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Abstract. A highly accurate numerical scheme is presented for the Serre system of

partial differential equations, which models the propagation of dispersive shallow water

waves in the fully-nonlinear regime. The fully-discrete scheme utilizes the Galerkin /

finite-element method based on smooth periodic splines in space, and an explicit fourth-

order Runge-Kutta method in time. Computations compared with exact solitary and

cnoidal wave solutions show that the scheme achieves the optimal orders of accuracy in

space and time. These computations also show that the stability of this scheme does not

impose restrictive conditions on the temporal stepsize. In addition, solitary, cnoidal, and

dispersive shock waves are studied in detail using this numerical scheme for the Serre

system and compared with the ‘classical’ Boussinesq system for small-amplitude shallow

water waves. The results show that the interaction of solitary waves in the Serre system

is more inelastic. The efficacy of the numerical scheme for modeling dispersive shocks

is shown by comparison with asymptotic results. These results have application to the

modeling of shallow water waves of intermediate or large amplitude.
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1. Introduction

The propagation of waves on the free surface of an ideal irrotational fluid under the
force of gravity are governed by Euler’s equations [40]. Solving Euler’s equations is very
difficult, because of the free surface. There is a hierarchy of asymptotic approximations of
Euler’s equations that do not depend on a free surface. In particular, the propagation of
waves in shallow water is governed by the Serre equations, also known as the Su–Gardner
equations or Green–Naghdi equations (cf. [35, 36, 37, 25, 32]), which we shall refer to as
the Serre system. In dimensionless variables it reads

ηt + ux + ε(ηu)x = 0, (1.1a)

ut + ηx + εuux − σ2

3h
[h3(uxt + εuuxx − ε(ux)2)]x = 0 , (1.1b)

where

h(x, t) ≐ 1 + εη . (1.2)

Here x is the spatial variable, t is time, u(x, t) is the depth-averaged horizontal velocity of
the fluid, εη(x, t) is the wave height above an undisturbed level of zero elevation, h(x, t) is
the total depth of the fluid with respect to a horizontal bottom (at a normalized elevation
of −1 from the undisturbed water level), σ is the ratio between the typical depth d and
wavelength λ, and ε is the ratio between the typical amplitude a and bottom depth d (i.e.
σ = d/λ and ε = a/d). See sketch in Fig. 1.

The Serre system can be derived as an asymptotic approximation of the Euler’s equations
under the assumption of shallow water, or long wavelength or weakly dispersive regime,
i.e., σ ≪ 1. Importantly, System (1.1) does not assume small amplitude waves, i.e., ε can
be large. For small-amplitude or weakly nonlinear shallow water waves, i.e., when ε ≪ 1,
σ ≪ 1, and ε/σ2 = O(1), the Serre system reduces to the ‘classical’ Boussinesq (cB)
system (cf. [7] for related equations),

ηt + ux + ε(ηu)x = 0 , (1.3a)

ut + ηx + εuux − σ2

3
uxxt = 0 . (1.3b)
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Figure 1. Sketch of surface water waves for the and variables in the Serre (1.1)

and cB (1.3) systems. u is depth-averaged horizontal velocity, εη is
wave height above an undisturbed level (dashes), h is bottom depth,
and λ a typical wavelength.

Comparing the cB and Serre systems, Eqs. (1.3a) and (1.1a) are the same. This is known
as the mass conservation equation. However, Eq. (1.1b) contains higher order nonlinear-
dispersive terms compared with (1.3b). For this reason, the Serre system is often called
fully-nonlinear shallow-water equations. Though the two systems are similar, the small
amplitude assumption underlying the cB system appears to be too restrictive for model
waves of large, or even intermediate, amplitude. Physically, when water waves approach
regions of small depth, it is common that their amplitude increases. Therefore, the Serre
system is potentially more appropriate for the approximation of long waves in shallow
water and also in the nearshore zone.

There are many studies of the cB system and related Boussinesq-type systems. However,
there are much fewer studies of the Serre system, in part because it is considerably harder
to solve numerically. As a result, many properties of the solutions of the Serre system are
unknown or remain unclear. In particular, few numerical schemes have been developed
for the Serre system, based on either the finite difference (cf. [34]), hybrid finite-difference
finite-volume (cf. [12, 9]), and pseudospectral (cf. [20]) methods. All of these methods
can be formally very accurate. However, they suffer from aliasing or spurious dissipative
effects, due to the approximation of the nonlinear terms. This is usually not a major
handicap when solving the cB system, but it becomes debilitating when solving the Serre
system for large amplitude and / or rapidly oscillating waves, as in such cases the actual
error is large, even when using a fine grid. Even worse, such schemes often fail to converge.

In this study, we design and implement a computational scheme based on the stan-
dard Galerkin / Finite-Element Method (FEM). One of the main advantages of this
method is that it is non-dissipative. Another advantage is the sparsity of the resulting
linear systems. For this reason, as we show, the FEM scheme for (1.1) achieves the optimal
(formal) order of accuracy even for large amplitude solitary, cnoidal and dispersive shock
waves. To achieve this, we use cubic splines for the semi-discretization in space and the
classical fourth order Runge-Kutta (RK) method for time integration. A similar scheme

figs/waterwave.eps
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was studied for a variety of Boussinesq-like systems, cf. [18], and appears to be highly
accurate and efficient in a measure that makes the method to be ideal for the study of
the dynamics of solitary waves. However, for the Serre system, the dependence of the dis-
persive terms in (1.1b) on the unknown function h(x, t) makes the numerical integration
considerably more difficult compared with Boussinesq-like systems. In particular, for time
integration, a mass matrix needs to be assembled at each time step. At every interme-
diate RK step, two linear systems based on the mass matrix need to be solved. This is a
costly computation, yet, in spite of this drawback, the high accuracy of this scheme makes
it a strong candidate for computational modeling of the Serre system.

The paper is organized as follows. Section 2 recaps some of the analytical results for
solitary, cnoidal, and dispersive shock wave solutions of the Serre system, which serve
to validate the computational scheme. Section 3 presents the fully-discrete schemes for
the Serre and cB systems. Section 4 validates the convergence, accuracy, and numerical
stability of the method. Section 5 presents computational studies of interacting solitary
waves and dispersive shock waves.

1.1. Remarks

System (1.3) was originally derived (in a slightly different form) by Boussinesq [10] and
it is a special case of a class of Boussinesq-type models derived by Bona, Chen and Saut,
[7]. This system is often used for studying two-way propagation of small amplitude, long
waves [33].

The Serre system (1.1) was originally derived from Euler’s equations in one spatial
dimension by Serre [35, 36]. It was re-derived several times later, including independently
by Su and Gardner [37]. See also the review by Barthélemy [5] . Green and Naghdi [25]
generalized this system to two spatial dimensions with an uneven bottom, see also [34, 38].
Recently, Lannes and Bonneton [29] derived and justified several asymptotic models of
surface waves including (1.1). It is worth mentioning that other systems of a similar ilk
have been derived, for example, with improved dispersion characteristics [29, 41] and with
surface tension [17]. In principe, all these models can be discretized by numerical methods
similar to the methods presented bellow. However, further studies will be required to test
the efficacy of the ensuing schemes.

2. Analytical properties of the Serre system

Below we recap several analytical properties of System (1.1), which serve as benchmarks
for our computational scheme.

2.1. Special solutions of the Serre system

System (1.1) admits solitary and cnoidal wave solutions in closed form (cf. [35, 22, 11]).
Below we recap these solutions for arbitrary ε and σ. It is convenient to express the
solutions of (1.1) in terms of (h,u) rather than (η, u). The two ways are equivalent in light
of (1.2).
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The two-parameter family of solitary wave solutions of (1.1) that travel with a constant
speed cs can then be written in the moving frame ξ = x − cst as

hsol(ξ) = 1

σ
[a0 + a1sech2(Ks ξ)] (2.1a)

usol(ξ) = cs

ε
[1 − a0

σhsol(ξ)] (2.1b)

where

Ks =
√

3a1
4σa20c

2
s

, cs = √a0 + a1
σ

,

and a0, a1 are positive (but otherwise arbitrary) constants. Choosing a0 = σ gives the
solitary waves that decay to the background average water depth. For the simulations, we
choose ε = a0 = σ = 1 and various values of the speed cs. Then a1 and Ks can be determined
from the above formulae.

Similarly, the three-parameter cnoidal wave solutions of (1.1) can be written as

hc(ξ) = 1

σ
[a0 + a1dn2(Kc ξ, k)] , (2.2a)

uc(ξ) = cs

ε
[1 − h0

σhc(ξ)] (2.2b)

where dn denotes the Jacobi elliptic function and

h0 = a0 + a1E(m)
K(m) ,

Kc =
√
3a1

2
√
a0(a0 + a1)(a0 + (1 − k2)a1) ,

cs =
¿ÁÁÀa0(a0 + a1)(a0 + (1 − k2)a1)

σh20
.

K(m) and E(m) denote the complete elliptic integrals of the first and second kind, respec-
tively, k ∈ [0,1], m = k2, and a0, a1 are positive constants. Here, a0, a1 and m (or k) are
arbitrary.

It is remarkable that such closed form solutions of the Serre have been found and even
more remarkable that such closed form solutions have not been found for the cB sys-
tem (1.3). Nevertheless, it has been proven that the cB system admits solitary and cnoidal
wave solutions (cf. [14, 13]).

2.2. Dispersive shock waves

When the dispersive terms in the Serre or cB systems are neglected, the resulting non-
dispersive equations can give rise to supersonic shock waves, i.e., a discontinuous solution.
When such shocks are regularized by dissipative effects, this gives rise to classical or viscous
shocks, which are characterized by a rapid and monotonic change in the flow properties.
On the other hand, in systems where dissipation is negligible compared with dispersion, the
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Figure 2. Sketch of dispersive shock wave (DSW, solid) and non-dispersive shock
(dashes).

dispersive effects give rise to dispersive shock waves (DSWs). DSWs are characterized
by an expanding train of rapidly-oscillating waves (see sketch in Fig. 2). The leading edge
of a DSW possesses large amplitude waves, which decay to linear waves at the trailing
edge. DSWs have been studied for several decades, originally in the context of the KdV
equation (cf. [6, 39, 26] for some of the early works). In particular, these studies show that,
using Whitham’s averaging method, the largest-amplitude oscillation in the leading edge
is well-approximated with a solitary wave.

Recently, DSWs were studied analytically and computationally in fully-nonlinear disper-
sive shallow water systems (cf. [22, 23, 30, 24]). In particular, the asymptotic dynamics of
the leading edge solitary wave of a simple DSW were studied in [22, 23]. Below we recap
some of those results. We use these results to test the non-dissipativity of the numerical
schemes.

Consider the Serre system (1.1) with ε = σ = 1. As above, writing the solution of the
Serre system in terms of h and u, a simple DSW traveling to the right is generated using
the Riemann initial data

h(x,0) = { h−, for x < 0
h+, for x > 0 , u(x,0) = { u−, for x < 0

u+, for x > 0 (2.3)

with the compatibility condition (Riemann invariant)

u−

2
−√h− = u+

2
−√h+. (2.4)

Following [22, 23], we assume that the initial jump or total depth variation is small, i.e.,

0 < δ ≐ h−

h+
− 1 ≪ 1 . (2.5)

figs/DSW_fig.eps
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Then, to leading order in δ and for a large propagation time, the leading-edge of the DSW
is well approximated with a solitary wave given by (2.1) with a0 = 1 and amplitude (relative
to the constant elevation) and speed

asimple
1 ∼ 2δ + 1

6
δ2 , (2.6a)

csimple
s ∼ 1 + δ − 5

12
δ2 , (2.6b)

respectively.
We also consider the dam-break problem. In this case, the initial data for h(x,0)

is the same (2.3). However, there is no flow at t = 0, i.e., u(x,0) = 0. As shown in [22],
this generates two counter-propagating DSWs, one on each side of the “dam”, and two
rarefaction waves that travel towards the center. Similarly to a simple DSW, the asymptotic
amplitude and speed for the leading-edge solitary wave in each DSW is

adam1 ∼ δ − 1

12
δ2 , (2.7a)

cdams ∼ 1 + δ
2
− 1

6
δ2 , (2.7b)

respectively.

2.3. Hamiltonian conservation

A fundamental property of the Serre system is its Hamiltonian structure, cf. [28, 31].
For any solution (h,u), the energy functional (or Hamiltonian)

H(t) ≡ H[h,u] = ∫ ∞

−∞
[εhu2 + εσ3

3
h3u2x + 1

ε
(h − 1)2] dx, (2.8)

is conserved in the sense that H(t) = H(0) for all t > 0 and up to the maximal time T of the
existence of the solution. In contrast, the cB system (1.3) does not possess a Hamiltonian
structure and its solutions do not conserve an energy functional [7].

3. The FEM scheme

In this section we present a FEM for the initial boundary value problem (IBVP) com-
prised of System (1.1) subject to periodic boundary conditions. Here and in the computa-
tions we choose ε = σ = 1. We make this choice in order to simulate large amplitude waves,
so as to “push” the scheme to its limit. For this reason, the ε and σ are dropped from
the equations below. It is also convenient to rewrite (1.1a) in terms of (h,u) rather than(η, u). This is done using (1.2) and yields the IBVP

ht + (hu)x = 0, (3.1a)

ut + hx + uux − 1

3h
[h3(uxt + uuxx − (ux)2)]x = 0, (3.1b)
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∂ixh(a, t) = ∂ixh(b, t), i = 0,1,2, . . . , (3.1c)

∂ixu(a, t) = ∂ixu(b, t), i = 0,1,2, . . . , (3.1d)

h(x,0) = h0(x), (3.1e)

u(x,0) = u0(x), (3.1f)

where x ∈ (a, b) ⊂ R and t ∈ [0, T ). We shall assume that (3.1) possesses a unique solution,
such that h and u are sufficiently smooth and, for any t ∈ [0, T ], in a suitable Sobolev space
with periodic boundary conditions, i.e.,

h(x, ⋅) ∈ Hs, u(x, ⋅) ∈Hs+1, Hs ≡ Hs
per(a, b) ,

where s ≥ 2 (see [27] for sharper results). Here and below, ∥ ⋅ ∥s denotes the standard norm
in Hs. We also use the inner product in L2 ≡H0, denoted by (⋅, ⋅).
3.1. Spatial discretization

We denote the spatial grid by xi = a + i∆x, where i = 0,1,⋯,N , ∆x is grid size, and
N ∈ N, such that ∆x = (b − a)/N . Let (h̃, ũ) be the corresponding spatially discretized
solution. TheGalerkin / Finite-Element Method (FEM) seeks a weak solution of (3.1),

i.e., h̃(x, t) and ũ(x, t) in C1(0, T ;S), for a suitable finite-dimensional space S. We shall
consider the space of the smooth periodic splines

Sr = {φ ∈ Cr−2
per [a, b]∣φ∣[xi,xi+1] ∈ Pr−1, 0 ≤ i ≤ N − 1},

where r ∈ N,
Cr

per ≐ {f ∈ Cr[a, b]∣ f (k)(a) = f (k)(b), 0 ≤ k ≤ r},
and Pk are the polynomials of degree at most k. In particular, we shall use cubic splines,
which correspond to S4, i.e., r = 4. Henceforth, we shall denote S ≡ S4. Note that the
periodic boundary conditions (3.1c)–(3.1d) are satisfied automatically by this choice.

To state the associated weak problem, let φ ∈ S be an arbitrary test function. It turns
out to be convenient to multiply (3.1b) by h and group together the first term in this
equation with the first term in the brackets. Using integration by parts several times, gives
the semi-discrete problem

(h̃t, φ) + ((h̃ũ)x, φ) = 0, (3.2a)

BSerre(ũt, φ; h̃) + (h̃(h̃x + ũũx), φ) + 1

3
(h̃3(ũũxx − (ũx)2), φx) = 0 , (3.2b)

(3.2c)

where the bilinear form is defined for a fixed h̃ (and substituting ψ ≡ ũt) as
BSerre(ψ,φ; h̃) ≐ (h̃ψ,φ) + 1

3
(h̃3ψx, φx) , (3.2d)

and the initial conditions are

h̃(x,0) = P{h0(x)} , ũ(x,0) = P{u0(x)} (3.2e)

where P is the L2 projection onto the S defined by (Pv,φ) = (v,φ), for all φ ∈ S.
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The bilinear form (3.2d) plays a key role in the FEM. Assuming that h is bounded as
h0 ≤ h(x, t) ≤ ∞ for some constant h0 > 0 (the so called “wet bottom” assumption), this
bilinear form is bounded and coercive. Specifically, for all φ,ψ ∈ H1, there exist c1, c2, such
that

BSerre(ψ,φ; h̃) ≤ c1∥φ∥1∥ψ∥1 , BSerre(φ,φ; h̃) ≥ c2∥φ∥21 . (3.3)

These two properties are of fundamental importance for the FEM scheme. In particular,
it follows from (3.3) that the corresponding linear systems are not singular.

3.2. Temporal discretization

Upon choosing appropriate basis functions for S, System (3.2) represents a system of
ordinary differential equations (ODEs). For time integration, we employ the classical,
explicit, four-stage, fourth-order Runge-Kutta (RK) method, which is described by the
following tableau:

A b

τ
=

0 0 0 0 1/6
1/2 0 0 0 1/3
0 1/2 0 0 1/3
0 0 1/2 0 1/6

0 1/2 1/2 1

. (3.4)

We use a uniform time-step ∆t, such that ∆t = T /K for a suitable K ∈ N. The temporal
grid is then tn = n∆t, where n = 0,1,⋯,K. Given the ODE y′ = Φ(t, y), one step of this
fourth-stage RK scheme (with yn approximating y(tn)) is
for i = 1→ 4 do

ỹi = yn +∑i−1
j=1 aij y

n,j

yn,i = Φ(tn,i, ỹi), evaluated at tn,i ≡ tn + τi∆t
end for
yn+1 = yn +∆t∑4

j=1 bj y
n,j ,

where aij , τi, bi are given in Table 3.4. Applying this scheme to (3.2) and denoting by
Hn and Un the fully discrete approximation in S of h(⋅, tn), u(⋅, tn), respectively, leads to
Algorithm 0.

Given a basis {ϕi} of S, the implementation of Algorithm 0 requires solving at each time
step the following linear systems.

(1) Four linear systems with the time-independent matrix (ϕi, ϕj);
(2) Four linear systems with the time-dependent matrix BSerre(ϕi, ϕj ;h) .

All these matrices are cyclic and symmetric due to the periodic boundary conditions. They
consist of a seven-diagonal band and two 3 × 3 triangular blocks on the upper right and
lower left corners. To solve these systems, we use the direct method described in [8],
which is analogous to the Sherman-Morrison-Woodbury method. To approximate the
inner products, we use the Gauss-Legendre quadrature with 5 nodes per ∆x.

We note that the above algorithms are almost identical in the case of other boundary
conditions but the convergence and the stability properties will be different. In the analo-
gous case of the cB system the convergence of the FEM has optimal rates of convergence in
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Algorithm 1 Time-marching FEM scheme for Serre IBVP (3.2).

H0 = P{h0}
U0 = P{u0}
for n = 0→N − 1 do

for i = 1→ 4 do

H̃ i = Hn + ∑i−1
j=1 aijH

n,j

Ũ i = Un + ∑i−1
j=1 aij U

n,j

(Hn,i, φ) = −((H̃ iŨ i)x, φ), evaluated at tn,i ≡ tn + τi∆t
BSerre(Un,i, φ; H̃ i) = −((H̃ i(H̃ i

x + Ũ
iŨ i

x), φ) − 1
3
(H̃ i)3(Ũ iŨ i

xx − (Ũ i
x)2, φx)

end for

Hn+1 = Hn + ∆t∑4
j=1 bjH

n,j

Un+1 = Un + ∆t∑4
j=1 bj U

n,j

end for

the periodic case, [2], contrary to the suboptimal rates characterized the problem subject
to non-periodic boundary conditions, cf. [4, 1].

3.3. FEM scheme for the cB system

Below we briefly outline the corresponding scheme for the cB system (1.3). See [4, 2, 3]
for details. Making the transformation h(x, t) ↦ 1 + η(x, t), the semi-discrete problem for
the cB system (1.3) is

(h̃t, φ) + ((h̃ũ)x, φ) = 0 (3.5a)

BcB(ũxt, φx) + (h̃x, φ) + (ũũx, φ) = 0, (3.5b)

where, in this case, the bilinear form is defined as

BcB(ψ,φ) ≐ (ψ,φ) + 1

3
(ψx, φx) . (3.5c)

For this semi-discrete problem, it was proven in [2] that, for appropriate initial conditions
and for small values of ∆x, there is a unique semi-discrete solution, which satisfies the
estimate

max
0≤t≤T
(∥h − h̃∥ + ∥u − ũ∥) ≤ C∆xr, (3.6)

where the constant C is independent of ∆x.
Using the notation as in Algorithm 0 and denoting the fully-discrete solution by h(x, t) →

Hn(x) and u(x, t) → Un(x), the corresponding full-discrete algorithm based on the same
RK scheme is given by 2.

As for the FEM scheme for the Serre problem, we employ cubic splines and the inner
products are approximated using a 5-node Gauss–Legendre quadrature. The resulting
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Algorithm 2 Time-marching FEM scheme for the IBVP of the cB system (1.3)

H0 = P{h0}
U0 = P{u0}
for n = 0→N − 1 do

for i = 1→ 4 do

H̃ i = Hn + ∑i−1
j=1 aijH

n,j

Ũ i = Un + ∑i−1
j=1 aij U

n,j

(Hn,i, φ) = −((H̃ iŨ i)x, φ), evaluated at tn,i ≡ tn + τi∆t
BcB(Un,i, φ) = −(H̃ i

x, φ) − (Ũ iŨ i
x, φ)

end for

Hn+1 = Hn + ∆t∑4
j=1 bjH

n,j

Un+1 = Un + ∆t∑4
j=1 bj U

n,j

end for

linear systems are similar with those of Algorithm 0 and are solved using the same numerical
method. The key difference from Algorithm 0 is that all the matrices in Algorithm 2
are time-independent. Therefore, the matrices are assembled and factorized once and
for all at t = 0.
3.4. Theoretical considerations

For the semi-discrete problem (3.5), it was proven in [2] that, for appropriate initial
conditions and for small values of ∆x, there is a unique semi-discrete solution, which
satisfies the estimate

max
0≤t≤T
(∥h − h̃∥ + ∥u − ũ∥) ≤ C∆xr, (3.7)

where the constant C is independent of ∆x. This result also shows that the numerical
solution is stable. Furthermore, the same result is valid for the linear cB system. Since the
linearization of the cB and Serre systems is the same, it is implied that the semi-discrete
solution of the linearized Serre system is stable. No stability or convergence results are
known for the nonlinear (semi- or fully-) discrete schemes for the Serre equations.

4. Validation of the FEM scheme for the Serre system

In this section we study the spatial and temporal accuracy and efficiency of the FEM
scheme for the Serre system, which is presented in Algorithm 0. To do so, we use vari-
ous metrics of the solitary and cnoidal wave solutions and Hamiltonian conservation (see
Section 2).
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4.1. Spatial accuracy

To test the spatial accuracy of the scheme, we use the exact solitary wave solution (2.1) of
the Serre system with ε = a0 = σ = 1 and traveling with speed cs = 1.5. The spatial domain
is chosen as x ∈ [−150,150]. This large interval ensures that the solution is practically zero
near the endpoints of the interval. To ensure that the errors incurred by the temporal
integration are negligible, we take ∆t/∆x = 0.1 .

Tables 1–3 show the normalized errors of the computed solutions evaluated at T = 100.
These errors are defined as

Es[F ] ≐ ∥F (x,T ;∆x) −Fexact(x,T )∥s∥Fexact(x,T )∥s , (4.1)

where F = F (⋅;∆x) is the computed solution, i.e., either H ≈ h(x,T ) or U ≈ u(x,T ), Fexact

is the corresponding exact solitary wave solution with the same parameters (see (2.1a)–
(2.1b)), and s = 0,1,∞ corresponds to the L2, H1, and L∞ norms, respectively.

For the calculations of the L∞ norm and related variables mentioned in the following
sections, we recover location of the peak amplitude curve of the solution h(x, t). This
curve, denoted by x∗(t), is defined via

d

dx
h(x, t)∣

x=x∗(t)

= 0 . (4.2)

To compute x∗(t), we use Newton’s method. As an initial guess, we use the quadrature
node at which Hn(x) attains a maximum over all the quadrature nodes. This ensures that
Hn(x∗) is the global maximum. Usually, only a few iterations are needed to achieve x∗

with a tolerance of 10−13.
Tables 1–3 also show the corresponding calculated rates of convergence, defined as

rate for Es[F ] ≐ ln (Es[F (⋅;∆xk−1)]/Es[F (⋅;∆xk)])
ln (∆xk−1/∆xk) ,

where ∆xk is the grid size listed in row k in each table.
These tables show that the rates using the L2 and L∞ norms approach 4, whereas,

the rates using the H1 norm approaches 3. These results indicate that the FEM scheme
achieves the optimal orders of convergence. Moreover, one might expect the emergence of
large errors (in space and/or time) due to the following challenging conditions:

(1) The high-order nonlinear dispersive terms in (1.1).
(2) The strongly nonlinear and dispersive regime (ε = σ = 1).
(3) The use of an explicit RK method.

Yet, in spite of these challenging conditions, Tables 1–3 show that the actual errors are
very small, even when using relatively large grid sizes. Hence, these results show that
this scheme is highly efficient.

4.2. Temporal accuracy and stability

In order to study the temporal accuracy, we use the same solitary wave solutions as
above. Here we take ∆t = ∆x for various values of ∆x = (b−a)/N . This choice for ∆t and
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Table 1. Spatial errors and rates of convergence for a solitary wave solution
using the L2 norm [Eq. (4.1) with s = 2].

∆x ∆t E2[H] rate for E2[H] E2[U] rate for E2[U]
0.50 0.05 0.1970 × 10−4 – 0.5669 × 10−4 –
0.25 0.25 0.7989 × 10−6 4.6240 0.2153 × 10−5 4.7183
0.10 0.01 0.1798 × 10−7 4.1402 0.4973 × 10−7 4.1124
0.08 0.008 0.7298 × 10−8 4.0420 0.2018 × 10−7 4.0403
0.05 0.005 0.1102 × 10−8 4.0224 0.3043 × 10−8 4.0257

Table 2. Same as Table 1 using the H1 norm.

∆x ∆t E2[H] rate for E2[H] E2[U] rate for E2[U]
0.50 0.05 0.1951 × 10−3 – 0.41324 × 10−3 –
0.25 0.25 0.1873 × 10−4 3.3805 0.4261 × 10−4 3.2775
0.10 0.01 0.1111 × 10−5 3.0830 0.2601 × 10−5 3.0515
0.08 0.008 0.5660 × 10−6 3.0236 0.1327 × 10−5 3.0143
0.05 0.005 0.1374 × 10−6 3.0122 0.3230 × 10−6 3.0073

Table 3. Same as Table 1 using the L∞ norm.

∆x ∆t E∞[H] rate for E∞[H] E∞[U] rate for E∞[U]
0.50 0.05 0.4228 × 10−3 – 0.5315 × 10−4 –
0.25 0.25 0.2101 × 10−4 4.3309 0.2882 × 10−5 4.2049
0.10 0.01 0.4887 × 10−6 4.1046 0.7123 × 10−7 4.0383
0.08 0.008 0.1988 × 10−6 4.0291 0.2893 × 10−7 4.0381
0.05 0.005 0.3013 × 10−7 4.0148 0.4373 × 10−8 4.0199

∆x is sufficient to estimate the temporal order of accuracy for the following reason. Since
our spatial discretization is 4th-order, we may assume that the scheme’s total error at some
final time t = T scales as

Es[F ] ≐ ∥f −F ∥ = C(∆x4 +∆tr) , (4.3)

where f = f(⋅, T ;∆x,∆t) stands for the computed solution, F (⋅, T ) stands for the exact
solution, C is a constant, and r is the temporal convergence rate. Since our schemes use a
4th-order Runge-Kutta method, it is expected that r ≤ 4. By choosing ∆x = ∆t ≪ 1 and
using (4.3), the total error scales as

Es[F ] = ∥f −F ∥ = C∆tr . (4.4)

Choosing two different values of ∆t, i.e., ∆tk−1 and ∆tk, gives

Es[F (⋅;∆tk−1)] = C∆trk−1 , Es[F (⋅;∆tk)] = C∆trk . (4.5)

Taking the ratio of these two errors and solving for temporal convergence rate, r, yields

rate for Es[F ] ≐ ln (Es[F (⋅;∆tk−1)]/Es[F (⋅;∆tk)])
ln (∆tk−1/∆tk) . (4.6)
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Table 4. Same as Table 1 for the temporal errors. N and M are the number of
spatial and temporal grid points, respectively.

N M E2[H] rate for E2[H] E2[U] rate for E2[U]
200 500 0.1824 × 10−1 – 0.9673 × 10−2 –
400 1000 0.7114 × 10−3 4.6808 0.3759 × 10−3 4.6853
800 2000 0.3055 × 10−4 4.5411 0.1669 × 10−4 4.4935
1600 4000 0.1496 × 10−5 4.3521 0.8296 × 10−6 4.3303
3200 8000 0.8134 × 10−7 4.2011 0.4518 × 10−7 4.1986
6400 16000 0.4724 × 10−8 4.1058 0.2633 × 10−8 4.1008

Table 5. Same as Table 4 using the H1 norm.

N M E1[H] rate for E1[H] E1[U] rate for E1[U]
200 500 0.4138 × 10−2 – 0.1286 × 10−1 –
400 1000 0.1634 × 10−3 4.6624 0.5075 × 10−3 4.6631
800 2000 0.7126 × 10−5 4.5192 0.2213 × 10−4 4.5189
1600 4000 0.3481 × 10−6 4.3555 0.1081 × 10−5 4.3549
3200 8000 0.1872 × 10−7 4.2167 0.5822 × 10−7 4.2159
6400 16000 0.1082 × 10−8 4.1121 0.3371 × 10−8 4.1101

Table 6. Same as Table 4 using the L∞ norm.

N M E∞[H] rate for E∞[H] E∞[U] rate for E∞[U]
200 500 0.6037 × 10−2 – 0.1491 × 10−1 –
400 1000 0.2386 × 10−3 4.6610 0.5889 × 10−3 4.6623
800 2000 0.1041 × 10−4 4.5176 0.2569 × 10−4 4.5183
1600 4000 0.5106 × 10−6 4.3507 0.1256 × 10−5 4.3539
3200 8000 0.2787 × 10−7 4.1953 0.6777 × 10−7 4.2126
6400 16000 0.1713 × 10−8 4.0239 0.3960 × 10−8 4.0969

Tables 4–6 present the errors defined in (4.1) and the corresponding rates of convergence,
defined by (4.6), where ∆tk is the grid size listed in row k. These tables show that the FEM
scheme achieves the optimal temporal rate of convergence in all three norms. The actual
errors are fairly small as well. Moreover, one might expect the scheme to be conditionally
stable, due to the complexity of the problem and the use of an explicit RK method. Yet, the
scheme converges in spite of these challenging conditions and the large temporal grid size
(∆t =∆x). We note that it has been proven that a similar FEM scheme is unconditionally
stable for several types of Boussinesq systems [3]. Although we do not have a proof that
this fully-discrete problem is unconditionally stable, these results show that the stability
of this scheme does not impose restrictive conditions on ∆t. This property is
further explored in Section 4.4.
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4.3. Accuracy in shape, phase, and Hamiltonian

The results of the spatial and temporal accuracy show that the FEM scheme is optimally
accurate in all the standard norms and also that the actual errors are very small. To
further test the accuracy of this scheme, we consider the propagation of a solitary wave as
in Section 4.1, while using several other norms that are pertinent to solitary waves (cf. [8]).

First, since the solitary wave’s peak amplitude remains constant during propagation, we
define the normalized peak amplitude error as

Eamp[F ] ≐ ∣F (x∗(t), t) − F0∣
F0

, (4.7)

where x∗(t) is the curve along which the computed approximate solution F (x, t) achieves its
maximum (see Section 4.1) and F0 ≡ Fexact(x,0) is the initial peak amplitude of the solitary
wave. Monitoring Eamp as a function of propagation time, we observe that it remains
very small and practically constant during propagation, i.e., Eamp[H] ≈ 1.5066 × 10−5 and
Eamp[U] ≈ 1.2076 × 10−5. Furthermore, recall that the exact solitary wave solution travels
with speed cs = 1.5. We recover the solitary wave’s traveling speed as

c̃s ≐ x∗(t) − x∗(t − τ)
τ

, (4.8)

where τ is a constant. The results using τ = 10 are such that c̃s coincides with cs within
the computed precision, i.e., double precision on a GNU Fortran compiler parallelized
using OpenMP. This serves as additional indications of the high accuracy and non-
dissipativity of this scheme. We note that the value of c̃s depends weakly on the choice
of τ , which indicates a phase error. This is further studied below.

Two other error norms that are pertinent to solitary waves are the shape and phase

errors, defined below. We define the normalized shape error as the distance in L2 between
the computed solution at time t = tn and the family of temporally-translated exact solitary
waves (with the same parameters), i.e.,

Eshape[F ] ≐ min
τ
ζ(τ) , ζ(τ) ≐ ∥F (x, tn) − Fexact(x, τ)∥∥Fexact(x,0)∥ . (4.9)

The minimum in (4.9) is attained at some critical τ = τ∗(tn). This, in turn, is used to
define the (signed) phase error as

Ephase[F ] ≐ τ∗ − tn. (4.10)

In order to find τ∗, we use Newton’s method to solve the equation ζ ′′(τ) = 0. The initial
guess for Newton’s method is chosen as τ 0 = tn − ∆t. Having computed τ∗, the shape
error (4.9) is then

Eshape[F ] = ζ(τ∗) .
These error norms are closely related to the orbit of the solitary wave. Loosely speaking,
they measure “softer” properties of the wave, which are often not well conserved using
dissipative schemes, even when the schemes are accurate in all the standard norms.

Table 7 presents the shape and phase errors as functions of propagation time, using
cs = 1.5,∆x = 0.1, ∆t = 0.01. We observe that both errors remain very small. Moreover,
the shape error is practically constant during the propagation.
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Table 7. Shape and phase errors [Eqs. (4.9) and (4.10)] for a solitary wave as
functions of propagation time.

tn Eshape[H] Eshape[H] Ephase[H] Ephase[H]
20 0.1779 × 10−7 0.4543 × 10−7 −0.6636 × 10−8 −0.6651 × 10−8

40 0.1779 × 10−7 0.4544 × 10−7 −0.1184 × 10−7 −0.1187 × 10−7

60 0.1779 × 10−7 0.4543 × 10−7 −0.2353 × 10−7 −0.2355 × 10−7

80 0.1779 × 10−7 0.4543 × 10−7 −0.3002 × 10−7 −0.3004 × 10−7

100 0.1779 × 10−7 0.4543 × 10−7 −0.2353 × 10−7 −0.2355 × 10−7

200 0.1779 × 10−7 0.4543 × 10−7 −0.6899 × 10−7 −0.69018 × 10−7

Table 8. Hamiltonian H [Eq. (2.8)] and corresponding error (4.11) for a solitary
wave as functions of the propagation time.

tn H EH(tn)
0 7.4266250954 0.3208 × 10−11

20 7.4266250944 0.1398 × 10−9

40 7.4266250933 0.2828 × 10−9

60 7.4266250922 0.4258 × 10−9

80 7.4266250912 0.5688 × 10−9

100 7.4266250901 0.7117 × 10−9

200 7.4266250848 0.1427 × 10−8

Next, we test the conservation of the Hamiltonian (2.8) and define the corresponding
normalized Hamiltonian error as

EH(tn) ≐ ∣H[F (x, tn)] −H(0)H(0) ∣ , (4.11)

where H[⋅] ≡ H(t) denotes the energy functional (2.8).
Table 8 shows the results using the same wave parameters and grid sizes as in Table 7

in the time interval tn ∈ [0,200]. These results show that the Hamiltonian is conserved
within at least 8 decimal digits of accuracy in this interval. However, the error increases
linearly with time. This is to be expected, since the explicit RK method for this problem
is non-conservative. Although we have not tested this, we believe that by using an implicit

RK method, the resulting FEM scheme would be fully conservative (cf. [8]).
We close this section by computing the same errors norms for cnoidal waves. Specif-

ically, we consider the cnoidal wave solution (2.2) with (a0, a1) = (0.3,0.1) and m ∈{0.05,0.1,0.5,0.99}. For this choice of (a0, a1), the cnoidal waves are spectrally unsta-
ble for m > 0.09 (see [11]). In these computations, we consider a domain of length equal to
one period, with very small values for ∆x and ∆t, i.e., N = 200 and ∆t = 10−3. The profiles
of the propagation of these cnoidal waves are presented in Figure 3. Table 9 presents some
of the error results. In all cases, the cnoidal waves propagate without significant changes
in their amplitude, speed, shape, phase, and Hamiltonian. In particular, the Hamiltonian
is conserved very well to within double precision. These results also show that the phase
and shape errors increase as m increases, especially as m approaches 1. This is expected,
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Figure 3. Propagation of cnoidal waves with (a0, a1) = (0.3,0.1) for four differ-

ent values of the elliptic modulus m. Shown is the free surface ele-
vation η(x, t) at three different propagation times (see legends). The
axes are chosen to fit a single period and the amplitude span of the

waves.

Table 9. Shape and phase errors for the computed solution H(x, tn) at tn =
20, and the Hamiltonian error, EH, for cnoidal waves with (a0, a1) =
(0.3,0.1), at four different values of the elliptic modulus m.

m Eshape[H] Ephase[H] EH
0.05 0.1960 × 10−12 −0.5471 × 10−11 0.1005 × 10−16

0.1 0.7843 × 10−12 −0.1314 × 10−10 0.2447 × 10−17

0.5 0.2337 × 10−10 −0.9521 × 10−12 0.3954 × 10−17

0.99 0.1637 × 10−8 −0.4267 × 10−8 0.1268 × 10−16

because as m increases, the cnoidal wave becomes steeper and, in the limit m → 1, it
approaches a solitary wave.

figs/figure1.eps
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Table 10. Shape and phase errors for a solitary wave as functions of propagation
time, using ∆x = 0.1 and ∆t = 0.2.

tn Ephase[H] Ephase[H] Ephase[H] Ephase[H]
20 0.3031 × 10−5 −0.7622 × 10−4 0.1997 × 10−4 −0.7840 × 10−4

40 0.3526 × 10−5 −0.1787 × 10−3 0.2191 × 10−4 −0.1810 × 10−3

60 0.4134 × 10−5 −0.3238 × 10−3 0.2487 × 10−4 −0.3261 × 10−3

80 0.4815 × 10−5 −0.5114 × 10−3 0.2859 × 10−4 −0.5139 × 10−3

100 0.5556 × 10−5 −0.7423 × 10−3 0.3263 × 10−4 −0.7445 × 10−3

200 0.9518 × 10−5 −0.2527 × 10−2 0.5709 × 10−4 −0.2529 × 10−2

4.4. Stability of the FEM scheme

Here we perform a series of computations to study the stability of the FEM scheme.
First, we consider the propagation of a solitary wave with cs = 1.5, using three different
CFL ratios, i.e.,

∆t

∆x
∈ {1,1.5,2,2.1,3} . (4.12)

Table 10 presents the values of the normalized shape and phase errors for the case ∆t = 2∆x.
For example, when ∆t = 2∆x and ∆x = 0.1, the solitary wave propagates without significant
changes in shape and speed. The results in the other cases are comparable except the cases
where ∆t > 2∆x where the solution does not remain stable. The fact that the CFL ratio can
be chosen greater than 1 indicates that the FEM is very stable. This is rather surprising,
considering the use of an explicit RK method.

To further test this property, we consider initial conditions representing a heap of water,
i.e.,

η0(x) = Ae−x2/λ, u0(x) = 0 , (4.13)

where A and λ are constants. In all cases, the scheme is stable for large values of propa-
gation time t and all the CFL ratios in (4.12). For example, Fig. 4 presents the solutions
using A = 1, λ = 10 and two CFL ratios: ∆t = ∆x and ∆t = 2∆x. (For CFL> 2 the solutions
were unstable). In this case, the initial hump breaks up into two large solitary waves and
smaller dispersive tails. These waves and the dispersive tails travel in opposite directions.
Figure 5 shows the results using A = 1 and λ = 40. Here, the solution breaks up into pairs
or a larger number of solitary waves, which travel in opposite directions. In all cases, the
scheme is stable even when ∆t = 2∆x and the difference between the solutions using the
two time steps remains negligible. These results give further indication that the stability
of this scheme does not impose restrictive conditions on ∆t.
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Figure 4. Breakup of a Gaussian hump [Eq. (4.13) with initial amplitude A = 1
and width λ = 10] into two solitary waves traveling in opposite di-
rections and dispersive tails. Shown are the results using ∆x = 0.1

and two different values of ∆t [see legend in (e)], which are almost
indistinguishable.
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Figure 5. Same as Fig. 4 using the initial width λ = 40.
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5. Numerical experiments of solitary waves and DSWs

In this section we present numerical experiments illustrating the behavior of the solitary
waves and dispersive shock waves (DSWs) in the Serre and cB system. Systems (1.1)
and (1.3) are solved using Algorithm 0 and Algorithm 2, respectively. Notwithstanding
the apparent stability of both FEM schemes, we use ∆t = ∆x/10 in order to ensure that
the errors resulting from the time discretization are negligible.

5.1. Interactions of solitary waves

When solitary waves interact, they incur a phase shift. In non-integrable systems, such
interactions are often accompanied by the generation of small amplitude dispersive tails.
Capturing this dynamics accurately requires a highly accurate scheme. Here, we study two
kinds of interactions of solitary waves.

(1) Head-on collisions of counter-propagating solitary waves.
(2) Overtaking collisions of solitary waves co-propagating at different speeds.

For the head-on collisions, we generated initial conditions using (2.1) for each wave
with speed cs = 1.4 and amplitude A = 0.96. The waves are initially well-separated, i.e.,
their peak amplitudes are located at x = ±50. The spatial domain is x ∈ (−200,200) and
the grid sizes are ∆x = 0.1 and ∆t = 0.01.

In order to make a meaningful comparison with solitary waves in the cB system, the
cB solitary waves need to travel at the same speed. Since there is no known exact closed
formula for cB solitary waves, we compute them using a fixed-point iterative scheme, in
which the wave’s speed, cs, enters as a parameter (see [19]). One upshot of this is that, for
the same cs = 1.4, the corresponding cB solitary wave has a somewhat larger amplitude,
i.e., A ≈ 1.14763. Moreover, the cB and Serre waves have significantly different shapes.

Figures 6 and 7 present the solutions of the Serre and cB systems at different propagation
times. As expected, the waves collide and emerge with small dispersive tails. Figure 8
presents the peak amplitude, and the location of the peak amplitude as functions of time,
x∗(t), computed via (4.2). We note that, t ↦ x∗(t) is not a globally continuous function.
Indeed, Fig. 8 shows that for the Serre solution, x∗(t) is discontinuous at t ≈ 38 and t ≈ 40.5 .
To better understand this picture, Figs. 6 and 7 show that, for the Serre system, as the
colliding waves separate, the location of the peak amplitude changes abruptly between
t = 38 and t = 39, as two off-center humps grow larger than the center hump. A similar
phenomenon occurs at each peak around t = 40.5, though with less distinguishable humps.

There are several interesting similarities and differences between the results for the cB
and Serre systems.

● The dispersive tails in the Serre system are considerably larger.
● During the interaction, the peak amplitude reaches approximately the same value in
both systems, but at somewhat different times, i.e., a maximum of approximately
2.5 at t ≈ 36.7 for the Serre system and a maximum of approximately 2.547 at
t ≈ 35.9 for the cB system. Furthermore, the Serre system gives rise to the large
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off-center humps and associated with the discontinuities in Fig. 8, whereas, the
corresponding cB system does not have this phenomenon.
● The collision in the Serre system lasts longer.
● The change in the wave’s long-time amplitude (sufficiently after the collision) com-
pared with the initial amplitude is much larger in the Serre system, i.e., it decreases
by approximately 4.9%in the Serre system, whereas, in the cB system, it decreases
by only 0.061%.
● The phase shift is significantly larger in the Serre system. The ensuing wave trajec-
tories are closer together (with respect to linear propagation) in the Serre system.

From these experiments, we conclude that solitary waves behave qualitatively the same
in the Serre and cB systems. However, quantitatively, in the interaction of the solitary
waves in the Serre system is more inelastic. These results are consistent with the fact
that the Serre system contains nonlinear dispersive terms not present in the cB system.
We also note that the Hamiltonian in this experiment is conserved to within 9 decimal
digits and its conserved value was H(t) = 9.13794051 for up to T = 200.

We note that, given our choice of ε = 1 and solitary wave amplitude of O(1), physically
speaking, these solitary waves have very large amplitudes. For this reason, cB system might
not be valid in this regime. We also compare the two systems in the small-amplitude regime,
in which both systems are valid, i.e., repeat the head-on collision experiments using small-
amplitude solitary waves with A ≈ 0.2 and cs = 1.1. (More specifically the amplitude of
the solitary waves in the case of Serre system were A = 0.21 and after the interaction the
amplitude have been reduced to the value A = 0.2098659. In the case if the cB system
we have A = 0.21774185 before the collision and A = 0.21774165 after.). In that case, the
results of the two systems are approximately the same before and after the interaction, and
we refer to Figure 9 for details. It is worth noting that the dispersive tail generated by the
Serre system is larger compared to the respective tail generated by the cB system. The
Hamiltonian in this experiment was H = 0.6764072912 with the conserved digits shown
here.

For the study of overtaking collisions, we consider two solitary waves traveling in the
positive x direction, with speeds cs,1 = 1.4 and cs,2 = 1.2, centered at x = ∓50, respectively.
The amplitudes of the Serre waves are A1 ≈ 0.96 and A2 ≈ 0.44; and for the cB system
A1 ≈ 1.14763 and A2 ≈ 0.475729.

Figures 10–11 present the solutions η(x, t) of the Serre and cB systems at different
propagation times. Given their initial positions and speed difference, the two waves (if
they were linear) should collide at t = 100/0.2 = 500. In reality, the interaction begins
at approximately t = 400 [see Fig. 10(c)]. During the interaction, the waves appear to
exchange mass (similar dynamics has been observed in Boussinesq systems [21, 4] and the
Euler equations [16]). The faster wave overtakes the slower one at approximately t = 490
[see Fig. 11(b)]. The interaction ends at approximately t = 600.

A phase shift and a small change in amplitude (compared with the initial amplitudes)
is observed. Specifically, in the Serre system, the long-time amplitudes of the two waves
decrease by approximately 0.025% for the larger wave and 0.0705% for the smaller one. In
the cB system, the decrease of the amplitudes is negligible, i.e., 0.00087% and 0.0027%,



On the Galerkin method for the Serre equations 23 / 35

−60 0 60
−0.5

0

1

3

x

η

 

 
(a) t = 0 Serre

cB

−60 0 60
−0.5

0

1

3

x

η

 

 
(b ) t = 30 Serre

cB

−60 0 60
−0.5

0

1

3

x

η

 

 
(c ) t = 34 Serre

cB

−60 0 60
−0.5

0

1

3

x

η

 

 
(d ) t = 35 Serre

cB

−60 0 60
−0.5

0

1

3

x

η

 

 
(e ) t = 36 Serre

cB

−60 0 60
−0.5

0

1

3

x

η

 

 
( f ) t = 38 Serre

cB

Figure 6. Head-on collision of two solitary waves in the Serre (solid) and cB
(dashes) systems.

respectively. The Hamiltonian in this experiment conserved within 8 decimal digits and it
was H = 5.7237794 up to T = 800.

Furthermore, Fig. 12 shows in detail the dispersive tails after the interaction. These
tails contain N -shaped wavelets. The generation of wavelets has been studied recently
for the cB system and other Boussinesq-like systems (cf. [4, 3]), as well as for the Euler
equations (cf. [15, 16]). In [19], a related system based on a Galilean invariant equation,
which contains some (but not all) of the nonlinear terms of the Serre system, showed how
the wavelets depend on the nonlinear terms.

Here, Fig. 12 shows that the signs of the wavelets in both systems are the same, but
their amplitudes differ, i.e., the wavelet is larger and travels faster in the Serre system.
Moreover, the dispersive tail is larger in the Serre system.

These results show that:

● The interaction in the Serre system is significantly stronger.
● Compared with the head-on collisions, the overtaking collision is significantly weaker
in terms of the amplitude and phase shifts and the size of the dispersive tails.
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Figure 7. Continuation of the results in Fig. 6. Note the three humps at t = 39.
For clarity, (e) and (f) are shown on different scales.

5.2. Dispersive shock waves

Here we test the ability of the FEM scheme to compute DSWs with high accuracy. In
particular, we test the FEM scheme in two cases, i.e., for a simple DSW and for the
dam break problem. The rapid oscillations in DSWs make it challenging to simulate
these problems accurately. Moreover, finite-volume and other methods are prone to adding
spurious dissipative effects. This can lead to viscous-DSWs, which look like DSWs, but
travel more slowly and have smaller-amplitude oscillations [22]. One of the advantages of
the FEM scheme is that it is non-dissipative, as shown below.

First, we study simple DSWs in the Serre and cB systems. The simulations are carried
on the interval x ∈ (−700,700) with ∆x = 0.1 and ∆t = 0.01. We choose as initial data for
h as a step function that decays to zero as ∣x∣ →∞, i.e.,

h(x,0) = 1

2
η0 [1 + tanh (250 − ∣x∣)] , (5.1)

figs/figure5.eps


On the Galerkin method for the Serre equations 25 / 35

20 35 39 40.5 50
0

3

t

P
ea

k 
am

pl
itu

de

 

 

(a) Serre
cB

20 35 39 40.5 50
−20

0

20

t

x
∗
(t
)

 

 

(b) Serre
cB

Figure 8. (a) Peak amplitude of the solution and (b) the location of the peak

amplitude [see (4.2)] of each wave for the head-on collision presented
in Figs. 6 and 7.

where η0 = 0.4182 . The initial data for u(x,0) is chosen as

u(x,0) = 2 [√h(x,0) − 1] .
These initial data generate a simple DSW with (see (2.4) and [22, 23])

h+ = 1, h− = 1 + η0, u+ = 0, u− = 2(√1 + η0 − 1) . (5.2)

Figures 13 and 14 show the results for the Serre and cB systems, respectively. In both
systems, a simple DSW is generated, which travels to the right, and a rarefaction wave
travels to the left with a small dispersive tail.

To test the non-dissipativity of the FEM scheme, we compare the computational results
with the asymptotics of the leading edge solitary wave, whose long-time amplitude and
speed are given in Eqs. (2.6) with the jump [Eq. (2.5)] δ = η0 = 0.4182. Here, asimple

1 ≈ 0.8656
and csimple

s ≈ 1.3453. Figure 15 shows the peak amplitude and speed of the solitary wave
recovered from the computations approach the corresponding asymptotic values (solid hor-
izontal lines). Even though δ is not much smaller than 1, it turns out that the asymptotic
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Figure 9. Same as Fig. 5 using solitary waves with speed cs = 1.2 . (f) is a
zoomed in version of (e).

values are fairly accurate. These results show that the FEM is non-dissipative even
for DSWs. We note that the Hamiltonian in these simulations is conserved to within 10
decimal digits of accuracy and it remained H(t) = 190.4720453 even after the interaction
of the leading edge with the other parts of the solution and up to T = 400. In addition,
Fig. 15 shows that, in the cB system, the DSW travels significantly more slowly and with
a larger amplitude.

We also consider the dam-break problem (see Section 2.2). Here, the initial data
for h(x,0) are the same as (5.1), but u(x,0) = 0. Figure 16 shows the results of this
computation for the Serre system, i.e., two counter-propagating DSWs and rarefaction
waves. These initial data generate a simple DSW with (5.2), whose leading edge solitary
wave has amplitude and speed given by (2.7) with δ = η0 = 0.4182. For comparison,
Fig. 16(d) shows the corresponding non-dispersive shallow water shock and rarefaction
waves, which connect the same flow states. Similar results are obtained for the cB system
using the same initial conditions – see Figs. 18 and 19. The discretization parameters are
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Figure 10. Overtaking collision of two solitary waves. (c) is a zoomed in version

of (b), which is the beginning of the interaction.

the same as in the previous experiment and the Hamiltonian is conserved with 10 decimal
digits of accuracy and it was H(t) = 87.27888421.
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Figure 11. Continuation of the simulation in Fig. 10, showing the overtaking.
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Figure 12. Same as Fig. 11, showing the dispersive tail in detail.
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Figure 13. Simple DSW in the Serre system.
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Figure 14. Same as Fig. 13 in the cB system.
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Figure 15. Amplitude and speed of the leading-edge solitary wave for the sim-
ulations in Figs. 13 and 14. Also shown are the asymptotic values

for the Serre system [solid horizontal lines, Eqs. (2.6)].

figs/figure12.eps
figs/figure13.eps


On the Galerkin method for the Serre equations 31 / 35

−700 0 700
−0.1

0

0.5

x

η

 

 
(a) t = 0 Serre

−700 0 700
−0.1

0

0.4036

0.5

x

η

(c ) t = 200

−700 700
−0.1

0

0.5

x

η

(b ) t = 100

−400 −100
−0.1

0

0.5

x

η

 

 
(d ) t = 100

Serre
Non−dispersive shallow water

250 400
−0.1

0

0.5

x

η

(e ) t = 100
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non-dispersive shallow water problem (dot-dashes).
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Figure 18. Same as Fig. 16 in the cB system.
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Figure 19. Amplitude of the leading-edge solitary waves for the simulations in
Figs. 16 and 18. Also shown is the asymptotic value for the Serre

system [solid horizontal lines, Eq. (2.7a)].
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6. Summary and conclusions

We present a fully discrete numerical scheme for the Serre system based on the standard
Galerkin / finite-element method with smooth periodic splines and on the fourth-order,
four-stage, explicit Runge-Kutta method. The computational results show that this nu-
merical scheme is highly accurate and stable. In particular, this scheme achieves the
optimal orders of convergence in time and space. Moreover, the actual numerical errors
remain fairly small during propagation. In addition, the stability of this scheme does not
impose restrictive conditions on the temporal step size, suggesting that this scheme could
be unconditionally stable.

In addition, we perform a series of highly-accurate numerical experiments of interacting
solitary waves in the Serre and ‘classical’ Boussinesq systems. The computational results
show that the interactions of solitary waves in the Serre system are more inelastic, i.e., the
interaction is significantly longer and incurrs a larger amplitude change and larger phase
shift. This greater “inelasticity” does not affect the nonlinear stability of the solitary waves.
Furthermore, in the Serre system, the dispersive tails generated by the interacting solitary
waves have larger amplitude.

We also use this scheme to study the generation and propagation of rapidly oscillating
dispersive shocks and rarefaction waves. The results show that this scheme can resolve the
fine details of the solutions, without inducing numerical (artificial) dissipative effects.
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