
HAL Id: hal-00834224
https://hal.science/hal-00834224v2

Submitted on 3 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Unified Performance and Power Consumption
NAND Flash Memory Model of Embedded and Solid

State Secondary Storage Systems
Pierre Olivier, Jalil Boukhobza, Eric Senn

To cite this version:
Pierre Olivier, Jalil Boukhobza, Eric Senn. Toward a Unified Performance and Power Consumption
NAND Flash Memory Model of Embedded and Solid State Secondary Storage Systems. GDR Soc-Sip
2013 Meeting, Jun 2013, Lyon, France. �hal-00834224v2�

https://hal.science/hal-00834224v2
https://hal.archives-ouvertes.fr


Toward a Unified Performance and Power Consumption NAND Flash Memory Model 

of Embedded and Solid State Secondary Storage Systems  

Pierre Olivier*
+
, Jalil Boukhobza*, Eric Senn

+ 

Université Européenne de Bretagne, CNRS, UMR 6285 Lab-STICC, France
 

*Université de Bretagne Occidentale, Brest, France 

 
+
Université de Bretagne Sud, Lorient, France 

*{firstname.lastname}@univ-brest.fr, 
+
{firstname.lastname}@univ-ubs.fr

 
Abstract—This paper presents a set of models dedicated to 

describe a flash storage subsystem structure, functions, 

performance and power consumption behaviors. These models 

cover a large range of today's NAND flash memory applications. 

They are designed to be implemented in simulation tools allowing 

to estimate and compare performance and power consumption of 

I/O requests on flash memory based storage systems. Such tools 

can also help in designing and validating new flash storage 

systems and management mechanisms. This work is integrated in 

a global project aiming to build a framework simulating complex 

flash storage hierarchies for performance and power 

consumption analysis. This tool will be highly configurable and 

modular with various levels of usage complexity according to the 

required aim: from a software user point of view for simulating 

storage systems, to a developer point of view for designing, 

testing and validating new flash storage management systems. 

I. INTRODUCTION 

Flash memory is the main secondary storage media in 
embedded systems due to its numerous benefits in terms of 
performance, shock resistance, data density and power 
consumption. It is also widely present in general computing 
and mass storage domains with the large adoption of flash 
based Solid State Drives (SSDs). 

Simulation tools for such storage systems implement 
models of flash systems structure and behaviors. They are 
essential for multiple reasons. They first allow to evaluate and 
compare various performance metrics for existing systems. 
They also help in prototyping and validating new flash storage 
systems and the related management mechanisms. In the latter 
case, these tools give valuable estimations for performance 
and power consumption during the design phase. The aim of 
the work presented in this paper is to define a flash memory 
model which will be implemented in a global flash based 
storage system simulation tool. It will allow the simulation of 
a large set of storage systems from single flash chip embedded 
storage to complex multi chip and highly parallel SSDs.  

Existing tools [1-4] allow simulating flash based systems 
to study their behaviors. The targeted level of description goes 
from the micro architectural level [1] to the system (SSD) 
level [2-4]. As they are useful for the reasons stated above, 
some of them provide simple models for flash systems that 
could be enhanced to describe today’s complex storage 
systems, while others target low level descriptions which is 
too detailed for system level simulation. Most of them target 
I/O performance and could be completed with power 
consumption metrics. Another common characteristic is that 

these tools use constants as input for latency and power 
consumption profiles. This is somewhat rigid and could be 
enhanced by introducing models for describing performance 
and power consumption behaviors. Finally, such tools may 
benefit from detailed documentation to reduce the learning 
curve for mastering the tool. 

In this paper we present a set of models designed to be 
implemented in simulation and estimation tools, targeting 
NAND flash based storage systems performance and power 
consumption. The models are designed in such a way that 
covers the large specter of today’s NAND flash applications. 
With these models one can describe simple systems like single 
NAND chip based storage systems for embedded boards 
(smartphones, tablet PCs, etc.). One can also describe complex 
multi-chip, multi-channels systems as those present in SSDs. 
The presented models allow the user to define the structural 
and functional parameters for the described flash subsystem. 
Performance and power consumption models are defined, 
allowing to compute execution time and energy consumed by 
the various events. An implementation of these models in a 
fully documented C++ library is proposed in this paper. It will 
be available along with several use cases and performance / 
power consumption models derived from real NAND based 
storage systems. This tool takes as input a description of the 
simulated system and an I/O trace. 

In a first section NAND flash memory is described as well 
as the different ways to manage it in computer systems. In a 
second section the models for NAND flash storage systems 
are described. In section 3 an implementation example of the 
models is given. Finally, the global project in which this work 
is integrated is depicted in section 4, and some conclusions 
and perspectives of future works are given. 

II. BACKGROUND ON NAND FLASH MEMORY 

A. Structure of a NAND Flash Memory Based Storage System 

Flash memory is a non volatile EEPROM memory. NAND 
flash subtype [5] is block addressed and offers a high storage 
density: it is used for data storage. The structure of a complex 
NAND storage subsystem [4] is depicted on Fig. 1. A chip is 
composed of one or more dies, each of them containing one or 
more planes. Planes contain blocks, themselves containing 
pages. A page is composed of a user data area for data storage, 
and an out-of-band area to store metadata. A plane contains a 
page buffer with the size of one page to buffer data read / 
written from / to the chip. As simple embedded systems 

ha
l-0

08
34

22
4,

 v
er

si
on

 1
 - 

14
 J

un
 2

01
3

Author manuscript, published in "GDR Soc-Sip 2013 Meeting, Lyon : France (2013)"

http://hal.archives-ouvertes.fr/hal-00834224
http://hal.archives-ouvertes.fr


usually use only one NAND chip for secondary storage, more 
complex systems like SSDs contain multiple chips. Chips 
sharing the same I/O bus are grouped into channels. 

B. NAND Legacy and Advanced Commands 

A NAND flash storage subsystem, regardless of its 
structure complexity, supports 3 main operations called legacy 
operations: read and write operations are achieved at the 
granularity of a page, and the erase operation is performed on 
a whole block (see Fig. 1.). 

More complex systems like SSDs make use of advanced 
NAND commands [4]: (1) the copy-back command allows to 
use the page buffer to move data from one page to another 
inside one plane. (2) The cache read and cache write 
commands allows using the cache buffer to pipeline data 
transfers between the NAND array and the I/O bus (see Fig. 
1.), enhancing data transfer speed. The following commands 
introduce the notion of parallelism for I/O processing. (3) 
Multi-plane read / write / erase launch in parallel several read 
/ write / erase operations in all the planes of a die. (4) Die 
interleaved read / write / erase do likewise for several dies in 
the same chip. Finally, commands can be launched in parallel 
in multiple chips of the same channels, and in multiple 
channels of the storage system. Advanced operations can also 
be combined, for example a multi plane copy back operation 
can be performed in one die. 

C. NAND Constraints and Management Mechanisms 

NAND flash exhibits specific constraints. The first is the 
erase-before-write rule, which state that a page must first be 
erased before being written. As the target of the erase 
operation is an entire block, flash management mechanisms 
cope with this constraint by performing out-of-place data 
updates. This implies the use of a logical to physical address 
mapping scheme, and the invalidation of old (updated) data 
versions. Invalid data are recycled asynchronously through the 
execution of a process called garbage collection. Another 
constraint is the fact that a flash memory block can only 
sustain a limited number of erase operations, after which it can 
no longer retain data. Management mechanisms must then 
distribute evenly the write and erase cycles over the whole 
flash array to maximize the flash lifetime. 

Some constraints also apply specifically on advanced 
operations: for example, due to the internal characteristics of a 

flash chip, the addresses of source and target pages of a copy 
back operation must be either both odd or both even. 

III. MODELING A NAND FLASH STORAGE SUBSYSTEM 

We describe a flash storage subsystem as a set of 4 
models: the structural, fuctional, performance, and power 
model. 

 The structural model describes the architecture of the 
NAND subsystem : how it is divided into channels, chips, 
dies, planes, blocks and pages. It also allows to specify the 
architectural parameters of the represented flash subsystem: 
for example the page size, number of pages per block, number 
of channels, etc. With such a structural model one can choose 
to describe a single chip as an example of simple embedded 
flash storage system or a complex SSD storage subsystem. 

The functional model is used to describe the I/O operations 
supported by the simulated flash subsystem: we model legacy 
and advanced operations. The way the system processes these 
operations is also modeled: for example a copy back operation 
will end up as a read operation on the source page, and a write 
operation on the target page. Another important objective of 
the functional model is to implement the various NAND 
constraints presented earlier. An example of input for the 
functional model can be the list of commands supported by the 
described system: legacy commands only for a simple 
embedded storage subsystem, or a full set of advanced 
commands for a complex SSD subsystem. 

The performance model describes how to compute the 
execution time of the various events that can occur in the flash 
system. It can be viewed as a set of equations, one for each 
event, and the associated parameters. For example when the 
flash system processes a page read request, the performance 
model provides a function implementing an equation to 
compute the execution time of the page read operation. This 
function takes as input some meaningful parameters, for 
example the address of a page to read. 

The power consumption model works the same way as the 
performance model. Each function of the power consumption 
model implements an equation for the related flash event. In 
addition to the parameters that are also provided to the 
performance model, the power consumption model takes also 
as input the latencies computed by the performance model, as 
the time is a key metric in energy calculation. 

The power consumption and performance models 
abovementioned can be seen as meta-models. Indeed, they 
describe the parameters that can be used to compute execution 
time or power consumption for various events occurring in the 
described flash memory system. For each of these events, the 
equations using these parameters can be provided by the user. 
These equations are the actual performance and power 
consumption models. Such a high level of abstraction allows 
an accurate description of various systems with strong 
specificities in performance / power consumption behaviors. 

 

Fig. 1. A complex NAND storage subsystem structure. 

ha
l-0

08
34

22
4,

 v
er

si
on

 1
 - 

14
 J

un
 2

01
3



IV. IMPLEMENTATION: A C++ API FOR FLASH SUBSYSTEM 

PERFORMANCE / POWER CONSUMPTION ESTIMATION 

The structural model (A on Fig. 2) is defined as a set of 
C++ classes, one for each subcomponent of the flash 
subsystem (see Fig. 1.). When instantiating a flash subsystem 
object, structural parameters are passed to the constructor.  

The functional model corresponds to the methods 
associated to these classes. The “top level” component 
representing the flash subsystem offers one interface for each 
of the supported flash operations. This component takes as 
input an I/O trace (B on Fig. 2) during the simulation. This 
trace is a list of flash commands with the related parameters 
(arrival time, address, etc.). I/O requests are received by the 
top level component which forwards them to the concerned 
subcomponents. As said earlier, the functional model also 
implements the NAND flash constraints. This is useful when 
designing new flash management systems to detect invalid 
operations then raise error or warning messages. Still with this 
aim in mind, each subcomponent performs address range 
checking on received I/O requests. 

The functional model implementation computes the 
various flash events occurring during the simulation and 
passes them to the performance model for latency calculation 
(D, E). Along with the type of the event, meaningful 
parameters needed for timing computation are also passed: for 
example the address of a flash page read. In a same way the 
power consumption model receives events and parameters for 
energy computation (D, F, G). The outputs of performance 
and energy computation are passed to a statistics module (H, 
I), along with a log of occurred flash events (C). This module 
is in charge of preparing the simulation output.  

A simulation is highly configurable: an I/O trace and 
architectural parameters for the structural model can be 
provided. At this point in time, the API is still under 
development. It will be able to receive custom performance 
and power consumption models as input. They will take the 
form of equations computing timings and energy for each 
flash event, based on the meaningful parameters. The 
implementation will be available online along with a set of 
pre-built models, in particular performance and power 
consumption models created from real flash storage systems. 

V. GLOBAL PROJECT: A NAND FLASH STORAGE SYSTEM 

SIMULATOR 

This work is achieved for inclusion in a global project 
aiming to model and simulate the performance and power 
consumption of complex flash based devices. This includes on 
one hand embedded Linux storage systems. In that case the 
flash subsystem will receive an I/O trace computed by a 
functional model for the entire Linux flash storage software 
stack: the virtual file system, the dedicated flash file system, 
and the NAND driver. Models for each of these layers will be 
built, as well as performance and power consumption for the 
involved hardware components: CPU and RAM. On the other 
hand this project includes SSD and similar devices simulation. 
The flash subsystem will then take its I/O input trace from a 
functional model of a complex SSD controller. Performance 

and power consumption models for the controller and 
potential embedded cache memories (RAM / SRAM) found in 
such devices will be included in the simulator.  

This tool will have several functions: from a user point of 
view, one will be able to simply input parameters describing a 
flash storage system and its behavior to perform a simulation. 
From a developer point of view, bindings will be available to 
implement new flash management mechanisms for testing and 
validating purposes. 

VI. CONCLUSION AND FUTURE WORKS 

We have presented a set of models allowing to describe a 
NAND flash memory subsystem structure, behavior, 
performance and power consumption characteristics. These 
models are designed to be implemented in simulation software 
tools essential to (1) evaluate and compare existing systems; 
(2) prototype and validate flash management mechanisms; (3) 
build and validate performance and power consumption 
models. These models are implemented in a fully documented 
C++ API allowing to simulate flash subsystems. This tool is 
highly configurable: in addition to the flash structural 
parameters and the input I/O trace, the API will support 
plugging custom performance and power consumption 
models. This work will be integrated in a flash based storage 
system simulation tool supporting the wide range of NAND 
flash based devices: from embedded storage to complex and 
highly parallel solid state drives. 

REFERENCES 

[1] V. Mohan, S. Gurumurthi, and M. R. Stan, “Flashpower: A detailed 
power model for nand flash memory,” in Design, Automation & Test in 
Europe Conference & Exhibition (DATE), 2010, 2010, pp. 502–507. 

[2] Y. Kim, B. Tauras, A. Gupta, D. Mihai, and N. B. Urgaonkar, FlashSim: 
A Simulator for NAND Flash-based Solid-State Drives. 2009. 

[3] M. Jung, E. H. Wilson, D. Donofrio, J. Shalf, and M. T. Kandemir, 
“NANDFlashSim: Intrinsic latency variation aware NAND flash 
memory system modeling and simulation at microarchitecture level,” in 
2012 IEEE 28th Symposium on Mass Storage Systems and Technologies 
(MSST), 2012, pp. 1 –12. 

[4] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance 
impact and interplay of SSD parallelism through advanced commands, 
allocation strategy and data granularity,” in Proceedings of the 
international conference on Supercomputing, New York, NY, USA, 
2011, pp. 96–107. 

[5] J. Brewer and M. Gill, Nonvolatile memory technologies with emphasis 
on flash: a comprehensive guide to understanding and using flash 
memory devices, vol. 8. Wiley-IEEE Press, 2008

 

 
Fig. 2. Interractions between the models implementation inside the 

proposed C++ simulation API 

ha
l-0

08
34

22
4,

 v
er

si
on

 1
 - 

14
 J

un
 2

01
3


