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Abstract

We address the problem of designing sur-
rogate losses for learning scoring functions
in the context of label ranking. We ex-
tend to ranking problems a notion of order-
preserving losses previously introduced for
multiclass classification, and show that these
losses lead to consistent formulations with re-
spect to a family of ranking evaluation met-
rics. An order-preserving loss can be tailored
for a given evaluation metric by appropri-
ately setting some weights depending on this
metric and the observed supervision. These
weights, called the standard form of the su-
pervision, do not always exist, but we show
that previous consistency results for ranking
were proved in special cases where they do.
We then evaluate a new pairwise loss consis-
tent with the (Normalized) Discounted Cu-
mulative Gain on benchmark datasets.

1. Introduction

Learning to rank has attracted a lot of attention in the
past decade. Research on this topic is mainly driven by
Information Retrieval (IR) applications like search en-
gines which display their results in the form of ranked
lists of items (e.g. documents or images). The im-
provement of such learning techniques, or a better un-
derstanding of them, may affect millions of users daily.

In most of these ranking tasks, the items are ordered in
two steps. They are first given scores (w.r.t. the user
query) and then sorted by decreasing scores. We con-
sider here the problem of learning the scoring function
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using a training set of queries for which preferences
over the items are given. More specifically, we address
the problem of designing surrogate losses for the scor-
ing function. A surrogate loss defines the risk a train-
ing procedure minimizes in practice, in contrast to the
evaluation metric which will eventually measure the
quality of the predicted rankings but usually leads to
intractable optimization problems. For instance, some
popular surrogate losses are based on pairwise compar-
isons (Weston & Watkins, 1999; Herbrich et al., 2000;
Freund et al., 2003; Joachims, 2002); they are defined
as convex upper bounds on the pairwise disagreement,
an evaluation metric which counts the number of mis-
ordered pairs of items in the predicted ranking.

In this paper, we address the problem of designing sur-
rogate losses that are consistent with respect to the
target evaluation metric: in the large sample limit, an
optimal scoring function for the surrogate risk is also
optimal for the risk defined by the target evaluation
metric. Consistency is certainly a desirable property of
the surrogate formulation, and has recently been stud-
ied in the context of ranking by Duchi et al. (2010),
where, in particular, the authors showed that exist-
ing pairwise approaches were not consistent w.r.t. the
pairwise disagreement. This result casts in light a lack
of understanding of surrogate losses for ranking, even
of the most extensively studied ones.

We study a class of surrogate losses for scoring sug-
gested by Zhang (2004) in the context of multiclass
classification called order-preserving, and define the
standardization function associated to an evaluation
metric. This function maps the supervision to a vec-
tor of scores which satisfies certain properties w.r.t. to
noise. We show that given an evaluation metric, there
is a consistent surrogate formulation with an order-
preserving loss if and only if there is a standardization
function for this metric. Considering some widely used
ranking evaluation metrics, namely the (Normalized)
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Discounted Cumulative Gain ((N)DCG), the Average
Precision (AP), and the Expected Reciprocal Rank
(ERR), we give the standardization function for the
(N)DCG, and show that for the AP and the ERR, the
standardization function does not exist. Consequently,
no surrogate formulation with an order-preserving loss
can be consistent with these metrics.

We relate our results to prior analyzes of consistent
surrogate losses for scoring of Cossock & Zhang (2008),
Xia et al. (2008), and Duchi et al. (2010). While
these analysis are slightly different from ours, we show
that the positive consistency results that were ob-
tained correspond to special cases where the consid-
ered evaluation metric has a standardization function –
and thus for which consistent formulations with order-
preserving losses can be defined.

As a by-product of our analysis, we propose a new
order-preserving pairwise loss for ranking. We exper-
imentally show that the surrogate formulations con-
sistent w.r.t. the DCG and (N)DCG using this new
loss are competitive with different variants of existing
pairwise losses. Since the new loss only incorporates
minor changes to the existing pairwise approaches, we
suggest its use as soon as the evaluation metric has
a standardization function. This new loss may be of
interest to design learning-to-rank algorithms, consid-
ering that pairwise methods are known to exhibit a
rather good trade-off between performance and sophis-
tication of the algorithm1 compared to the more recent
listwise approach (Xia et al., 2008; Yue et al., 2007).

The paper is organized as follows. We first describe the
formal framework in Section 2, and present the notions
of order-preserving loss and standardization functions
in Sections 3 and 4. In Section 5, we analyze various
evaluation metrics for ranking and make the link with
previous results. The experiments are presented in
Section 6, followed by a conclusion in Section 7.

2. Framework

Notations Uppercase (resp. lowercase) letters de-
note random variables (resp. constant values or func-
tions). Boldface characters denote vectors or vector-
valued functions, but the normal font is used when
sub-scripting multidimensional quantities. Sn denotes
the set of permutations of {1, . . . , n}. For a vector x

(resp. a permutation σ) and two indexes i and j, xi↔j

(resp. σi↔j) is obtained from x (resp. σ) by swapping
the values at indexes i and j (resp. σ(i) and σ(j)).

1See Letor’s website http://research.microsoft.
com/en-us/um/people/letor/ for the performances of sev-
eral approaches on document search benchmarks.

Basic Definitions We consider a framework of
ranking similar to subset or label ranking (Cossock
& Zhang, 2008; Dekel et al., 2003). The data is mod-
eled by two jointly distributed random variables Q and
T taking values in Q (the query space) and Y (the
supervision space) respectively. For an observed pair
(q, t), there is a fixed set S(q) to order. S(q) only de-
pends on q, and we identify it with {1, ...,|S(q)|}. We
assume that |S(q)|=n for a constant n>1 for simplic-
ity, but all our results would hold if we only assumed
∀q,|S(q)| ≤ n. t belongs to a finite set Y ⊂ R

|q| and
represents the desired ranking of S(q).2 Such a super-
vision is widely used in IR, where ti is the relevance
judgment of item i. A scoring function f assigns a
score fi(q) ∈ R to each item i ∈ S(q). The quality of
the vector of scores f(q) with respect to the ground
truth t is measured by a scoring error. Following ex-
isting evaluation measures for ranking (see Section 5),
a scoring error depends only on the ordering induced
by the scores, and not the scores themselves. We pro-
pose the formal definition below, which considers that
ties in scores are broken randomly by the sorting al-
gorithm:

Definition 1 Let Rr : Sn ×Y → R+. A scoring error
is a function R

s : Rn × Y → R+ defined by:

∀s ∈ R
n, ∀y ∈ Y, Rs(s,y) =

1

|S[s]|

∑

σ∈S[s]

R
r(σ,y) ,

with S[s] =
{

σ ∈ Sn

∣

∣∀i, fσ-1(i)(q) ≥ fσ-1(i+1)(q)
}

.

(1)

R
r is called the ordering error associated to R

s.

(Note that we used the convention that σ(i) is the rank
of item i, and the top-ranked item is σ−1(1).) The goal
is to learn a scoring function f , using a training set of
(query, desired ranking) pairs, with low scoring risk :

Rs(f) = E
[

R
s(f(Q),T)

]

. (2)

Surrogate Losses and Consistency In practice,
the optimization of the empirical scoring risk on a
training set is intractable because it is not continuous.
The usual solution is then to define a (preferably con-
vex) continuous, bounded below surrogate loss Ψ and
learn f on the training data to minimize the Ψ-risk :

RΨ(f) = E
[

Ψ(f(Q),T)
]

. (3)

The goal of the paper is to give general conditions on Ψ
and R

s such that Ψ is consistent with respect to Rs (see
Def. 2 below). Th. 1 of (Duchi et al., 2010) states that

2We will make an exception in Sections 5.3 and
5.4, where the supervisions considered are respectively
weighted preference graphs and permutations.

http://research.microsoft.com/en-us/um/people/letor/
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consistency is a necessary and sufficient condition for a
minimizer of RΨ(f) to be a minimizer of Rs(f). More
precisely, it is equivalent to the following statement:
for any sequence of functions (fp)p≥0, we have:

(

RΨ(fp) →
p→∞

inf
g
RΨ(g)

)

⇒

(

Rs(fp) →
p→∞

inf
g
Rs(g)

)

where the infima are over all measurable functions.
The consistency is a pointwise property of the surro-
gate loss and the scoring error, which requires that for
any distribution over the supervision space, any score
vector that minimizes the expected loss minimizes the
expected scoring error as well:

Definition 2 Suppose Ψ : Rn × Y is bounded-below
and Ψ(.,y) is continuous for all y ∈ Y. Then, Ψ
is consistent with respect to a scoring error R

s if, for
random variable Y taking values in Y, we have:

inf

s∈R
n,s 6∈argmin

s
′∈Rn

E

[

R
s(s′,Y)

]

E
[

Ψ(s,Y)
]

> inf
s∈Rn

E
[

Ψ(s,Y)
]

. (4)

3. Order-Preserving Losses

The surrogate losses we will consider are the order-
preserving losses. This notion was introduced by
Zhang (2004) in the context of multiclass classifica-
tion. We give here a somewhat different formulation
more suitable to ranking:

Definition 3 A function Φ : Rn × R
n → R is order-

preserving if, for any bounded Ω ⊂ R
n
+ and any ran-

dom variable A taking values in Ω, we have:

1. min
s∈Rn

E
[

Φ(s,A)
]

= inf
s∈Rn

E
[

Φ(s,A)
]

2. ∀i, j such that E
[

Ai

]

> E
[

Aj

]

, we have:

s∗ ∈ argmins∈Rn E
[

Φ(s,A)
]

⇒ s∗i > s∗j

The first condition is only here to simplify the proofs
in the paper (it allows us to avoid dealing with scores
that have to go to −∞ to reach the infimum). The
second condition is crucial: given a set of weights as-
sociated to each item i, the loss has the property of
being minimal only on the score vectors which strictly
follow the total preorder imposed by the weights. We
may note here that Xia et al. (2008) propose a notion
of order-sensitivity for surrogate losses which plays a
similar role in their analysis as the order-preserving
property here. The two notions are however different
since order-sensitivity applies to losses based on a su-
pervision that takes the form of permutations.

The squared loss Φ(s,α) =
∑n

i=1

(

si−αi

)2
is obviously

order-preserving since the minimizer of E
[

Φ(s,A)
]

is

given by s∗i = E
[

Ai

]

. However, the following popular
loss, which we call the preorder loss (Joachims, 2002;
Cohen et al., 1997; Freund et al., 2003):

Φpreorder(s,α) =

n
∑

i=1

∑

j:αj<αi

ϕ(si − sj) (5)

is not order-preserving for convex ϕ3. However, Zhang
(2004) suggests a class of order-preserving losses based
on pairwise comparisons to replace the preorder loss:

Theorem 1 Let ϕ : R → R be a convex, non-
increasing, differentiable function satisfying:

1. ϕ(t) < ϕ(−t) for all t > 0 and ϕ′(0) < 0,

2. ϕ′(t0) = 0 for some t0 > 0.

Then, Φ : Rn × R
n → R defined by:

Φ(s,α) =

n
∑

i=1

αi

n
∑

j=1

ϕ(si − sj) (6)

is order-preserving.

The proof of the Theorem is exactly that of Th. 5
of Zhang (2004). The first condition is mandatory to
prove that the loss of (6) satisfies the second point of
Definition 3. The second condition makes sure that
the infimum is reached for finite values of the scores.
To the best of our knowledge, the loss (6) has not
been proposed for ranking. The difference between (6)
and (5) is that (6) makes a comparison for every pos-
sible pair of scores (si, sj) (but each individual item
has its own weight), while the loss of (5) only con-
sider pairs with different weights. The problem of
(5) become visible when we write the expectation:
E
[

Φpreorder(s,A)
]

=
∑

i,j P
(

Ai > Aj

)

ϕ(si−sj). The
loss has then a very complex structure, and a min-
imizer will not induce the same relative ordering as
E
[

A
]

in general. In contrast, the loss (6) keeps the
same structure when taking the expectation over A.
This is the feature that makes it order-preserving.

The order-preserving property is rather desirable for
scoring losses, in particular when the supervision takes
the form of relevance judgments on each item. Yet, the
exact values of the weights Ai to provide to the loss
must be carefully chosen depending on the observed
supervision and the scoring error. The next sections
investigate this issue.

3The proof of the inconsistency of the preorder loss
w.r.t. the pairwise disagreement error (see Eq. 12) of
(Duchi et al., 2010, Th. 11) works in the special case when
we restrict to binary-valued Ais. However, in that case, we
can show that E

[

A
]

is optimal for the pairwise disagree-
ment, so the inconsistency w.r.t. the pairwise disagreement
implies that the loss is not order preserving.
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4. Standardization for Scoring Errors

We now consider a structural property of scoring er-
rors: the existence of a standardization function, which
maps the observed supervision to an optimal vector of
scores, such that the expectation, over any distribution
of the supervision, of these optimal vectors remains
optimal for the expected scoring error:

Definition 4 Let Rs : Sn×Y → R be a scoring error.
A standardization function of Y for R

s is a function
r : Y → R

n
+ which, for any Y-valued r.v. Y, satisfies:

E
[

r(Y)
]

∈ argmin
s∈Rn

E
[

R
s(s,Y)

]

. (7)

The existence of such a function obviously provides a
consistent surrogate loss with respect to the scoring
risk using any order-preserving loss Φ, by setting:

∀s ∈ R
n, ∀y ∈ Y,Ψ(s,y) = Φ(s, r(y)) . (8)

In fact, the converse is true as well, as long as we con-
sider convex and symmetric order-preserving losses:

Theorem 2 Let Rs be a scoring error with standard-
ization function r. Let Φ be an order-preserving loss.
Then Ψ defined by (8) is consistent with respect to R

s.

Conversely, let Rs be a scoring error and Φ be an order-
preserving function such that (1) Φ(.,α) is convex for
any α and (2) Φ is symmetric in the following sense:

∀α ∈ R
n
+, ∀s ∈ R

n, ∀i, j,Φ(s, α) = Φ(si↔j , αi↔j) .

If there is a bounded function r : Y → R
n
+ such that Ψ

defined by (8) is consistent with respect to R
s, then r

is a standardization function for Rs.

Proof Let Y be a Y-valued random variable. By
our definition of order-preserving, the infimum of
E
[

Φ(., r(Y))
]

is a minimum. So, by the definition
of consistency, the first point is proved if we show
that a minimizer s∗ of E

[

Φ(., r(Y))
]

also minimizes

E
[

R
s(.,Y)

]

. Given the order-preserving property, we

know that s∗i > s∗j whenever E
[

ri(Y)
]

> E
[

rj(Y)
]

.
We do not know the relative ordering of s∗i and s∗j if

E
[

ri(Y)
]

= E
[

rj(Y)
]

. However, by the definition of
a scoring error, it is clear that the relative ordering
between items i and j does not matter in case of a tie
in an optimal score vector. Therefore s∗ is optimal for
E
[

R
s(.,Y)

]

so Ψ defined by (8) is consistent w.r.t. Rs.

For the second point, notice that for any bounded r.v.
A, E

[

Φ(s,A)
]

is convex in s and symmetric. This im-

plies that for any i, j such that E
[

ri(Y)
]

= E
[

rj(Y)
]

,

there is a score vector s∗ minimizing E
[

Φ(., r(Y))
]

with s∗i = s∗j . Since Ψ is consistent w.r.t. Rs, s∗ min-

imizes E
[

R
s(.,Y)

]

. E
[

r(Y)
]

and s∗ have exactly the
same ties, and the same relative ordering of i and j
whenever s∗i > s∗j . Thus, they induce exactly the same

orderings, which implies that E
[

r(Y)
]

also minimizes

E
[

R
s(.,Y)

]

.Since this implication is true for any r.v.
Y, r is a standardization function for Rs. 2

For a given scoring error, the theorem allows us to
reduce the problem of finding a consistent surrogate
formulation to the analysis of the scoring error itself: if
one can explicitly find a standardization function, then
we have a consistent surrogate formulation. While the
theorem follows naturally from the definitions, it has
a number of important consequences.

First, even if the standardization function exists and
the observed supervision y takes the form of relevance
scores, the weights A of the definition of an order-
preserving loss should not be the relevance scores
themselves, as demonstrated in Section 5.1. The stan-
dardization function gives us the how to set these
weights, depending on the scoring error. Secondly,
the theorem also points out the limitations of order-
preserving surrogate losses, in the sense that they can-
not help in designing consistent losses if the scoring
error does not have a standardization function, as we
shall see in Section 5.2. Finally, the notion of stan-
dardization function can be trivially extended to any
other forms of supervision (not only relevance scores).
Order-preserving losses may then be used in new con-
texts. This issue is discussed in Sections 5.3 and 5.4.

5. Special Cases

We now turn on to the specific analysis of existing
scoring errors, in terms of existence of a standardiza-
tion function. We first focus on well-known evaluation
metrics used in IR, and then relate the notion of stan-
dardization function to positive consistency results ob-
tained by (Duchi et al., 2010) and (Xia et al., 2008),
under specific noise assumption on a supervision set
which is not composed of vectors of relevance scores.

5.1. Discounted Cumulative Gain

The DCG (Manning et al., 2008) is a widely used eval-
uation metric in search engines applications. Cossock
& Zhang (2008) proved the consistency of a regres-
sion approach w.r.t. the DCG. We show here that this
evaluation metric has a standardization function. The
usual definition of the DCG is:

∀σ ∈ Sn, DCG@K(σ,y) =

K
∑

k=1

2yσ−1(k) − 1

log(1 + k)
. (9)
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K is a cutoff to ignore the predicted ordering after the
first K items. To balance the influence of individual
queries when averaging over multiple queries, The nor-

malized DCG NDCG@K(σ,y)= DCG@K(σ,y)
max
σ′

DCG@K(y,σ′) is used.

Th. 1 of Cossock & Zhang (2008) states that the
vector of scores defined by s∗i = E

[

2Yi − 1
]

maxi-
mizes the DCG@K for any K. A similar result holds
for the NDCG, since adding the normalization factor
is equivalent to changing the value of the relevance
scores. Thus, both the DCG@K and the NDCG@K
have standardization functions, respectively given by:

rDCG@K
i (y) = 2yi − 1

rNDCG@K
i (y) =

(

2yi − 1
)(

max
σ′∈S|q|

DCG@K(y, σ′)
)−1

Consequently, any order-preserving loss leads to a con-
sistent formulation with respect to the (N)DCG, as
soon as one uses these weights.

5.2. Expected Reciprocal Rank and

Average Precision

The ERR (Chapelle et al., 2009) was recently used as
the official evaluation metric in a learning to rank chal-
lenge (Chapelle & Chang, 2011). The AP is another
popular metric for binary (0/1) relevance judgments
(Manning et al., 2008). Their formulas are:

ERR(σ,y)=

n
∑

k=1

Rk

k

k−1
∏

j=1

(1−Rj), Rk =
2yσ -1(k)–1

2gMax
(10)

AP(σ,y)=
(

n
∑

i=1

yi
)-1 ∑

i:yi=1

1

σ(i)

∑

k:yk=1

I{σ(k)≤σ(i)}(11)

where gMax in (10) is the greatest possible relevance
score. Both have a highly complex structure, and there
is no consistent surrogate loss w.r.t. the ERR or the
AP when considering order-preserving losses:

Theorem 3 There is no standardization function for
the ERR and for the AP.

The proof of the theorem is based on the following
lemma, which gives some properties of a standardiza-
tion function on binary relevance judgments.

Lemma 4 Fix n≥3 and Y={0, 1}n. Let Rs be a sco-
ring error with associated ordering error R

r such that
for any σ∈Sn, any two indexes i, j and any y∈Y:

1. R
r(σ,y) = R

r(σi↔j ,yi↔j) (symmetry),

2. (yi>yj and σ(i)<σ(j))⇒R
r(σ,y)<R

r(σi↔j ,y)
(strict monotonicity),

Then, for any standardization function r for Rs:

1. ∀y ∈ Y, ∀i, j, yi > yj ⇒ ri(y) > rj(y),

2. ∀y ∈ Y, ∀i, j, yi = yj ⇒ ri(y) = rj(y),

3. ∀y,y′ ∈ Y s.t.
∑

k yk =
∑

k y
′
k, for any i, j:

yi+y′i=yj+y′j ⇒ ri(y)+ri(y
′)=rj(y)+rj(y

′).

Before proving the lemma, we prove the theorem:

Proof of Theorem 3 Consider the binary relevance
case with 4 items to rank, the two supervision vec-
tors y = (1, 1, 0, 0) and y′ = (0, 0, 1, 1), and the r.v.
Y which gives 1/2 probability to each of them. Aim-
ing for a contradiction, suppose the ERR (resp. the
AP) has a standardization function rERR (resp. rAP ).
Then, by the third point of Lemma 4, E

[

rERR
i (Y)

]

(resp. E
[

rAP
i (Y)

]

) does not depend on i. If this is an
optimal score vector, then any permutation of the four
items is optimal. Computing the ERR and the AP for
the rankings 1≻2≻3≻4 and 1≻3≻2≻4, we find:

E
[

ERR(1≻3≻2≻4,Y)
]

= E
[

ERR(1≻2≻3≻4,Y)
]

+
1

24

E
[

AP(1≻3≻2≻4,Y)
]

= E
[

AP(1≻2≻3≻4,Y)
]

−
1

12

Thus, some permutations are suboptimal, which con-
tradicts the existence of a standardization function. 2

Proof of Lemma 4 Point 1 follows directly from the
strict monotonicity. In the rest of the proof, for any i,
yi is the vector defined by yii = 1 and yik = 0 for k 6= i.

We prove the second point by contradiction. Suppose
y is such that yi = yj and ri(y) > rj(y). Define Yα

by P
(

Yα = yj
)

= α and P
(

Yα = y
)

= 1 -α, for α > 0
such that (1−α)ri(y)+αri(y

j)>(1−α)rj(y)+αrj(y
j).

By strict monotonicity (yj requires j ranked before i)
and symmetry (the relative ordering of i and j does
not matter for y), the small probability α implies
E
[

rj(Y
α)
]

> E
[

ri(Y
α)
]

, which is impossible consid-
ering our choice of α.

We also prove the third point by contradiction. Sup-
pose there are y,y′ and two indexes i and j such that
yi+y

′
i=yj+y

′
j and ri(y)+ri(y

′)>rj(y)+rj(y
′). Notice

that by the second point, we necessarily have yi 6= yj ,
thus yi+y′i = 1. Without loss of generality, assume
yi = 1 (thus, yj = y′i = 1 and y′i = 0). Let Yβ s.t.

P
(

Yβ =yj
)

= β, P
(

Yβ =y
)

=P
(

Yβ =y′
)

= 1 - β
2 , and

β > 0 small enough so that E
[

ri(Y
β)
]

> E
[

rj(Y
β)
]

.
Since

∑

k yk =
∑

k y
′
k and using the symmetry of the

ranking risk, we can claim that y and y′ do not im-
pose any constraint on the relative ordering of any two
items for which yi+y′i=yj+y′j . The probability β im-

poses E
[

rj(Y
β)
]

> E
[

ri(Y
β)
]

by strict monotonicity.
This is impossible considering our choice of β. 2
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5.3. Pairwise Disagreement with Low-Noise

We considered throughout the paper that the super-
vision takes the form of scores. However, a popular
form of supervision for ranking is a (weighted) pref-
erence graph (Cohen et al., 1997; Freund et al., 2003;
Dekel et al., 2003; Duchi et al., 2010). Consider Y to
be the set of directed acyclic graphs with non-negative
weights, and consider the weighted pairwise disagree-
ment (WPD) defined by Duchi et al. (2010)4:

∀σ ∈ Sn, WPD(σ,y) =
∑

i→j∈y

ai,j(y)I{σ(j)>σ(i)} (12)

where ai,j(y) is the cost of ordering i before j given
the preference graph y. Duchi et al. (2010) showed
that many pairwise comparisons losses, including the
preorder loss of Equation 5 and weighted versions of
it, are not consistent in general with respect to the
WPD. They however proposed a new, consistent loss
(a linear loss with a penalty term on the predicted
scores) for the case where the conditional distribution
of the supervision given the query q T|Q=q has low
noise. The exact definition of low noise for a Y-valued
r.v. Y is the following (Duchi et al., 2010, Def. 8):

∀i, j, k,E
[

ai,j(Y)− aj,i(Y)
]

≥

E
[

ai,k(Y)− ak,i(Y)
]

+ E
[

ak,j(Y)− aj,k(Y)
]

The interested reader may refer to the original paper
for discussions on how restrictive the assumption is.
In this low-noise setting, the proof of Th. 13 of (Duchi
et al., 2010) states that an optimal score vector for the
scoring error associated to the WPD is s∗ defined by:

s∗i = E
[

n
∑

k=1

(ai,k(Y)− ak,i(Y))
]

.

After trivial modifications to our definitions to handle
the case of preference graphs for the supervision, if the
weights ai,j(y) are bounded by some constant C, the
WPD has a standardization function defined by:

rWPD
i (y) = nC +

n
∑

k=1

(

ai,k(y)− ak,i(y)
)

.

The term nC is just added to guarantee the non-
negativity of rWPD

i (y). As such, the pairwise loss de-
fined in Th. 1 1 leads to a consistent formulation with
respect to the WPD if one uses rWPD to set the weight
of each item. The result is somewhat surprising, since
order-preserving losses are not really intuitive when
the observed supervision is a preference graph.

4There is a minor difference with the definition of Eq.
7 of Duchi et al. (2010) in the way we handle a tie between
i and j, but it does not affect our result.

5.4. 0/1-Error and Order-Preserving

Permutation Probability Spaces

Xia et al. (2008) prove the consistency of various algo-
rithms when the supervision set Y = Sn. The consis-
tency was proved w.r.t. the 0/1 error on permutations:

∀σ ∈ Sn, ∀y ∈ Y = Sn, ZO(σ,y) = I{σ=y} (13)

and require an additional constraint on the condi-
tional distributions of the supervision given the query
q T|Q=q: for each query, the distribution must belong
to an order preserving permutation probability space
(see Def. 5 below) with respect to n− 1 pairs of items
(jq1 , j

q
2), (j

q
2 , j

q
3), ..., (j

q
n−1, j

q
n), where each jqk 6= jqp for

k 6= p. This constraint is similar to the Plackett-Luce
model (up to the possibility of assigning a probabil-
ity of 0 to some permutations), for which consistency
w.r.t. the 0/1-error was also pointed out by (Cheng
et al., 2010). The definition of an order-preserving per-
mutation probability space is (Xia et al., 2008, Def. 3):

Definition 5 Let i, j ∈ {1, ..., n} and Y be a Sn-
valued random variable. Y defines a permutation prob-
ability space which is order-preserving with respect to
(i, j) if, for any σ s.t. σ(i)<σ(j), we have P

(

Y=σ
)

>

P
(

Y=σi↔j
)

or P
(

Y=σ
)

=P
(

Y=σi↔j
)

= 0.

Let us now consider rZO : Sn × Y → R
n
+ defined by:

rZO
i (y) =

n
∑

k=1

I{y(i)≤k}

(recall that y is a permutation, and y(i) is the rank of
item i by convention). Note that even though the same
term order-preserving is used for permutation proba-
bilities and the surrogate losses, these correspond to
totally different notions. We now give a sketch of proof
that if Y defines an order-preserving probability space
with respect to (jk, jk+1), k = 1..n− 1 for distinct in-
dexes jk, then E

[

rZO(Y)
]

is an optimal score vector.

First, let us recall that in the proof of Theorem 5 of
(Xia et al., 2008), the authors showed that the op-
timal permutation for the 0/1 error is σ∗ defined by
σ∗(jk) = k for all k. We can take jk = k to simplify the
notations without loss of generality. For two indexes
i < j, it is easy to see that the order-preserving prop-
erty (of the probability distribution of the labels) guar-
antees that for any k, P

(

Y(i) ≤ k
)

≥ P
(

Y(j) ≤ k
)

,
and the inequality must be strict for k = i (because
there is at least one permutation with y(i) = i which
has non-zero probability: the optimal one). This
proves E

[

rZO
i (Y)

]

> E
[

rZO
j (Y)

]

, and we recover the
optimal ordering for the 0/1-loss.
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Thus, if the supervision set is the set of permutations
and with the same distributional assumption on the su-
pervision as (Xia et al., 2008), we can find a consistent
surrogate formulation (with respect to the 0/1-error on
permutations) with order-preserving losses.

6. Experiments

Theorems 1 and 2 show that we can define consistent,
pairwise surrogate losses w.r.t. any scoring error which
has a standardization function. We compare, in this
section, the new consistent pairwise loss with exist-
ing variants of the preorder loss when a standardiza-
tion function is given. In that case, the new pairwise
loss has stronger theoretical guarantees than preorder
losses while keeping the simplicity (in terms of imple-
mentation) of existing pairwise approaches. We be-
lieve that if the new loss achieves similar or better
empirical performances to the preorder loss, it should
be considered as a valid replacement for the latter.

We carry out experiments on two benchmark datasets:
MQ2007 from Letor 4.05 and YLTRC6, the dataset
used in the Yahoo! Learning to Rank Challenge
(Chapelle & Chang, 2011). The first one contains 1700
queries with three relevance levels (0, 1, 2) for the su-
pervision. YLTRC contains 30, 000 queries with five
relevance levels. Both datasets have about 25 docu-
ments per query. We carry on two types of experi-
ments. The first one compares the “blind” application
of both the preorder and consistent pairwise loss, while
the second type compares the two losses with respect
to well-known tuning of the pairwise losses. The two
losses we compare have the following form:

Preorder loss a general form of the preorder loss:

Φpreorder(s,α) =

n
∑

i=1

∑

j:αj<αi

wi,j(α)ϕ(si − sj) (14)

Consistent loss based on Equation 6 for which α is
set to the standard form of the supervision for the
(non-truncated) DCG or NDCG. The experimental
setup is as follows: we use a differentiable version of
the hinge loss (see Chapelle (2007)) for ϕ, to keep the
order-preserving property (see Th. 1) of the consistent
losses (the same ϕ is used for all algorithms). We con-
sider linear scoring functions trained by minimizing
the loss together with a regularization term λ

2 ||w||2

where w is the parameter vector. Minimization is
carried out with Stochastic Gradient Descent (Bot-

5http://research.microsoft.com/en-
us/um/beijing/projects/letor/; we only considered
MQ2007 because MQ2008 is much smaller.

6http://learningtorankchallenge.yahoo.com

Table 1. Test performances on YLTRC (top) and Letor
(bottom) datasets. ↓ means significantly worse perfor-
mance than the best run.

ERR DCG NDCG

PreOrder 0.4392↓ 1.6894↓ 0.8332↓

Consist
DCG

0.4469 1.7025 0.8349↓

Consist
NDCG 0.4472 1.7021 0.8374

PreOrder 0.31392 1.7678 0.66696

Consist
DCG 0.316 1.76806 0.66714

Consist
NDCG

0.3134 1.76566 0.66858

tou, 2004). The use of linear functions is motivated
by their widespread use in conjunction with pairwise
losses. The regularization hyperparameter λ is chosen
with a crude search on the validation set, using either
the DCG (9), NDCG or the ERR (10 depending on the
final evaluation metric. We also evaluate in ERR since
it was the official measure of the Yahoo! Challenge.
We use non-truncated (N)DCG because our losses are
designed and learned to be consistent with them, but
results with truncated versions are similar.

Consistent Loss vs Preorder Loss We report
here on the results of the “blind” application of the al-
gorithms. For the preorder loss, the weights wi,j(α) =
1, which corresponds to the standard preorder loss (5).
The test performances obtained with this loss and with
the consistent pairwise loss (w.r.t. the DCG, and to
the NDCG) are shown in Table 1 top (resp. 1 bot-
tom) for YLTRC (resp. Letor). The results show that
the performances of the preorder loss are significantly
worse than those of the consistent losses. The choice of
the standardization function also plays an important
role for optimizing a particular measure: the consis-
tent loss w.r.t. the NDCG gives a significant improve-
ment, in terms of NDCG, over both the consistent loss
w.r.t. the DCG and the preorder loss (on YLTRC, the
differences are not significant on Letor).

Comparison with tuned Preorder Losses While
the preorder loss is the most popular algorithm based
on pairwise comparisons, some weighting heuristics
have been proposed to improve its performance on
IR tasks. For instance, Cao et al. (2006) proposed
to balance the influence of each query in the empir-
ical risk by normalizing the loss for each query, and
to weight each pair depending on the relevance of
its members. We study here the performance of our
methods against such tuned preorder losses, one us-
ing query normalization (wi,j(α) = 1

#comparisons
in

(14)) only and another one with both query normaliza-
tion and relevance weighting (wi,j(α) = 2αi−2αj

#comparisons
)
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Table 2. Test performances on YLTRC (top) and Letor
(bottom) datasets.

ERR DCG NDCG

PreOrder
Norm

0.4458↓ 1.6988↓ 0.8370

PreOrder
Norm+DCG

0.4499 1.7072 0.8376

Consist
Norm+DCG 0.4511 1.7082 0.8370

PreOrder
Norm

0.31278 1.76412 0.66794

PreOrder
Norm+DCG 0.31776 1.77058 0.6714

Consist
Norm+DCG

0.31746 1.77124 0.67032

(2yi −2yj ). The loss consistent with the DCG also has
a query-normalization term ( 1

n(n−1) ), which does not

affect consistency. The results are reported in Table 2.
While all results seem similar, it still validates the con-
sistent loss which enjoys better theoretical guarantees
than the heuristics for the preorder loss.

7. Conclusion

We presented an analysis of the consistency of order-
preserving losses with respect to various ranking met-
rics. The consistency of the surrogate formulation is
bound to the existence of a standardization function
for the scoring error. In contrast to previous analy-
sis on the consistency of ranking algorithms, we were
able to prove (or disprove) the existence of consistent
formulations with respect to various scoring errors by
only analyzing the scoring error itself.

Our work also suggests a new approach to building
pairwise surrogate losses. The new loss achieves simi-
lar or better results compared to existing pairwise loss
with highly tuned heuristic weights on the pairs of
items. While many heuristics can be envisioned for
the preorder loss, our analysis provides a simple and
theoretically grounded rule for designing the pairwise
loss depending on the final evaluation metric, in the
special case where a standardization function is given.

Acknowledgments

This work was partially funded by the French DGA
and the FUI project OpenWay III.

References
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