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Abstract—Basic automated refactoring operations can be
chained to perform complex structure transformations. This
is useful for recovering the initial architecture of a source code
which has been degenerated with successive evolutions during
its maintenance lifetime. This is also useful for changing the
structure of a program so that a maintenance task at hand
becomes modular when it would be initially crosscutting.

We focus on programs structured according to Composite
and Visitor design patterns, which have dual properties with
respect to modularity. We consider a refactoring-based round-
trip transformation between these two structures and we study
how that transformation is impacted by four variations in
the implementation of these patterns. We validate that study
by computing the smallest preconditions for the resulting
transformations. We also automate the transformation and
apply it to JHotDraw, where the studied variations occur.

Keywords-refactoring; design patterns

I. INTRODUCTION

The complexity of program maintenance depends on the

quality of its structure. But, for a maintenance task at hand,

some design choices that cannot be qualified as good or

bad could also impact that complexity. This is illustrated

by the case of Composite and Visitor patterns. Despite their

usefulness in facilitating reuse and maintainability, each one

is more suitable for a specific kind of maintenance. While the

Composite (as well as Interpreter pattern and simple class

hierarchies) offers modular maintenance with respect to data

types, the Visitor pattern provides modular maintenance with

respect to functions [5]. These two patterns can be good at

design time because you usually do not know at that moment

if you will face more maintenance on the data axis or on

the function axis in the future. These (micro-)architectures

are complementary. Automatic switching between the two

structures at the source code level allows to benefit from the

best pattern with respect to a maintenance task at hand [4].

Such a behavior-preserving transformation is given by

Ajouli [1] and has been validated by a static analysis

by Cohen and Ajouli [3]. However, that transformation is

designed for a given implementation of the pattern (methods

with no parameters, no returned values, abstract class at

the root of the composite structure and a single level in

the composite hierarchy). Since various design choices for

implementing those patterns are found in real softwares, the

described transformation does not apply directly.

Our contribution in this paper is the extension of the

transformation presented by Ajouli [1] to take into account

four variations in the implementations of the Composite and

Visitor patterns. We validate the built transformations by

computing their minimum preconditions and by applying

them to JHotDraw in which the four variations occur.

For each variation considered on the Composite pattern,

we discuss how it is reflected on the dual Visitor im-

plementation, on the round-trip transformation and on its

preconditions (Sec. III). Then, we validate these changes in

the transformation algorithms by applying them to JHotDraw

both practically and formally (Sec. IV). Before addressing

the variations of the patterns and transformations, we review

the basic transformation on a toy example in Sec. II.

II. TRANSFORMATION BETWEEN COMPOSITE AND

VISITOR

To illustrate each pattern variation, we start with a toy

implementation of the Composite pattern, given in Fig. 1.

This program is composed by an abstract class, Figure, with

two declared business methods, print and show, and two

subclasses. One of these classes, Group, contains references

to Figure objects, and the business methods in that classes

make recursive invocations on those objects. This is a simple

implementation of the Composite pattern. Fig. 2 gives a

program with the same semantics but which implements the

Visitor pattern.

We consider the two transformations given in Fig. 3

from [1] to switch between these two implementations of the

Composite and Visitor structures. These transformations are

built by composing elementary behavior-preserving refactor-

ing operations from IntelliJ IDEA (a similar transformation

is also possible with the refactoring operations of Eclipse).

This composition is based on a meaningful orchestration of

these operations in order to get the right structure (briefly

explain below). The chain of operations is automated by us-

ing the API of IntelliJ IDEA (some refactoring operations are

extended or modified in order to satisfy the fully automation

of the transformation).



abs t rac t c lass Figure {

abs t rac t vo id p r i n t ( ) ;

abs t rac t vo id show ( ) ; }

c lass Rectangle extends Figure{

vo id p r i n t ( ){System . out . p r i n t l n ( ” Rectangle ” ) ; }

vo id show ( ){System . out . p r i n t l n ( ” Rectangle : ” + t h i s ) ;}}

c lass Group extends Figure {
A r rayL i s t<Figure> ch i l d ren

= new A r rayL i s t<Figure> ( ) ;
vo id p r i n t ( ) {

System . out . p r i n t l n ( ” Group : ” ) ;
f o r ( F igure c h i l d : ch i l d ren ) { c h i l d . p r i n t ( ) ;}}

vo id show ( ){
System . out . p r i n t l n ( ” Group ” + t h i s ) ;
f o r ( F igure c h i l d : ch i l d ren ) { c h i l d . show ( ) ; }
System . out . p r i n t l n ( ” ( end ) ” ) ;}}

Figure 1. A program structured according to Composite Design pattern.

abs t rac t c lass Figure {
vo id p r i n t ( ){ accept (new P r i n t V i s i t o r ( ) ) ; }

vo id show ( ){ accept (new ShowVisi tor ( ) ) ; }

abs t rac t vo id accept ( V i s i t o r v ) ;}

c lass Rectangle extends Figure{

vo id accept ( V i s i t o r v ){ v . v i s i t ( t h i s ) ;}}

c lass Group extends Figure {
A r rayL i s t<Figure> ch i l d ren = new A r rayL i s t<Figure > ( ) ;

vo id accept ( V i s i t o r v ) {v . v i s i t ( t h i s ) ;}}

(a) Data classes.

abs t rac t c lass V i s i t o r {

abs t rac t vo id v i s i t ( Rectangle r ) ;

abs t rac t vo id v i s i t ( Group g ) ;}

c lass P r i n t V i s i t o r extends V i s i t o r {
vo id v i s i t ( Rectangle r ){System . out . p r i n t l n ( ” Rectangle ” ) ;}

vo id v i s i t ( Group g ) {
System . out . p r i n t l n ( ” Group : ” ) ;
f o r ( F igure c h i l d : g . ch i l d ren ){ c h i l d . accept ( t h i s );}}}

c lass ShowVisi tor extends V i s i t o r {
vo id v i s i t ( Rectangle r ){

System . out . p r i n t l n ( ” Rectangle : ” + r ) ;}
vo id v i s i t ( Group g){
System . out . p r i n t l n ( ” Group ”+g ) ;
f o r ( F igure c h i l d : g . ch i l d ren ){ c h i l d . accept ( t h i s ) ;}
System . out . p r i n t l n ( ” ( end ) ” ) ;}}

(b) Visitor classes.

Figure 2. Visitor structure of the program shown in the Fig. 1.

1) ForAll m in M do CreateEmptyClass(vis(m))

2) ForAll m in M do CreateIndirectionInSuperClass(S,m,
aux (m))

3) ForAll m in M, c in C do InlineMethodInvocations(c, m,
aux (m))

4) ForAll m in M do AddParameterWithReuse(S, aux(m),
vis(m))

5) ForAll m in M, c in C do MoveMethodWithDelegate(c, aux(m),
vis(m), ”visit”)

6) ExtractSuperClass(V, ”Visitor”)

7) ForAll m in M do UseSuperType(S, aux (m), vis(m), ”Visitor”)

8) MergeDuplicateMethods(S, {aux (m) }m∈M, ”accept”)

(a) Base Composite→Visitor transformation.

I ) ForAll v in V do AddSpecializedMethodInHierarchy(S,
”accept”,”Visitor”,v)

II ) DeleteMethodInHierarchy(S,accept,”Visitor”)

III ) ForAll c in C do PushDownAll(”Visitor”,”visit”,c)

IV ) ForAll v in V, c in C do InlineMethod(v,”visit”,c)

V ) ForAll m in M do RenameMethod(S,accept,vis(m),aux (m))

VI ) ForAll m in M do RemoveParameter(S,aux(m),vis(m))

VII ) ForAll m in M do ReplaceMethodDuplication(S,m)

VIII ) ForAll m in M do PushDownImplementation(S,m)

IX ) ForAll m in M do PushDownAll(S,aux(m))

X ) ForAll m in M, c in C do InlineMethod(c,aux (m))

XI ) ForAll v in V do DeleteClass(v)

XII ) DeleteClass(”Visitor”)

(b) Base Visitor→Composite transformation.

Figure 3. Base Algorithms for reversible transformation from Composite
to Visitor.

We use the following notations to abstract the algorithm

from the given example:

• M: set of business methods, here M ={print,show}.

• C: set of Composite hierarchy classes except its root,

here C ={Rectangle, Group}
• S: root of the Composite hierarchy, here S = Figure.

• vis: function that generates a visitor class name from

a business method name, here vis(print) = PrintVisitor.

• V: set of visitor classes, here V =
{vis(m)}m∈M ={PrintVisitor, ShowVisitor}.

• aux : function used to generate names of temporary

methods, here aux(print) = printAux.

A. Composite to Visitor

The Composite→Visitor algorithm of Fig. 3(a) is ex-

plained with three stages: preparing for moving business

code (steps 1 to 4); moving the business code to the Visitor

classes (step 5) and recovering the conventional structure of

the Visitor pattern (steps 6 to 8).

Steps 1 to 4: Preparing for moving business code: First,

we create an empty visitor class (step 1) for each business

method of the program (PrintVisitor and ShowVisitor). Then, in

order to preserve the interface, we introduce a delegator for



the business methods (step 2). The initial business method

is now split into the delegator which keeps the name of

the business methods, its type and its defining class and

the business code contained in the deleguee method. In the

following, we call auxiliary methods those deleguee methods

that contain the business code.

The introduction of delegators have transformed direct

recursive invocations into indirect recursion. We replace in-

vocations of delegators by invocations of auxiliary methods

in business code to recover direct recursion and avoid using

the delegator in business code (step 3).

Finally, to be able to move business code to the right

visitor classes, we introduce into each auxiliary method its

target class by adding to it the visitor class type and name

as a dummy parameter (step 4).

Step 5: Moving business code to visitor classes: Move

auxiliary methods containing the business code to visitor

classes and rename them into ”visit”. The famous double

dispatch involved in the Visitor pattern is created by keeping

(again) a delegator in the originating class for each moved

method.

Steps 6 to 8: Recovering Visitor structure: We extract

a super-class for visitor classes (step 6). That class will

contain the abstract declarations of the visit methods. In the

delegators (which are in the Composite side), we change the

type of the parameter to the new super-class Visitor (step 7).

Finally, we unify all delegators in Composite side into a

single method accept (step 8).1

The resulting program is the one of Fig. 2 which imple-

ments the Visitor pattern.

B. Visitor to Composite

The base Visitor→Composite transformation is given in

Fig. 3(b). Again, the key point is to moving the business

code back to the composite hierarchy. For this reason, we

explain the whole algorithm again in three stages: preparing

the move, performing the move and recovering the target

structure.

Steps I and II: Preparing for moving business code:

Duplicate the method accept(Visitor) in the whole composite

hierarchy into overloaded methods (see footnote 1). Each

overloaded method takes one of the visitor classes as param-

eter (step I). These methods perform the same code as the

initial accept(Visitor) method, which is deleted since its role is

delegated to the new methods (end of step I). At this point,

all the invocations of the visit method are done on subclasses

of Visitor, so that we can delete the abstract declaration of

visit methods from the abstract Visitor (step III). This will

allow to inline visit methods in composite classes (next step).

1MergeDuplicateMethods and AddSpecializedMethodInHierarchy

are composite refactoring operations described in [2].

Step III: Move business code to Composite classes:

Inline the visit methods of the visitor classes and delete

them from these classes. This boils down to moving the

business code back to composite classes (inside what was

delegators before). At this point, the visitor classes are empty

(no methods). They cannot be deleted now because they are

still referenced, they are deleted in the two last steps.

Steps IV to XI: Recovering Composite structure:

In all the hierarchy, rename overloaded methods accept

(from step I) to methods with temporary different names to

remove the overloading: the refactoring operation determines

statically which instances of the overloaded methods was

referred to by the delegator, and adjusts the invocation to

the convenient deleguee accordingly (step V).

Then, remove the visitor parameters of these methods

(step VI). Indeed, the parameter is not used, and the type of

the parameter is not used anymore to resolve overloading.

Now we need to remove the delegation between the in-

terface for the business method (delegator) and the business

code (deleguee, renamed at step V):

• Replace any recursive invocation of the deleguee

methods by invocations of the corresponding method

(step VII).

• Push down the body of the delegators to the sub-classes

(step VIII). This removes the dynamic dispatch which

would prevent future inlining.

• To be able to delete the deleguee methods when they

will be inlined, delete their declarations from the ab-

stract super-class (step IX).

• Inline the deleguee methods in the concrete composites

classes and delete their declarations (step X).

• Delete the visitor hierarchy since it is not used anymore

(steps XI andXII).

After performing this transformation, we find back the

initial program of Fig. 1 except a few changes in the layout

and the comments.

C. Precondition

These transformations are validated in [3] by inferring a

minimum precondition that ensures that all the preconditions

of successive atomic refactoring operations will be satisfied

at run time, and that after performing a round-trip transfor-

mation, the resulting program is in a state which satisfies

the initial precondition, so that the transformation can be

applied again.

The computation of the minimum precondition is based

on the calculus of Kniesel and Koch [9] and on a formal

description of the refactoring operations of IntelliJ IDEA.

Those computed preconditions are valid under the hypothe-

sis that the formal description of the operations are faithful

with respect to the underlying tool (which has been tested

but not formally proven).

The full precondition (available in [3]) is a conjunction

of 49 predicates. Here is an extract of that precondition:



ExistsClass(Rectangle)

∧ ExistsMethodDefinition(Rectangle,show)

∧¬ExistsMethodDefinition(Rectangle,accept)

∧¬ExistsMethodDefinition(Rectangle,printAux)

∧ ...

For example, the proposition

¬ExistsMethodDefinition(Rectangle, printAux) is related to a

temporary method name introduced in step 2 and indicates

that such methods must not initially exist.

In the following, we always consider the round-trip trans-

formation for the computation of the preconditions.

III. PATTERN VARIATIONS

The previous transformation algorithms can be applied

only to programs satisfying the computed preconditions. In

particular, the business methods must have no parameter,

must return void, the superclass in the data type must be an

abstract class, and it must have only one level of subclasses.

In the following, we relax these restrictions and show how

the transformations take these changes into account.

A. Methods with parameters

1) Considered variation: We consider that some business

methods in the Composite structure have parameters, as

exemplified by the following method setColor :

/ / i n F igure
abs t rac t vo id setColor ( i n t c )

/ / i n Rectangle
i n t co l o r ;
vo id setColor ( i n t c ) { t h i s . co l o r = c ; }

/ / i n Group
vo id setColor ( i n t c ) {

f o r ( F igure c h i l d : ch i l d ren ){ c h i l d . setColor ( c ) ;} }

Note that the parameter c of the method setColor is passed

to each recursive call (in the class Group).

2) Target structure: In the Visitor structure (Fig. 2), the

visitor object, which is created by the interface methods of

the class Figure, is passed recursively as parameter of accept

and as receiver of visit invocations. So, to take the parameter

c into account, we put it into the state of that visitor object,

so that it is available during the traversal:

c lass S e tCo l o rV i s i t o r extends V i s i t o r {

f i n a l i n t c ;

S e tCo l o rV i s i t o r ( i n t c ){ t h i s . c = c ; }

vo id v i s i t ( Rectangle r ){ r . co l o r = c ; }

vo id v i s i t ( Group g){
f o r ( F igure c h i l d : g . ch i l d ren ){ c h i l d . accept ( t h i s ) ;} }}

The method setColor of the Figure abstract class passes the

parameter c to the constructor of the class SetColorVisitor, then

passes the resulting visitor object (with c in its state) to the

accept method:

/ / i n F igure
vo id setColor ( i n t c ) { accept (new S e tCo l o rV i s i t o r ( c ) ) ; }

The implementation of accept in Rectangle and Group is

left unchanged.

3) Composite→Visitor Transformation: The refactoring

operation of step 4 of the basic transformation (Fig. 3(a))

add a visitor parameter to the methods that becomes accept

later. Here, we do not want to add the visitor parameter to the

initial method parameter (such as c), but we want to replace

the initial parameter with the visitor. To do that we apply

the operation IntroduceParameterObject (step 4.A below).

Note that the refactoring operation IntroduceParameterOb-

ject could not be used with methods without parameters.

For that reason, we distinguish methods with parameters

and methods without parameters and we introduce the

following notation to introduce different treatments in the

transformation algorithm:

• MP: set of methods with parameters, here MP =
{setColor(int c)}.

• MW: set of methods without parameters, with MP ∪
MW = M and MP ∩MW = ∅.

Introducing a parameter object of type A to a method

m(B b) for example creates a class A, moves the parameter b

to A as an instance variable and finally changes m(B b) into

m(A a). Any old access to b in the body of m will be replaced

by a.b.

The initial step 1 is omitted for methods with parameters

because the operation IntroduceParameterObject creates

the new class (step 1.A below replaces step 1).

Here are the deviations from the basic algorithm for this

variation:

1.A) ForAll m in MW do CreateEmptyClass(vis(m))
(replaces step 1)

4.A) ForAll m in MP do
IntroduceParameterObject(S, aux (m), vis(m))

ForAll m in MW do
AddParameterWithReuse(S, aux (m), vis(m))

(replaces step 4)

4) Visitor→Composite Transformation: Before deleting

visitor classes (step XI) we have to check that there is

no references to them in the Composite hierarchy. For the

methods without parameters, we just remove the parameters

corresponding to the visitor (step VI.A : restriction of step

VI to methods without parameters) since at this moment

those methods do not use that parameter. For example, at

this moment (before step VI), the intermediate method for

print in Rectangle is as follows:

/ / i n Rectangle
vo id p r i n taux ( P r i n t V i s i t o r v ){

System . out . p r i n t l n ( ” Rectangle ” ) ; }

For the methods with parameters, instead of deleting the

visitor parameter, we have to inline the occurrences of visitor



classes to recover the initial parameter c. After applying

step X (before deleting visitor classes), the method setColor

is as follows:

/ / i n Rectangle
vo id setColor ( i n t c ){

t h i s . co l o r = new S e tCo l o rV i s i t o r ( c ) . c ;}

At this point we apply the operation InlineParame-

terObject which will replace new SetColorVisitor(c).c by c

(step XI.A), and then we can delete visitor classes (step XII).

Here is the extension of the back transformation:

VI.A ForAll m in MW do (replaces step VI)
RemoveParameter(S,aux(m),vis(m))

XI.A ForAll m in MP do (before step XI)
InlineParameterObject(S, aux (m), vis(m))

5) Computed Precondition: The generated precondi-

tions for this variations are related to the methods

that have parameters, such as ExistsMethodDefinitionWith-

Params(Figure,setColor,[int c]). This constraint is imposed by

the operation IntroduceParameterObject (step 4.A) since

that operation works only with methods with parameters (the

set MP contains setColor(int c)).

B. Methods with different return types

1) Considered variation: We consider now business

methods with different return types. For example we con-

sider a program with two methods: Integer eval() and String

show().

2) Target Structure: Since we have methods with differ-

ent return types, we cannot use void to the accept method.

One solution is to have an accept method variant for each

return type by the means of overloading. But this breaks the

beauty of the Visitor pattern (one accept method for each

business method instead of one accept method to implement

an abstract traversal). To avoid that, we use generic types as

done in Oliveira et al. [12]. In the abstract class Figure, the

accept method becomes generic:

abs t rac t <T> T accept ( V i s i t o r <T> v )

Note that the returned type is bound by the type of

the visitor class which appears as parameter. Each visitor

class represents a business method and its return type. The

parameterized visitor structure is as follows:

abs t rac t c lass V i s i t o r <T> { . . .}

c lass E v a l V i s i t o r extends V i s i t o r <In teger> { . . .}

c lass ShowVisi tor extends V i s i t o r <Str ing> { . . .}

Remark: Because of the restriction in the use of generic

types in Java, returned types which are raw types, such as

int or bool, must be converted to object types such as Integer

or Boolean. In the case of void, one can use Object and add

a return null statement (we use a refactoring operation to do

that).

3) Composite→Visitor Transformation: We use the fol-

lowing notations in the algorithm corresponding to this

variation:

• R: Set of methods and their corresponding return types,

here R ={(show,String), (eval,Integer)}.

In step 6 of the basic algorithm, the operation ExtractSu-

perClass creates a new abstract class and pulls up abstract

declarations of visit methods. In the considered variation,

we have to use an extension of the pull up operation that

introduces generic types in the super class to be able to insert

abstract declarations for methods with different return types.

To deal with this variation we apply the operation

ExtractSuperClassWithoutPullUp then the operation

PullUpWithGenerics2 instead of the operation

ExtractSuperClass of the step 6 (step 6.B).

6.B ExtractSuperClassWithoutPullUp(V, ”Visitor”) ;
ForAll m in M, c in C do

PullUpWithGenerics(vis(m), ”visit”,”Visitor”) (replaces 6)

4) Visitor→Composite Transformation: At the step I

of the base algorithm, we must specify the return type of

each accept method. The convenient return types could

be identified directly from return types of visit methods

existing in concrete visitors. This is done by the operation

AddSpecialisedMethodWithGenerics (step I.B).

I.B ForAll v in V do
AddSpecializedMethodWithGenerics(S,”accept”,R,

”Visitor”,v) (replaces I)

5) Computed Precondition: The only difference with the

basic preconditions is the check of return types which should

not be raw types. This precondition is required by the

operation PullUpWithGenerics.

C. Hierarchy With multilevel

1) Considered variation: We consider that the Composite

hierarchy has multiple levels, with a random repartition of

business code: some business methods are inherited, and

some other are overridden.

For example, we consider the class Rectangle has a sub-

class ColoredRectangle where the method print is overridden

whereas the second method show is inherited:

c lass ColoredRectangle extends Rectangle{
i n t co l o r ;
ColoredRectangle ( i n t c ){ t h i s . co l o r = c ; }

vo id p r i n t {System . out . p r i n t l n (
” Rectangle co lored wi th ” + co l o r ) ; } }

2) Target Structure: In order to have in visitor classes one

visit method for each class of the Composite hierarchy, the

code of the method show() defined in Rectangle in the Com-

posite structure and inherited by ColoredRectangle, is placed

in the methods visit(ColoredRectangle c) and visit(Rectangle r) in

ShowVisitor:

2http://plugins.jetbrains.com/plugin/?idea ce&id=6889

http://plugins.jetbrains.com/plugin/?idea_ce&id=6889


c lass ShowVisi tor extends V i s i t o r {
vo id v i s i t ( Group g ) { . . .}

vo id v i s i t ( Rectangle r ){
System . out . p r i n t l n ( ” Rectangle : ” + r + ” . ” ) ; }

vo id v i s i t ( ColoredRectangle c ){
System . out . p r i n t l n ( ” Rectangle : ” + c + ” . ” ) ;}}

3) Composite→Visitor Transformation: In order to push

down a duplicate of the inherited method to the right

subclass, we apply the operation PushDownCopy (step 1.C)

before running the basic algorithm.

We use the following notations in the algorithm corre-

sponding to this variation:

• i(c): a function that gives the list of inherited methods

of a class ; here i(ColoredRectangle) = {show()}.

• s(c): a function that gives the superclass of a class.

1.C ForAll c in C, ForAll m in i(c) do (before 1)
PushDownCopy(c,m,s(c))

4) Visitor→Composite Transformation: First we apply

the basic algorithm. Then, in order to get back the initial

structure we delete methods (step XII.C) that were initially

added in these classes in the step 1.C of the forward

transformation.

XII.C ForAll (c,m) in C, ForAll m in i(c) do
DeleteMethod(c,m) (after XII)

Remark: The refactoring operation that performs that

deletion should rely on the fact that the code of the deleted

method is the same as the code in the super class.

5) Computed Precondition: The precondition that char-

acterizes the transformation for this variation is: the method

show must not be overridden in the class ColoredRectangle

and must not call any overloaded method called with the

argument this in the class Rectangle. This is due to the

fact that, if the method Rectangle::show have any overloaded

method with the argument this, we could not copy this

method to the class ColoredRectangle since the argument this

will refer to that class and which could change the behavior

of this method which is supposed to keep the same behavior

either in the class Rectangle or in the class ColoredRectangle.

D. Interface instead of Abstract Class

1) Considered Variation: We now consider that the root

of the Composite hierarchy is not an abstract class but an

interface and that there is an intermediary abstract class

between it and its subclasses. This architecture is found in

real softwares: libraries are often provided by the means of

an interface and compiled byte-code (Facade pattern).

We suppose that there are no other subclasses implement-

ing the interface.

i n t e r f a c e Figure{
vo id p r i n t ( ) ;

}

abs t rac t c lass Abst rac tF igure implements Figure {
abs t rac t vo id p r i n t ( ) ;

}

c lass Group extends Abst rac tF igure {

A r rayL i s t<Figure> ch i l d ren = . . .

vo id p r i n t ( ){
. . .
f o r ( F igure c h i l d : ch i l d ren ){ c h i l d . p r i n t ( ) ;}}

}

2) Target Structure: Here is a possible target structure

corresponding to the considered variation:

i n t e r f a c e Figure{
vo id p r i n t ( ) ;
vo id accept ( V i s i t o r v ) ;

}

abs t rac t c lass Abst rac tF igure implements Figure{
vo id p r i n t ( ){ accept (new P r i n t V i s i t o r ( ) ) ; }

}

c lass Group extends Abst rac tF igure {
A r rayL i s t<Figure> ch i l d ren = . . .
vo id accept ( V i s i t o r v ){ v . v i s i t ( t h i s ) ;}

}

c lass P r i n t V i s i t o r extends V i s i t o r {
vo id v i s i t ( Group g){

f o r ( F igure c h i l d : g . ch i l d ren ){ c h i l d . accept ( t h i s ) ;}}
}

Note that the loop in visit(Group) is done on objects of type

Figure (not AbstractFigure).
3) Composite→Visitor Transformation: To reach the tar-

get structure, we have to create a delegator print(){printaux(..)}

in the class AbstractFigure and inline the recursive call of print

in Group (steps 2 and 3). But that recursive call refers to the

method print declared in the Figure interface whereas the del-

egator is defined in the abstract class AbstractFigure. To solve

that, we introduce a downcast to the class AbstractFigure in the

recursive call to print as follows: ((AbstractFigure) child).print()

(step 3.D). This makes the inlining by the refactoring tool

possible. This downcast is legal because we suppose that

the interface has no other implementation than the abstract

class.

After creating the method accept (step 8), we pull up

its declaration to the interface Figure, then we delete the

downcast (step 8.D).
3.D ForAll m in M, c in C do

IntroduceDownCast(c,m,S) (before 3)
8.D pullupAbstractMethod(S, ”accept”, I)

ForAll v in V do
DeleteDownCast(v,”accept”) (after 8)

Real practice of the transformation: The algorithms

shown above represent the ideal solution to get a Visitor

structure. In fact, there is no operation in the refactoring

tools we use to manage downcasts. In order to automate

the full transformation, we do not use downcasts and do not

inline the delegator. As a result we get a Visitor with indirect

recursion as follows:



/ / In F igure
vo id p r i n t ( ) ;

/ / In Abst rac tF igure
abs t rac t vo id accept ( V i s i t o r v ) ;
vo id p r i n t ( ){ accept (new P r i n t V i s i t o r ( ) ;}

/ / In P r i n t V i s i t o r
vo id v i s i t ( Group g){

f o r ( F igure c h i l d : g . ch i l d ren ){ c h i l d . p r i n t ( ) ;}}

We can see that at each recursive invocation a new

instance of a Visitor is created. The result is legal but

shows a poor use of memory. This problem disappears when

the initial Composite structure is recovered. Moreover, if

needed, the downcast can be introduced manually (or the

refactoring operation can be implemented).

So, in practice, the variation in the algorithm is: do not

apply step 3 (nor 3.D); do not apply step 8.D (but step 8).

4) Visitor→Composite Transformation: After the

practical Composite→Visitor transformation, the base

Visitor→Composite transformation can be applied without

performing the step VII.

After the full Composite→Visitor transformation de-

scribed above (with downcasts), we also have to add and

remove some downcasts to recover the Composite structure

(before step VII and after VII, the detail is not given for

reason of space).

5) Computed Precondition: We consider the practical

algorithms without downcasts. Because we do not apply in-

linings in step 3, the constraints IsRecursiveMethod(Group,print)

and IsRecursiveMethod(Group,show) have disappeared from the

computed minimum precondition.

E. Support for Precondition Generation

To generate the minimum preconditions to ensure the

correctness of our transformations, we described 24 refac-

toring operations with 480 backward description rules (we

use the concept of backward descriptions from the work of

Kniesel and Koch [9]). The specification of each refactoring

operation (preconditions and backward descriptions) are

given in [2].

IV. USE CASE : JHOTDRAW

In this section we we apply our transformation to the

JHotDraw framework.

1) Overview: In JHotDraw, there is a Composite structure

with 18 classes and 6 business methods which shows the four

variations presented above. We aliment the transformation

algorithm with the following data:

• S = AbstractFigure.

• C = { EllipseFigure, DiamondFigure, RectangleFigure,

RoundRectangleFigure, TriangleFigure, TextFigure, BezierFig-

ure, TextAreaFigure, ... }.

• MP = { basicTransform (AffineTransform tx), con-

tains(Point2D.Double p), setAttribute(AttributeKey key,Object

value), findFigureInside(Point2D.Double p), addNotify(Const

”Drawing d),removeNotify(Drawing d)}.

• MW = ∅.

• R = { (basicTransform,Void), (contains,Boolean),

(setAttribute, Void), (findFigureInside,Figure), (addNotify,

Void), (removeNotify, Void)}.

• s(LineConnectionFigure) = {BezierFigure}
s(...)= ...

• i(LineConnectionFigure) = {findFigureInside,

setAttribute,contains},

i(...) = ...

2) From Composite to Visitor: To switch from the Com-

posite structure of JHotDraw to its Visitor structure we apply

the following sequence of steps: 1.C ; 2 ; 4.A ; 5 ; 6.B ; 7

; 8.

3) From Visitor to Composite: To recover the initial

structure, we apply the following: steps I.B ; II; III; IV ;

V ; VI.A; VIII ; IX ; X ; XI.A ; XI ; XII ; XII.C.

4) Generated Precondition: We have computed a mini-

mum precondition that ensures the correctness of the round-

trip transformation. That precondition, given in [2], is a

conjunction of 1852 propositions.

V. RELATED WORK

Transforming Design Pattern Implementations: Roberts

et al. [13] use sequences of basic refactoring operations to

introduce design patterns in existing programs, including the

Visitor pattern. Ó Cinnéide and Nixon [11] provide auto-

matic preconditions generation for such sequences, without

considering Visitors however. Hills et al. [6, 7] implement

the reverse transformation: they remove the Visitor structure

from a real interpreter. Kerievsky [8] provides a catalog

of guidelines to introduce design patterns by refactoring

sequences, including the Visitor.

Variations in Composite and Visitor implementations:

Kerievsky [8] introduces Visitors in two variations of class

hierarchies. The first one is close to the base architecture we

consider (Sec. II), but misses some features of the Composite

pattern: 1) the business methods initially do not have abstract

declarations in the superclass of the hierarchy and 2) there

is no recursion in the class structure. Moreover, only one

business method is considered (3). As a result, there are

three differences between Kerievsky’s algorithm and our

base algorithm:

1) Our steps 2 and 8 that make the accept method appear

are done in a different way in Kerievsky [8].

2) Without recursion, our step 3 is pointless, and in step 4

the “any var” option of the AddParameter operation

is also useless (see AddParameterWithReuse in [2]).

3) Only one Visitor class is introduced in Kerievsky, so

that he does not need to add an interface for the Visitor

hierarchy (steps 6 to 8 in our algorithm).

Also, the algorithms of Kerievsky are only generic guide-

lines and are not formally analysed.



The second variation takes place in a very different

program, so that comparing the algorithms is not relevant.

VI. CONCLUSION

The contributions of this article are the following:

• We have selected four common variations in the imple-

mentation of the Composite pattern and we have shown

how these variations reflect in the Visitor pattern.

• For each variation, we have extended the previously

defined transformation. The resulting transformations

are automated and invertible.

• For each variation, we have checked the validity of the

adapted transformations by computing the minimum

precondition that ensures their success.

• We have applied the four extensions of the algorithms

on a real-size use case. The resulting algorithm is also

validated by computing its precondition.

• This use case also shows that the algorithm extensions

can be used together without conflicting interaction

between them.

The potential impact of this work in software industry

could be estimated with the following future work:

• Estimate the repartition of variations of Composite and

Visitor patterns in industrial softwares and compare it to

the variations we have considered. See which uncovered

variations are important in industry.

• Estimate the value of changing the structure of a source

code in order to ease its maintenance by experimenting

it with real programmers, on real programs.

Of course, to be applicable in industry, we also have

to provide some refactoring operations that are currently

missing (see sections III-C and III-D).

Besides the potential industrial benefits, studying pattern

variations and their impact in dual architectures has a

pedagogical interest: it can be used to better understand the

patterns themselves [8]. In particular, the Visitor pattern is

not trivial to understand. This work shows for instance how

visitors with or without a state are related to methods with or

without parameters (variation A) and how generic types are

needed in visitors when the business methods have different

return types (variation B).

As a future work, it would be usefull to use refactoring

inference tools such as [10] to find changes in the transfor-

mations automatically.
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