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Abstract

This paper considers the problem of finding a meaningful template function that
represents the common pattern of a sample of curves. To address this issue, a novel
algorithm based on a robust version of the isometric featuring mapping (Isomap)
algorithm is developed. Assuming that the functional data lie on an intrinsically
low-dimensional smooth manifold with unknown underlying structure, we propose
an approximation of the geodesic distance. This approximation is used to compute
the corresponding empirical Fréchet median function, which provides an intrinsic
estimator of the template function. Unlike the Isomap method, the algorithm has
the advantage of being parameter free and easier to use. Comparisons with other
methods, with both simulated and real datasets, show that the algorithm works
well and outperforms these methods.

Key words: Fréchet median; functional data analysis; Isomap.

1 Introduction

Nowadays, experiments where the outcome constitutes a sample of functions {fi(t) : t ∈
T ⊂ R, i = 1, . . . , n} are more and more frequent. Such kind of functional data are
now commonly encountered in speech signal recognition in engineering, growth curves
analysis in biology and medicine, microarray experiments in molecular biology and
genetics, expenditure and income studies in economics, just to name a few.

However, extracting the information conveyed by all the curves is a difficult
task. Indeed when finding a meaningful representative function that characterizes
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the common behavior of the sample, capturing its inner characteristics (as trends,
local extrema and inflection points), a major difficulty comes from the fact that
usually there are both amplitude (variation on the y-axis) and phase (variation on
the x-axis) variations with respect to the common pattern, as pointed out in Ramsay
and Li [24], Ramsay and Silverman [25], or Vantini [32] for instance. Hence, in the
two last decades, there has been a growing interest for statistical methodologies and
algorithms to remove the phase variability and recover a single template conveying
all the information in the data since the classical cross-sectional mean is not a good
representative of the data (see for instance Kneip and Gasser [16]).

Two different kinds of methods have been developed for template function
estimation. The first group relies on the assumption that there exists a mean pattern
from which all the observations differ, i.e an unknown function f such that each
observed curve is given by fi(t) = f ◦ hi(t), where hi are deformation functions.
Hence finding this patten is achieved by aligning all the curves fi. This method is
known as curve registration. In this direction, various curve registration methods have
been proposed using different strategies. When the warping operator is not specified,
we refer for instance to Kneip and Gasser [16], Wang and Gasser [33] Kneip et al.
[18], James [14], Tang and Müller [29], and Kneip and Ramsay [17] or Dupuy et al.
[11]. When a parametric model for the deformation is chosen, the statistical problem
requires a semi-parametric approach through a self-modeling regression framework
fi(t) = f(t, θi) (see Kneip and Gasser [15]), where all functions are deduced with
respect to the template f by mean an individual parameter vector θi. This point of
view is also followed in Silverman [28], Rønn [26], Gamboa et al. [13], Castillo and
Loubes [6], Bigot et al. [5] and Trigano et al. [31].

The second category of methods do not assume any deformation model for the
individual functions. The purpose is to select a curve at the center of the functions
and estimate it directly from the data without stressing any particular curve. This is
achieved for instance by López-Pintado and Romo [21] and Arribas-Gil and Romo [1]
estimating the template based on the concept of depth for functional data as measure
of centrality of the sample.

In this paper, we propose an alternative way based on the ideas of manifold
learning theory. We assume that the observed functions can be modeled as variables
with values in a manifold M with an unknown geometry. Although the manifold
is unknown, the key property is that its underlying geometric structure is contained
in the sample of observed curves so that the geodesic distance can be reconstructed
directly from the data. The template curve estimation is then equivalent to consider
the mean of the data with respect to this geodesic distance, hence approximating the
Fréchet mean or median of the data. Several algorithms have been developed over
the last decade in order to reconstruct the natural embedding of data onto a manifold
and estimate the corresponding geodesic distance. Some of these are, for instance,
the Isometric featuring mapping −Isomap− (Tenenbaum et al. [30]), Local Linear
Embedding −LLE− (Roweis and Saul [27]), Laplacian Eigenmap (Belkin and Niyogi
[3]), Hessian Eigenmap (Donoho and Grimes [10]), among others. In the following,
we propose a robust version of the Isomap algorithm dedicated to functional data,
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less sensitive to outliers and easier to handle. The performance of the algorithm is
evaluated both on simulations and real data sets.

This article is organized as follows. The frame of our study is described in Section 2.
Section 3 is devoted to the robust modification of the Isomap algorithm proposed to
the metric construction of the approximated geodesic distance based on the observed
curves. In Section 4 we analyze the temple estimation problem in a shape invariant
model, showing that this issue can be solved using the manifold geodesic approximation
procedure. In Section 5, the performance of our algorithm is studied using simulated
data. In Section 6, several applications on real functional data sets are performed.
Some concluding remarks are given in Section 7.

2 Template estimation with a manifold embedding frame-

work

Consider discrete realizations of functions fi observed at time tij ∈ T , with T a
bounded interval of R. For simplicity, we assume that all curves are observed at
the same time with the same occurrence, i.e. tij = tj and j = 1, . . . ,m. Set
Xi = {fi(tij), j = 1, . . . ,m} ∈ R

m for i = 1, . . . , n. We assume that the data have a
common structure which can be modeled as a manifold embedding. Hence the sample
E = {X1, . . . ,Xn} consists of i.i.d random variables sampled from a law Q ∈ M ,where
M is an unknown connected smooth submanifold of Rm, endowed with the geodesic
distance δ induced by the Riemannian metric g on M ⊂ R

m (do Carmo [9]).

Under this geometrical framework, the statistical analysis of the curves should
be carried out carefully, using the intrinsic geodesic distance and not the Euclidean
distance, see for instance Pennec [23] . In particular, an extension of the usual notion
of central value from Euclidean spaces to arbitrary manifolds is based on the Fréchet
function, defined by

Definition 1 (Fréchet function). Let (M, δ) be a metric space and let α > 0 be a
given real number. For a given probability measure Q defined on the Borel σ-field of
M, the Fréchet function of Q is given by

Fα(µ) =

∫

M
δα(X,µ)Q(dx), µ ∈ M.

For α = 1 and α = 2, if there exists, the minimizers of Fα(µ) are called the Fréchet
(or intrinsic) median and mean respectively. Following Koenker [19], in this paper we
will particularly deal with the intrinsic median, denoted by µ1

I(Q) to obtain a robust
estimate for the template function f ∈ M. Hence define the corresponding empirical
intrinsic median as

µ̂1
I = argmin

µ∈M

n∑

i=1

δ (Xi, µ) . (1)

However, the previous estimator relies on the unobserved manifold M and its
underlying geodesic distance δ. A popular estimator is given by the Isomap algorithm.
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The idea is to build a simple metric graph constructed with the data, which will be
close enough from the manifold. Hence the approximation of the geodesic distance
between two points depends on the length of the edges of the graph which connect
these points. The algorithm approximates the unknown geodesic distance δ between
all pairs of points in M in terms of shortest path distance between all pairs of points
in a nearest neighbor graph G constructed from the data points E . If the discretization
of the manifold contains enough points with regards to the curvature of the manifold,
hence the graph distance will be a good approximation of the geodesic distance. For
details about the Isomap algorithm, see Tenenbaum et al. [30], Bernstein et al. [4], and
de Silva and Tenenbaum [8].

The construction of the weighted neighborhood graph in the first step of the Isomap
algorithm and requires the choice of a parameter which controls the neighborhood
size and therefore its success. This is made according to a K−rule (connecting each
point with its K nearest neighbors) or ǫ−rule (connecting each point with all points
lying within a ball of radius ǫ) which are closely related to the local curvature of the
manifold. Points which are too distant to be connected to the biggest graph are not
used, making the algorithm unstable (see Balasubramanian and Schwartz [2]). In this
paper we propose a robust version of this algorithm which leads to an approximation of
the geodesic distance δ̂. Our versions does not exclude any point and does not require
any additional tuning parameter free. This algorithm has been applied with success
to align density curves in microarray data analysis (task known as normalization in
bioinformatics) in Gallón et al. [12]. The construction of the approximated geodesic
distance is detailed in Section 3.

Once an estimator of the geodesic distance is built, we propose to estimate the
empirical Fréchet median by its approximated version

µ̂1
I,n = argmin

µ∈G

n∑

i=1

δ̂ (Xi, µ) . (2)

This estimator is restricted to stay within the graph G since the approximated
geodesic distance is only defined on the graph. Hence we choose as a pattern of the
observation the point which is at the center of the dataset, where center has to be
understood with respect to the inner geometry of the observations.

3 The robust manifold learning algorithm

Let X be a random variable with values in an unknown connected and geodesically
complete Riemannian manifold M ⊂ R

m, and a sample E = {Xi ∈ M, i = 1, . . . , n}
with distribution Q. Set d the Euclidean distance on R

m and δ the induced geodesic
distance on M. Our aim is to estimate the geodesic distance between two points on
the manifold δ (Xi,Xi′) for all i 6= i′ ∈ {1, . . . , n}.

The Isomap algorithm proposes to learn the manifold topology from a neighborhood
graph. In the same way, our purpose is to approximate the geodesic distance δ between
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a pair of data points by the graph distance on the shortest path between the pair on
the neighborhood graph. The main difference between our algorithm and the Isomap
algorithm lies in the treatment of points which are far from the others. Indeed, the first
step of the original Isomap algorithm consists in constructing the K-nearest neighbor
graph or the ǫ-nearest neighbor graph for a given positive integer K or a real ǫ > 0,
respectively and then to exclude points which are not connected to the graph. Such a
step is not present in our algorithm since we consider that a distant point is not always
considered an outlier. Hence, we do not exclude any points. Moreover, a sensitive issue
of the Isomap algorithm is that it requires the choice of the neighbor parameter (K
or ǫ) which is closely related to the local curvature of the manifold, determining the
quality of the construction (see, for instance, Balasubramanian and Schwartz [2]). In
our algorithm, we give a tuning parameter free process to simplify the analysis.

The algorithm has three steps. The first step constructs a complete weighted graph
associated to E based on Euclidean distances d(Xi,Xi′) between all pairwise points
Xi,Xi′ ∈ R

m. It is a complete Euclidean graph GE = (E , E) with set of nodes E
and set of edges E = {{Xi,Xi′} , i = 1, . . . , n− 1, i′ = i+ 1, . . . , n} weighted with the
corresponding Euclidean distances.

In the second step, the algorithm obtains the Euclidean Minimum Spanning Tree
GMST = (E , ET) associated to GE, i.e. the spanning tree that minimizes the sum
of the weights of the edges in the spanning tree of GE,

∑
{Xi,Xi′}∈ET

d (Xi,Xi′). The
underlying idea in this construction is that, if two points Xi and Xi′ are relatively close,
then we have that δ (Xi,Xi′) ≈ d (Xi,Xi′). This may not be true if the manifold is very
twisted and/or if too few points are observed, and may induce bad approximations.
So the algorithm will produce a good approximation for relatively regular manifolds.
This drawback is well known when dealing with graph-based approximations of the
geodesic distance (Tenenbaum et al. [30], and de Silva and Tenenbaum [8]).

An approximation of δ (Xi,Xi′) is provided by the sum of all the Euclidean
distances of the edges of the shortest path on GMST connecting Xi to Xi′ , i.e.
δ̂ (Xi,Xi′) = ming

ii′∈GMST
L (gii′), where L (gii′) denotes the length of a path gii′

connecting Xi to Xi′ on GMST. However, this construction is highly unstable since
the addition of new points may change completely the structure of the graph.

To cope with this problem, we propose in the third stage to add more robustness
in the construction of the approximation graph. Actually, in our algorithm we add
more edges between the data points to add extra paths and thus to cover better the
manifold. The underying idea is that paths which are close to the ones selected in
the construction of the GMST could also provide good alternate ways of connecting the
edges. Closeness here is understood as lying in open balls B (Xi, ǫi) ⊂ R

m around the
point Xi with radius ǫi = max{Xi,Xi}∈ET

d (Xi,Xi′). Hence, these new paths between
the data are admissible and should be added to the edges of the graph. Finally, we
obtain a new robustified graph G′ = (E , E′) defined by

{Xi,Xi′} ∈ E′ ⇐⇒ XiXi′ ⊂

n⋃

i=1

B (Xi, ǫi) ,
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where
XiXi′ = {X ∈ R

m, ∃λ ∈ [0, 1], X = λXi + (1− λ)Xi′} .

Finally, G′ is the graph which gives rise to our estimator of δ, given by

δ̂ (Xi,Xi′) = min
g
ii′∈G

′
L (gii′) . (3)

Hence, δ̂ is the distance associated with G′, that is, for each pair of points Xi and
Xi′ , we have δ̂ (Xi,Xi′) = L (γ̂ii′) where γ̂i is the minimum length path between Xi

and Xi′ associated to G′. We point out that all points of the data sets are connected
in the new graph G′.

A summary of the procedure is gathered in the Algorithm 1

Algorithm 1 Robust approximation of δ

Require: E = {Xi ∈ R
m, i = 1, . . . , n}

Ensure: δ̂
1: Calculate d(Xi,Xi′) = ‖Xi −Xi′‖2 between all pairwise data points Xi and Xi′ ,

i = 1, . . . , n − 1, i′ = i + 1, . . . , n, and construct the complete Euclidean graph
GE = (E , E) with set of edges E = {{Xi,Xi′}}.

2: Obtain the Euclidean Minimum Spanning Tree GMST = (E , ET) associated to GE.

3: For each i = 1, . . . , n calculate ǫi = max{Xi,Xi′}∈ET
d (Xi,Xi′), and open balls

B (Xi, ǫi) ⊂ R
m of center Xi and radius ǫi. Construct a graph G′ = (E , E′) adding

more edges between points according to the rule

{Xi,Xi′} ∈ E′ ⇐⇒ XiXi′ ⊂

n⋃

i=1

B (Xi, ǫi) ,

where XiXi′ = {X ∈ R
m, ∃λ ∈ [0, 1], X = λXi + (1− λ)Xi′}. Compute the

shortest path distances between all pairs of points in the G′ using Floyd’s or
Dijkstra’s algorithm (see, e.g. Lee and Verleysen [20]).

4: Estimate the geodesic distance between two points by the length of the shortest
path in the graph between these points.

Note that, the 3-step algorithm described above contains widespread graph-based
methods to achieve our purpose. In this article, all graph-based calculations, such as
Minimum Spanning Tree estimation or shortest path calculus, were carried out with
the igraph package for network analysis by Csárdi and Nepusz [7].

An illustration of the algorithm and its behavior when the number of observations
increases are displayed respectively in Figures 1 and 2. In Figure 1, points

(
X1

i ,X
2
i

)
i

are simulated as follows:

X1
i =

2i− n− 1

n− 1
+ ǫ1i and X2

i = 2

(
2i− n− 1

n− 1

)2

+ ǫ2i , (4)
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where ǫ1i and ǫ2i are independent and normally distributed with mean 0 and variance
0.01 for i = 1, . . . , n and n = 30. In Figure 2, some results of graph G′ for
n = 10, 30, 100 are given. We can see that graph G′ tends to be close to the true
manifold

{(
t, t2

)
∈ R

2, t ∈ R
}

when n increases.

Obviously, this estimation shows that the recovered structures in Figures 1 and 2
are pretty sensitive to noise. Nevertheless, to estimate a representative of a sample of
curves, a prior smoothing step is almost always carried out as in Ramsay and Silverman
[25]. This is done in Section 6 for our real data set.

Step 1 Step 2 Step 3

Figure 1: The 3-step construction of a subgraph G′ from Simulation (4). On the left,
the simulated data set (black dots) and the associated complete Euclidean graph GE

(Step 1). On the middle, the GMST associated with the complete graph GE (Step 2).
On the right, the associated open balls and the corresponding subgraph G′ (Step 3).

n=10 n=30 n=100

Figure 2: Evolution of graph G′ from Simulation (4) for n = 10, 30, 100.

4 Application: Template estimation in a shape invariant

model

In this section, we consider the case where the observations are curves warped from
an unknown template f : T → R. We want to study whether the central curve defined
previously as the median of the data with respect to the geodesic distance provides
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a good pattern of the curves. Good means, in that particular case, that the intrinsic
median should be close to the pattern f .

We consider a translation model indexed by a real valued random variable A with
unknown distribution on an interval (b, c) ⊂ R

Xij = fi(tj) = f (tj −Ai) , i = 1, . . . , n, j = 1, . . . ,m, (5)

where (Ai)i are i.i.d random variables drawn with distribution A which models the
unknown shift parameters. This specification is an special case of the self-modeling
regression mentioned in the introduction.

Under a nonparametric registration model, Maza [22] and Dupuy et al. [11] propose
to use as a good pattern of the dataset the so-called structural expectation fSM defined
as

fSM = f (· −med(A)) , (6)

where med(A) denotes the median of A. They build a registration procedure in order
to estimate fSM.

We will see that the manifold embedding point of view enables to recover this
pattern. Actually, define a one-dimensional function in M ⊂ R

m parameterized by a
parameter a ∈ (b, c) ⊂ R as

X : (b, c) → R
m

a 7→ X(a) = (f (t1 − a) , . . . , f (tm − a)) ,

and set C = {X(a) ∈ R
m, a ∈ (b, c)}.

As soon as X is a regular curve, that is, if its first derivative never vanishes,

X ′ 6= 0 ⇐⇒ ∀a ∈ (b, c), ∃j ∈ {1, . . . ,m}, f ′ (tj − a) 6= 0, (7)

then, the smooth mapping X : a 7→ X(a) provides a natural parametrization of C
which can thus be seen as a submanifold of Rm of dimension 1 (do Carmo [9]). The
corresponding geodesic distance is given by

δ (X(a1),X(a2)) =

∣∣∣∣
∫ a2

a1

∥∥X ′(a)
∥∥ da

∣∣∣∣ , (8)

with X ′(a) = dX(a)/da = (dX1(a)/da, . . . ,dXm(a)/da)⊤.

The observation model (5) can then be seen as a discretization of the manifold C
for different values (Ai)i. Hence, finding the intrinsic median of all shifted curves can
be done by understanding the geometry of space C, and thus, by approximating the
geodesic distance between observed curves. Define the intrinsic median with respect
to the geodesic distance (8) on C, that is

µ̂1
I = argmin

µ∈C

n∑

i=1

δ (Xi, µ) . (9)

The following theorem gives an minimizer.
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Theorem 1. Under the assumption (7) that X is a regular curve, we get that

µ̂1
I =

(
f
(
t1 − m̂ed(A)

)
, . . . , f

(
tm − m̂ed(A)

))
,

where m̂ed(A) is the empirical median.

Hence as soon as we observe a sufficient number of curves to ensure that the median
and the empirical median are close, the intrinsic median is a natural approximation of
(6). Therefore, the manifold framework provides a geometrical interpretation of the
structural median of a sample of curves. The estimator is thus given by

µ̂1
I,n = argmin

µ∈E

n∑

i=1

δ̂ (Xi, µ) , (10)

where δ̂ is an approximation of the unknown underlying geodesic distance, that is
estimated by the algorithm described in Section 3.

We point out that in many situations, giving a particular model for the
deformations corresponds actually to consider a particular manifold embedding for
the data. Once the manifold is known, its corresponding geodesic distance may be
properly computed, as done in the translation case. So in some particular cases, the
minimization in (9) can give an explicit formulation and then it is possible to identify
the resulting Fréchet median. Hence previous theorem may be generalized to such
cases as done in Gallón et al. [12].

Note first that this case only holds for the Fréchet median (α = 1) but not the
mean for which the so-called structural expectation and the Fréchet mean are different.
Moreover, the choice of the median is also driven by the need for a robust method,
whose good behavior will be highlighted in the simulations and applications in the
following sections.

As shown in the simulation study below, when the observations can be modeled by
a set of curves warped from an unknown template by a general deformation process,
estimate (10) enables to recover the main pattern in a better way than classical
methods. Obviously, the method relies on the assumption that all the observed data
belong to an embedded manifold whose geodesic distance can be well approximated
by the proposed algorithm.

5 Simulation study

In this section, the numerical properties of our estimator, called Robust Manifold
Embedding (RME), defined by the equation (10) in Section 4 are studied using
simulated data. The estimator is compared to those obtained with the Isomap
algorithm and the Modified Band Median (MBM) estimator proposed by Arribas-Gil
and Romo [1], which is based on the concept of depth for functional data (see López-
Pintado and Romo [21]). We also compare the estimators with the cross-sectional
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median. The behavior of the estimator when the number of curves increases is also
analyzed.

Four different types of simulations of increasing warping complexity for the single
shape invariant model were carried out, observing n = 15, 30, 45, 60 curves on m = 100
equally spaced discrete points (tj)j in the interval [−10, 10]. The template function f
and shape invariant model, for each simulation, are given as follows:

Simulation 1 : One-dimensional manifold defined by f(t) = 5 sin(t)/t and

Xij = f (tj +Ai) ,

where (Ai)i are i.i.d uniform random variables on interval [−5, 5].

Simulation 2 : Two-dimensional manifold given by f(t) = 5 sin(t) and

Xij = f (Aitj +Bi) ,

where (Ai)i and (Bi)i are independent and (respectively) i.i.d uniform random variables
on intervals [0.7, 1.3] and [−1, 1].

Simulation 3 : Four-dimensional manifold given by f(t) = t sin(t) and

Xij = Aif (Bitj + Ci) +Di,

where (Ai)i, (Bi)i, (Ci)i and (Di)i are independent and (respectively) i.i.d uniform
random variables on intervals [0.7, 1.3], [0.7, 1.3], [−1, 1] and [−1, 1].

Simulation 4 : Four-dimensional manifold given by f(t) = φt + t sin(t) cos(t) with
φ = 0.9, and

Xij = Aif (Bitj + Ci) +Di,

where (Ai)i, (Bi)i, (Ci)i and (Di)i as in the Simulation 3.

The Figure 3, illustrates the simulated data sets from Simulations 1-4 with n = 30
curves. For all of simulations, is clear that the cross-sectional median underperforms
all other methods. For simulation one, where there is only phase variability, all of
methods, except the median, follows the structural characteristics of the sample of
curves, where the template estimated by the robust manifold approach is the closest
curve to the theoretical function. The same conclusion can be inferred from simulation
two. For simulations three and four, where there is additional amplitude variability,
the best graphical results are achieved by the Isomap and robust manifold estimators.
Note that in the simulation four, both of approaches coincide. On the contrary, the
MBM estimator has an opposite pattern with respect to the theoretical template.

In order to compare more accurately the estimators described above, we calculate,
for each one, the empirical mean squared error obtained on a set of R = 30 repetitions
of each type of simulation. We recall the definition, for estimator f̂ of a given type of
simulation, of the mean squared error:

Mean Squared Error
(
f̂
)
=

1

R

R∑

r=1

‖f̂r − f‖22,
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Figure 3: Simulated curves (gray) from simulation 1 (top left), 2 (top right), 3 (bottom
left) and 4 (bottom right), the target template function f (black solid line), and cross-
sectional median (dotted line), MBM (long dashed line), Isomap (dash-dotted line),
and RME (dashed-bold line) template estimators.

where, f̂r is the estimation from the r-th repetition of the given simulation type, f is
the true template function and ‖·‖2 is the classical Euclidean norm. We also highlight,
for our comparisons, the fact that

Mean Squared Error
(
f̂
)
=

1

R

R∑

r=1

‖f̂r − f̄‖22

︸ ︷︷ ︸
Variance

+ ‖f̄ − f‖22︸ ︷︷ ︸
Squared bias

,

where f̄ is the mean of all R obtained estimations.

Table 1 shows the mean squared errors, variances and squared biases of each
estimator for simulations 1, 2, 3 and 4, and for different number on curves n =
15, 30, 45, 60. Values have been rounded to zero decimal places to facilitate the
comparisons, and the minimum values are signed in bold.
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From the table we can see that the cross-sectional median obtains some good results
with respect to the other three methods, specially for the simulation 4. However, this
apparent good behavior is not validated by the graphical results in figure 3, due to
it does not approximate adequately the theoretical template. The template estimator
based on the modified band median method has the worse results. As we expected,
the values for the statistics calculated are bigger for more complex shape functions, it
is when there are both amplitude and phase variations in the samples of curves.

Comparing only the results for the graph-based estimators, i.e. Isomap and RME,
the smallest mean squared errors and variances are achieved by the template estimator
calculated with our robust algorithm for all types of simulation considered and for all
of sample size n, except in four and three cases, respectively (see Table 1). Also, it is
almost true for the squared biases. Note that although the theorem in Section 4 is valid
for one-dimensional manifolds generated by time shifts (simulation 1), we can see that
the intrinsic sample median estimator by approximating the corresponding geodesic
distance with the robust algorithm performs well for manifolds of higher dimension
(simulations 2-4).

Table 1: Comparison of estimators for simulations with different sample sizes.

n Statistic
Simulation1 Simulation 2

Median MBM Isomap EMS Median MBM Isomap EMS

MSE 218 416 236 223 341 966 274 398

15 Bias2 167 180 63 57 169 229 25 56

Variance 51 237 173 166 172 736 248 342

MSE 217 261 83 85 245 1234 274 192

30 Bias2 189 109 18 15 157 378 38 10

Variance 28 151 65 70 88 856 236 182

MSE 189 434 53 50 228 1035 247 177

45 Bias2 171 183 5 16 167 268 16 6

Variance 18 252 48 34 61 767 231 171

MSE 188 471 71 34 230 1413 200 148

60 Bias2 176 227 6 1 177 543 14 13

Variance 13 244 65 33 53 870 185 134

n Statistic
Simulation 3 Simulation 4

Median MBM Isomap EMS Median MBM Isomap EMS

MSE 822 2140 1163 994 548 1148 889 952

15 Bias2 487 604 373 274 466 536 499 587

Variance 335 1536 789 720 82 612 390 365

MSE 705 2812 762 836 482 1194 812 803

30 Bias2 552 1207 212 340 440 498 477 484

Variance 153 1605 550 496 42 696 335 319

MSE 607 2813 704 488 494 1103 893 878

45 Bias2 514 1165 178 174 465 445 618 613

Variance 93 1648 525 313 29 658 275 265

MSE 549 2015 456 368 482 960 786 730

60 Bias2 472 444 71 119 460 504 481 447

Variance 77 1571 386 249 23 456 305 283
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6 Applications

In this section we apply the proposed robust manifold learning algorithm to extract the
template function of a sample of curves on three real datasets of functional data: the
well-known Berkeley Growth and Gait data in functional data applications (Ramsay
and Silverman [25]), and a reflectance data of two landscape types. Our algorithm is
compared with the Isomap and Modified Band Median methods.

6.1 Berkeley growth study

The data of the Berkeley’s study consist in 31 height measurements for 54 girls and
38 boys recorded between the ages of 1 and 18 years. Intervals between measurements
range from 3 months (age 1-2 years), to yearly (age 3-8), to half-yearly (age 8-18).
One of the goals with this kind of data is the pattern analysis of growth velocity
and acceleration curves, represented by the first and second derivatives of the height
functions, in order to characterize its spurts and trends during years. The velocity
and acceleration curves for girls and boys were obtained by taking the first and second
order differences, respectively, of the height curves, whose functional representations
were made using a B-spline smoothing (see Ramsay and Silverman [25] for details).

Figure 4 provides the smoothed velocity curves (on the top) measured in
centimeters per year (cm/year) and the smoothed acceleration curves (on the bottom)
measured in centimeters per squared year (cm/year2) of height for girls (on the left)
and for boys (on the right). From the curves is evident that all individuals exhibit
a common velocity and acceleration pattern throughout years, but features as peaks,
troughs and inflection points occur at different times for each child.

In Figure 4, we see that for the case of sample acceleration curves of boys (bottom-
right graph), the template of all methods coincide, selecting the same template curve
which capture appropriately the common shape pattern. In the case of acceleration
curves of girls (bottom-left graph), the three methods choose different functions.
Nevertheless, the Isomap and Robust Manifold estimators have a similar behavior
and MBM estimator is quite different. Note also that, although the conceptual idea
of the MBM estimator is to search for a central function in the sample, it seems to
choice curves that departs from the center in some time intervals, like in the velocity
(in both girls and boys cases) and acceleration (in the case of girls) curves. For the
velocity curves of girls, the Isomap and MBM methods choose the same curve, and in
the case of boys our robust estimator and the Isomap procedure coincide. In general,
we see that the RME seems to play a good work extracting a meaningful shape curve
coinciding with at least one of the two other methods.

6.2 Gait cycle data

For this application, we consider the data of angle measurements (in degrees) in the
sagittal plane formed by the hip and knee of 39 childrens through a gait cycle, where
time is measured in terms of the child’s gait cycle such that every curve is given for
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Figure 4: Velocity (on the top) and acceleration curves (on the bottom) of 54 girls (on
the left) and 31 boys (on the right) in the Berkeley growth study (grey solid lines). The
estimated template functions with MBM (long dashed line), Isomap (dashed-dotted
line), and RME (solid line) methods.

values ranging between 0 and 1. The smoothed curves were obtained by fitting a
Fourier basis system following the analysis of Ramsay and Silverman [25] for this data,
where both sets of curves are periodic. Figure 5 displays the curves of hip (on the
left) and knee (on the right) angles observed during the gait. As we can see, a two-
phase process can be identified for the knee motion, while for the hip motion there is
a single-phase. Also, both sets of curves share a common pattern around which there
are both phase and amplitude variability.

For this application, the template functions obtained by the Robust Manifold
Estimator based on our algorithm seem to capture the salient features of the sample
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of curves. Note also that the same templates were chosen by the Isomap method.
Although the MBM estimator choose a different curve as shape target function, it
choose also a quite good representative for the hip and knee angle curves.

0

20

40

60

Time (proportion of a gait cycle)

H
ip

 a
ng

le
 (d

eg
re

es
)

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

Time (proportion of a gait cycle)

Kn
ee

 a
ng

le
 (d

eg
re

es
)

0 0.2 0.4 0.6 0.8 1

Figure 5: Angle curves formed by the hip (on the left) and knee (on the right) as 39
children go through a gait cycle

6.3 Landscape reflectances data

Finally, we consider two data sets where the corresponding observed curves represent
the weekly reflectance profiles of two particular landscapes (corn and wheat). The
reflectance is a measure of the incident electromagnetic radiation that is reflected
by a given interface. For these data, there are 23 and 124 curves for corn and wheat
landscapes respectively. The aim consists in extracting a representative curve of a type
of landscape while observing the reflectance profiles of different landscapes of the same
type. In Figure 6, the smoothed curves corresponding to reflectance patterns of two
landscape types in the same region in the same period are showed. The smoothing was
obtained from discrete data with B-spline basis system. The reflectance depends on
the vegetation whose growth depends on the weather condition and the soil behavior.
It is therefore relevant to consider that these profiles are deformations in translation,
scale and amplitude of a single representative function of the reflectance behavior of
each landscape type in this region at this time.

In Figure 6, we observe that all of three estimators choose a different curve as
representative function for both landscapes. In the corn landscape case, where there are
relatively a few number of curves, the robust manifold estimator chooses a meaningful
template curve which seems to appear at the center of curve sample. The same
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conclusions can be drawn for the wheat landscape, where the local extrema are well
represented. In this application domain, extracting a curve by RME is best able to
report data as reflecting their structure and thus to obtain a better representative and
improve further future functional analysis.

0 10 20 30 40 50

100

150

200

250

Time (weeks)

R
ef

le
ct

an
ce

 (c
or

n 
la

nd
sc

ap
e)

0 10 20 30 40 50

100

150

200

250

Time (weeks)

R
ef

le
ct

an
ce

 (w
he

at
 la

nd
sc

ap
e)

Figure 6: Reflectance curves of corn (left) and wheat (right) landscapes.

7 Concluding remarks

In this paper, we have proposed a robust algorithm to approximate the geodesic
distance of the underlying manifold. This approximated distance is used to build
an empirical Fréchet median of the functions. This function is a meaningful template
curve for a sample of functions, which has both amplitude and time deformations.

Our approach relies on the fundamental paradigm of functional data analysis
which involves treating the entire observed curve as a unit of observation rather than
individual measurements from the curve. Indeed, we show that, when the structure
of the deformations entails that the curve can be embedded into a manifold, finding
a representative of a sample of curves corresponds to calculate an intrinsic statistic of
observed curves on their unknown underlying manifold. Moreover in a translation
model, i.e where the curves are actually warped from an unknown pattern, both
methodologies coincide since the structural median of a sample of curves corresponds
to the intrinsic median on a one-dimensional manifold. Moreover, we show that our
method improves the performance of other pattern extraction methods, for simulated
and real data sets.
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From a computational point of view, our method is inspired by the ideas of the
Isomap algorithm. We note that we have also used the Isomap algorithm in the
simulation study and the applications with some similar results with to respect to
our algorithm. Hence, our algorithm has the advantage of being parameter free and
then it is of easiest use. One of the major drawbacks of these methodologies are that a
relatively high number of data are required in order to guarantee a good approximation
of the geodesic distance at the core of this work (see Tenenbaum et al. [30]). This
drawback is clearly related with the high variance of our estimator discussed previously
and should be outperformed with further work. But, anyway, we show that our method
improves the performance of other classical ones. The R code is available at the webpage
of the authors or upon request.

8 Appendix

Proof of Theorem 1. Let X be defined by

X : (b, c) → R
m

a 7→ X(a) = (f (t1 − a) , . . . , f (tm − a))

and set C = {X(a) ∈ R
m, a ∈ (b, c)}.

By assumption (7), C can be seen as a submanifold of R
m of dimension 1 with

corresponding geodesic distance defined by (8).

Take µ = X(α) with α ∈ (b, c), thus we can write

µ̂1
I = argmin

X(α)∈C

n∑

i=1

δ (X (Ai) ,X(α))

= argmin
µ∈C

n∑

i=1

D (Ai, α) = argmin
µ∈C

C(α)

where D is distance on (b, c) given by

D (Ai, α) =

∣∣∣∣
∫ α

Ai

∥∥X ′(a)
∥∥ da

∣∣∣∣ .

In the following, let
(
A(i)

)
i

be the ordered parameters. That is A(1) < · · · < A(n).
Then, for a given α ∈ (b, c) such that A(j) < α < A(j+1), we get that

C(α) = jD
(
α,A(j)

)
+

j−1∑

i=1

iD
(
A(i), A(i+1)

)

+ (n− j)D
(
α,A(j+1)

)
+

n−1∑

i=j+1

(n− i)D
(
A(i), A(i+1)

)
.
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For the sake of simplicity, let n = 2q + 1. It follows that m̂ed(A) = A(q+1). Moreover,
let α = A(j) with j < q +1. By symmetry, the case j > q +1 holds. Then, we rewrite
C (α) as

C (α) =

j−1∑

i=1

iD
(
A(i), A(i+1)

)
+

n−1∑

i=j

(n− i)D
(
A(i), A(i+1)

)

and, by introducing A(q+1), we get that

C(α) =

j−1∑

i=1

iD
(
A(i), A(i+1)

)
+

q∑

i=j

iD
(
A(i), A(i+1)

)

+

q∑

i=j

(n− 2i)D
(
A(i), A(i+1)

)
+

n−1∑

i=q+1

(n− i)D
(
A(i), A(i+1)

)
.

Finally, we notice that

C(α) = C
(
A(q+1)

)
+

q∑

i=j

(n− 2i)D
(
A(i), A(i+1)

)
> C

(
A(q+1)

)
.

And the result follows since

µ̂1
I = argmin

µ∈C
C(α) = X

(
A(q+1)

)
= X

(
m̂ed(A)

)
= f̂SM.
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