking per-
formance (i.e. what we want the algorithm to do). That is, we want the learning
algorithm to be consistent with the true ranking performance we want to optimize.
[28] presents general definitions and results showing that an asymptotic guarantee
of consistency is equivalent to a notion of calibration of the surrogate loss with re-
spect to the ranking performance measure, while the existence of non-asymptotic
guarantees in the form of surrogate regret bounds are equivalent to a notion of
uniform calibration. A surrogate regret bound quantifies how fast the evaluation
measure is maximized as the surrogate loss is minimized. We note here that such
non-asymptotic guarantees are critical in machine learning where it is delusive to
hope for learning near-optimal functions in a strong sense. The calibration and
uniform calibration have been extensively studied in (cost-sensitive) binary classi-
fication (see e.g. [2, 35, 28, 27]) and multiclass classification [35, 29]. In particular,
under natural continuity assumptions, it was shown that calibration and uniform
calibration of a surrogate loss are equivalent for margin losses. In the context of
learning to rank with pairwise preferences, the non-calibration of many existing
surrogate losses with respect to the pairwise disagreement was studied in depth
in [18]. On the other hand, in the context of learning to rank for information re-
trieval, surrogate regret bounds for square-loss regression with respect to a ranking
performance measure called the Discounted Cumulative Gain (DCG, see [20]) was
shown in [14]. These bounds were further extended in [26] to a larger class of
surrogate losses.

In this paper, we analyze the calibration and uniform calibration of losses that
possess an order-preserving property. This property of a surrogate loss implies
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(and, to some extend, is equivalent to) the calibration with respect to a ranking
performance measure in the family what we call the generalized positional perfor-
mance measures (GPPMs). A GPPM is a performance measure which, up to a
suitable parametrization, can be written like a DCG. The study of GPPMs offer,
in particular, the possibility to extend the DGC to arbitrary supervision spaces
(e.g. linear orders, pairwise preferences) by first mapping the supervision to scores
for each item – scores that can be interpreted as utility values. The family of
GPPM includes widely known performance measures for ranking like the DCG and
its normalized version the NDCG, the precision-at-rank-K as well as the recall-
at-rank-K, and Spearman’s rank correlation coefficient (when the supervision is
a linear ordering). We also give practical examples of template order-preserving
losses, which can be instantiated for any specific GPPM to obtain a calibrated
surrogate loss.

To go further, we investigate conditions under which the stronger notion of
uniform calibration holds in addition to the simple calibration. Under natural
continuity conditions for the loss function, we show that any loss calibrated with a
GPPM is uniformly calibrated when the supervision space is finite, which stands
for the existence of a regret bound. Finally, we prove explicit regret bounds for
several convex template order-preserving losses. These bounds can be instantiated
for any GPPM, such as the (N)DCG, and recall/precision-at-rank-K. In particular,
we obtain the first regret bounds with respect to GPPMs for losses based on
pairwise comparisons, and recover the surrogate regret bounds of [14] and [26].
Our proof technique is different though, and we are able to slightly improve the
constant factor in the bounds.

As a by-product of our analysis, we investigate whether a loss with some order-
preserving property can be calibrated with two other measures than GPPMs,
namely the Expected Reciprocal Rank [10] used as reference in the recent Yahoo!
Learning to Rank Challenge [9] and the Average Precision which was used in past
Text REtrieval Conferences (TREC) competitions [32]. We surprisingly show a
negative result – even though these measures assume that the supervision itself
takes the form of real values (relevance scores). Our result implies that for any
transformation of the relevance scores given as supervision, the regression function
of these transformations is not optimal for the ERR or the AP in general. We do
believe that this result can help understand the limitations of the score-and-sort
approach to ranking, and put emphasis on an often neglected fact: the choice of
the surrogate formulation is not really a matter of supervision space, but should
be carefully chosen depending on the target measure. For example, one can use an
appropriate regression approach to optimize Pearson’s correlation coefficient when
the supervision is a full ordering of the set, but for the ERR or the AP, regression
approaches cannot be calibrated even though one gets real values for each item as
supervision.

The rest of the paper is organized as follows, Section 2 describes the framework
and the basic definitions. In Section 3, we introduce a family of surrogate losses
called the order-preserving losses, and we study their calibration with respect to
a wide range of performance measures. Then, we propose an analysis of sufficient
conditions under which calibration is equivalent to the existence of a surrogate
regret bound; this analysis is carried out by studying the stronger notion of uni-
form calibration in Section 4. In Section 5, we describe several methods to find
explicit formulas of surrogate regret bounds, and we exhibit some examples for
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common surrogate losses. The related work is discussed in Section 6, where we
also summarize our main contributions.

2 Ranking Performance Measures and Surrogate Losses

Notation A boldface character always denotes a function taking values in Rn or
an element of Rn for some n > 1. If f is a function of x, then fi(x), using normal
font and subscript, denotes the i-th component of f(x). Likewise, if x ∈ Rn, xi
denotes its i-th component.

2.1 Definitions and Examples

Scoring Functions and Scoring Performance Measures The prediction task we
consider is the following: considering a measurable space (X , ΣX ) and some integer
n > 1, the goal is to predict an ordering of a fixed set of n objects, which we
identify with the set of indices {1, ..., n}, for any x ∈ X . This ordering is predicted
with a score-and-sort approach. A scoring function f is any measurable function
f : X → Rn, and the ordering of the set {1, ..., n} given x ∈ X is obtained by
sorting the integers i by decreasing values of fi(x). Identifying the linear orders of
{1, ..., n} with the set Sn of permutations of {1, ..., n}, the predicted ordering can
thus be any permutation in arg sort(f(x)), where:

arg sort : s ∈ Rn 7→
{
σ ∈ Sn

∣∣∀0 < k < n, sσ(k) ≥ sσ(k+1)

}
Notice that with these definitions, for σ ∈ arg sort(f(x)), σ(k) denotes the

integer of {1, ..., n} whose predicted rank is k. Following the tradition in infor-
mation retrieval, “item i has better rank than item j according to σ” means
“σ−1(i) < σ−1(j)”, i.e. low ranks are better. Likewise, the top-d ranks stands for
the set of ranks {1, ...d}. Also notice that arg sort is a set-valued function because
of possible ties.

Predicting a total order over a finite set of objects is of use in many applications.
This can be found in information retrieval, where x represents a tuple (query, set
of documents) and the score fi(x) is the score given to the i-th document in
the set given the query. In practice, x contains joint feature representations of
(query, document) pairs and fi(x) is the predicted relevance of document i with
respect to the query. The learning task associated to this prediction problem has
been called subset ranking in [14]. Note that in practice, the set of documents for
different queries may vary in size, while in our work it is supposed to be constant.
Anyway, all our results hold if one allows to vary the set size, keeping it uniformly
bounded. Another example of application is label ranking (see e.g. [16]) where
x is some observed object such as a text document or an image, and the set
to order is a fixed set of class labels. In that case, x usually contains a feature
representation of the object, and a function fi is learnt for each label index i;
higher values of fi(x) represent higher predicted class-membership probabilities.
Large-margin approaches to multiclass classification (see e.g. [33, 15]) are special
cases of a score-and-sort approach to label ranking, where the prediction is the
top-ranked label.
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In the supervised learning setting, the prediction function is trained using a
set of examples for which some feedback, or supervision, indicative of the de-
sired ordering is given. In order to measure the quality of a predicted ordering
of {1, ..., n}, a ranking performance measure is used. It is a measurable function
r : Y × Sn → R+, where (Y, ΣY) is a measurable space which will be called the
supervision space, and each y ∈ Y provides information about which ordering are
desired. We take the convention that larger values of r (y, σ) mean that σ is an
ordering of {1, ..., n} in accordance to y. The supervision space may differ from one
application to the other. In search engine applications, the Average Precision (AP)
used in past TREC competitions [32], the Expected Reciprocal Rank (ERR) used
in the Yahoo! Learning to Rank Challenge [10, 9] or the (Normalized) Discounted
Cumulative Gain ((N)DCG) [20], assume the supervision space Y is defined as
{0, ..., p}n for some integer p > 0, where the i-th component of y ∈ Y is a judg-
ment of the relevance of the i-th item to rank w.r.t. the query (these performance
measures always favor better ranks for items of higher relevance). Other forms of
supervision spaces may be used though, for instance in recommendation tasks we
may allow user ratings on a continuous scale (yet usually bounded), or allow the
supervision to be a preference relation over the set of items, as proposed in one of
the earliest papers on learning to rank [13].

Most ranking performance measures used in practical application have the form
described above: they are defined on a prediction space which is exactly the set
of linear orderings, and do not directly take ties into account. In order to define
performance measures for scoring functions, we take the convention that ties are
broken randomly. Thus, given a ranking performance measure r, we overload the
notation r (the context is clear given the arguments’ names) to define a scoring
performance measure as follows:

∀s ∈ Rn,∀y ∈ Y, r(y, s) = 1

| arg sort(s)|
∑

σ∈arg sort(s)

r(y, σ)

where |S| denotes the cardinal of a set. Of particular importance in our work will
be the following family of ranking performance measures, which we call generalized
positional performance measures (GPPM):

Definition 2.1 (Generalized Positional Performance Measure) Let r : Y×
Sn → R+ be a ranking performance measure. We say that r is a (u, φ)-generalized
positional performance measure (abbreviated (u, φ)-GPPM) if φ : {1..n} → R+,
u : Y → Rn+ is measurable, and:

1. φ(1) > 0 and ∀0 < k < n, φ(k) ≥ φ(k + 1) ≥ 0
2. ∃b : Y → R, such that r : (y, σ) 7→ b(y) +

∑n
k=1 φ(k)uσ(k)(y).

The most popular example of a GPPM is the DCG, for which φ(i) = 1{i≤k}
log(1+i)

and ui(y) = 2yi − 1. The function u can be seen as mapping the supervision y
to utility scores for each individual item to rank. We may therefore refer to u as
the utility function of the (u, φ)-GPPM r. The name we use for this family of
measures comes from the positional models described in [10] in which one orders
the documents according to the utility (i.e. the relevance) of a document w.r.t. the
query. We call them “generalized”, because the utility function is, in our case, only
a means to transform the supervision so that a given performance measure can be
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assimilated to a positional model. However, in a specific context, this transforma-
tion is not necessarily the relevance of a document with respect to the query as a
user may define it. In particular, in information retrieval, the relevance of a doc-
ument is usually defined independently of the other documents, while in the case
of GPPMs, the utility score may depend on the relevance of the other documents.
The Normalized DCG is a typical example of such a GPPM.

Table 1 summarizes the formulas for several, widely used GPPMs: the (Nor-
malized) Discounted Cumulative Gain (N)DCG, the precision at rankK (Prec@k),
recall at rank K (Rec@k) and Area Under the ROC Curve (AUC). All of these
performance measure assume Y ⊂ Rn+. We also provide the formula of Spearman’s
rank correlation coefficient (Spearman) as a GPPM to give an example where
Y 6⊂ Rn, but the set of total orders of {1, ..., n} instead. For completeness, we
also give the formula and the supervision space for the Expected Reciprocal Rank
(ERR) and the Average Precision (AP). Note that for GPPMs, the utility function
may not be unique, Table 1 only gives one possible formulation.

Table 1 Summary of common Performance Measures. The function b is equal to zero for
all measures except for the AUC (b(y) =

(‖y‖1−1)
2(n−‖y‖1)

) and for Spearman Rank Correlation

Coefficient (b(y) = − 3(n−1)
(n+1)

). The details of the calculations are given in Appendix B.1.

Y Name Formula φ(i) ui(y)

DCG@k
k∑
i=1

2yσ(i) − 1

log(1 + i)

1{i≤k}

log(1 + i)
2yi − 1

y ∈ {0..p}n
NDCG@k

DCG@k(y, σ)

max
σ′∈Sn

DCG(y, σ′)

1{i≤k}

log(1 + i)

2yi − 1

max
σ′∈Sn

DCG@k(y, σ′)

ERR

n∑
i=1

Ri

i

i−1∏
k=1

(1−Rk) × ×

with Ri = 2
yσ(i)–1

2p

Prec@k
k∑
i=1

yσ(i)

k
1
k
1{i≤k} yi

y ∈ {0, 1}n
Rec@k

k∑
i=1

yσ(i)

‖y‖1
1{i≤k}

yi

‖y‖1

AP
1

‖y‖1

∑
i:yi=1

Prec@σ-1(i) × ×

AUC
∑
i:yi=1
j:yj=0

1{σ-1(i)<σ-1(j)}
‖y‖1(n− ‖y‖1)

n− i
yi

‖y‖1(n− ‖y‖1)

y ∈ Sn Spearman 1− Zn
n∑
i=1

(σ-1(i)− y-1(i))2 12(n−i)
n(n2−1)

n− y−1(i)

with Zn = 6
n(n2-1)
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Learning Objective and Surrogate Scoring Loss In the remaining of the paper, we
will use many results due to Steinwart [28], and thus follow its basic assumptions
that Y is a polish space (i.e. a separable completely metrizable space) and X is
complete in the sense of [28, p. 3]. These assumptions are purely technical and
allow to deal with ranking tasks in their full generality (note, in particular, that
any open or closed subset or Rn is a polish space, as well as any finite set).
Consider a probability measure P on X ×Y, which is unknown, and a ranking (or,
equivalently, scoring) performance measure r. Given a sample drawn i.i.d. from
P , the goal of learning to rank is to find a scoring function f with high ranking
performance R(P, f) on P , defined by:

R(P, f) =
∫
X×Y

r (y, f(x))dP (x, y) =

∫
X

∫
Y
r (y, f(x))dP (y|x)dPX (x)

where PX is the marginal distribution of P over X and P (.|.) is a regular con-
ditional probability. As usual in learning, the performance measure we intend to
maximize is neither continuous nor differentiable. The optimization of the empir-
ical performance is thus intractable, and the common practice is to minimize a
surrogate scoring risk as a substitute for directly optimizing ranking performance.
This surrogate is chosen to ease the optimization of its empirical risk. A natural
way to obtain computationally efficient algorithm is to consider as surrogate a
continuous and differentiable function of the predicted scores. More generally, we
define a scoring loss as a measurable function ` : Y×Rn+ → R+. We use the conven-
tion that scoring losses, which are substitutes for the ranking/scoring performance,
are minimized while the latter are maximized. This will avoid ambiguities about
which function is the surrogate and which one is the target.

A major issue of the field of learning to rank is the design of surrogate scoring
losses that are, in some sense, well-behaved with respect to the target ranking
performance measure. The next subsection will define criteria that should be sat-
isfied for a reasonable surrogate loss. But before going into more details and in
order to give a concrete example of a family of losses that may be useful when
the performance measure is a GPPM, we define the following family of template
losses:

Definition 2.2 (Template Scoring Loss) Let Γ be a subset of Rn+. A template
scoring loss is a measurable function ` : Γ×Rn → R+. For any measurable function
u : Y → Rn+ with u(Y) ⊂ Γ , the u-instance of `, denoted `u, is defined by:

∀y ∈ Y,∀s ∈ Rn, `u (y, s) = ` (u(y), s)

A typical example of template loss is the squared loss defined by ` (v, s) =∑n
i=1(vi− si)

2 on Γ = Rn, as proposed in [14]. Other examples of template losses
will be given in Section 3.

Note that many surrogate losses have been proposed for learning to rank (see
[25] for an exhaustive review), and many of them are actually not template losses.
SVMmap [34], and many other instances of the structural SVM approach to rank-
ing are good examples [23, 8]. Their advantage is to be designed for a specific
performance measure, which may work better in practice when this performance
measure is used for evaluation. On the other hand, template losses have the al-
gorithmic advantage of providing an interface that can easily be specialized for a
specific GPPM.
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2.2 Calibration and Surrogate Regret Bounds

We now describe some natural properties that surrogate loss functions should sat-
isfy. This subsection defines the notations, and briefly summarizes the definitions
and results from [28] which we are the basis of our work. The notations defined in
this section are used in the rest of the paper without further notice.

Calibration A natural property that a surrogate loss should satisfy is that if one
achieves, in some way, to find a scoring function minimizing its associated risk,
then the ranking performance of this ranking function should be optimal as well.
More formally, consider any scoring function f and let us denote:

– L(P, f) =
∫
X
∫
Y ` (y, f(x))dP (y|x)dPX (x) the scoring risk of f ;

– L(P ) = inf
f :X→Rn

f measurable

L(P, f) the optimal scoring risk;

– R(P ) = sup
f :X→Rn

f measurable

R(P, f) the optimal ranking performance.

Then, we want the following proposition to be true for any sequence (fk)k≥0 of
scoring functions:

L(P, fk) −→
k→∞

L(P ) ⇒ R(P, fk) −→
k→∞

R(P ) (1)

Condition (1) is, in fact, equivalent to the notion of calibration (see [28, Definition
2.7]), which we describe now.

Let D denote the set of probability distributions over Y, and let ∆ ⊂ D.
Following [28, Definition 2.6], we say that P is a distribution of type∆ if P (.|x) ∈ ∆
for all x. Then, [28, Theorem 2.8] shows that (1) hold for any distribution of type
∆ such that R(P ) < +∞ and L(P ) < +∞ if and only if ` is r-calibrated on ∆,
according to the following definition:

Definition 2.3 (Calibration) Let r be a ranking performance measure, ` a scor-
ing loss and ∆ ⊂ D where D is the set of probability distributions over Y.

We say that ` is r-calibrated on ∆ if for any ε > 0 and any 4 ∈ ∆, there exists
δ > 0 such that:

∀s ∈ Rn, L (4, s)− L (4) < δ =⇒ R (4)−R (4, s) < ε

where (4, s) 7→ L (4, s) and (4, s) 7→ R (4, s) are called respectively the inner risk
and inner performance, and the quantities L (4, s), L (4), R (4, s) and R (4) are
respectively defined by:

– ∀s ∈ Rn, L (4, s) =

∫
Y
` (y, s)d4(y) and L (4) = inf

s∈Rn
L (4, s);

– ∀s ∈ Rn, R (4, s) =

∫
Y
r (y, s)d4(y) and R (4) = sup

s∈Rn
R (4, s).

The definition of calibration allows us to study the implication (1), which
considers risks and performance defined on the whole data distribution, to the
study of the inner risks which are much easier to deal with since they are only
functions of the distribution over the supervision space and a score vector. Thus,
the inner risk and the inner performance are the essential quantities we investigate
in this paper. The study of the calibration w.r.t. GPPMs of some surrogate losses
will be treated in Section 3.
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Remark 1 The criterion given by Equation 1 studies the convergence to perfor-
mance of the best possible scoring function, even though reaching this function is
practically unfeasible on a finite training set since we need to consider a restricted
class of functions. Nonetheless, as discussed in [35] in the context of multiclass
classification, the best possible performance can be achieved asymptotically as the
number of examples grows to infinity, using the method of sieves or structural
risk minimization, that is by progressively increasing the models complexity as
the training set size increases.

Uniform Calibration and Surrogate Regret Bounds While the calibration gives us
an asymptotic relation between the minimization of the surrogate loss and the
maximization of the performance, it does not give us any information on how fast
the regret of fk in terms of performance defined by R(P )−R(P, fk) decreases to 0
when the surrogate regret of fk, defined by L(P, fk)−L(P ), tends to 0. An answer
to this question can be given by a surrogate regret bound, which is a function
Υ : R+ → R+ with Υ (0) = 0 and continuous in 0, such that, for any distribution
P of type ∆ satisfying R(P ) < +∞ and L(P ) < +∞, we have, for any scoring
function f :

R(P )−R(P, f) ≤ Υ (L(P, f)− L(P ))

[28, Theorems 2.13 and 2.17] show that the existence of such a surrogate regret
bound is equivalent to a notion stronger than calibration called uniform calibration
(see [28, Definition 2.15]):

Definition 2.4 (Uniform Calibration) With the notations of Definition 2.3,
we say that ` is uniformly r-calibrated on ∆ if, for any ε > 0, there exists δ > 0
such that for any 4 ∈ ∆ and any s ∈ Rn:

L (4, s)− L (4) < δ =⇒ R (4)−R (4, s) < ε

Some criteria to establish the uniform calibration of scoring losses w.r.t. GPPMs
are provided in Section 4. Quantitative regret bounds for specific template scoring
losses will then be given in Section 5.

3 Calibration of Order-Preserving Losses

In this section, we address the following question: which surrogate losses are cal-
ibrated w.r.t. GPPMs. This leads us to define the order-preserving property for
surrogate losses. Since there is no reason to believe that these losses are calibrated
only with respect to GPPMs, we address the question of whether they can be
calibrated with two other popular performance measures, namely the ERR and
the AP. In the remaining of the paper, we make extensive use of the notations of
2.3.

Notation We introduce now additional notations. For a ranking performance mea-
sure r, we denote Dr = {4 ∈ D|∀s ∈ Rn, R (4, s) < +∞}. Likewise, we define
D` = {4 ∈ D|∀s ∈ Rn, L (4, s) < +∞} for a scoring loss `, and denote D`,r the
intersection of Dr and D`. Finally, given let r be (u, φ)-GPPM and let 4 ∈ Dr.
We denote U(4) =

∫
Y u(y)d4(y) the expected value of u. One may notice that

Dr = {4|‖U(4)‖∞ < +∞}.
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3.1 Order-Preserving Scoring Losses

As the starting point of our analysis, we first notice that by definition of a (u, φ)-
GPPM, the function φ is a non-increasing function of the rank. Thus, for any
given value of the supervision, the (u, φ)-GPPM is maximized by predicting items
of higher utility values at better ranks by the rearrangement inequality1; and
considering the additive structure of a (u, φ)-GPPM, the expected value of the
(u, φ)-GPPM over a distribution 4 ∈ Dr, is maximized by ranking the items
according to their expected utility values. More formally, for any (u, φ)-GPPM
and any 4 ∈ Dr:

arg sort(s) ⊆ arg sort(U(4))⇒ R (4, s) = R (4) (2)

Moreover, the reverse implication holds when φ is strictly decreasing (i.e. φ(i) >
φ(i+ 1) for any 0 < i < n).

This result was already noticed by [14], where the authors advocated for regres-
sion approaches for optimizing the DCG and in [26] where the authors studied a
generalization of regression losses based on Bregman divergences (see Eq. 5 below).
This result emphasizes on the fact that optimizing a GPPM is still a much weaker
objective in general than regressing the utility values – preserving the ordering
induced by the utility function is sufficient. Consequently, it is natural to look for
surrogate losses for which the inner risk is minimized only by scores which order
the items like U : by the definition of calibration, any such loss is r-calibrated with
any (u, φ)-GPPM r. This leads us to the following definition:

Definition 3.1 (Order-Preserving Loss) Let u : Y → Rn+ be a measurable
function, ` be scoring loss and ∆ ⊂ D`. We say that the scoring loss ` : Y×Rn → R
is order-preserving w.r.t. u on ∆ if, for any 4 ∈ ∆, we have:

L (4) < inf
{
L (4, s)

∣∣ s ∈ Rn, arg sort(s) 6⊆ arg sort(U(4))
}

Moreover, a template scoring loss ` (see Definition 2.2) is called order-preserving
if it is order-preserving with respect to the identity function of R on D`.

It is clear that in general, if a loss is order-preserving w.r.t. some function u,
then it is not be order-preserving w.r.t. another utility function u′ unless their is a
strong relationship between the two functions (e.g. they are equal up to a constant
additive or multiplicative factor). As such, in order to obtain loss functions cali-
brated with any GPPM, template scoring losses are a natural choice. We provide
here some examples of such losses, for which surrogate regret bounds are given in
Section 5:

– Pointwise template scoring losses:

∀v ∈ Γ ⊂ Rn, s ∈ Rn, ` (v, s) =
n∑
i=1

λ(vi, si) . (3)

1 The rearrangement inequality states that for any real numbers x1 ≥ ... ≥ xn ≥ 0 and y1 ≥
... ≥ yn, and for any permutation σ ∈ Sn, we have x1yσ(1)+ ...+xnyσ(n) ≤ x1y1+ ...+xnyn.
(the dot product is maximized by pairing greater xis with greater yis). Moreover, if the xis
are strictly decreasing, then the equality holds if and only if yσ(1) ≥ ... ≥ yσ(n).
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As mentioned in Section 2.1, one may take Γ = Rn and λ(vi, si) = (vi − si)2
as in [14]. This template loss is obviously order-preserving since the optimal
value of the scores is precisely the expected value of v (and thus U(4) when
the template loss is instantiated).
We may also consider, given η > 0, the form λ(vi, si) = viϕ(si)+(η−vi)ϕ(−si),
which is convex with respect to s for any v in Γ = [0, η]n if ϕ is convex. As
we shall see in Section 5, this loss is order-preserving for many choices of
ϕ, including the log-loss (t 7→ log(1 + e−t)), the exponential loss (t 7→ e−t)
or differentiable versions of the Hinge loss. The log-loss proposed in [22] in
the context of bipartite instance ranking for optimizing the AUC follows the
same idea as the latter pointwise losses. The surrogate regret bounds proved
in [17] in the same ranking framework than the one we consider here apply to
pointwise losses of a similar form, although with a value of η that depends on
the supervision at hand.

– Pairwise template scoring losses:

` (v, s) =
∑
i<j

λ(vi, vj , si − sj) (4)

with Γ = Rn+. For example, taking λ(vi, vj , si − sj) = (si − sj − vi + vj)
2

also obviously leads to an order-preserving template loss. But we may also
take λ(vi, vj , si − sj) = viϕ(si − sj) + vjϕ(sj − si) (the latter being convex
with respect to s for any v in Γ whenever ϕ is so). Such a choice leads to an
order preserving template loss whenever ϕ is non-increasing, differentiable with
φ′(0) < 0 and the infimum (over s ∈ Rn) of L (4, .). is achieved for any 4 (see
Remark 2 below). Pairwise losses are natural candidates for surrogate scoring
losses because they share a natural invariant with the scoring performance
measure (invariance by translation of the scores).

– Listwise scoring losses: as proposed in [26], we may consider a general form
of surrogate losses defined by Bregman divergences. Let Ψ : Γ ⊂ Rn → R be
a strictly convex, differentiable function on a set Γ and define the Bregman
divergence associated to Ψ by Bψ(v‖s) = ψ(v)−ψ(s)−〈∇ψ(s),v − s〉. Let g :
Rn → Γ be invertible and such that for any s ∈ Rn, si > sj ⇒ gi(s) > gj(s).
Then, we can use the following template loss:

` (v, s) = Bψ
(
v‖g(s)

)
, (5)

which is an order-preserving template loss [26] as soon as the closure of g(Rn)
contains Γ . This is due to a characterization of Bregman divergences due to
[1] that the expectation of Bregman divergences (for a distribution over the
left-hand argument) is uniquely minimized over the right-hand argument when
the latter equals the expected value of the former.

Remark 2 (Pairwise Losses) The categorization of surrogate scoring losses into
“pointwise”, “pairwise” and “listwise” we use here is due to [7]. Note, however, that
the pairwise template loss we consider in (4) with λ(vi, vj , si − sj) = viϕ(si −
sj) + vjϕ(sj − si) does not correspond to what is usually called the “pairwise
comparison approach” to ranking and used in many algorithms, including the very
popular RankBoost [19] and Ranking SVMs (see e.g. [21, 6]). Indeed, the latter
can be written as ` (v, s) =

∑
i,j 1vi>vjϕ(si − sj) (or some weighted versions of
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this formula). This usual loss was shown to be non-calibrated with respect to the
pairwise disagreement error for ranking by [18] for any convex ϕ in many general
settings. This result shows that the loss is not order-preserving in general (because
the pairwise disagreement error, when the supervision space is {0, 1}n is minimized
when we order the items according to their probability of belonging to class 1).
On the other hand, with the form we propose in this paper, the inner risk for the
u-instance of ` can be written as Lu(4, s) =

∑n
i=1 Ui (4)

∑
j 6=i ϕ(si − sj), which

has the same form as the inner risk of the multiclass pairwise loss studied in [35]
and is order-preserving under the appropriate assumptions [35, Theorem 5].

Remark 3 (A note on terminology) We use the qualifier order-preserving for scor-
ing losses in a sense similar to what the author of [35] used in the context of
multiclass classification. We may note that [26] use the term order-preserving to
qualify a function g : Rn → Rn such that si > sj ⇒ gi(s) > gj(s), which corre-
sponds to a different notion than the one used here.

3.2 Calibration of Order-Preserving Losses

As already noticed, it follows from the definitions that if r is a (u, φ)-GPPM, then
any loss order-preserving w.r.t. u is r-calibrated. The reverse implication is also
true: given a measurable u, then only a loss order-preserving w.r.t. u is calibrated
with any (u, φ)-GPPM (that is, for any φ). This latter claim can be found with
different definitions in [26, Lemma 3 and Lemma 4]. We summarize these results
in the following theorem and give the proof for completeness:

Theorem 3.2 Let u : Y → Rn+ be a measurable function, ` be a scoring loss, and
r be a (u, φ)-GPPM and ∆ ⊂ D`,r. The following claims are true:

1. If ` is order-preserving w.r.t. u on ∆, then ` is r-calibrated on ∆.
2. If φ is strictly decreasing and ` is r-calibrated on ∆, then ` is order-preserving

w.r.t. u on ∆.

Moreover, if ` is an order-preserving template loss, then the u-instance of ` is
r-calibrated on D`u,r.

Proof The first claim and the remark on the template loss essentially follows from
the definitions and from (2). For point 2, it is sufficient to show that for a given
4 ∈ ∆, if arg sort(s) 6⊆ arg sort(U(4)), then there is a c > 0 such that R (4) −
R (4, s) ≥ c.

Notice that if arg sort(s) 6⊆ arg sort(U(4)), then there is a pair (i, j) with
Ui (4) > Uj (4) but si ≤ sj . Then, there is at least one permutation σ in arg sort(s)
with σ−1(i) > σ−1(j). If τij ∈ Sn is the transposition of i and j, we then have:

R (4)−R (4, σ) = R (4)−R (4, τij ◦ σ)︸ ︷︷ ︸
≥0

+ R (4, τij ◦ σ)−R (4, σ)︸ ︷︷ ︸
=
(
Ui(4)−Uj(4)

)(
φ(σ−1(j))−φ(σ−1(i))

)
(6)

Since | arg sort(s)| ≤ n!, we have:

R (4)−R (4, s) ≥ min
k<n
|φ(k)− φ(k + 1)| × min

i,j:Ui(4) 6=Uj(4)

|Ui (4)− Uj (4)|
n!

,

which proves the result. �
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Note that obviously, if a scoring loss is order-preserving w.r.t. u, then it is
calibrated with any ranking performance measure such that arg sort(U(4)) ⊂
argminσR(4, σ). This gives us a full characterization of ranking performance
measures with respect to which order-preserving losses are calibrated.

While the order-preserving property is all we need for the calibration w.r.t.
to a GPPM, one may then ask if it can be of use for the two other widely used
performance measures: the AP and the ERR. The question is important because,
apart from the usual precision/recall at rank K and the (N)DCG, these are the
most widely used measures in search engine evaluation. Unfortunately, the answer
is negative:

Theorem 3.3 Let Y = {0, 1}n, u : Y → Rn+ and ` an order-preserving loss w.r.t.
u on D. Then ` is not calibrated with the ERR and the AP.

The proof of Theorem 3.3 can be found in the Appendix B.2. To the best of our
knowledge, there is no existing study of the calibration of any surrogate scoring
loss w.r.t. the ERR or the AP.

The theorem, in particular, implies that a regression approach is necessarily not
calibrated with the ERR or the AP – whatever function of the relevance measure
we are trying to regress. We do believe that the theorem does not cast lights on
any weakness of the class of order-preserving (template) losses, but rather provides
some strong evidence that these measures are difficult objective for learning and
are that score-and-sort approaches are probably not suited for optimizing such
performance measures.

4 Calibration and Uniform Calibration

We provided a characterization of surrogate losses calibrated with GPPM, as well
as a characterization of the performance measures with respect to which these
losses are calibrated. In this section, we are interested in investigating the stronger
notion of uniform calibration which gives a non-asymptotic guarantee and implies
the existence of a surrogate regret bound [28, Theorems 2.13 and 2.17]. Afterwards,
in Section 5, we explicit regret bounds for some specific popular surrogate losses.
In fact, we express conditions on the supervision space under which the uniform
calibration w.r.t. a GPPM is equivalent to the simple calibration w.r.t. the same
GPPM for learning to rank.

The equivalence between calibration and uniform calibration with respect to
the classification error has already been proved in [2] for the binary case, and in
[35, 29] in the multiclass case. Both studies concerned to margin losses, which are
similar to the scoring losses we consider in the paper except that Y is restricted
(in our notations) to be the canonical basis of Rn and u is the identity function.
We extend these results to the case of GPPMs, but will not obtain an equivalence
between calibration and uniform in general because of the more general form of
scoring loss functions and the possible unboundedness of u. Yet, we are able to
present a number of special cases depending on the loss function and the considered
set of distribution over the supervision space where such an equivalence holds.

The existence of a surrogate regret bound independent of the data distribution
(even without an explicit statement of the bound) is critical tool in the proof
of the consistency of structural risk minimization of the surrogate formulation in
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[2, 35, 29]. Indeed, if one performs the empirical minimization of the surrogate risk
in function classes that grow (sufficiently slowly) with the number of examples so
that the surrogate risk tends to its infimum, the surrogate regret bound is sufficient
to show that the sequence of surrogate risk minimizers tend to have maximal
performance. The major tool used in [2, 27] for deriving explicit regret bounds
also precisely corresponds to proving the uniform calibration. In our case, the
criterion we develop for showing the equivalence between calibration and uniform
calibration (Theorem 4.2) unfortunately does not lead to tight regret bounds.
However, the following technical lemma, which we need to prove this criterion,
will also appear crucial for the statement of explicit regret bounds.

Lemma 4.1 Let r be a (u, φ)-GPPM, 4 ∈ ∆ ⊂ Dr, and ν ∈ arg sort(U(4)).
Then, for any σ ∈ Sn, there is a set Cσ ⊂ {1..n}2 satisfying:

1. ∀(i, j) 6= (z, t) ∈ Cσ, we have {i, j} ∩ {z, t} = ∅,
2. ∀(i, j) ∈ Cσ, Ui (4) > Uj (4) and σ−1(i) > σ−1(j),
3. R (4)−R (4, σ) ≤

∑
(i,j)∈Cσ (Ui (4)− Uj (4))

(
φ(ν−1(i))− φ(ν−1(j))

)
.

Consequently, for any s ∈ Rn, if we take Cs = Cσ for some σ ∈ argmin
σ′∈arg sort(s)

R (4, σ′),

we have ∀(i, j) ∈ Cs, Ui (4) > Uj (4) , si ≤ sj and:

R (4)−R (4, s) ≤
∑

(i,j)∈Cs

(
Ui (4)− Uj (4)

)(
φ(ν−1(i))− φ(ν−1(j))

)
.

Proof For the proof, we will use the notation Cu,φ
4,σ(ν) for the set Cσ to make all

the dependencies clear. We prove the existence of Cu,φ
4,σ(ν) by induction on n, the

number of items to rank. Let n > 2. It is easy to see that the result holds for
n ∈ {1, 2}. Assume that the same holds for any k ≤ n.

Let ν ∈ arg sort(U(4)) be an optimal ordering and σ ∈ Sn. The idea of the
proof is build a permutation consisting in a set of non-overlapping transpositions
Cu,φ
4,σ(ν) which inner-risk is worse or equal to the one of σ. For clarity, Figure 1

illustrates the exchanges that we now present. To simplify the proof, we make the
following abuses of language: the “true rank of i” stands for ν−1(i), i.e. for the
rank of item i according to the optimal ν and the “predicted rank of i” stands
for σ−1(i). Take i = ν(1) the true top-ranked item, and denote d = σ−1(i) its
predicted rank. Now, consider the items in the top-d predicted ranks, and, in that
set, denote j the one with worst true rank. Denote p its predicted rank, that is
p = σ−1(j) with j = argmax

q:σ−1(q)≤d

{
ν−1(q)

}
. Notice that we have Ui (4) ≥ Uj (4)

and ν−1(j) ≥ d.
Since j is the item with the worst true rank among the top-d predicted items, we

can only decrease the performance by exchanging it, in the predicted ranking, with
the top-ranked item. In more formal terms, denoting τwz ∈ Sn the transposition
of w and z, we thus have R (4, σ) ≥ R (4, σ ◦ τ1p) (σ ◦ τ1p is thus the ranking
created by exchanging the items at (predicted) rank 1 and p = σ−1(j)).

Likewise, since the true rank of j is greater than d and i is the true top-ranked
element, we can, as well, only decrease performance if, in the predicted ranking,
we exchange i with the item whose predicted rank is the true rank of j. More
formally, we have:

R (4, σ) ≥ R
(
4, σ ◦ τ1p ◦ τdν−1(σ(p))

)
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True Ranking ν
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τdν−1(σ(p))

Fig. 1 Pictorial representation of σ ◦ τ1p ◦ τdν−1(σ(p)). The item j is put at first rank (i.e. the
rank of i), and the item i isput at the true rank of j (i.e. the rank of j according to the true
ranking ν. By the definition of j, this rank is greater than or equal to d.

In words, using σ ◦ τ1p ◦ τdν−1(σ(p)), we put i at the true rank of j (which is worse
than the predicted rank of i), and put j at rank 1 (i.e. at the true rank of i).
Even though we may have moved some other items, the important point is that
the exchanges only decrease performance.

The interest of these exchanges is that i and j in σ ◦ τ1p ◦ τdν−1(σ(p)) have
exchanged their position compared to the true optimal ranking ν. Consequently,
we have:

R (4, ν)−R (4, σ) ≤ R (4, ν)−R
(
4, σ ◦ τ1p ◦ τdν−1(σ(p))

)
= (Ui (4)− Uj (4))(φ(1)− φ(ν−1(j)))

+
∑

k 6∈{i,j}

Uν(k) (4)φ(k)︸ ︷︷ ︸
=R′(4,ν′)

−
∑

k 6∈{i,j}

Uσ(k) (4)φ(k)︸ ︷︷ ︸
=R′(4,σ′)

where we define r′ as a (u′, φ′)-GPPM on lists of items of size n − 1 or n − 2
depending on i and j:

Case i 6= j In that case, define r′ as a (u′, φ′)-GPPM on lists of items of size n−2,
such that u′, φ′, ν′ and σ′ are equal to u, φ, ν and σ on indices different
from i and j up to an appropriate re-indexing of the remaining n − 2 items.
Using the induction assumption, we can find a set Cu′,φ′

4,σ′ (ν
′) satisfying the three

conditions of the lemma, which we add to the pair (i, j) after re-indexing to
build Cu,φ

4,σ(ν). Notice that for now, we do not exactly meet condition (ii) since
we have ∀(i, j) ∈ Cu,φ

4,σ(ν), Uσ(i) (4) ≥ Uσ(j) (4), while condition (ii) requires
a strict inequality. However, if Uσ(i) (4) = Uσ(j) (4) for some pair (i, j) in
Cu,φ
4,σ(ν), then the pair has no influence on the bound and can thus simply be

discarded.
Case i=j: In that case, define r′ as a (u′, φ′)-GPPM on lists of items of size n −

1. We then directly use the induction, ignoring the top-ranked element and
considering the set of pairs on the remaining n− 1 elements.

�

An important characteristic of the set Cσ in the lemma is condition 1, which
ensures that the pairs (i, j) are independent (each index i appears in at most one
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pair). This condition is critical in the derivation of explicit surrogate bounds of
the next section. Another important technical feature of the bound is that is based
on misordered pairs, and thus can be applied to any loss. In contrast, the bounds
on DCG suboptimality used in [14] or [26] depend on how much (a function of)
the score vector s approximates U(4) – a bound which, consequently, can only be
used for regression-like template losses.

We are now ready to give a new characterization of uniform calibration w.r.t.
GPPMs. This characterization is easier to deal with than the initial definition of
uniform calibration. We note here that it perfectly applies to losses of arbitrary
structure, and thus also to non-template losses.

Theorem 4.2 Let r be a (u, φ)-GPPM, ` be a scoring loss and ∆ ⊆ D`,r. For
any ε > 0, and i, j ∈ {1, ..., n}, define:

∆i,j(ε) =
{
4 ∈ ∆

∣∣Ui (4)− Uj (4) ≥ ε} (7)

and denote
Ωi,j = {s ∈ Rn |si ≤ sj } . (8)

Consider the two following statements:

(a) There is a function δ : R+ → R+ s.t. ∀ε > 0, δ(ε) > 0 and:

∀i 6= j, ∀4 ∈ ∆i,j(ε), L (4) + δ(ε) ≤ inf
s∈Ωi,j

L (4, s) .

(b) ` is uniformly r-calibrated on ∆.

We have (a) ⇒ (b) and, if ∀0 < i < n, φ(i) > φ(i+ 1) then (b) ⇒ (a).

Proof We start with (a) ⇒ (b). Fix ε > 0, s ∈ Rn and 4 ∈ ∆. From (a), we know
that if L (4, s)−L (4) < δ(ε) then for any i, j satisfying

(
Ui (4)−Uj (4)

)
(si−sj) ≤

0, we have |Ui (4) − Uj (4)| < ε. By Lemma 4.1, we obtain R (4) − R (4, s) <
n
2φ(1)ε, since there are less than n/2 non-overlapping pairs of indexes (i, j), i 6= j
in {1, ..., n}n and |φ(i)− φ(j)| ≤ φ(1) for any i, j. This bound being independent
on 4, this proves the uniform calibration of ` w.r.t. r on ∆.

We now prove (b) ⇒ (a) when ∀0 < i < n, φ(i) > φ(i + 1) by contrapositive.
Suppose (a) does not hold. Then, we can find ε > 0, a sequence (ik, jk)k≥0 with
ik 6= jk for all k and a sequence (4k)k≥0 with ∀k,4k ∈ ∆ik,jk(ε) satisfying
infs∈Ωik,jk L (4k, s)− L (4k) −→

k→+∞
0.

Thus, for any η > 0, we can find i 6= j, 4 ∈ ∆i,j(ε) and s ∈ Rn with si ≤ sj
such that L (4, s)− L (4) < η. However, if one considers the lower bound of (6),
we obtain, for some permutation σ in arg sort(s) s.t. σ−1(i) > σ−1(j):

R (4)−R (4, σ) ≥ εmin
j<n
|φ(j)− φ(j + 1)|

Finally, since | arg sort(s)| ≤ n!, we obtain R (4)−R (4, s) ≥ εminj<n|φ(j)−φ(j+1)|
n! .

This lower bound holds for any i 6= j, any 4 ∈ ∆i,j(ε) and any s such that(
Ui (4k) − Uj (4k)

)
(si − sj) ≤ 0, and thus ` is not uniformly r-calibrated on ∆.

�
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Using this new characterization, we now address the problem of finding losses
` and sets of distributions ∆ such that if ` is r-calibrated on ∆ for some GPPM r,
then condition (a) of Theorem 4.2 holds, implying the uniform calibration and the
existence of the regret bound. The interest of the characterization of Theorem 4.2
is that in some cases, it is implied by large families of losses. Before going to some
examples, we provide here the main corollary. Examples for more specific losses or
supervision spaces are given in Corollaries 4.5 and in Appendix A.

Corollary 4.3 Let r be a (u, φ)-GPPM, ` be a scoring loss, and ∆ ⊆ D`,r. As-
sume ∆ can be given a topology such that :

1. ∆ is compact;

2. the map
(
∆ → Rn+
4 7→ U(4)

)
is continuous;

3. ∀i, j,

(
∆ → R
4 7→ inf

s∈Ωi,j
L (4, s)− L (4)

)
is continuous, with Ωi,j defined by (8).

Then, ` is r-calibrated on ∆ if and only if it is uniformly r-calibrated on ∆.

Proof Since uniform calibration implies calibration, we only have to show the “only
if” part.

First, we show using conditions 1 and 2 that for any ε > 0 and any i, j,
the set ∆i,j(ε) defined by (7) is compact. Since U is continuous on ∆ and ∆
is compact, U(∆) is a compact subset of Rn+. Therefore, U(∆) is bounded. Let
B = sup4∈∆‖U(4)‖∞ and consider now the function hi,j(4) = Ui (4)− Uj (4).
hi,j is continuous from ∆ to Rn with ∆ compact. Therefore, hi,j is a proper map,
i.e. the preimage of any compact is compact (see e.g. [24, Lemma 2.14, p.45]).
Thus, ∆i,j(ε) = h−1

i,j ([ε,B]) is compact in ∆.
We now go on to the proof of the result. Let i 6= j and denote gi,j : ∆→ R the

function defined in condition 3. Since ` is r-calibrated on ∆, we have gi,j(4) > 0
for any 4 ∈ ∆i,j(ε) as soon as ε > 0. Since gi,j is continuous and ∆i,j(ε) is
compact, gi,j(∆i,j(ε)) is a compact of R and the minimum is attained. Defining
δ(ε) = mini 6=j min gi,j(∆i,j(ε)), we thus have δ(ε) > 0. Using Theorem 4.2, it
proves that ` is uniformly r-calibrated.

�

Corollary 4.3 gives conditions on the accepted form of supervision (conditions
1 and 2) and on the loss structure (condition 3) which are important to verify that
r-calibration on ∆ for a GPPM r implies uniform r-calibration on ∆. Conditions 1
and 2 are obviously satisfied when the supervision space is finite, and, as we shall
see later, condition 3 is then automatically satisfied as well. Also, we may expect
the same result to hold when we restrict U to be bounded. The cases of a finite
supervision space is treated below. The more technical cases where the supervision
space is infinite is more technical, and is detailed in Appendix A. We first remind
the following result which will help us discuss these special cases:

Lemma 4.4 [35, Lemma 27] Let K > 0, and let ψk : R → R+, k = 1..K be
K continuous functions. Let Ω ⊆ Rn, Ω 6= ∅ and Q be a compact subset of RK+ .

Then, the function Ψ defined as

Q → R+

q 7→ inf
s∈Ω

K∑
k=1

qkψk(s)

 is continuous.
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From now on, we suppose that the supervision space Y is finite. Then, ∆ = D
can be identified with the |Y|-simplex which is compact using its natural topology.
Moreover, in that case, U is necessarily continuous with respect to this topology
on ∆ and thus conditions 1 and 2 of Corollary 4.3 are satisfied. Thus, the only
question which remains is whether the class of loss functions we consider satisfies
3 – a question which is solved by Lemma 4.4. We can now give a full answer to the
question of the uniform calibration w.r.t. a GPPM when the supervision space is
finite:

Corollary 4.5 Suppose that Y is finite. Let r be a (u, φ)-GPPM and ` a scoring
loss such that `(y, .) is continuous on Rn for any y ∈ Y. Take ∆ = D (notice that
D = D` = Dr). Then, the following claims are true:

1. ` is r-calibrated on ∆ if and only if it is uniformly calibrated on ∆.
2. if ` is order-preserving w.r.t. u on ∆, it is uniformly r-calibrated on ∆.
3. If φ(i) > φ(i + 1) for all 0 < i < n, then, ` is order-preserving w.r.t. u on ∆

if and only if it is uniformly r-calibrated on ∆.

Proof Since Y = {y1, ..., yK} is finite (K = |Y|), we already showed that both
conditions 1 and 2 of Corollary 4.3 are satisfied, identifying D with the K-simplex.
Then, for any scoring loss, we have: L (4, s) =

∑K
k=14({yk})`(yk, s) which satisfies

condition 3 of Corollary 4.3 using Lemma 4.4. Thus, using Corollary 4.3, we know
that for any (u, φ)-GPPM r, ` is r-calibrated if and only if it is uniformly r-
calibrated, giving us the first claim of the corollary.

The second claim comes from the fact that an order-preserving loss is calibrated
with any GPPM. The third claim comes from the fact that only order-preserving
losses are calibrated w.r.t. (u, φ)-GPPM with φ(i) > φ(i+1) for all 0 < i < n, and
the equivalence of r-calibration and uniform r-calibration when the supervision
space is finite. �

This result shows that when the supervision space is finite, then any surrogate
loss calibrated with respect to a GPPM has a regret bound. Thus, any loss cali-
brated with a GPPM has non-asymptotic guarantees. Since the exact form of the
regret bound depends on the loss at hand, Corollary 4.5 is the stronger result we
can obtain for arbitrary losses. We refer to Appendix A for a similar result con-
cerning template losses in a special case where the supervision space is infinite. In
the next section, we provide more quantitative surrogate regret bounds for specific
template losses.

5 Surrogate Regret Bounds

The previous section deals with the existence of surrogate regret bounds by the
study of uniform calibration. Now we propose to practically derive surrogate regret
bounds for commonly-used template surrogate losses pointwise, pairwise or that
can be written as a Bregman divergence. Like in classification the main idea is to
find a convex lower bound of the surrogate regret as a function of the performance
regret. However, contrary to classification, computing the calibration function like
Steinwart [28] or the Ψ -transform like Bartlett [2] is actually unfeasible. If one
tries to find the function δ of Theorem 4.2, the bound will be worse than the ones
we reach in this section. Indeed, it doesn’t use non-overlapping pairs of indexes.
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In this section, we first present regret bounds for specific template losses in
Table 2, then we describe three methods of proof for achieving theses bounds for
either pointwise losses (3), Bregman divergences (5) or pairwise losses (4). Before
starting the analysis, we introduce new notation for the (inner) risks associated to
template losses. We first recall that given a template scoring loss ` : Γ ×Rn → R+

with Γ ⊂ Rn+, its u-instance is denoted by `u. Using a similar notation with a
superscript u, the scoring risk and inner risk of `u are respectively denoted by:

– For any distribution P on X × Y and prediction function f ,

Lu(P, f) =

∫
X

∫
Y
`u (y, f(x))dP(y, x) =

∫
X

∫
Y
` (u(y), f(x))dP(y, x),

– For any 4 ∈ D, and s ∈ Rn,

Lu (4, s) =

∫
Y
`u (y, s)d4(y) =

∫
Y
` (u(y), s)d4(y).

Moreover, Lu(P ) and Lu (4) refer to the respective optimal risks.

5.1 Regret Bounds for Common Surrogate Losses

We first give a summary of the different bounds obtained in the following of the
section for both pointwise losses, Bregman divergences and pairwise losses, and
then present the three methods used on the latter families of losses to achieve
these bounds.

Given a (u, φ)-GPPM, for these families of surrogate scoring losses, we obtain
the same regret bound up to a constant factor c, which intuitively correspond to
the rescaling with respect to the surrogate loss.

R(P )−R(P, f) ≤ cCφ(2)
√
Lu(P, f)− Lu(P ) (9)

with Cφ(p) =

( bn2 c∑
i=1

(
φ(i)− φ(n− i+ 1)

)p) 1
p

, for any positive integer p.

Table 2 details the different examples of Bregman divergences, pointwise losses
and pairwise losses satisfying this surrogate regret bound (9) by giving the con-
stant c. The methods for achieving such bounds are detailed in the following of
the section: Theorem 5.2 for the pointwise losses, Theorem 5.3 for the Bregman
divergences and Theorem 5.4 for pairwise losses. The proofs ensuring that the sur-
rogate losses given in Table 2 satisfy the assumptions of the corresponding later
theorems are given in Appendix B.

The differences in the constant factor c come from the fact that it represents a
scaling factor between the surrogate loss and the expected utilities. Actually the
magnitude of the loss may vary consequently from one to another. Furthermore,
the bounds on the pointwise Square Hinge and the pointwise Differentiable Hinge
depends respectively on t and α. Indeed, these parameters control the magnitude
of the range within the optimal scores vary, so the scaling between the optimal
scores and the expected utilities.

Notice that, Cφ(p) is generally strictly lower than ‖φ‖p, thus, for the pointwise
Squared Error, our approach allows us to obtain a slightly better bound than in
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Table 2 Summary of surrogate regret bounds. Recalling that the vi are upper-bounded, η
can be chosen as η > maxi Ui (4) and ϕα is a differentiable version of the Hinge Loss, where
α ∈ (0; η

2
) is a parameter to choose: ϕα(x) = 0 if x ≤ 0, ϕα(x) = x2

2α
if x ∈ [0, α], and

ϕα(x) = x− α
2
otherwise.

Pointwise Losses (3): ` (v, s) =
∑n
i=1 λ(vi, si)

Name λ(vi, si) c

Squared Error (vi − si)2
√
2

Logistic vi log(1 + e−si ) + (η − vi) log(1 + esi )
√
η

Exponential vie
−si + (η − vi)esi

√
η

Square Hinge vimax(0, t− si)2 + (η − vi)max(0, si)
2

√
2η
t

Differentiable Hinge viϕα(1− si) + (η − vi)ϕα(si) 4
√

η
α

Pairwise Losses (4): ` (v, s) =
∑
i<j λ(vi, vj , si − sj)

Name λ(vi, vj , dij) c

Squared Error (vi − vj − dij)2 1

Logistic vi log(1 + e−dij ) + vj log(1 + edij ) 2
√
‖U(4)‖∞

Exponential vie
−dij + vje

dij 2
√
‖U(4)‖∞

Bregman Divergence (5): ` (v, s) = Bψ
(
v‖g(s)

)
.

ψ(.) c

µ-strongly convex (12) 2√
µ

[14, Theorem 2]. The regret bound of the pointwise Squared Error is a crucial
result since it helps to obtain the regret bounds on Bregman divergences. This
explain why, applying the method of [26, Theorem 10] for Bregman divergences
in our Theorem 5.3, we also reach a slightly better bound than them. Finally, for
pairwise losses, to the best of our knowledge, no bound has already been proposed.

5.2 General Results to Derive Regret Bounds

Now, we aim at describing the methods allowing us to explicit the results of Table
2. The main argument is to combine lower bound of the surrogate regret with the
upper bound on the performance regret given by the Lemma 4.1. We always use
the same upper bound on the performance regret deduced from Lemma 4.1 so we
explicit it here in the following lemma. Then, we will only work on the surrogate
regret to obtain the bounds.

Lemma 5.1 Let r be a (u, φ)-GPPM, 4 ∈ ∆ ⊂ Dr, and Cs ⊂ {1..n}2 given by
Lemma 4.1. For p, q > 1 such that 1

p + 1
q = 1 if we denote

Cφ(p) =

( bn2 c∑
i=1

(
φ(i)− φ(n− i+ 1)

)p) 1
p

(10)
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then for any s ∈ Rn, we have

R (4)−R (4, s) ≤ Cφ(p)

( ∑
(i,j)∈Cs

(
Ui (4)− Uj (4)

)q) 1
q

The proof can be found in Appendix B.3.
We first treat the case of pointwise losses, then Bregman divergences and finally

pairwise losses.

Specific Order-Preserving Pointwise Losses The case of the pointwise template
loss (3) is clearly the easier. Indeed, in a pointwise loss, the dimensions are in-
dependent from each other. Lemma 4.1 breaks some dependencies into a set of
non-overlapping pairs of items and allows us to link more easily the performance
regret and the regret of a pointwise loss. Now we can consider only independent
pairs of indexes to study the surrogate regret. First we define the optimal value of
a surrogate loss ` w.r.t. a pair of indexes (i, j), and the near-optimal value given
that the corresponding items are misordered as follows:

Hij(u,4) = Λui (4) + Λuj (4)

H−ij (u,4) = inf
si,sj∈R

(si−sj)(Ui(4)−Uj(4))≤0

Λui(4, si) + Λuj (4, sj)

where Λui(4, s) =
∫
Y λ(ui(y), s)d4(y) with λ defined in (3) and Λui (4) is its

infimum over s, i.e. Λui (4) = infs∈R Λ
ui(4, s). In order to link H−ij and Hij with

the bound of the performance regret, we will use the assumption given by (11)
below and verify that this assumption is met for natural instances of λ.

Theorem 5.2 Let r be a (u, φ)-GPPM and ` a pointwise template loss. If there
exists c > 0 and q ≥ 1 such that for any 4 ∈ Dr,`,

cq(H−ij (u,4)−Hij(u,4)) ≥ |Ui (4)− Uj (4)|
q (11)

Then, for any distribution P on X × Y of type D`,r such that R(P ) < +∞ and
L(P ) <∞, we have, for any measurable scoring function f :

R(P )−R(P, f) ≤ cCφ(p) (Lu(P, f)− Lu(P ))
1
q

where p ≥ 1 satisfies 1
p + 1

q = 1 and Cφ(p) is defined in (10).

Proof We consider Cs ⊂ {1..n}2 as defined in Lemma 4.1 with ν = id. Indeed,
considering the symmetry of the problem, we can consider the expected utilities
are already ordered without any loss of generality. Consequently, for any (i, j) ∈ Cs

we have i < j. Lemma 5.1 and (11) give

R (4)−R (4, s) ≤ Cφ(p)

( ∑
(i,j)∈Cs

|Ui (4)− Uj (4)|q
) 1
q

≤ Cφ(p)

(
cq

∑
(i,j)∈Cs

H−ij (u,4)−Hij(u,4)

) 1
q
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Now, we denote Cs = {i ∈ {1..n} | ∃j/(i, j) ∈ Cs or (j, i) ∈ Cs} and Su(Cs) ={
s′ ∈ Rn | ∀(i, j) ∈ Cs, s

′
i ≤ s′j

}
. Since s ∈ Su(Cs) then we have

Lu (4, s) − Lu (4) ≥ inf
s′∈Su(Cs)

Lu (4, s′)− Lu (4)

= inf
s′∈Su(Cs)

n∑
i=1

(
Λui(4, s′i)− Λui (4)

)
= inf

s′∈Su(Cs)

[ ∑
(i,j)∈Cs

(
Λui(4, s′i) + Λuj (4, s′j)

)
+
∑
k 6∈Cs

Λuk(4, s′k)

]

−
n∑
i=1

Λui (4)

=
∑

(i,j)∈Cs

[
inf
s′i≤s′j

(
Λui(4, s′i) + Λuj (4, s′j)

)
− Λui (4)− Λuj (4)

]
+
∑
k 6∈Cs

Λuk (4)−
∑
k 6∈Cs

Λuk (4)

=
∑

(i,j)∈Cs

(
H−ij (u,4)−Hij(u,4)

)
The inversion between the inf and the sum is possible because of the independence
of the pairs in Cs. Combining both inequalities gives the bound on the inner regret.
Then the bound on the regret is deduced from using [28, Theorems 3.2 and 2.13].
�

Bregman Divergence Since we propose a bound on the pointwise Squared Error,
we can apply a method similar to [26, Theorem 10] to obtain regret bounds on
losses that derive from a Bregman divergence like those of (5). Moreover, pointwise
losses Logistic and Exponential can be rewritten as Bregman divergences. This
gives another way to obtain their corresponding bounds. Thus, we propose to use
Lemma 5.1 to extend this theorem to the case of (u, φ)-GPPM’s using almost
the same conditions like strong convexity of the function ψ which generate the
Bregman divergence. We say a function f is called µ-strongly convex if and only
if for any x, y in the domain and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− µ

2
t(1− t)‖x− y‖22 (12)

So, if ψ is µ-strongly convex, we have Bψ(u‖v) ≥ µ
2 ‖u− v‖

2
2.

Theorem 5.3 Let r be a (u, φ)-GPPM, ψ : Γψ → R in C1 a µ-strongly convex
function and g : Rn → Rn an invertible map such that for any i, j we have si <
sj ⇒ gi(s) < gj(s) such that Γψ = g(Rn). For a scoring loss ` defined as (5), we
have

R(P )−R(P, f) ≤ 2Cφ(2)√
µ

√
Lu(P, f)− Lu(P )
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Proof We consider Cs ⊂ {1..n}2 as defined in Lemma 4.1 with ν = id without loss
of generality. We first start with a first bound on the suboptimality of `u from
strong convexity. Since Lu (4) = 0, we have:

Lu (
4, s′

)
− Lu (4) =

∫
Y
Bψ(y‖g(s′))d4(y)

≥ µ

2

∫
Y
‖u(y)− g(s′)‖22d4(y)

≥ µ

2
‖U(4)− g(s′)‖22

The first inequality comes from strong convexity of ψ, while the second comes
from the convexity of the squared 2-norm. Now, let us denote
Su(Cs) = {s′ ∈ Rn | ∀(i, j) ∈ Cs, si ≤ sj}. Since s ∈ Su(Cs) and using the above
inequality, we obtain

Lu (4, s)− Lu (4) ≥ inf
s′∈Su(Cs)

Lu (
4, s′

)
− Lu (4)

≥ µ

2
inf

s′∈Su(Cs)
‖U(4)− g(s′)‖22

which is actually equals to the Squared Error regret taken in g(s′). Then, combine
with the regret bound on the Squared Error (see Table 2) to obtain the bound. �

Specific Order-Preserving Pairwise Losses In this section, we study the popular
family of pairwise losses (see (4)) through two sub-families. We propose the first
one to overcome the non-consistency of the classic pairwise hinge loss cast in light
by [18]. The second one is just a mean squared error on the pairs of indexes.

Pairwise surrogate losses integrate complex correlations between the different
dimensions of the predicted vector of score when optimizing. This is why it’s not
immediate to benefit from the independence given by the bound of Lemma 4.1. For
pairwise surrogate losses, the main idea of the method is to treat them as pointwise
losses on pairs of items with some additional constraints. Then, we compare the
optima of the loss with and without the constraints.

The notations Λui,uj and Λui,uj are defined similarly to the ones of point-
wise losses. We denote the following set of constraints which impose a solution
equivalent to a score for each item to rank.

D = {d ∈ Rn × Rn/∀i, j, k ∈ {1..n} , dij = dik + dkj}

With this set of constraints D, we can reduce the conditions on the pairwise
surrogate loss in the following lemma to a condition on the Bayes risk and a
pointwise condition w.r.t. the pairs (i, j) of items.

Theorem 5.4 Let r be a (u, φ)-GPPM and ` a template pairwise scoring loss as
described in (4). For any 4 ∈ Dr,` and s ∈ Rn, if `u satisfies:

1. Lu (4) = infd∈D
∑
i<j Λ

ui,uj (4, dij) = infd∈Rn×Rn
∑
i<j Λ

ui,uj (4, dij)
2. There exist c > 0 and q ≥ 1 such that

inf
dij≤0

Λui,uj (4, dij)− inf
dij∈R

Λui,uj (4, dij) ≥
1

cq
|Ui (4)− Uj (4)|q
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Then, for any distribution P on X × Y of type D`,r such that R(P ) < +∞ and
L(P ) <∞, we have, for any scoring function f :

R(P )−R(P, f) ≤ cCφ(p) (Lu(P, f)− Lu(P ))
1
q (13)

where p ≥ 1 satisfies 1
p + 1

q = 1 and Cφ(p) is defined in (10).

Proof For Cs defined as in Lemma 4.1, we denote

Su(Cs) = {s′ ∈ Rn | ∀(i, j) ∈ Cs, si ≤ sj} ,

and
Γ (Cs) = {d ∈ Rn × Rn|∀(i, j) ∈ Cs, dij ≤ 0} .

Since s ∈ Su(Cs) then we have

Lu (4, s)− Lu (4) ≥ inf
s′∈Su(Cs)

Lu (4, s′)− Lu (4)

≥ inf
d∈Γ (Cs)

∑
i<j

Λui,uj (4, dij)− inf
d∈Rn×Rn

∑
i<j

Λui,uj (4, dij)

≥ inf
d∈Γ (Cs)

∑
i<j

(i,j)∈C

Λui,uj (4, dij) +
∑
i<j

(i,j)/∈Cs

Λui,uj (4, dij)

− inf
d∈Rn×Rn

∑
i<j

Λui,uj (4, dij)

≥
∑
i<j

(i,j)∈Cs

inf
dij≤0

Λui,uj (4, dij)− inf
dij∈R

Λui,uj (4, dij)

≥ 1

cq

∑
i<j

(i,j)∈Cs

|Ui (4)− Uj (4)|q

Then, just apply Lemma 5.1 in the same way as in the proof of theorem 5.2 to plug
this inequality to the performance inner regret to obtain the bound on the inner
regret. The bound on the regret is deduced using [28, Theorems 3.2 and 2.13]. �

6 Discussion and Related Work

In this section, we discuss the most closely related works, and then summarize our
results and discuss some of their practical implications.

Surrogate Regret Bounds for Learning to Rank The calibration and uniform cali-
bration have been extensively studied in (cost-sensitive) binary classification (see
e.g. [2, 35, 28, 27]) and multiclass classification [35, 29]. In the context of learning
to rank, the calibration of surrogate losses in learning to rank has been previously
studied by [14, 18, 26]. The authors of [14] proved the calibration of some variants
of regression losses based on the mean squared error with respect to the DCG, and
proved the first surrogate regret bound for ranking. In [26], the authors generalize
this work to obtain the calibration of losses based on Bregman divergences (which
include the squared error loss) with respect to the (N)DCG, and provide surrogate
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regret bounds for this class of surrogate losses. In this paper, we extend the work
of [26] in several ways. First, we consider a wider class of ranking performance
measures, the GPPMs, essentially by noticing that it is not necessary to restrict
the supervision to relevance judgments. Second, we consider a much larger class
of surrogate losses (the order-preserving ones), which, in particular, are not con-
strained to have a unique minimizer. Relaxing these two assumptions, we obtain
a new and general result on the existence of surrogate regret bounds for any loss
calibrated with respect to a GPPM when the supervision space is finite, through
the equivalence of calibration and uniform calibration for GPPMs (Corollary 4.3).
Furthermore, our deeper study of the performance measures (Lemma 4.1) allow
us to prove both slightly better regret bounds than [35] and [26] for the mean
squared regression and for the Bregman divergences, as well as new regret bounds
for other forms of surrogate losses such as pairwise losses or pointwise losses that
do not have a unique minimizer (Section 5). While all these works studied the
DCG, [17] proved regret bounds for pointwise losses for the special case of the
AUC metric. The pointwise losses they consider are similar to the one we consider
in Section 5 (the difference is that in their work, the value of η in these losses are
not constants). While our proof technique could be adapted to their specific loss,
the bounds we prove are more general since they apply to a larger variety of losses
and different performance measures.

We may note here that surrogate regret bounds have also been studied in
another context of learning to rank, namely instance ranking [11, 22]. Instance
ranking, from which bipartite ranking is the best-known example (the case with
binary relevance judgments) is a framework where the prediction task is to order
a single set (the sample space itself), and learning is carried out based on an
i.i.d. sample from this set. In contrast, in the task we consider here, the goal is
to predict the ordering of a finite set for each instance and learning is carried out
using an i.i.d. sample of such instances with a supervision that indicates how to
rank the finite set given this instance. The evaluation performances for instance
ranking are usually the Area Under the ROC Curve, or more generally linear rank
statistics [12], which are similar in nature to what we call GPPMs. However, since
the underlying sampling assumptions are different in instance ranking and in the
framework we consider here, all the notions of inner risks are different, and the
analyses carried out in one framework do not apply to the other framework.

Fitting Utility Values When the supervision takes the form of relevance scores
on a discrete scale (as usually in search engine applications), it may be natural
to simply try to fit them, for instance using classification or ordinal regression
approaches. In the presence of noise however, our results show that one should
not try to predict the value of the label, but rather its corresponding utility. More
precisely, one should learn to rank according to the expected value of the utility;
fitting the expected value of the utilities, for instance by minimizing the squared
error, leads to a calibrated formulation, but it is only a special case of what one can
do: in general, applying any order-preserving template loss is valid. Considering
that many performance measures are GPPMs – for instance the (N)DCG, the
precision-at-k, the recall-at-k, the AUC, or Spearman’s rank correlation coefficient
(see Table 1) – our result allow us to provide template calibrated surrogate losses
that can be easily instantiated for each of these measures (Sections 2 & 3).
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Another important result we obtain in the paper is the non-calibration of any
surrogate loss that tries to reproduce the order given by the relevance judgments
for the AP and the ERR (Theorem 3.3). The important result is that the non-
calibration holds for any utility function that one can associate to these metric.
Despite the importance of these measures in search engine evaluations, our result
thus proves that many common surrogate losses used in learning to rank algorithm
are not AP- or ERR-calibrated.

Consequently, the exact form of the supervision we have for the problem at
hand – which may be relevance judgments, a preference relation, or total orders
– does not dictate the kind of algorithm we should use. Spearman’s correlation
coefficient (see Table 1), which considers total orders as supervision, is actually a
GPPM, and thus any template order-preserving loss can be calibrated with respect
to it. This contrast with the case of the ERR or the AP, with respect to which no
order-preserving is calibrated even though these performance measures consider
real-valued relevance judgments for their supervision.

Pairwise Losses As already mentioned in Remark 2, a traditional approach to
learning to rank is to use pairwise-comparison-based losses, as in Ranking SVMs or
RankBoost [21, 19, 6]. To take a concrete example, consider the case when the su-
pervision is a vector of relevance judgments. Then, the idea of pairwise-comparison
-based losses is to take a loss of the form ` (v, s) =

∑
i,j 1{vi>vj}ϕ(si−sj) (v here

takes the place of the supervision, or any monotonic transform of it). The mo-
tivation of these approaches is that only the relative ordering between any two
items does matter for ranking, and thus it is somewhat natural to only consider
the relative ordering given by the supervision for learning. However, such losses
are not order-preserving when ϕ is convex (see Remark 2; this result is actually a
direct consequence of the non-calibration result of [18]), and they are consequently
not calibrated with respect to any GPPMs. This is why in this work we propose
an alternative formulation ` (v, s) =

∑
i<j (viϕ(si − sj) + vjϕ(sj − si)), which is

convex when the values of vi are non-negative and ϕ is convex, and which, as we
show in Section 5, is also order-preserving. Consequently, this alternative formu-
lation provides a template loss whose instances are calibrated with respect to any
GPPM. Notice that from a computational perspective, the two losses (the initial
formulation and the alternative that we propose here) are comparable, and thus
we strongly encourage to consider the alternative formulation in practice.

Limitations of Scoring Approaches for Ranking ? The difficulty of designing (con-
vex) surrogate formulation for the score-and-sort approach to ranking has previ-
ously been addressed in [18], where the authors show that a number of existing
surrogate losses are non calibrated with respect to the pairwise disagreement, a
performance measure used when the supervision contains arbitrary pairwise pref-
erences and which counts the number of pairs of items for which the predicted
ordering does not match the supervision. The authors of [18] also conjecture that
no convex loss of the scores can be calibrated with respect to the pairwise disagree-
ment. In this work, we prove additional results concerning the possible limitations
of scoring approaches: no order-preserving loss can be calibrated with respect to
the AP or the ERR in general (Theorem 3.3). While this suggest that some ap-
proaches other than scoring may be useful for these evaluation measures, it also
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gives new insights on the intrinsic limitations of scoring approaches (in particular
regression approaches) for information retrieval.

7 Conclusion

The calibration, uniform calibration and surrogate regret bounds are crucial tools
to assess the quality of surrogate losses. We proposed an in-depth study of the
calibration of order-preserving losses with respect to GPPMs.

A large body of work remains to be done in learning to rank. As the authors
of [18] pointed out, learning from pairwise preferences is still an open issue with-
out making strong assumptions on the preference relations that we may have as
supervision. More closely to our work, designing losses with better regret bounds
for GPPMs with a cutoff (i.e. φ(i) = 0 for i > k and k << n) as in [14], but
without any strong prior knowledge on which items should be ranked first and
keeping easy-to-optimize surrogate losses, remains critical in many applications
and mostly an open problem.
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A Uniform Calibration on Infinite Supervision Space

In this appendix, we extend the results regarding the uniform calibration with respect to
GPPMs to more general settings than the one studied in Section 4.

While the case of a finite supervision space has been solved, we can anticipate that the
case where Y is infinite (e.g. Y = Rn) is more problematic: it is, indeed, much more difficult to
define a topology on D, in particular a topology that makes ∆ compact. We may, at this point,
believe that the compactness of ∆ is probably too strong an assumption, and that we may
have equivalence between calibration and uniform calibration with more general assumptions.
However, considering the regret bounds we obtain in Section 5, we will see that assumption 1
of Corollary 4.3 is probably quite difficult to relax in general.

To deal with the case where Y is infinite, let us fix a (u, φ)-GPPM r and let us restrict our
attention to scoring losses such that gi,j(4) = infs∈Ωi,jL (4, s) − L (4) only depends on the
expected value U(4). This can be checked for specific losses, like the squared loss described in
(3) with λ(vi, si) = (vi− si)2 and more generally for the losses based on Bregman divergences
like (5) because the only non-linear term in v cancels out. To simplify the discussion and
directly use the continuity result of Lemma 4.4, we will restrict to the template losses of the
following form:

` (v, s) =

n∑
i=k

vkϕi(s) . (14)

The pairwise losses described in (4) with λ(vi, vj , si − sj) = viϕ(si − sj) + vjϕ(sj − si)
have this form (take ϕi(s) =

∑
j 6=i ϕ(si − sj)). The pointwise losses defined in (3) with

λ(vi, si) = viϕ(si) + (η − vi)ϕ(−si) do not exactly follow this form because of η − vi, but
the arguments we develop here can easily be adapted to them.

Bounded Values of U For losses like (14), let us assume that u(Y) = Kn for some closed
set K ⊂ R+

2. We can then define a pseudo-metric on D which depends on U by ω(4,4′) =
‖U(4)−U(4′)‖∞ and use the induced topology. The set∆ = {4 ∈ D : ‖U(4)‖∞ ≤ B} is then

2 There is no loss in generality here. If u does not satisfy this assumption, we can simply
increase Y and extend u so that the assumption is satisfied. We will then show that the
equivalence between calibration and uniform calibration holds on a larger space of distributions.
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compact3 for any B > 0 and condition 1 of Corollary 4.3 is satisfied. Obviously, U is continuous
as well, so we only have to check condition 3. Let us assume that the functions ϕk : Rn →
R+, k = 1..n are continuous on Rn. Then the u-instance of the loss (14) is clearly continuous,
and the corresponding inner risk is continuous as well: we have Lu (4) = L ◦ U(4), and we
know that L is continuous on U(∆) by Lemma 4.4 because U(∆) is compact as the image of
a compact by a continuous function. The same argument applies to 4 7→ infs∈Ωi,jL (4, s), so
condition 3 of Corollary 4.3 is satisfied. We summarize this discussion in the following result
(the proof is omitted):

Corollary A.1 Let r be a (u, φ)-GPPM, and assume u(Y) = Kn for some closed set K ⊂
Rn. Let B > 0 and define ∆ ⊂ Dr as ∆ = {4 ∈ Dr|‖U(4)‖∞ ≤ B}. Let ` be the template
loss defined by (14) with continuous ϕk : Rn → R+, k = 1..n. Then, the u-instance of ` is
r-calibrated on ∆ if and only if it is uniformly r-calibrated.

Unbounded Values of U As an ending notice before establishing quantitative regret bounds,
we would like to consider the case where we do not force the full data distribution to satisfy
‖U(P (.|x))‖∞ ≤ B for all x. The explicit regret bounds we will obtain in the next section sug-
gest that if one does not make such an assumption, then there is no regret bound independent
of P for many losses. For example, for pairwise template losses satisfying both (4) and (14)
and any 4s.t.‖U(4)‖∞ ≤ B, we obtain regret bounds of the form:

R (4)−R (4, s) ≤ c
√
B
√
L (4, s)− L (4) (15)

for some constant c > 0. The next section will give more precise values for c
√
B depending on

the loss, but for many template losses we consider, one cannot have a constant independent
of B 4. In that case, we cannot obtain a regret bound which does not depend on the data
distribution. However, we can use approach of [28, Theorem 2.18] when uniform calibration
does not hold:

Corollary A.2 Let r be a (u, φ)-GPPM such that r(y, σ) =
∑n
k=1 φ(k)uσ(k)(y) for all y ∈ Y

and σ ∈ Sn. Let ` be a scoring loss satisfying (15) with B = ‖U(4)‖∞ for any 4 ∈ D`,r.
Then, for any distribution P on X × Y of type D`,r such that R(P ) < +∞ and L(P ) < ∞,
we have, for any measurable scoring function f :

R(P )−R(P, f) ≤ c

√
R(P )

φ(1)

√
L(P, f)− L(P )

where c is the constant defined in (15).

Proof Using [28, Theorems 3.2 and 2.13], we know that we can obtain a bound on the regret
using Jensen’s inequality after taking the expected value of a bound on the inner regret. We
assume for now that x 7→ ‖U(P (.|x))‖∞ is integrable with respect to PX . Integrating (15) over
PX with B = ‖U(4)‖∞ and 4 = P (.|x) and using Cauchy-Schwarz inequality, we obtain:

R(P )−R(P, f) ≤ c

√∫
‖U(P (.|x))‖∞dPX(x)

√
L(P, f)− L(P )

Now, note that for any P (.|x), we have R (P (.|x)) ≥ φ(1) max
i=1..n

Ui (P (.|x))=φ(1)‖U(P (.|x))‖∞.

Since x 7→ R (P (.|x)) is integrable w.r.t. PX by assumption, this proves that x 7→ ‖U(P (.|x))‖∞
is integrable w.r.t. PX and the desired result. �

Note that it is not a regret bound as we defined them because the bound depends on
the data distribution through R(P ). Nonetheless, it can still help to obtain non-asymptotic
guarantees for the considered losses in practical cases.

3 We simply have to identify the set of 4 who have the same expected value under u
and assimilate this set to the real value. The only thing that has to be verified is that
∆ = {4 ∈ D : ‖U(4)‖∞ ≤ B} is closed, which is the case with our assumption on u since
{U(4),4 ∈ ∆} = [minK,min(supK,B)]n.
4 Note that if the regret bound for some loss ` does not depend on B, as for squared-loss-

based scoring losses, then we can directly have a regret bound using Jensen’s inequality.
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B Proofs

B.1 The Spearman Rank Correlation Coefficient and the AUC are GPPMs

In this subsection, we give the details on how to write the Spearman Rank Correlation Coef-
ficient and the AUC as GPPMs. The calculations are direct for the other measures of Table
1.

Spearman(y, σ) = 1−
6

n(n2 − 1)

n∑
i=1

(σ-1(i)− y-1(i))2

= 1−
6

n(n2 − 1)

n∑
k=1

((n− k)− (n− y-1(σ(k))))2

= 1−
6

n(n2 − 1)

n∑
k=1

(n− k)2 + (n− y-1(σ(k)))2 − 2(n− k)(n− y-1(σ(k)))

=

n∑
k=1

12(n− k)(n− y-1(σ(k)))
n(n2 − 1)

+ 1−
2n(n− 1)(2n− 1)

n(n2 − 1)

=

n∑
k=1

12(n− k)(n− y-1(σ(k)))
n(n2 − 1)

−
3(n− 1)

(n+ 1)
.

AUC(y, σ) =
1

‖y‖1(n− ‖y‖1)
∑
i:yi=1

∑
j:yj=0

1{σ-1(i)<σ-1(j)}

=
1

‖y‖1(n− ‖y‖1)

n∑
i=1

yi
∑

j:yj=0

1{σ-1(i)<σ-1(j)}

=
1

‖y‖1(n− ‖y‖1)

n∑
k=1

yσ(k)

n∑
k′=1

(1− yσ(k′))1{k<k′}

=
1

‖y‖1(n− ‖y‖1)

(
n∑
k=1

yσ(k)

n∑
k′=1

1{k<k′} −
n∑
k=1

n∑
k′=1

yσ(k)yσ(k′)1{k<k′}

)

=

n∑
k=1

yσ(k)(n− k)
‖y‖1(n− ‖y‖1)

−
‖y‖1 − 1

2(n− ‖y‖1)
.

B.2 Proof of Theorem 3.3

We first define the notion of standardization function (see [3] for details).

Definition B.1 (Standardization Function) Let r : Y × Rn → R+ be a scoring perfor-
mance measure. A standardization function of Y for r is a function u : Y → Rn+ which, for
any distribution 4 ∈ Dr on Y, satisfies:

U(4) ∈ argmax
s∈Rn

R (4, s) .

We prove the following lemma before proving Theorem 3.3.

Lemma B.2 Fix n ≥ 3 and Y = {0, 1}n. Let r be a scoring performance measure. such that
for any σ ∈ Sn, any two indexes i, j and any y ∈ Y:
1. r (y, σ) = r (τij(y), τij ◦ σ) (symmetry), where τij is the transposition i↔j
2.
(
yi > yj and σ−1(i) > σ−1(j)

)
⇒ r (y, σ) < r (y, τij ◦ σ) (strict monotonicity),
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Then, for any standardization function u for r:

1. ∀y ∈ Y, ∀i, j, yi > yj ⇒ ui(y) > uj(y),
2. ∀y ∈ Y, ∀i, j, yi = yj ⇒ ui(y) = uj(y),
3. ∀y,y′ ∈ Y s.t.

∑
k yk =

∑
k y
′
k, for any i, j:

yi + y′i = yj + y′j ⇒ ui(y) + ui(y
′) = uj(y) + uj(y

′).

Proof Point 1 follows directly from the strict monotonicity. In the rest of the proof, for any i,
yi is the vector defined by yii = 1 and yik = 0 for k 6= i. Moreover, we will denote δy Dirac
distribution at point y.

We prove the second point by contradiction. Suppose y is such that yi = yj and ui(y) >
uj(y). Define a mixture between the two Dirac distributions, 4α = αδyj +(1−α)δy for α > 0

such that (1−α)ui(y)+αui(yj) > (1−α)uj(y)+αuj(yj). By strict monotonicity (yj requires
j ranked before i) and symmetry (the relative ordering of i and j does not matter for y), the
small probability α implies Uj (4α) > Ui (4α), which is impossible considering our choice of
α.

We also prove the third point by contradiction. Suppose there are y,y′ and two indexes
i and j such that yi + y′i = yj + y′j and ui(y) + ui(y

′) > uj(y) + uj(y
′). Notice that by the

second point, we necessarily have yi 6= yj , thus yi+ y′i = 1. Without loss of generality, assume
yi = 1 (thus, yj = y′i = 1 and y′i = 0). Define a mixture between the three Dirac distributions,
4β = βδyj + 1−β

2
δy + 1−β

2
δy′ , and β > 0 small enough so that Ui

(
4β
)
> Uj

(
4β
)
. Since∑

k yk =
∑
k y
′
k and using the symmetry of the ranking performance measure, we can claim

that y and y′ do not impose any constraint on the relative ordering of any two items for which
yi + y′i = yj + y′j . The probability β imposes Uj

(
4β
)
> Ui

(
4β
)
by strict monotonicity. This

is impossible considering our choice of β. �

Finally, we prove Theorem 3.3.

Proof Consider the binary relevance case with 4 items to rank, the two supervision vectors
y = (1, 1, 0, 0) and y′ = (0, 0, 1, 1), and the distribution 4 which gives probability 1/2 to
each of them. Aiming at a contradiction, suppose the ERR (resp. the AP) has a standardization
function uERR (resp. uAP). Then, by the third point of Lemma B.2, uERRi (4) (resp. uAPi (4)) does
not depend on i. If this is an optimal score vector, then any permutation of the four items is
optimal. Computing the ERR and the AP for the rankings 1 � 2 � 3 � 4 and 1 � 3 � 2 � 4, we
find:

ERR(4, 1 � 3 � 2 � 4) = ERR(4, 1 � 2 � 3 � 4) +
1

24

AP(4, 1 � 3 � 2 � 4) = AP(4, 1 � 2 � 3 � 4)−
1

12

Thus, some permutations are suboptimal, which contradicts the existence of a standardization
function. By contradiction, if ` is ERR-calibrated (resp AP-calibrated), then u is a standardiza-
tion function, which contradicts the latter assumption. �

B.3 Proof of Lemma 5.1

Proof With the notations of Lemma 4.1, we consider ν ∈ arg sort(U(4)). Then, for any σ ∈
Sn, we can apply Hölder’s inequality on the result of Lemma 4.1. So, we have:

R (4)-R (4, s) ≤

 ∑
(i,j)∈Cs

(
φ(ν−1(i))− φ(ν−1(j))

)q 1
p
 ∑

(i,j)∈Cs

(
Ui (4)− Uj (4)

)q 1
q

≤

(n+1)/2∑
i=1

(
φ(i)− φ(n− i+ 1)

)q 1
p
 ∑

(i,j)∈Cs

(
Ui (4)− Uj (4)

)q 1
q

�
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B.4 Results for Pointwise Losses

Now, the objective is to find q and c such that previous pointwise losses verify the con-
ditions of Theorem 5.2. Practically, since we use arguments of convexity, we obtain surro-
gate regret bounds with q = 2. For the rest of this paragraph, for any v ∈ R, we denote
λ (v) = infs∈R λ(v, s). Indeed, for most of our pointwise losses we have,

H−ij (4)−Hij(4) = 2λ

(
Ui (4) + Uj (4)

2

)
− λ (Ui (4))− λ (Uj (4)) (16)

We can treat all proposed pointwise losses directly with Theorem 5.2. However, we want to
illustrate also the use of Theorem 5.3, so we propose proofs based on it for the Logistic and the
Exponential. Indeed, Theorem 5.3 can’t handle the Square Hinge and the Differentiable Hinge
because their minima are not always unique. So we can’t find an invertible map between the
utilities and the optimal scores. Thus, for these two ones we use the main method described
by Theorem 5.2.

Proof Squared Error
We directly prove the conditions of Theorem 5.2 by saying the value of H−ij (u,4)−Hij(u,4) =
1
2
(Ui (4)− Uj (4))2. �

Proof Square Hinge
λ (x) = t2

η
x(η − x) which is 2t2

η
-strongly concave because it’s a second-degree polynomial.

Since the Square Hinge satisfy (16), H−ij (4)−Hij(4) ≥
µ
8
(Ui (4)− Uj (4))2. �

Proof Hinge Differentiable

λ (x) =

{(
1− α

2

)
(η − x)− α(η−x)2

2x
if x ≥ η

2(
1− α

2

)
x− αx2

2(η−x) if x ≤ η
2

It satisfy (16), so for Ui (4) , Uj (4) ≤ η
2

H−ij (4)−Hij(4) =
α

2

(
Ui (4)

2

η − Ui (4)
+

Uj (4)
2

η − Uj (4)
−

(Ui (4) + Uj (4))2

2η − Ui (4)− Uj (4)

)

=
αη2

2

(
(Ui (4)− Uj (4))2

(η − Ui (4))(η − Uj (4))(2η − Ui (4)− Uj (4))

)
≥

α

4η
(Ui (4)− Uj (4))2

The calculus is completely symmetric when Ui (4) , Uj (4) ≥ η
2
. Then, for the case Ui (4) <

Ui(4)+Uj(4)

2
≤ η

2
< Uj (4) (others are symmetric), we just use

H−ij (4)−Hij(4) > λ

(
Ui (4) + Uj (4)

2

)
− λ (Ui (4))

≥
α

16η
(Ui (4)− Uj (4))2

�

The Logistic and the Exponential can be rewritten as Bregman divergences (5). So we can
use Theorem 5.3 to handle these two losses.

Proof Logistic
We denote ψ(x) = x log(x)+(1−x) log(1−x) which is 4-strongly convex, h(u) = log

(
u

η−u

)
for

u ∈ (0; η) invertible satisfying the conditions of Theorem 5.3. As λ(vi, si) = ηBψ

(
vi
η

∣∣∣∣∣∣.h-1(si))−
ηψ
(
vi
η

)
, we can directly apply Theorem 5.3. �

Proof Exponential

We denote ψ(x) = −2
√
x(η − x) which is 4

η
-strongly convex, h(u) = log

(√
u

η−u

)
for u ∈

(0; η) invertible satisfying the conditions of Theorem 5.3. As λ(vi, si) = Bψ

(
vi

∣∣∣∣∣∣.h-1(si)) −
ψ (vi), we can directly apply Theorem 5.3. �
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B.5 Results for Pairwise Losses

Here we gives the proofs that the proposed pairwise losses verify the assumptions of Theorem
5.4.

Proof Squared Error

1. For d∗ij = argmindij∈R Λ
ui,uj (4, dij), we have d∗ij = Ui (4)− Uj (4), so d∗ ∈ D.

2. infdij≤0 Λ
ui,uj (4, dij)− infdij∈R Λ

ui,uj (4, dij) = (Ui (4)− Uj (4))2.
�

Proof Logistic

1. Since ∂Λ
ui,uj (4,dij)
∂dij

=
−Ui(4)

1+e
dij

+
Uj(4)

1+e
−dij

thus we obtain d∗ij = log
(
Ui(4)
Uj(4)

)
, so d∗ ∈ D.

2. For dij ≤ 0,
∂Λ

ui,uj (4,dij)
∂dij

< 0, so infdij≤0 Λ
ui,uj (4, dij) is reached for dij = 0. So

inf
dij≤0

Λui,uj (4, dij)− inf
dij∈R

Λui,uj (4, dij) = Ui (4) log(Ui (4)) + Uj (4) log(Uj (4))

−(Ui (4) + Uj (4)) log

(
Ui (4) + Uj (4)

2

)
≥

1

4‖U(4)‖∞
(Ui (4)− Uj (4))2

The last inequality comes from the strong convexity of x 7→ x log(x) on a bounded interval.

�

Proof Exponential

1. Since ∂Λ
ui,uj (4,dij)
∂dij

= −Ui (4) e−dij +Uj (4) e
dij thus we obtain d∗ij = log

(√
Ui(4)
Uj(4)

)
,

so d∗ ∈ D.
2. For dij ≤ 0,

∂Λ
ui,uj (4,dij)
∂dij

< 0, so infdij≤0 Λ
ui,uj (4, dij) is reached for dij = 0. So

inf
dij≤0

Λui,uj (4, dij) − inf
dij∈R

Λui,uj (4, dij)

= Ui (4)

(
1−

√
Uj (4)

Ui (4)

)
+ Uj (4)

(
1−

√
Ui (4)

Uj (4)

)

=

(√
Ui (4)−

√
Uj (4)

)2

≥
1

4‖U(4)‖∞
(Ui (4)− Uj (4))2

�
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