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Making use of partial knowledge about hidden

states in HMMs: an approach based on belief

functions
Emmanuel Ramasso, Thierry Denoeux

Abstract—This paper addresses the problem of parameter
estimation and state prediction in Hidden Markov Models
(HMMs) based on observed outputs and partial knowledge of
hidden states expressed in the belief function framework. The
usual HMM model is recovered when the belief functions are
vacuous. Parameters are learnt using the Evidential Expectation-
Maximization algorithm, a recently introduced variant of the
Expectation-Maximization algorithm for maximum likelihood
estimation based on uncertain data. The inference problem, i.e.,
finding the most probable sequence of states based on observed
outputs and partial knowledge of states, is also addressed.
Experimental results demonstrate that partial information about
hidden states, when available, may substantially improve the
estimation and prediction performances.

Index Terms—Hidden Markov Models, Dempster-Shafer The-
ory, Evidence Theory, Evidential Expectation-Maximisation
(E2M) algorithm, Uncertain data, Soft labels, Partially supervised
learning.

I. INTRODUCTION

Hidden Markov Models (HMMs) are powerful tools for

sequential data modeling and analysis. For several decades,

many complex applications have been successfully addressed

using HMMs, such as word sequence discovery in speech

recordings [20], motion sequence recognition in videos [30],

gene finding in DNA sequences [16], prognosis of ball bearing

degradation [11], [21] or financial time series forecasting [5].

A HMM is a simple dynamic Bayesian network composed

of observed random variables (outputs) Xt and latent discrete

random variables (hidden states) Yt, where t is a discrete time

index [20] (Figure 1). The sequence of states Y1, Y2, . . . is a

Markov chain and the distribution of the output Xt at time t,
as well as the distribution of Xt conditional on all Xu, only

depend on Yt. We note that this simple model has recently

been extended to “pairwise” [18] and “triplet” Markov chains

[19]. However, only the basic HMM will be considered in this

paper.

In the standard setting, the outputs are observed until some

time T while the states remain hidden. The model parameters

(i.e., the probability distribution of Y1, the state transition

probabilities and the parameters of the conditional probability

distributions of Xt given Yt, referred to as emission probabil-

ities) can then be estimated using an iterative procedure called
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Fig. 1. Graphical representation of a Hidden Markov Model.

the Baum-Welch algorithm [1], [20], which is a particular

instance of the Expectation-Maximization (EM) algorithm.

In this paper, we consider a different situation in which the

states are not completely hidden but are partially observed.

Partial observations of hidden states may be available in a

wide range of applications. For instance, in speech recognition,

partial information on words or phonemes may be available

from the analysis of lip motion. In behavior analysis, video se-

quences may be labeled with some imprecision or uncertainty.

In machine diagnosis and prognosis applications, experts may

express probability judgements on the machine condition at

different time steps, etc.

Here, partial knowledge about hidden states will be assumed

to be described using the the Dempster-Shafer theory of

belief functions [26], a formal framework for representing

and reasoning with uncertain information. This theory com-

bines logical and probabilistic approaches to uncertainty and

includes the set-membership and probabilistic frameworks as

special cases. In particular, it allows the representation of weak

knowledge up to complete ignorance: the usual HMM model

will thus be recovered as a special case.

In this context, we will solve the two classical problems

related to HMMs, i.e.,

1) Estimating the model parameters based on observations

of outputs and partial information on states (learning)

and

2) Finding the most likely sequence of states, given the

observed outputs and partial information on states (in-

ference).

The latter problem will be solved by a variant of the Viterbi

algorithm, while the former will be addressed using a method-

ology for statistical inference based on uncertain observations



2

first introduced in [7] in the special case of Gaussian mixture

models and exposed in a very general setting in [10]. As

HMMs can be seen as generalizations of mixture models

[3], the results presented in this paper somehow extend those

presented in [7], with more mathematical intricacies due to

the sequential nature of the model. The main features of this

approach are:

1) The representation of uncertain observations using belief

functions;

2) The definition of a generalized likelihood criterion that

can be interpreted in terms of degree of conflict between

the statistical model and the observations.

3) An extension of the EM algorithm, called the Evidential

EM (E2M) algorithm, which under very general condi-

tions converges to a local maximum of this criterion.

The rest of the paper is organized as follows. Section II

presents the necessary background on belief functions and the

E2M algorithm. The core of our contribution is described in

Section III and Section IV reports experimental results. Section

V concludes the paper.

II. BACKGROUND ON BELIEF FUNCTIONS

This section recalls the necessary background notions on

the Dempster-Shafer theory of belief functions (Subsection

II-A) and its application to statistical estimation using the E2M

algorithm (Subsection II-B).

A. Basic concepts

Let Y be a variable taking values in a finite domain Ω,

called the frame of discernment. Uncertain information about

Y may be represented by a mass function m on Ω, defined

as a function from the powerset of Ω, denoted by 2Ω, to the

interval [0, 1], such that
∑

A⊆Ω

m(A) = 1. (1)

Function m is said to be normalized if m(∅) = 0, a condition

that will be assumed in the rest of this paper. Any subset A
of Ω such that m(A) > 0 is called a focal element of m. Two

special cases are of interest:

1) If m has a single focal element A, it is said to be logical

and denoted as mA. Such a mass function encodes a

piece of evidence that tells us that Y ∈ A, and nothing

else. There is a one-to-one correspondence between

subsets A of Ω and logical mass functions mA: logical

mass functions are thus equivalent to sets.

2) If all focal elements of m are singletons, then m is said

to be Bayesian. There is a one-to-one correspondence

between probability distributions p : Ω → [0, 1] and

Bayesian mass functions m such that m({ω}) = p(ω),
for all ω ∈ Ω: Bayesian mass functions are thus

equivalent to probability distributions.

To each normalized mass function m, we may associate

belief and plausibility functions from 2Ω to [0, 1] defined as

follows:

Bel(A) =
∑

B⊆A

m(B) (2a)

Pl(A) =
∑

B∩A 6=∅

m(B), (2b)

for all A ⊆ Ω. These two functions are linked by the

relation Pl(A) = 1 − Bel(A), for all A ⊆ Ω. Each quantity

Bel(A) may be interpreted as the degree to which the evidence

supports A, while Pl(A) can be interpreted as the degree

to which the evidence does not refute A. The following

inequalities always hold: Bel(A) ≤ Pl(A), for all A ⊆ Ω.

If m is Bayesian, then function Bel is equal to Pl and is a

probability measure. The function pl : Ω → [0, 1] such that

pl(ω) = Pl({ω}) is called the contour function associated to

m.

Let m1 and m2 be two mass functions induced by indepen-

dent items of evidence. Their degree of conflict [26] is defined

by

κ =
∑

B∩C=∅

m1(B)m2(C). (3)

If κ < 1, m1 and m2 are not totally conflicting and they can

be combined using Dempster’s rule [26] to form a new mass

function defined as:

(m1 ⊕m2)(A) =
1

1− κ

∑

B∩C=A

m1(B)m2(C) (4)

for all A ⊆ Ω, A 6= ∅ and (m1⊕m2)(∅) = 0. Dempster’s rule

is commutative, associative, and it admits as neutral element

the vacuous mass function defined as m(Ω) = 1.

Let us now assume that m1 is Bayesian. Its contour function

is a probability distribution p1 defined by p1(ω) = m1({ω})
for all ω ∈ Ω. Combining m1 with an arbitrary mass function

m2 with contour function pl2 yields a Bayesian mass function

m1 ⊕m2 with contour function p1 ⊕ pl2 defined by

(p1 ⊕ pl2)(ω) =
p1(ω)pl2(ω)∑

ω′∈Ω p1(ω
′)pl2(ω′)

. (5)

(We note that, without ambiguity, the same symbol ⊕ is used

for mass functions and contour functions). The degree of

conflict between p1 and pl2 is

κ = 1−
∑

ω′∈Ω

p1(ω
′)pl2(ω

′). (6)

It is equal to one minus the mathematical expectation of

pl2 with respect to p1. Finally, we may also note that, if

m2 is logical and such that m2(A) = 1, then p1 ⊕ pl2 is

the probability distribution obtained by conditioning p1 with

respect to A.

B. E2M algorithm

Let Z be a discrete random vector taking values in ΩZ, with

probability mass function pZ(·;θ) depending on an unknown

parameter θ ∈ Θ. Let z denote a realization of Z, referred

to as the complete data. If z was perfectly observed, then the

likelihood function given z would be defined as the function
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from Θ to [0, 1] such that:

L(θ; z) = pZ(z;θ), ∀θ ∈ Θ. (7)

Let us now assume that z is not precisely observed, but it is

known for sure that z ∈ A for some A ⊆ ΩZ. The likelihood

function given such imprecise data is now:

L(θ;A) = pZ(A;θ) =
∑

z∈A

pZ(z;θ), ∀θ ∈ Θ. (8)

More generally, our knowledge of z may be not only

imprecise, but also uncertain; it can then be described by

a mass function m on ΩZ with focal elements A1, . . . , Ar

and corresponding masses m(A1), . . . ,m(Ar). In [10] it was

proposed to extend the likelihood function (8) given such

uncertain data by computing the weighted sum of the terms

L(θ;Ai) with coefficients m(Ai), which leads to the following

expression:

L(θ;m) =

r∑

i=1

m(Ai)L(θ;Ai). (9)

Using (8) and exchanging the order of summations over i and

z, we get

L(θ;m) =
∑

z∈ΩZ

pZ(z;θ)
∑

Ai∋z

m(Ai) (10a)

=
∑

z∈ΩZ

pZ(z;θ)pl(z). (10b)

The likelihood L(θ;m) thus only depends on m through

its associated contour function pl. For this reason, we may

write indifferently L(θ;m) or L(θ; pl). By comparing (10)

with (6), we can see that L(θ;m) equals one minus the

degree of conflict between pZ(·;θ) and m. Consequently,

maximizing L(θ;m) with respect to θ amounts to minimizing

the conflict between the parametric model and the uncertain

observations. We may also observe from (10) that L(θ; pl)
can be alternatively defined as the mathematical expectation

of pl(Z), given θ:

L(θ; pl) = Eθ [pl(Z)] . (11)

To maximize the likelihood function L(θ; pl) given uncer-

tain data pl, it was proposed in [9], [10] to adapt the EM

algorithm [8] as follows.

In the E-step, the conditional expectation of logL(θ;Z)
considered in the standard EM algorithm is now replaced by

the expectation with respect to pZ(·;θ
(q)) ⊕ pl, denoted as

pZ(·|pl;θ
(q)), where θ(q) is the current fit of parameter θ at

iteration q. We may remark that conditional expectation is re-

covered in the special case where m is a logical mass function.

Using (5), the probability mass function pZ(·|pl;θ
(q)) has the

following expression:

pZ(z|pl;θ
(q)) =

pZ(z;θ
(q))pl(z)

L(θ(q); pl)
, (12)

where L(θ(q); pl) is given by (10). At iteration q, the following

function is thus computed:

Q(θ,θ(q)) = E
θ(q) [log(L(θ;Z))|pl] (13a)

=

∑

z∈ΩZ

log(L(θ; z))pX(z;θ(q))pl(z)

L(θ(q); pl)
.(13b)

The M-step is unchanged and requires the maximization of

Q(θ,θ(q)) with respect to θ. The E2M algorithm alternately

repeats the E- and M-steps above until the increase of

observed-data likelihood becomes smaller than some thresh-

old.

As shown in [10], the E2M algorithm inherits the mono-

tonicity property of the EM algorithm, which under broad con-

ditions ensures convergence to a local maximum of L(θ; pl).
This algorithm has been applied to mixture models with partial

information on class labels [7] and/or uncertain attributes [10]

and to partially supervised Independent Factor Analysis [6].

III. PARTIALLY HIDDEN MARKOV MODELS

In this section, we consider the HMM model introduced

in Section I and we assume that partial knowledge of hidden

states Yt is available in the form of mass functions mt for

each t ∈ {1, . . . , T}. The resulting model can be called

a Partially Hidden Markov Model (PHMM). The notations

will first be introduced in Subsection III-A. The learning and

inference problems will then be tackled in Subsections III-B

and III-C, respectively. Finally, a comparison between the

model introduced in this section and related work will be

performed in Subsection III-D.

A. Model and notations

A HMM can be described by the following parameters:

• Prior probabilities ΠΠΠ = {π1, . . . , πk, . . . , πK}, where

πk = P (Y1 = k) is the probability that the system was

in state k at t = 1 and K is the number of states;

• Transition probabilities AAA = [akℓ], where

akℓ = P (Yt = ℓ|Yt−1 = k), (k, ℓ) ∈ {1, . . . ,K}2

(14)

is the probability for the system to be in state ℓ at time

t given that it was in state k at t− 1, with
∑

ℓ akℓ = 1;

• Parameters ΦΦΦ = {φφφ1, . . . ,φφφj , . . . ,φφφK} of the emission

probability distributions in each state:

pk(xt;φφφk) = p(xt|Yt = k;φφφk), k ∈ {1, . . . ,K}.
(15)

All these parameters can be arranged in a vector θθθ =
{A,ΠΠΠ,ΦΦΦ}.

Let x = (x1, . . . , xT ) denote the observed output sequence

and y = (y1, . . . , yT ) the corresponding sequence of hidden

states. To express the different probability distributions as

functions of the parameters, let Ytk denote the binary variable

that equals 1 if the system was in state k at time t and 0

otherwise. With this notation, we have

p(y1;ΠΠΠ) =

K∏

k=1

πytk

k , (16a)
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p(yt|yt−1;A) =

K∏

k=1

K∏

ℓ=1

a
y(t−1,k)ytℓ

kℓ (16b)

and

p(xt|yt;ΦΦΦ) =
K∏

k=1

pk(xt;φφφk)
ytk . (16c)

The likelihood function given the complete data z = (x,y) is

thus

L(θ; z) = p(z;θ) =

p(y1;ΠΠΠ)

(
T∏

t=2

p(yt|yt−1;A)

)
T∏

t=1

p(xt|yt;ΦΦΦ) =

(
K∏

k=1

πy1k

k

)


T∏

t=2

∏

k,ℓ

a
y(t−1,k)ytℓ

kℓ




(
T∏

t=1

K∏

k=1

pk(xt;φφφk)
ytk

)
. (17)

In this paper, we assume that partial knowledge about the

state yt at each time t is available in the form of a mass

function mt on Ω. The observations thus consist in the output

sequence x1, . . . , xT as in the usual HMM model and a

sequence of mass functions m1, . . . ,mT with corresponding

contour functions pl1, . . . , plT , referred to as uncertain (soft)

labels [7]. Combining these T mass functions using Demp-

ster’s rule yields a mass function on the product space ΩT

with contour function

pl(y) =

T∏

t=1

pl(yt). (18)

Since x is precisely observed, we have pl(x′,y) = pl(y) if

x′ = x and pl(x′,y) = 0 otherwise, for all (x′,y). The

generalized likelihood function (10) then has the following

expression:

L(θ;x, pl) =
∑

y

L(θ;x,y)pl(y). (19)

As suggested in [9], there is a formal analogy between the

above model and the following probabilistic model. Consider

a HMM whose output at each time t is a pair (Xt, Ut), where

Ut is a Bernoulli random variable such that P (Ut = 1|Yt =
k) = pltk and

p(xt, Ut = 1|Yt = k) =

p(xt|Yt = k)P (Ut = 1|Yt = k) = pk(xt)pltk, (20)

for each k ∈ {1, . . . ,K}. Let U = (U1, . . . , UT ) and u =
(1, . . . , 1). The conditional probability of observing U = u

given that the system is in state k is

P (U = u|Yt = k) =

T∏

t=1

P (Ut = 1|Yt = k) =

T∏

t=1

pltk,

(21)

for each k ∈ {1, . . . ,K}. The likelihood function after

observing X = x and U = u is

L(θ;x,u) = p(x,u;θ) (22a)

=
∑

y

p(x,u|y)p(y) (22b)

=
∑

y

p(x|y)p(u|y)p(y) (22c)

=
∑

y

p(x,y)pl(y), (22d)

which is equal to L(θ;x, pl) from (19). This result shows that

this artificial probabilistic model (with fictitious variables Ut

taking value 1) is formally equivalent to the one considered

here. This purely formal analogy will be instrumental in

proving the results presented in the two following subsections.

B. Learning

The problem considered in this section is to estimate (learn)

parameter θ, given the output sequence x and fixed uncertain

labels pl1, . . . , plT , by maximizing the generalized likelihood

function (19).

In order to implement the E-step if the E2M recalled in

Subsection II-B, we need to compute the expectation of the

complete data log-likelihood with respect to the probability

distribution p(z|x, pl;θ(q)) obtained by combining p(z;θ(q))
with pl(z) using Dempster’s rule or, equivalently, by combin-

ing p(z;θ(q)) with pl(y) and conditioning on x. By taking the

logarithm of (17), we get

logL(θ; z) =

K∑

k=1

y1k log πj+

T∑

t=2

∑

k,ℓ

yt−1,kytℓ log aij +

T∑

t=1

K∑

k=1

ytk log pk(xt;φφφk). (23)

Hence,

Q(θ,θ(q)) = Eθ(q) [L(θ;Z)|x, pl] =
K∑

k=1

γ
(q)
1k log πj +

T∑

t=2

∑

k,ℓ

ξ
(q)
t−1,t,k,ℓ log aij+

T∑

t=1

K∑

k=1

γ
(q)
tk log pk(xt;φφφk), (24)

with γ
(q)
tk = E

θ(q) [Yt,k|x, pl] and ξ
(q)
t−1,t,k,ℓ =

E
θ(q)(Yt−1,kYtℓ|x, pl).

To compute γ
(q)
tk and ξ

(q)
t−1,t,k,ℓ, we can follow the same line

of reasoning as for standard HMMs [20][3, Chapter 13]. The

following proposition is proved in Appendix:

Proposition 1: We have

γ
(q)
tk =

α
(q)
tk β

(q)
tk

L(θ(q);x, pl)
, (25)

ξ
(q)
t−1,t,k,ℓ =

α
(q)
t−1,k pℓ(xt;φφφ

(q)
ℓ )pltℓ a

(q)
kℓ β

(q)
tℓ

L(θ(q);x, pl)
(26)
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and

L(θ;x, pl) =
K∑

k=1

αTk. (27)

where the variables α
(q)
tk and β

(q)
tk can be computed recursively

as follows:

α
(q)
1k = π

(q)
k pl1k pk(x1;φφφ

(q)), (28a)

α
(q)
t,k = pk(xt;φφφ

(q))pltk
∑

ℓ

α
(q)
t−1,ℓ a

(q)
ℓk , (28b)

for t = 2, . . . , T and

β
(q)
Tk = 1, (29a)

β
(q)
t,k =

∑

ℓ

β
(q)
t+1,ℓ pℓ(xt+1;φφφ

(q)) plt+1,ℓ a
(q)
kℓ (29b)

for t = T − 1, . . . , 1. �

The M-step of the E2M algorithm is similar to that of

the EM algorithm in the standard case. Maximization of

Q(θ,θ(q)) with respect to ΠΠΠ and A is achieved using ap-

propriate Lagrange multipliers, which leads to:

π
(q+1)
k = γ

(q)
1k (30a)

a
(q+1)
kℓ =

T∑

t=2

ξ
(q)
t−1,t,k,ℓ

T∑

t=2

K∑

ℓ′=1

ξ
(q)
t−1,t,k,ℓ′

. (30b)

Update equations resulting from the maximization of

Q(θ,θ(q)) with respect to ΦΦΦ depend on the form of the emis-

sion probability distributions. For instance, in the case of Gaus-

sian emission densities, we have pk(xt;φφφk) = N (µk,Σk) and

the update equations are [20]:

µµµ
(q+1)
k =

T∑

t=1

γ
(q)
tk xt

T∑

t=1

γ
(q)
tk

, (31a)

ΣΣΣ
(q+1)
k =

T∑

t=1

γ
(q)
tk (xt −µµµ

(q+1)
k )(xt −µµµ

(q+1)
k )′

T∑

t=1

γ
(q)
tk

.(31b)

We can remark that the consideration of partial knowledge

on hidden states does not result in any increase in the complex-

ity of the learning algorithm. Equations (28a)-(29b) correspond

to a variant of the so-called forward-backward algorithm

[20][3, Chapter 13], whose computational complexity scales

like O(K2T ), and updating the parameters through Equations

(30)-(31) can be performed in O(KT ) operations, so that the

overall complexity of one iteration of the E2M algorithm is

O(K2T ). However, the number of iterations needed by the

E2M algorithm to achieve convergence can be expected to

be influenced by the supplied knowledge on hidden states,

faster convergence being achieved when more informative

and accurate labels are provided. This phenomenon will be

demonstrated experimentally in Subsection IV-B.

Several issues need to be addressed to make the algo-

rithm work in practice. As in the usual forward-backward

algorithm, the terms α
(q)
t,k and β

(q)
t,k have to be rescaled to

prevent them from converging exponentially to zero. The

means and covariances of the Gaussian distributions can be

initialized using a clustering procedure such as the K-means

algorithm. Alternatively, we may pick K points randomly in

{x1, . . . , xT } to initialize the means and use the whole dataset

to initialize the covariances. Prior and transition probabilities

can be estimated using uncertain labels using a process similar

to that described in [25], [22]:

π
(0)
k ∝ pl1(k) (32a)

a
(0)
kℓ ∝

T∑

t=2

plt−1(k) · plt(ℓ). (32b)

If several training sequences are available, the results are

simply averaged as done with usual HMMs [20].

C. Inference

The inference process as considered here consists in finding

the most likely state sequence (y∗1 , . . . , y
∗
T ) given observed

outputs (x1, . . . , xT ) and partial knowledge about states,

encoded as contour functions pl1, . . . , plT . This problem is

important problem in many applications in which the states

have a well-defined meaning such as speech [20], image [19],

video [30] or signal [21] segmentation.

In the standard HMM model, the Viterbi algorithm makes

it possible to retrieve the most probable sequence of hidden

states given observations in TK2 operations instead of KT

for greedy search [28], [12]. Thanks to the formal analogy

with a probabilistic model as explained in Section III-A, the

Viterbi algorithm can be directly applied in the case where

partial knowledge about hidden state is available.

Let δt(k;θ) denote the highest probability of a sequence

(x1:t,u1:t,y1:t) up to time t and ending in state k:

δt(k;θ) = max
y1:t−1

p(x1:t,u1:t,y1:t−1, yt = k;θ). (33)

These probabilities can be iteratively computed by:

δt(k;θ) = max
ℓ

[δt−1(ℓ;θ)P (Yt = k|Yt−1 = ℓ)]

p(xt, Ut = 1|Yt = k) =

max
ℓ

[δt−1(ℓ;θ) aℓk] pk(xt;φk)pltk, (34)

for t = 2, . . . , T , starting from δ1(k;θ) = πkpk(x1;φk)pl1k.

The highest probability for the complete sequence is then

P ∗ = max
k

δT (k;θ). (35)

By keeping track of the argument maximizing the expression

in (34):

ψt(k) = argmax
ℓ

[δt−1(ℓ;θ)aℓk] (36)

for each t and k, the best state sequence can be retrieved by
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backtracking as follows:

y∗t−1 = ψt(y
∗
t ), t = T, . . . , 2. (37)

Note that similar equations were obtained in [25] for a

different model called Evidential HMM, using a different

process based on conditioning.

D. Related work

Before presenting numerical experiments with the model

introduced above, it is interesting to compare it with some

previous extensions of HMMs in the belief function frame-

work.

In [13] and [2], the authors extend, respectively, hidden

Markov chains and hidden Markov fields by allowing the

output vectors Xt (corresponding to sensor measurements)

to have a conditional probability distribution p(xt|Yt ∈ A),
for each A ⊆ Ω. This extension provides a way to model

partial sensor information. For instance, in a remote sensing

application, Ω might have two elements: “forest” and ”water”,

and Xt might represent the information from an optical sensor.

The conditional density p(xt|Yt ∈ Ω) might then model the

distribution of the sensor data in spots hidden by clouds. The

authors then build a mass function mx on the product space

ΩT induced by the sensor measurements x = (x1, . . . , xT )
and combine it with the Markov probability distribution p(y)
of Y using Dempster’s rule. They show that the result is a

Markov probability distribution, which allows them to use

classical segmentation methods.

In [15], the authors propose to model a nonstationary

Markov chain (Y1, . . . , YT ), with ill-known distribution, by

an evidential Markov chain, defined as a mass function m0 on

ΩT such that m(A) = 0 if A 6∈ (2Ω)T and

m0(A1 × . . .×AT ) = m0(A1)m0(A2|A1) . . .m0(AT |AT−1)
(38)

for all (A1, . . . , AT ) ∈ (2Ω)T (see also [27]). They show

that the combined mass function m0 ⊕mx, where mx is the

Bayesian mass function induced by sensor measurements, is

the conditional distribution p(y|x) defined by p(x,y), where

p(x,y) is the marginal distribution of a triplet Markov chain

[17]. Hence, p(y|x) is computable in time linear in the

number of observations. Furthermore, the authors propose a

variant of the EM algorithm for estimating the parameters of

the (stationary) evidential Markov chain and of the emission

probability distributions.

The two above models are combined in [4], where the

authors propose to model jointly the nonstationarity of the

state sequence by an evidential Markov chain, and the im-

precision of sensor measurements by conditional probability

distributions p(xt|Yt ∈ A) for each A ⊆ Ω. Once again, they

show that hidden states can be restored in linear time with

respect to T , and they provide an algorithm for estimating

the model parameters. In [19], the author considers even more

general models consisting of pairwise Markov chains in which

the hidden state sequence is modeled by an evidential Markov

chain and sensors provide evidential information.

By comparing this previous work with the contribution

presented in this paper, it is clear that they pursue different

goals: in [2], [15], [19], [4], the authors extend the HMM

to model situations in which we have less information that

would be required to use the standard HMM (due to par-

tial sensor information and/or nonstationarity of the hidden

state sequence). In contrast, in our approach, we consider a

standard HMM model (seen as a data generation mechanism),

which is supplemented by belief functions that encode partial

knowledge of hidden states, collected after the data have been

generated. We thus handle situations in which we have more

information than is usually assumed when using HMMs.

From a mathematical point of view, and adopting the

terminology of Ref. [19], the inference algorithm presented in

Subsection III-C can be seen as the Dempster’s combination

of the Markov distribution p(y), a non Markovian mass

function defined by (18) and a Bayesian mass function induced

by the emission probability distribution p(x|y). It would be

interesting to study more precisely the formal relationship

between this model and the very general models introduced

in [19]. The use of partial information, such as considered

in this paper, in extensions of HMMs such as pairwise or

triplet Markov chains, or even in the more general models

introduced in [19], is also an interesting perspective. These

research topics go beyond the scope of this paper and are left

for further research.

IV. EXPERIMENTS

In this section, the benefits of using partial knowledge

on hidden states using the approach describe above are first

demonstrated with simulated data in Subsection IV-A. Exper-

imental results with engine condition data are then reported in

Subsection IV-B.

A. Simulated data

We consider in this subsection data generated using a HMM

with three states and three-dimensional Gaussian emission

probability distributions pk(xt;φφφk) = N (µk,Σk). The param-

eters were fixed as follows:

ΠΠΠ = (1/3, 1/3, 1, 3)′, A =




0.6 0.3 0.1
0.1 0.6 0.3
0.1 0.3 0.6


 ,

µ1 = (2, 0, 0)′, µ2 = (0, 2, 0)′, µ3 = (0, 0, 2)′,

Σ1 = Σ2 = Σ3 = I.

Three different experiments were carried out with this model

to study the influence of soft label imprecision, labeling error,

and partial information on states when segmenting a new

output sequence.

1) Influence of label imprecision: To study how the im-

precision of knowledge on hidden states influences the per-

formances of the learning procedure described in Subection

III-B, we proceeded as follows. A learning sequence (x,y)
of length T was generated using the above model. Uncertain

labels were then generated as follows:

pltk =

{
1 if yt = k,

ν otherwise,
(39)
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where ν is a nonspecificity coefficient, which quantifies the

imprecision of the contour function plt. The value ν = 1
corresponds to the classical HMM model, in which we have

no information on hidden states, whereas the value ν = 0
corresponds to the supervised learning situation, in which

the states are observed precisely. The model was trained

using observed outputs x and uncertain labels pl1, . . . , plT as

explained in Subection III-B. The E2M algorithm was run 10

times with random initial values of the parameters, and the

best solution according to the observed-data likelihood was

retained.

To assess the quality of learning, we used a test dataset

of 1000 observations from the same distribution. The most

probable state sequence was computed using the Viterbi algo-

rithm, assuming no prior knowledge of hidden states in the

test sequence. The difference between the true and predicted

state sequences was assessed using the adjusted Rand index

(ARI) [14]. We recall that this commonly used clustering

performance measure is a corrected-for-chance version of the

Rand index, which equals 0 on average for a random partition,

and 1 when comparing two identical partitions.

The whole experiment (training and test data generation,

learning) was repeated 30 times. The results are shown in

Figure 2 for T = 100 and T = 300. We can see that the quality

of the results degrades gracefully from the fully supervised

(ν = 0) to the fully unsupervised (ν = 1) case. When a longer

sequence is used for training (T = 300), the influence of

partial knowledge of hidden states is less important. However,

even very imprecise labels (ν = 0.9) can still improve the

robustness of the results, as can be seen from the smaller

dispersion of ARI values.

2) Influence of labeling error: In the previous experiment,

information on hidden states was assumed to be always exact,

i.e., the true state had the largest plausibility value. To simulate

the more realistic situation in which information on states may

be wrong, we proceeded as proposed in [7] and [10]. At each

time step t, an error probability qt was drawn randomly from a

beta distribution with mean ρ and standard deviation 0.2. With

probability qt, the state yt was then replaced by a completely

random value ỹk (with a uniform distribution over Ω). The

plausibilities pltk were then determined as

pltk = P (yt = k|ỹt) =

{
qt/K + 1− qt if ỹt = k,

qt/K otherwise.
(40)

We can remark than the uncertain labels generated in this way

are all the more imprecise that the error probability is high: in

particular, we have pltk = ytk when qt = 0 and pltk = 1/K
for all k when qt = 1.

Training and test data sets were generated as in the previous

section, and results were evaluated in the same way. For each

randomly generated data set, the E2M algorithm was run with

uncertain labels plik, noisy labels ỹik and no information on

states.

Figure 3 shows the ARI as a function of mean error ρ
for T = 100 (left) and T = 300 (right). As expected, a

degradation of the segmentation quality is observed when the

mean error probability ρ increases, with the ARI tending to
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(b) T = 300

Fig. 2. Boxplots of the adjusted Rand index as a function of the nonspecificity
coefficient ν over 30 repetitions, for learning datasets of T = 100 (left) and
T = 300 (right) observations.

a value close to zero as ρ tends to 1 when noisy labels are

used for training. More importantly, Figure 3 shows that the

use of partial information on states in the form of uncertain

labels allows us to reach better segmentation results than those

obtained using noisy labels. In particular, results never get

worse than those obtained in the unsupervised case. These

results show that our method is able to exploit additional

information on observation uncertainty, when such information

is available.

3) Influence of partial knowledge of state in the recognition

phase: As shown in Subsection III-C, the Viterbi algorithm

can be adapted to find the most likely state sequence for new

data, based on observed outputs and partial observation of

states provided by uncertain labels. To assess the influence of

partial knowledge on states in the test sequence, we carried

out the following experiment. Parameters were estimated using

a sequence of T = 300 observations with no information

of states, and uncertain labels were generated for the test
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Fig. 3. Average values (plus and minus one standard deviation) of the
adjusted Rand index over the 30 repetitions, as a function of the mean error
probability ρ for learning datasets of T = 100 (left) and T = 300 (right)
observations.

sequence of 1000 observations, with random labeling noise

simulated as explained previously. The modified Viterbi al-

gorithm described in Subsection III-C was used to segment

the test sequence. Again, the whole process was repeated 30

times.

The results are shown in Figure 4. When ρ = 0, the test

labels are known with no error and the ARI equals one. As the

mean error probability ρ tends to one, the ARI between true

and noisy labels tends to zero. However, using the observed

output sequence and the uncertain labels, the Viterbi algorithm

successfully exploit partially reliable information on states to

compute meaningful partitions of the test sequence, with ARI

values not exceeding those obtained with no information of

test labels.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

ad
ju

st
ed

 R
an

d 
in

de
x

 

 
uncertain labels
noisy labels

Fig. 4. Average values (plus and minus one standard deviation) of the
adjusted Rand index over the 30 repetitions, as a function of the mean error
probability ρ for test labels.

B. Machine condition data

As mentioned in Section I, uncertain information about

states is typically available a posteriori in machine super-

vision applications, where experts may express probabilistic

judgements about the machine condition at different times.

To demonstrate the ability of our method to exploit partial

information on states in this kind of applications, we used

realistic machine condition data generated by an engine degra-

dation simulator. The dataset, the experimental settings and the

obtained results are described below.

1) Data description: A turbofan engine degradation sim-

ulator was designed at the NASA Prognostics Center of

Excellence [24]. Several operating conditions (such as altitude

or temperature) and fault modes were considered to cover a

wide variety of situations. The simulation model was built

using the Commercial Modular Aero-Propulsion System Sim-

ulation (C-MAPSS) developed at the NASA Army Research

Laboratory. By modifying 13 health parameters in C-MAPSS,

the user can simulate the effects of faults and deterioration

in any of the engine’s five rotating components, including

fan, LPC (Low-Pressure Compressor), HPC (High-Pressure

Compressor), HPT (High-Pressure Turbine), and LPT (Low-

Pressure Turbine) [29].

A dataset created using this simulator was first proposed

to the 2008 Prognostics and Health Management (PHM) Data

Challenge competition; the data was only described as run-to-

failure time series with 21 dimensions, including temperature,

pressure, and speed at various points, from multiple instances

of an unspecified engineering system [29]. Data from the

same engine model were collected by running the simulation

several times under different flight conditions. No failure mode

information was provided. NASA provided four data sets

generated from four independent experiments with different

settings such that only instances in the same data set can be

considered from identical systems.

For each run of the simulation, the engine experienced
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Fig. 5. Features and states for the 100 time-series in the dataset.

complete run-to-failure operations, i.e., starting from brand

new (with different degrees of initial wear and manufacturing

variation), developing faults over a number of flights from one

location to another, and finally reaching the failure condition

measured by a set of predefined criteria. Depending on various

factors, the amount and rate of damage accumulation for each

engine instance are different, causing variable engine life.

2) Experimental settings: Only the first training dataset

composed of 100 time series was used in this experient.

Features 7, 9 and 16 were considered, which are among those

shown in [29] to be the most relevant. Each time series in

this dataset was manually segmented into four states [23]:

normal, transient, degrading and broken modes. These “true”

labels1 were used to assess the performances of our method in

segmenting the data, based on incomplete and partially reliable

prior information on states.

The first feature for the complete dataset and the corre-

sponding true states are represented in Figures 5(a) and 5(b),

respectively. These figures show that the modeling of these

time-series is difficult partly because of the great variability

of possible durations in each state, which makes the detection

of the functioning state quite difficult.

The performances of the PHMM learning algorithm was

studied as a function of the quantity and quality of the partial

information on states. The quantity of information was tuned

by varying the proportion N of labeled data between 0 %

(corresponding to unsupervised learning) and 100% (corre-

sponding to fully supervised learning), by 25 % increments.

The quality of labels was set by simulating labeling error as

in Section IV-A2 (noisy labels). The emission probabilities in

each state were assumed to be Gaussian and the parameters

were estimated using ten-fold cross-validation.

3) Results: Figure 6 shows the distribution of the ARI (over

15 runs of the algorithm with different random labels) for

different proportions N of labeled data and mean labeling

error probabilities ρ. As in the previous experiment, we can

observe that the performances are only mildly affected by

labeling error. The median value of the ARI also does not

depend much on the proportion of labeled data; however, the

number of outliers (trials with very low ARI values) is much

larger for small N : labeled data thus improve the robustness

of the learning algorithm to initial conditions.

Moreover, learning time increases with noise level, as

reported in Figure 7, which shows the number of iterations

1Available at http://www.femto-st.fr/∼emmanuel.ramasso/PEPS INSIS
2011 PHM by belief functions.html.
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Fig. 6. Adaptive Rand Index as a function of labeling error ρ for different
proportions N of labeled data. The dotted line corresponds to the unsupervised
case.
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Fig. 7. Number of iterations as a function of labeling error ρ for different
proportions N of labeled data.

of the E2M algorithm for different proportions N of labeled

data and mean labeling error probabilities ρ. As in Figure 6,

the unsupervised case corresponds to ρ = 1 for any value

of N . Interestingly, labeling 75 % of the data with a mean

error rate up to 80 % allows us to reach convergence in less

than 10 iterations, which is five times less than the number

of iterations required in the unsupervised case. With 25 % of

labeled data and a mean error rate of 60%, the gain in training

time is still around 50 %. These results show that even very

imprecise and uncertain information of states may drastically

reduce the training time for HMMs.

http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
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V. CONCLUSION

In classical statistics and data analysis, observations are

usually assumed to be precise and perfectly reliable. Latent

variable models such a HMMs include both observed and

unobserved (latent) variables. In some applications, however, a

human expert, an unreliable sensor or an indirect measurement

device may provide imprecise and/or partially reliable infor-

mation on some of the variables. We then need to represent

such partial information and exploit it for statistical inference.

In this paper, this problem has been addressed in the

particular case of HMMs. Partial knowledge of hidden states

has been assumed to be available and represented by belief

functions. The E2M algorithm, a variant of the EM algorithm

for evidential data, has been particularized for this model,

resulting in modified Baum-Welch update equations for param-

eter learning. The problem of finding the most probable state

sequence based on observed outputs and partial information

on states has also been solved using the variant of the Viterbi

algorithm.

The proposed approach was validated using both simulated

data and realistic engine condition data generated by the C-

MAPSS simulation software developed by NASA. The use

of partial information on states was shown to allow for

improved performances and faster convergence of the learning

algorithm in time series segmentation tasks. In particular, the

performances were shown to improve gradually when the

quantity and quality of data increase.

The proposed approach is very general and can be extended

to any continuous and/or discrete latent variable models,

including more general forms of dynamic Bayesian networks

such as, in particular, pairwise or triplet Markov chains. More

work is also needed to develop rigorous elicitation procedures

allowing us to capture expert opinions in the form of belief

functions. First steps in this direction have been reported in

[6].
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APPENDIX

Our proof of Proposition 1 is based on the formally

equivalent probabilistic model described in Subsection III-A.

Omitting θ(q) to simplify the notations, we have

γ
(q)
tk = p(Yt = k|x, pl) = p(Yt = k|x,u)

=
p(x,u|Yt = k)p(Yt = k)

p(x,u)
, (41)

where, as before, u denotes a realization of U assumed

to be a vector of 1’s. From (22a)-(22d), we can see that

the denominator in the previous expression is L(θ(q);x, pl).
Making use of conditional independence properties as well as

the product rule of probability, we obtain for the numerator of

(25):

p(x,u|Yt = k)p(Yt = k)

= p(x1:t,u1:t|Yt = k)p(xt+1:T ,ut+1:T |Yt = k)p(Yt = k)

= p(x1:t,u1:t, Yt = k)p(xt+1:T ,ut+1:T |Yt = k)

= α
(q)
tk β

(q)
tk , (42)

where we use the notation x1:t = (x1, . . . , xt) and a similar

notation for u1:t, and α
(q)
tk and β

(q)
tk are defined as

α
(q)
tk = p(x1:t,u1:t, Yt = k; θ(q)) (43)

and

β
(q)
tk = p(xt+1:T ,ut+1:T |Yt = k; θ(q)). (44)

These variables can be computed using the forward-backward

[20][3, Chapter 13]. Using the same line of reasoning as

followed in [3, p.620], it can be shown that

α
(q)
1k = p(x1, U1 = 1, Y1 = k;φφφ(q))

= π
(q)
k pl1k pt(x1;φφφ

(q)), (45a)

and

α
(q)
t,k = p(xt, Ut = 1|Yt = k)
∑

ℓ

p(x1:t−1,u1:t−1, Yt−1 = ℓ)p(Yt = k|Yt−1 = ℓ)

= pk(xt;φφφ
(q))pltk

∑

ℓ

α
(q)
t−1,ℓ a

(q)
ℓk , (45b)

for t = 2, . . . , T .

Using (41) and (42) with t = T , we have

p(YT = k|x,u) =
p(x,u, Yt = k)β

(q)
Tk

p(x,u)
, (46)

which implies that β
(q)
Tk = 1. Recursion equations for β

(q)
t,k can

be obtained as

β
(q)
t,k =

∑

ℓ

p(xt+2:T ,ut+2:T |Yt+1 = ℓ)

p(xt+1, Ut+1 = 1|Yt+1 = ℓ)p(Yt+1 = ℓ|Yt = k)

=
∑

ℓ

β
(q)
t+1,ℓ pℓ(xt+1;φφφ

(q)) plt+1,ℓ a
(q)
kℓ . (47)

Now,

ξ
(q)
t−1,t,k,ℓ = p(Yt−1 = k, Yt = ℓ|x, pl) (48a)

= p(Yt−1 = k, Yt = ℓ|x,U = u) (48b)

=
p(x,u|Yt−1 = k, Yt = ℓ)p(Yt−1 = k, Yt = ℓ)

p(x,u)
(48c)

=
α
(q)
t−1,k pℓ(xt;φφφ

(q)
ℓ )pltℓ a

(q)
kℓ β

(q)
tℓ

p(x,u)
, (48d)

where we have made use of the following conditional inde-

pendence property:

p(x,u|Yt−1 = k, Yt = ℓ) =

p(x1:t−1u1:t−1|Yt−1 = k)p(xt, Ut = 1|Yt = ℓ)

p(xt+1:T ,ut+1:T |Yt = ℓ). (49)

Finally, from (25), we get:

L(θ;x, pl) = p(x,u;θ) =

K∑

k=1

αtkβtk (50)

for any t. In particular, taking t = T , we get:

L(θ;x, pl) =

K∑

k=1

αTk, (51)

which completes the proof.
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