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Unstable blast shocks in dilute granular flows

J. F. Boudet and H. Kellay
U. Bordeaux 1, Laboratoire Ondes et Matière d’Aquitaine (UMR CNRS 5798), 351 cours de la Libération, 33405 Talence, France

(Received 3 May 2012; published 7 May 2013)

Shocks and blasts can be readily obtained in granular flows be they dense or dilute. Here, by examining the
propagation of a blast shock in a dilute granular flow, we show that such a front is unstable with respect to
transverse variations of the density of grains. This instability has a well-defined wavelength which depends on
the density of the medium and has an amplitude which grows as an exponential of the distance traveled. These
features can be understood using a simple model for the shock front, including dissipation which is inherent to
granular flows. While this instability bears much resemblance to that anticipated in gases, it is distinct and has
special features we discuss here.

DOI: 10.1103/PhysRevE.87.052202 PACS number(s): 45.70.Mg, 47.40.−x

I. INTRODUCTION

Granular media can be subjected to strong-enough solicita-
tions to produce shocks in dense [1–3] as well as dilute [4–7]
materials and blastlike perturbations in the dilute gaseous
limit [8,9]. In gases, a blast shock ensues when a large amount
of energy is deposited during a short time in a small spatial
extent. The blast or explosion then expands as a thin shell at
speeds much higher than the speed of sound in the surrounding
medium. This problem has received much attention, starting
with the work of Taylor and the work of Sedov, who predicted,
independently from each other, the temporal evolution of the
blast radius versus time in the case of energy conserving
blasts [10,11]. The instability of such fronts has been studied
since the 1960s with ongoing work as of the present date
[12–14]. Several issues have to be examined such as the
nature of the surrounding gas, the presence or not of different
dissipation mechanisms as may happen in the presence of
radiative processes, for example, and the exact details of the
shell as well as the geometry of the blast [15–18]. The question
of the stability of such blasts has haunted specialists in diverse
fields for more than half a century. To realize the importance
of this question consider a supernova or other interstellar
explosion. If such explosions become unstable, the front will
spread matter in clumps. These considerations are important
for the distribution of matter in the universe and the ensuing
formation of clusters giving birth to stars or other interstellar
objects [17–19].

As mentioned above, recent work has shown that dilute
granular flows may be used to understand the structure of
shock waves and the dynamics of blasts [4–9,20]. Besides the
advantage that blast propagation can be captured with relative
ease in granular flows, this system has the additional feature
of possessing inelastic collisions so the role of dissipation can
be gauged precisely. The question we ask here concerns the
stability of such blasts.

Here, and by using a granular gas as a model system, we
show that linear blast shocks can be unstable. This instability
can be understood in an analogous way as for blasts in
gases [13,14,21] but with important modifications notably
dissipation due to inelastic collisions between grains [22].
The most important result is that the wavelength of maximum
growth is determined by the mean free path of the gas and
that the growth rate is proportional to the velocity of the blast.

These two results can be obtained from a theoretical analysis
of the dynamics of small perturbations added to the blast front
modeled as a simple step of density and velocity.

II. FRONT PRODUCTION AND PROPAGATION

We produced linear blasts propagating down an inclined
plane using a simple experimental setup shown in the
schematic of Fig. 1. The experiments used glass beads, of
different diameters d ranging from 100 to 500 μm, released
from a reservoir (equipped with a gate of variable height)
as a thin and dilute sheet flowing down the plane made of
4-mm-thick glass. The opening height of the gate controls
the density �0 of the grains in the thin sheet which is
estimated from the flux of grains, a measurement of the stream
velocity, and a measurement of the thickness of the layer.
This sheet of grains accelerates down the plane after its exit
from the reservoir. The velocity of the flow, Uflow as well
as its fluctuations are determined using particle tracking of
individual grains or grain aggregates. Velocity fluctuations
arise most probably from collisions between grains as well
as through the entrance conditions. A long and thin rod is used
to produce linear blast shocks which propagate in the direction
of the main flow. The velocity of the flow at the chosen location
for producing the blast is 1 m/s and the area examined is about
10 cm in length and about 15 cm in width. The variation of
the velocity in this area is roughly 10%. In previous work [8],
we had shown that the impact of a small sphere on such a
dilute flow produces small holes almost devoid of grains and
whose diameter increases in time in a manner analogous to
that of circular blasts in gases. In the case described here, the
impact of the rod onto the flow produces a strip devoid of
grains whose width increases in time. The origin of elapsed
time is taken to be the moment when the strip rod hits the
thin sheet of grains. The rod has an impact time of about
0.2 ms and an impact velocity of about 10 m/s. The strip
formed by the impact of the rod is delimited by two fronts
that are more dense than the flowing granular medium and
which propagate in opposite directions with respect to the
center of the strip. This process is filmed with a fast camera to
follow the evolution of the strip as it is advected downstream
from the impact zone by the mean flow of the dilute granular
sheet. The rod actually rebounds on the glass plate so it does not
interfere with the future propagation of the strip. The images
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FIG. 1. Schematic of the setup: The glass beads are released from
a reservoir (equipped with a gate of variable height) as a thin and dilute
sheet flowing down the plane made of 4-mm-thick glass. The opening
height of the gate controls the density of the grains in the thin sheet,
which accelerates down the plane after its exit from the reservoir. A
long and thin rod is used to produce linear blast shocks propagating
in the direction of the main flow.

in Fig. 2 give an illustration of the opening of the strip almost
devoid of grains and the ensuing propagation of upstream and
downstream propagating fronts. Figure 2(b) shows an average
intensity profile in the direction of propagation. The interior
region (where the rod impacted) is almost devoid of grains, as
the rod displaced them towards the thicker fronts and appears
as white in the photographs. This region has been used as
a reference and its intensity has been set to zero to indicate
zero grain density. The darker regions representing the blast
fronts appear as two maxima separated by a distance 2R, the
width of the blast. Their intensity is indicative of a higher
density than the surroundings. Farther away from these two

maxima, the intensity decreases to a constant level to indicate
the density of the outer medium. In Fig. 3(a), the separation 2R

between the upstream and downstream fronts is plotted versus
time. This separation increases fast at first, before increasing
linearly versus time at the later stages as indicated by the
dashed lines. The initial increase has a large velocity which
decreases continuously with time of propagation as shown
in Fig. 3(b) before settling on a roughly constant velocity at
the later instants in the linear region for R(t). These features
are representative of blast propagation with the last instants
characterized by a velocity near that of the speed of sound in
the material, about 10 cm/s, and initial instants with supersonic
speeds [8]. From our experimental results, the velocity of the
front in the blast regime follows

U (t) = dR(t)

dt
= U0 exp

[
−R(t)

L

]
(1)

or, equivalently,

R(t) = L ln(tU0/L + 1), (2)

where L is a characteristic length scale. Figues 3(a) and 3(b)
show fits to these functional forms. This variation differs
from that of blasts in gases where power-law growth is found
[10,11].

III. INSTABILITY OF THE FRONT:
WAVELENGTH AND GROWTH RATE

As noted above, a dense region separates the region devoid
of grains from the granular gas region. We will focus on the
shock front separating this dense region from the granular gas

FIG. 2. (a) Formation of the blast at different instants after impact. The dark line in the middle is the rod. Once the rod impacts the flow,
a strip devoid of grains forms. This strip is delimited by two denser regions we call the fronts. Both fronts are advected by the mean flow at a
velocity Uflow. Each front travels at a relative velocity U with respect to the center of the strip as the width 2R of the strip increases in time.
(b) Intensity profile in the direction perpendicular to the flow (using an inverted scale where white corresponds to zero grain density near the
impact zone while black corresponds to a higher density). The two fronts appear as two well-defined peaks while the flowing granular medium
appears with a lower density (d = 0.33 mm, �0 = 0.05, λ = 11 mm).
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FIG. 3. (a) R versus time for different volume fractions (circles: d = 0.33 mm, �0 = 0.05; dots: d = 0.33 mm, �0 = 0.09). A fit using the
functional form given in Eq. (2) is shown. The parameters of the fit are given in the figure. The dashed lines indicate the constant velocity regime
at the end of the blast regime. (b) Velocity versus R, and a test of the functional form of the velocity versus R [Eq. (1)]. The parameters of the
fit are given in the figure. Here the conditions are the same as described for panel (a) (circles: d = 0.33 mm, �0 = 0.05, dots: d = 0.33 mm,
�0 = 0.09).

region. Note that this front is not homogeneous and develops an
instability in the transverse direction to the flow with a roughly
well-defined wavelength as shown in Fig. 4(a). Despite the low
contrast between the dense and less dense regions along the
front, the averaged intensity (which is indicative of the density
of grains), shown in Fig. 4(a) below the photographs of the
front, clearly shows that while the density is inhomogeneous
right after impact, it becomes modulated in the direction
parallel to the front. A sinusoidal variation is plotted on the
intensity variation as a guide to the eye. From such analyses,
an average wavelength can be obtained by measuring the
average distance between intensity peaks. While most of our

analyses focus on the upstream propagating front since the
downstream front is usually hidden by the rod creating the
blast, the main wavelength measured on the two fronts seems
comparable. Additional measurements of the wavelength were
carried out using Fourier analysis of the images. A typical
spectrum is shown in Fig. 4(b). The position of the peak
gives a measurement of the wavelength of the modulation in
agreement with the wavelgnth determined from an average
distance between intensity peaks. This instability actually
grows in amplitude as it propagates, as illustrated by the
snapshots of the front taken at different times after the impact
of the rod and by the intensity profiles in Fig. 4(a). The blast is,

FIG. 4. (a) Upstream front at two different instants along with an intensity profile in the transverse direction (d = 0.33 mm, �0 = 0.05,
λ = 11 mm). The intensity was averaged over the width of the front indicated by the two dashed lines. Note that 1 ms after impact, the density
modulation is barely visible in the intensity signal while, at a later time (t = 10 ms), the modulation is clearly visible with the intensity profile
showing a clear modulation and a well-defined wavelength. Sinusoidal modulation was added as a guide to the eye. (b) Fourier transforms of
the second image in (a). Note that a well-defined peak is clearly observed at a similar wavelength as that deduced from the image.
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FIG. 5. (a) Characteristic wavelength of the instability for different incident volume fractions for d = 0.33 mm and (b) the wavelength
versus grain diameter for a fixed volume fraction.

thus, unstable. The wavelength appears to be roughly constant
with time of evolution but depends on the grain size and on
the density of the flowing granular gas. This is illustrated in
Figs. 5(a) and 5(b), which show that the wavelength which
is of order 1 cm for the most dilute flows decreases with the
density down to a few mm. Higher densities were much more
difficult to analyze as the wavelength becomes comparable to
the width of the front. This wavelength also increases roughly

FIG. 6. Amplitude of the modulation (squares) versus time
extracted from a Fourier analysis of the front (d = 0.33 mm, �0 =
0.05, λ = 11 mm). The velocity of the front (dots) versus time is also
shown.

linearly with grain diameter, for a fixed volume fraction, as
shown in Fig. 5(b).

The second observation concerns the growth of the in-
stability of the front. By analyzing the evolution of the
front, we obtain the amplitude of this modulation versus
time using Fourier analysis as in Fig. 4(b). The Fourier
spectra show a well-defined peak at a well-defined wavelength.
The amplitude Aλ of this peak is then followed versus
time. The peak amplitude, shown in Fig. 6(a), starts out
small and increases as time increases. This amplitude then
saturates before starting to decrease. During the increase of
the amplitude, the denser patches become more visible and
better defined while during the last instants when the amplitude
decreases, the patches become less visible and spread out.
Along with the measurement of the amplitude of this mode,
we show the velocity of the front in Fig. 6(a). Note that the
amplitude of the observed perturbation increases only when
the blast is supersonic. When the blast moves at the speed of
sound, the perturbation stops growing. It turns out that Aλ(t)
grows exponentially versus R(t) in the blast regime as shown
in Fig. 7(a),

Aλ(t) = A0 exp

[
R(t)

L′

]
, (3)

where L′ is a characteristic length. This functional form differs
from those encountered in classical hydrodynamic instabilities
(exponential growth versus time) and in the blast instability in
gases (power-law growth in time). This functional form for Aλ

implies that the growth rate is as follows:

w(t) = 1

Aλ(t)

dAλ

dt
= 1

L′ U. (4)

The sign of 1/L′ and its amplitude determine whether the
instability grows and how fast it grows. This relation is verified
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FIG. 7. (a) Amplitude of the perturbation versus R (dots: d = 0.33 mm, �0 = 0.05; squares: d = 0.33 mm, �0 = 0.09). The lines are fits
using the functional form given in Eq. (3) in the text. The parameters of the fit are given. (b) Variation of the growth rate [Eq. (4)] versus the
velocity of the front for the same data as in (a) (the same symbols are used).

experimentally as shown in Fig. 7(b), allowing for a direct
measurement of L′, which is clearly positive.

IV. ANALYSIS OF THE INSTABILITY

In order to understand the observed instability which we
recall is analogous to the blast instability in gases [13,14],
we recast the description of the instability for the case of a
granular material since dissipation must play a dominant role
in our case. As the flowing sheet is very thin (a few grain
diameters thick), we describe the flow as two dimensional and
use mass and momentum conservation and the energy balance
equation which we write, respectively, as

∂�

∂t
+ ∂�Vi

∂xi

= 0, (5)

∂�Vj

∂t
+ ∂�ViVj

∂xi

= − ∂P

∂xj

, (6)

∂�E

∂t
+ ∂

∂xi

[(�E + P )Vi] = ∂

∂xi

(
κ

∂T

∂xi

)
− γ. (7)

Here i and j refer to the coordinates x and y parallel and
perpendicular to the flow direction. The volume fraction is
�, the granular temperature is T , the velocity is V, and the
pressure is P = �T . The internal energy E is given by 3

2T +
1
2 V2. The dissipation γ and the thermal conductivity term κ

are [22]

γ = β(1 − e2)
�

l(�)
T 3/2, (8)

κ = αl(�)�
√

T , (9)

l(�) = d/(6
√

2�), (10)

where l(�) is the mean free path in the material and the sole
characteristic length scale of the problem. α and β are unknown
constants and e the coefficient of restitution of the glass beads.
The temperature T is taken as the square of the velocity

fluctuations. For simplicity, we model the shock front as a
step function of density of grains and velocity of the particles.
We focus on the descending front propagating upstream into
the dilute surrounding gas (see the schematic in Fig. 8). We
use a simplified description whereby the front is delimited by
a volume fraction �0 on the dilute side (i.e., in the granular
gas region upstream from the front) and a volume fraction �1

on the dense part. We do not take into account the fact that
the density of the front decreases to zero in the region where
the impact occurred. The front is advancing at a velocity U (t).
In the high Mach number limit (which is the case here as
M ∼ 10, since the velocity of sound is near 10 cm/s while
typical velocities of the front are of order 100 cm/s) [5,8],
and in the simplest possible form, we can write the shock
conditions as follows:

�1 = 1

a
�0, (11)

T1 = aU 2, (12)

where T1 is the granular temperature in the dense part and
a is an unknown constant. We further assume that �1 is

FIG. 8. Schematic of the shock front. The front is delimited by a
volume fraction �0 on the dilute side (i.e., in the granular gas region
upstream from the front) and a volume fraction �1 on the dense part.
The front is advancing at a velocity U (t).
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independent of the position x along the flow direction and
that all the particles in the dense front move with a velocity
Vx(t) = U (t).

From our experimental results, the velocity of the front
follows U (t) = U0 exp[−R(t)

L
], as shown in Fig. 3. The length

scale L, obtained from fitting such curves, turns out to
be proportional to the mean free path: L ∼ 4l(�0). This
functional form for U is compatible with the above equations.
In the simplest possible case where the density, pressure,
temperature, and velocity are constant and do not vary with x,
and from ∂(�E)/∂t = −γ and the shock conditions, we obtain
dV 2

x

dt
∼ V 3

x

l(�0) , giving Vx(t) ∼ exp[−R(t)
L

] with L proportional to
the mean free path. While the resolution for L is complicated in
the more realistic case where the pressure and the temperature
away from the front are not constant, it does, however, remain
proportional to l(�0).

We now focus on the evolution of a small perturbation
of the front along the direction y. The base state, taken as
independent of y, is written as

�1 = Cts, (13)

T = T1 + (dVx/dt)[R(t) − x], (14)

P = �1{T1 + (dVx/dt)[R(t) − x)]}, (15)

and the velocity as Vx(t) = U0 exp[−R(t)/L], with L ∼
l(�0). Here x is the longitudinal distance from the impact
point to the front position R(t). The dependence on x comes
from Eqs. (5)–(7) stated above and brings forth the dependence
of the temperature and the pressure on the distance to the front.

We then consider a small perturbation of the volume
fraction along the y axis with waven umber k,

�(y,t) = �1 + A(t) exp(iky). (16)

This leads to {from mass conservation [Eq. (5)] and
momentum conservation [Eq. (6)]} a perturbation of the base

state with perturbations given by

Vy = − A′

ik�1
exp(iky), (17)

δT = − 1

�1

(
A′′

k2
+ AT1

)
exp(iky), (18)

δP = −A′′

k2
exp(iky). (19)

The primes indicate time derivatives. The energy balance
equation for x = R(t), i.e., at the front position to simplify the
analysis, leads to an evolution equation for the amplitude of
the instability,

3

2

A′′′

k2
+ BA′′ + 5

2
A′T1 + CA = 0, (20)

B =
[

3β(1 − e2)

2l(�1)

√
T1

k2
+ αl(�1)

4k2

(dVx/dt)2

T
3/2

1

+ αl(�1)
√

T1

]
,

(21)

C =
[
αl(�1)

4

(dVx/dt)2

T
1/2

1

+ αl(�1)T 3/2
1 k2 − β(1 − e2)

2l(�1)
T

3/2
1

]
.

(22)

The form A(t) = A0 exp(R(t)/L′) is a solution to Eq. (20)
and is in excellent agreement with our experiments (see Fig. 7).
By introducing the reduced variables [here l(�1) = al(�0)],

X = α

a3/2

l(�1)

L
, (23)

Y = α

a3/2

l(�1)

L′ , (24)

K = α

a1/2
kl(�1), (25)

β ′ = αβ(1 − e2)

a
, (26)

FIG. 9. (a) Wavelength and (b) characteristic length of the instability versus mean free path which was varied by using (crossed squares)
different grains diameters (indicated near the data points) or a fixed diameter and different �0 (dots).
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we can rewrite Eq. (20) to obtain a nondimensional equation
for L′ versus k and, therefore, the growth of the instability for
different wave numbers:

3a

2K2
Y (Y − X)(Y − 2X) + aY (Y − X)B ′′ + 5

2
Y + C ′′ = 0,

(27)

B ′′ =
(

1 + X2

4K2
+ 3β ′

2K2

)
, (28)

C ′′ =
(

K2 + X2

4
− β ′

2

)
. (29)

This is a cubic equation which, in the limit of small K , and
therefore small Y , can be approximated by a linear equation
whose solution is

Y ∼
β ′
2 − X2

4

aX
(
3X − X2

4 − 3β ′
2

)K2. (30)

For the instability to develop and grow, the prefactor in front
of K2 needs to be positive. Along with this condition, and
since we observe a well-defined wavelength which we assume
to be the wavelength of maximal growth, we impose that
the dispersion relation goes through a maximum. These two
conditions imply that the length scale L, which determines the
deceleration of the front, needs to obey√

α

2a2β(1 − e2)
l(�1) < L <

2l(�1)

a1/2β(1 − e2)
. (31)

Thus, the front needs to decelerate so dissipation needs to be
important. However, this deceleration cannot occur over very
short distances so the instability may have time to grow.

Figures 9(a) and 9(b) show the characteristics of the
observed instability: the wavelength λ and the length L′, from
different runs using different volume fractions and different
grain sizes, depend on a single parameter, the mean free path,
in accordance with our analysis. The wavelength comes out to
be λ ∼ 14l(�0) and the characteristic length turns out to be
L′ ∼ 10l(�0). These two parameters, λ and L′, allow us to test
the dispersion relation obtained from Eq. (27) and reported in
Fig. 10 showing that the growth rate of the instability is positive
for large wavelengths with a well-defined maximum. This
feature is characteristic of classical hydrodynamic instabilities
with bell-shaped dispersion relations. If we assume that the
wavelength we observe is that of maximum growth (as it
appears naturally in our experiments), the values of the
predicted growth rates turn out to be consistent with our
measurements as shown in Fig. 10. To mimic the dispersion
relation we obtain experimentally, i.e., L′ versus k, a choice
of α = 0.9 and β = 0.7 has been used. The value of a is
estimated to be near 0.16 [23]. The range of allowed values
for the dispersion relation to agree with our measurements
turns out to be 0 < α < 4 and β ∼ 0.7, in agreement with

FIG. 10. Calculated dispersion relation [Eq. (27)] and estimates
using the experimental values (the crossed squares) from Fig. 9(b).

the condition above. A crucial ingredient of this instability is
the presence of dissipation. Indeed, an increase of the local
density of the front implies a decrease of the temperature due
to an increase of the number of collisions. In the same way,
this increase engenders a variation of the pressure. Since the
modulation of the pressure decreases away from the front, it
can become out of phase with the modulation in density. This
implies that in the dilute regions of the front, both the pressure
and the temperature can become larger than in the less dilute
regions, giving rise to a nonzero flux of particles from the
dilute regions to the more dense ones and, thus, reinforcing
the instability.

V. CONCLUSION

To conclude, our experiments show that linear blasts in
granular flows can be obtained in a simple setting. These blasts
propagate with a velocity that can be understood using a simple
model. The blasts then become unstable through a modulation
of the density of the front. This instability as well as its growth
rate and its wavelength can be obtained from a continuous
hydrodynamic model for granular gases. These experiments
allow for stringent tests of such models, which are derived
from the granular kinetic theory, under extreme conditions by
placing limits on the parameters entering into play. Our study
also allows for a detailed exploration of the role of dissipation
in the dynamics of blasts.
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