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Abstract—This paper deals with the prediction of magnetic field
distribution and electromagnetic performances of parallel double
excitation and spoke-type permanent magnet (PM) motors using
simplified (SM) and exact (EM) analytical models. The simplified
analytical model corresponds to a simplified geometry of the studied
machines where the rotor and stator tooth-tips and the shape of polar
pieces are not taken into account. A 2D analytical solution of magnetic
field distribution is established. It involves solution of Laplace’s and
Poisson’s equations in stator and rotor slots, airgap, buried permanent
magnets into rotor slots and non magnetic region under magnets.
A comparison between the results issued from the simplified model
with those from exact model (EM) (which represents a more realistic
geometry with stator and rotor tooth-tips and the shape of polar
pieces) is done to show the accuracy of the simplified geometry on
magnetic field distribution and electromagnetic performances (cogging
torque, electromagnetic torque, flux linkage, back-EMF, self and
mutual inductances). The analytical results are verified with those
issued from finite element method (FEM).
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1. INTRODUCTION

Analytical models are useful tools for first evaluations of electrical
motors performances and for the first step of design optimization.
The aim of this paper is to analytically predict the magnetic field
distribution and electromagnetic performances of parallel double
excitation and spoke-type PM motors, such as cogging torque,
flux linkage, back-EMF, electromagnetic torque, self and mutual
inductances, and DC rotor excitation current capability for the control
of flux linkage. The proposed analytical model is based on subdomain
method. Many authors have proposed analytical simplified and
exact models based on subdomain method in order to study the
stator slotting effects (with or without tooth-tips) on magnetic field
distribution and electromagnetic performances (under no-load and load
conditions) in radial inset and surface-mounted permanent magnet
motors [1–11]. It was shown that the accuracy of subdomain models
is higher than permeance models [12] or conformal transformations
models [13–15]. However, there are no authors who applied simplified
analytical model for predicting magnetic field and electromagnetic
performances in parallel double excitation and spoke-type PM motors.
There are only Lin et al. in [13] who calculated magnetic field and
cogging torque by conformal mapping with a simplified model of spoke-
type PM motors.

Wu et al. [5] have shown recently that a subdomain model which
takes into account the stator tooth-tips in surface-mounted permanent
magnet motors gives approximately the same results in terms of
electromagnetic performances as the one which neglects stator tooth-
tips. This is due to the fact that there are only tooth-tips in stator slots
for surface-mounted permanent magnet motors. For parallel double
excitation and spoke-type PM machines which are studied here, tooth-
tips are localized in three regions: stator slots, rotor DC excitation
slots and magnet slots as shown in Fig. 2. As will be shown in this
paper, the mutual influence between all of these tooth-tips can modify
considerably the electromagnetic performances. It depends on the
dimension of the tooth-tip openings compared to the slot openings.

In this paper, an exact analytical prediction based on subdomain
model for the computation of magnetic field distribution and
electromagnetic performances in parallel double excitation and spoke-
type tangential PM machines with distributed windings integer slot per
pole and per phase machine is presented. It involves the solution of
Poisson’s and Laplace’s equations in stator slots, buried permanent
magnets placed in slots, rotor double excitation slots, air gap and
non magnetic region under permanent magnets. The analytical model
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developed in this paper, which does not take into account the stator
and rotor tooth-tips and the shape of polar piece, is a simplification
of the exact model (EM) presented recently by the authors [16]. A
comparison between the results issued from the simplified model (SM)
with those from exact model (EM) [16] is done to show the effect of the
simplified geometry on magnetic field distribution and electromagnetic
performances (cogging torque, electromagnetic torque, flux linkage,
back-EMF, self and mutual inductances). It is important to note
that only magnetic field distribution is calculated in [16]. The results
obtained with analytical models are then compared to those found by
the finite element method (FEM).

2. MAGNETIC FIELD SOLUTION IN PARALLEL
DOUBLE EXCITATION PM MOTOR

Figures 1 and 2 show the machine model where region I represents the
air gap, region II the magnets, region III the stator slots, region IV a
non magnetic material under magnets and region V the rotor excitation
slots. The model is formulated in two-dimensional polar coordinates
with the following assumptions.

• The stator and rotor cores are assumed to be infinitely permeable

• Eddy current effects are neglected

• The axial length of the machine is infinite, i.e., end effects are
neglected

• The current density has only one component along the z-axis

• The stator and rotor slots have radial sides

The partial differential equations for magnetic field in term of vector
potential A which has only one component in the z direction and is
not dependent on the z coordinate, can be expressed by

∇2A = 0, in regions I and IV (1)

∇2A = −µ0∇× M, in region II (2)

∇2A = −µ0J, in region III (3)

∇2A = −µ0Jr, in region V (4)

where M is the magnetization of permanent magnets, J the stator
slots current density, Jr the excitation rotor slots current density and
µ0 the permeability of vacuum.

The field vectors B and H, in the different regions, are coupled
by

B = µ0H, in regions I, III, IV and V (5)
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Permanent magenet

Armature winding

excitation current

Figure 1. Studied parallel double excitation PM machine (1/4 of the
machine).

Figure 2. Studied model (1/4 of the machine).
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where Br = µ0Hr, Bθ = µ0Hθ

B = µ0µrH + µ0M, in region II (6)

where Br = µ0µrHr+µ0Mr, Bθ = µ0µrHθ+µ0Mθ and µr is the relative
recoil permeability of permanent magnets. Radial and circumferential
flux density components are deduced from A by

Br =
1

r

∂A

∂θ
, Bθ = −

∂A

∂r
(7)

2.1. General Solution of Poisson’s Equation in Stator Slot
Subdomain (Region III)

In each slot subdomain (i) of region III (Fig. 3), we have to solve
Poisson’s equation

∂2AIIIi

∂r2
+

1

r

∂AIIIi

∂r
+

1

r2

∂2AIIIi

∂θ2
= −µ0Ji (8)

where Ji is the current density in the slot i.
As shown in Fig. 3, the ith stator slot subdomain where i varies

from 1 to Qs (Qs is the number of stator slots) is associated with
boundary conditions at the bottom and at each sides of the slot as

∂AIIIi

∂θ

∣

∣

∣

∣

θ=αi−
c
2

= 0 and
∂AIIIi

∂θ

∣

∣

∣θ=αi+
c
2

= 0 (9)

∂AIIIi

∂r
|r=r4

= 0 (10)

where αi is the angular position of the ith slot and c the slot opening
in radian.

AIII / θi = 0

AIII /i = 0r

AIII / θi = 0

r4

∆
A

II
I i

=
−

µ
0
J i

III

Rs

C
α C/2_iα C/2i+

αi

Figure 3. ith stator slot
subdomain.
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Figure 4. jth permanent magnet
subdomain.
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From above boundary conditions (9) and (10), the solution of (8)
using the method of separation of variables is

AIIIi (r, θ) = Ci, 0 +
1

2
µ0Jir

2
4 ln (r) −

1

4
µ0Jir

2

+
∞

∑

m=1

Ci,m

[

(

r

r4

)
mπ
c

−

(

r

r4

)

−
mπ
c

]

cos
(mπ

c

(

θ−αi+
c

2

))

(11)

where m is a positive integer.

2.2. General Solution of Poisson’s Equation in Permanent
Magnet Subdomain (Region II)

In each permanent magnet subdomain (j) of region II (Figs. 2 and 4),
we have to solve Poisson’s Equation (2). The magnetization of parallel
double excitation motor is considered purely tangential. Equation (2)
is then reduced to

∂2AIIj

∂r2
+

1

r

∂AIIj

∂r
+

1

r2

∂2AIIj

∂θ2
= −µ0

Mθ

r
(12)

where Mθ = Mj = (−1)j Brem

µ0
.

For a 2p poles machine, j varies from 1 to 2p and Brem is the
remanence of the magnets.

As shown in Fig. 4, the jth magnet subdomain (region II) is
associated with the following boundary conditions

∂AIIj

∂θ

∣

∣

∣θ=gj−
a
2

= 0 and
∂AIIj

∂θ

∣

∣

∣θ=gj+
a
2

= 0 (13)

where gj is the angular position of the jth magnet and a the magnet
opening in radian.

From above boundary conditions (13), the general solution of (12)
using the method of separation of variables is given by

AIIj (r, θ) = A5j, 0 + A6j, 0 ln (r) − µ0Mjr

+

∞
∑

m=1

(

A5j,mr−
mπ
a +A6j,mr

mπ
a

)

cos
(mπ

a

(

θ−gj+
a

2

))

(14)

2.3. General Solution of Laplace’s Equation in Airgap
Subdomain (Region I)

The Laplace Equation (1) in the airgap subdomain (region I) which is
an annular domain delimited by the radii Rm and Rs (Fig. 2) is given
by

∂2AI

∂r2
+

1

r

∂AI

∂r
+

1

r2

∂2AI

∂θ2
= 0 (15)
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For the studied machine with integer slot per pole and per phase, the
periodicity of the problem is 2π

p
and the solution of Equation (15) is

AI(r, θ) = +
∞

∑

n=1

(

A1nrnp + A2nr−np
)

sin(np θ)

+
(

A3nrnp + A4nr−np
)

cos(np θ) (16)

where n is a positive integer.

2.4. General Solution of Laplace’s Equation in the
Non-magnetic Subdomain (Region IV)

The Laplace’s Equation (1) in the non-magnetic subdomain (region IV)
is given by

∂2AIV

∂r2
+

1

r

∂AIV

∂r
+

1

r2

∂2AIV

∂θ2
= 0 (17)

The general solution of (17) is

AIV (r, θ) =

∞
∑

n=1

(

A7nrnp + A8nr−np
)

sin (np θ)

+
(

A9nrnp + A10nr−np
)

cos (np θ) (18)

The magnetic vector potential must be finite in region IV when r = 0.
Therefore, the constants A8n and A10n are equals to zero and (18) is
reduced to

AIV (r, θ) =

∞
∑

n=1

rnpA7n sin (np θ) + rnpA9n cos (np θ) (19)

2.5. General Solution of Poisson’s Equation in Rotor
Excitation Coil Slot Subdomain (Region V)

In each rotor slot subdomain (ir) of region V, we have to solve Poisson’s
Equation (20)

∂2AVir

∂r2
+

1

r

∂AVir

∂r
+

1

r2

∂2AVir

∂θ2
= −µ0Jrir

(20)

where Jr ir is the current density in rotor slot ir.
As shown in Fig. 5, the irth slot subdomain where ir varies from

1 to Nr (Nr is total number of rotor excitation slots) is associated with
the following boundary conditions

∂AVir

∂θ

∣

∣

∣θ=βir−
cr
2

= 0 and
∂AVir

∂θ

∣

∣

∣θ=βir+ cr
2

= 0 (21)

∂AVir

∂r
|r=r5

= 0 (22)
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θ

∆
=

−
µ

0
J

β

AV  / = 0ir

cr cr/2ir
_

rAV  / = 0ir

r5

ir
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β cr/2ir +

Rm

θAV  / = 0ir

βir

A
V

Figure 5. irth rotor slot subdomain.

where βir is the angular position of the irth slot and cr the rotor slot
opening in radian.

From the above boundary conditions (21) and (22), the solution
of (20) using the method of separation of variables is

AVir (r, θ) = C1ir, 0 +
1

2
µ0Jfir

r2
5 ln (r) −

1

4
µ0Jfir

r2

+

∞
∑

m=1

C1ir, m

[

(

r

r5

)
mπ
cr

−

(

r

r5

)

−
mπ
cr

]

·cos

(

mπ

cr

(

θ−βir+
cr

2

)

)

(23)

3. BOUNDARY AND INTERFACE CONDITIONS

To determine Fourier series unknown constants A1n, A2n, A3n, A4n,
A5j, 0, A6j, 0, A5j, m, A6j, m, A7n, A9n, Ci, 0, Ci, m, C1ir, 0, C1ir, m,
boundary and interface conditions should be introduced. The interface
conditions must satisfy the continuity of the radial component of the
flux density and the continuity of the tangential component of the
magnetic field. The first condition could be replaced by the continuity
of A.

The interface conditions between regions IV and II at Rr are

AIIj (Rr, θ) = AIV (Rr, θ) (24)

where gj −
a
2 ≤ θ ≤ gj + a

2 .

HIIθj
(Rr, θ) = HIVθ (Rr, θ) (25)

where gj −
a
2 ≤ θ ≤ gj + a

2 . HIVθ(Rr, θ) = 0 elsewhere.
The interface condition between regions I and II at Rm is

AIIj (Rm, θ) = AI (Rm, θ) (26)
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where gj −
a
2 ≤ θ ≤ gj + a

2 .
The interface condition between regions I and V at Rm is

AI (Rm, θ) = AVir (Rm, θ) (27)

where βir −
cr
2 ≤ θ ≤ βir + cr

2 .
The interface conditions between regions I, V and II at Rm are

HIθ (Rm, θ) = HIIθj
(Rm, θ) (28)

for gj − a
2 ≤ θ ≤ gj + a

2 and HIθ(Rm, θ) = HVθir(Rm, θ). For
βir −

cr
2 ≤ θ ≤ βir + cr

2 and HIθ(Rm, θ) = 0 elsewhere.
The interface conditions between regions I and III at Rs are

AI (Rs, θ) = AIIIi (Rs, θ) (29)

where αi −
c
2 ≤ θ ≤ αi + c

2 .

HIθ (Rs, θ) = HIIIθi
(Rs, θ) (30)

where αi −
c
2 ≤ θ ≤ αi + c

2 . HIθ(Rs, θ) = 0 elsewhere.
Interface conditions (24) to (30) concern regions with different

subdomain frequencies which need Fourier series expansions to satisfy
equalities of vector potential and magnetic field at each interface
radius.

According to Fourier series expansion, from (24) we obtain two
equations as

A5j, 0 + A6j, 0 ln (Rr) − Mjµ0Rr

=
1

a

gj+
a
2

∫

gj−
a
2

AIV (Rr, θ)dθ (31)

A5j, mR
−(mπ

a )
r + A6j, mR

(mπ
a )

r

=
2

a

gj+
a
2

∫

gj−
a
2

AIV (Rr, θ) cos
(mπ

a

(

θ − gj +
a

2

))

dθ (32)

Interface condition (25) gives

(

np

µ0

)

(

−A7nRnp−1
r

)

=
1

π

2p
∑

j=1

gj+
a
2

∫

gj−
a
2

HIIθj (Rr, θ) sin (np θ) dθ (33)

(

np

µ0

)

(

−A9nRnp−1
r

)

=
1

π

2p
∑

j=1

gj+
a
2

∫

gj−
a
2

HIIθj (Rr, θ) cos (np θ) dθ (34)
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Fourier series expansion of interface condition (26) between regions II
and I at radius Rm gives

A5j, 0 + A6j, 0 ln (Rm) − Mjµ0Rm

=
1

a

gj+
a
2

∫

gj−
a
2

AI (Rm, θ)dθ (35)

A5j, mR
−(mπ

a )
m + A6j, mR

(mπ
a )

m

=
2

a

gj+
a
2

∫

gj−
a
2

AI(Rr, θ) cos
(mπ

a

(

θ − gj +
a

2

))

dθ (36)

From interface condition (27), we obtain

C1ir, 0 +
1

2
µ0Jrirr

2
5 ln (Rm) −

1

4
µ0JrirR

2
m

=
1

cr

βir+ cr
2

∫

βir−
cr
2

AI(Rm, θ)dθ (37)

C1ir, m

(

(

Rm

r5

)
mπ
cr

−

(

Rm

r5

)

−
mπ
cr

)

=
2

cr

βir+ cr
2

∫

βir−
cr
2

AI(Rm, θ) cos
(mπ

cr

(

θ − βir +
cr

2

))

dθ (38)

Fourier series expansion of interface condition (28) gives

np

µ0

(

−A1nRnp−1
m +A2nR−np−1

m

)

=
1

π

2p
∑

j=1

gj+
a
2

∫

gj−
a
2

HIIθj(Rm, θ)sin(np θ)dθ

+
1

π

Nr
∑

ir=1

βir+ cr
2

∫

βir−
cr
2

HVθir (Rm, θ) sin (np θ) dθ (39)
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np

µ0

(

−A3nRnp−1
m +A4nR−np−1

m

)

=
1

π

2p
∑

j=1

gj+
a
2

∫

gj−
a
2

HIIθj(Rm, θ)cos(np θ)dθ

+
1

π

Nr
∑

ir=1

βir+ cr
2

∫

βir−
cr
2

HVθir (Rm, θ) cos (np θ) dθ (40)

At radius Rs, Fourier series expansions of interface condition (29) gives

Ci, 0 +
1

2
µ0Jir

2
4 ln (Rs) −

1

4
µ0JiR

2
s =

1

c

αi+
c
2

∫

αi−
c
2

AI (Rs, θ) dθ (41)

Ci,m

(

(

Rs

r4

)
mπ
c

−

(

Rs

r4

)

−
mπ
c

)

=
2

c

αi+
c
2

∫

αi−
c
2

AI (Rs, θ)cos
(mπ

c

(

θ−αi+
c

2

))

dθ(42)

Fourier series expansion of interface condition (30) gives
np

µ0

(

−A1nRnp−1
s + A2nR−np−1

s

)

=
1

π

Qs
∑

i=1

αi+
c
2

∫

αi−
c
2

HIIIθi (Rs, θ) sin (np θ) dθ (43)

np

µ0

(

−A3nRnp−1
s + A4nR−np−1

s

)

=
1

π

Qs
∑

i=1

αi+
c
2

∫

αi−
c
2

HIIIθi (Rs, θ) cos (np θ) dθ (44)

Some developments of Equations (31) to (44) are given in Appendix
A.

From Equations (31)–(44) we can calculate the 14 coefficients A1n,
A2n, A3n, A4n, A5j, 0, A6j, 0, A5j,m, A6j,m, A7n, A9n, Ci, 0, Ci,m,
C1ir,0, C1ir, m with a given number of harmonics for n and m.

4. MAGNETIC FIELD SOLUTION IN SPOKE-TYPE PM
MOTOR

Spoke-type PM motor analytical model is a special case of parallel
double excitation PM motor model, where region V is omitted (Fig. 6).
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Armatura winding

 
Permanent magnetic

Figure 6. Studied spoke-type PM machine (1/4 of the machine).

Then, Equations (37) and (38) disappear and (39) and (40) are
modified respectively as follow:

np

µ0

(

−A1nRnp−1
m +A2nR−np−1

m

)

=
1

π

2p
∑

j=1

gj+
a
2

∫

gj−
a
2

HIIθj(Rm, θ)sin(np θ)dθ (45)

np

µ0

(

−A3nRnp−1
m +A4nR−np−1

m

)

=
1

π

2p
∑

j=1

gj+
a
2

∫

gj−
a
2

HIIθj(Rm, θ)cos(np θ)dθ(46)

The other equations are the same and the system of equations to
be solved is now constituted from 12 equations with 12 unknowns A1n,
A2n, A3n, A4n, A5j, 0, A6j, 0, A5j,m, A6j,m, A7n, A9n, Ci, 0 and Ci,m.

5. ELECTROMAGNETIC PERFORMANCES
CALCULATION

Prediction of global quantities (cogging torque, flux linkage, induced
back-EMF, self inductance, mutual inductance and electromagnetic
torque), allows the evaluation of machine performances.
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5.1. Cogging Torque Calculation

According to Maxwell stress tensor method, cogging torque Tc is
computed using the analytical expression

Tc =
2pLuR2

g

µ0

π
p

∫

0

BIr (Rg, θ)BIθ (Rg, θ) dθ (47)

where Rg is the radius of a circle placed at the middle of the air-gap
and Lu is the axial length of the motor.

Open-circuit radial and tangential components of the flux density
in the middle of air gap BIr(Rg, θ) and BIθ(Rg, θ) are determined from
Equations (2) and (6).

5.2. Flux Linkage and Back-EMF Calculation

For slotted structures of PM machines, computation of flux linkage and
back-Emf with the method of winding function theory is not suitable.
The method based on Stokes theorem using the vector potential in
stator slots is used. First, we determine at a given rotor position θr,
the flux over each slot i of cross section S. We have supposed that
the current is uniformly distributed over the slot area, so the vector
potential can be averaged over the slot area to represent the coil.

For the simplified model, we obtain:

ϕi =
Lu

S

αi+
c
2

∫

αi−
c
2

r4
∫

Rs

AIIIi (r, θ)rdrdθ (48)

where S =
c(r2

4
−R2

s)
2 is the surface of the stator slots (inner radius Rs

and outer radius r4).
The vector potential AIIIi(r, θ) is given by (4). The development

of (48) gives
ϕi = LuCi, 0 (49)

−
µ0JiLu(R4

s+(2−4 ln(Rs))r2

4
R2

s+(4 ln(r4)−3)r4

4
)

−8r2

4
+8R2

s
. For the exact model, we

obtain:

ϕi =
Lu

S

αi+
c
2

∫

αi−
c
2

r4
∫

r3

AIIIi (r, θ)rdrdθ (50)

where S =
c(r2

4
−r2

3
)

2 is the surface of the stator slots (inner radius r3 and
outer radius r4). In this case, Equation (49) is modified with replacing
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Rs with r3. Of course, the value of the integration constant Ci, 0 in
(49) is not the same for the simplified and exact models.

Under no-load condition and for both models (Ji = 0), the flux
over each slot becomes

ϕi = LuCi, 0 (51)

The phase flux vector is given by
[

ψa

ψb

ψc

]

= NcC
′[ϕ1 ϕ2 . . . ϕQs−1 ϕQs ] (52)

where C ′ is the transpose of connecting matrix that represents the
distribution of stator windings in the slots. The matrix connection
between phase current and stator slots for one pole pair is given by

C =

[

1 1 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 −1 −1
0 0 −1 −1 0 0 0 0 1 1 0 0

]

(53)

The studied three phases PM motors are fed with 120◦ rectangular
phase currents. The current density in stator slots is defined as

Ji =
Nc

S
CT [ Ia Ib Ic ] (54)

where Nc is the number of conductors and Ia, Ib, Ic are the stator
phase currents.

The vector of rotor double excitation current density with Nr

elements (Nr is the number of rotor slots) for the studied machine
is defined as

Jrir =
NfIf

Sf

[−1−1 . . . 1 1] (55)

where Nf is the number of conductors in rotor slot, If the DC
excitation current and Sf the surface of rotor slot.

The surface or rotor slots is given by Sf =
cr(R2

m−r2

5
)

2 for the

simplified model, and by Sf =
cr(r2

0
−r2

1
)

2 for the exact model.
The three phase back-EMF vector is calculated by

[

Ea

Eb

Ec

]

= Ω
d

dθr

[

ψa

ψb

ψc

]

(56)

where Ω is the rotor angular speed.
Flux linkage and back-EMF are also dependent on the value of

excitation current.
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5.3. Electromagnetic Torque Calculation

Electromagnetic torque can be computed from the back-EMF by

Tem =
EaIa + EbIb + EcIc

Ω
(57)

Equation (47) can also be used to predict electromagnetic torque
(total torque) if the open circuit flux density is substituted by the
on-load flux density.

5.4. Self and Mutual Inductances Calculation

Self and mutual inductances can be calculated from the magnetic
energy:

La =
2Wa

I2
a

(58)

Lac =
Wac − Wa − Wc

IaIc
(59)

where Wa, Wc and Wac are the magnetic energies when the magnets
are not magnetized and the machine is fed with Ia only, Ic only, and
both Ia and Ic, respectively.

For the simplified model, magnetic energy can be obtained by:

W =
Lu

2

Qs
∑

i=1

r4
∫

Rs

αi+
c
2

∫

αi−
c
2

AIIIi (r, θ)Jirdrdθ (60)

For the exact model, (60) becomes:

W =
Lu

2

Qs
∑

i=1

r4
∫

r3

αi+
c
2

∫

αi−
c
2

AIIIi (r, θ)Jirdrdθ (61)

6. RESULTS AND VALIDATION

In order to show the accuracy of the simplified model versus the
exact model which takes into account stator and rotor tooth-tips [16],
we compare the magnetic field distribution and electromagnetic
performances obtained with the two models. Double excitation
and spoke-type permanent magnet machines are considered. The
analytical results are also compared with those obtained by finite
element simulations [17]. The main dimensions and parameters of the
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Table 1. Parameters of simplified model for parallel double excitation
and spoke-type permanent-magnet motors.

Parameter Symbol
Value

and unit

Magnet remanence (Ferrite) Br 0.4 T

Relative recoil permeability of magnet µr 1.0

Number of conductors per stator slot Nc 12

Peak phase current Im 12.5 A

DC excitation current If 15A

Number of conductors per rotor slot Nf 10

Number of stator slots Qs 36

Stator slot opening width c 5◦

Rotor slot opening width cr 5◦

Number of pole pairs p 3

Number of rotor excitation slots Nr 12

Internal radius of rotor slot r5 35.8mm

External radius of stator slot r4 54.3mm

Radius of the external stator surface Ro 74.8mm

Radius of the stator outer surface Rs 45.3mm

Radius of the rotor inner surface at the magnet surface Rm 44.8mm

Radius of the rotor inner surface at the magnet bottom Rr 15mm

Air-gap length g 0.5 mm

Height of a magnet hm 29.8mm

Height of stator and rotor slot hs 9mm

Stack length Lu 57mm

Magnet opening (mechanical degrees) a 14◦

Rotor speed Ω 157 rd/s

studied machines for the simplified model are given in Table 1. The
supplementary geometrical parameters for the exact model are given
in Table 2.

6.1. Parallel Double Excitation PM Motors

The proposed simplified model (SM) contains 14 equations (see
appendix) with 14 unknowns. The exact model (EM) which was
presented in [16] is more complex and contains 26 equations. The
solution of the system of equations gives the potential vector and the
flux density in each subdomain.
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Radial and tangential components of the flux density due to PM,
rotor DC excitation current and armature reaction current acting
together (on-load condition) are given in Figs. 7 and 8. Differences
between results obtained with the two analytical models are not
important for the radial component of the flux density and are
more important for the tangential component as shown in Fig. 8.
Differences on the flux density waveforms between the simplified and
exact analytical model depends on the tooth-tips opening compare to

Table 2. Supplementary parameters of exact model for parallel double
excitation and spoke-type permanent-magnet motors.

Parameter Symbol
Value

and unit

External radius of rotor slot r0 42.8mm

External radius of PM r2 42.8mm

External radius of stator semi-slot r3 47.3mm

Internal radius of rotor slot r1 33.8mm

Stator semi-slot Opening d 4◦

Rotor semi-slot Opening dr 4◦

PM semi-slot Opening b 13◦

External radius of stator slot r4 56.3mm

Radius of the rotor inner surface at the magnet bottom Rr 13mm
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Figure 7. Radial component of the flux density for load condition
(stator current, rotor excitation current and PM) in the q-axis rotor
position. (a) Simplified model, (b) exact model.
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Figure 9. Tangential component of the flux density in the middle
of the first magnet (j = 1) at no-load and on-load conditions.
(a) Simplified model, (b) exact model.

the slots opening. For the studied example, we chose all the tooth-
tips openings closer to slots openings. In the case of small tooth-tips
openings compared to slot openings, we obtained significant differences
between the two models (not presented here). The results presented
here are in very good agreement with FEM for both simplified and
exact models.

With the analytical model, we can predict the magnetic field
distribution in all subdomains. Fig. 9 shows the tangential component
of the flux density (radial flux density is null) in the middle of the
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first PM region (j = 1) for no-load and load conditions, and for two
values of the DC excitation current. With these results, we can analyze
the armature reaction and the DC excitation current effects in the
demagnetization risk of the magnets. We can observe that the PM
are not demagnetized, even under load condition. As known, the
demagnetization risk occurs when the flux density in the magnet is
approximately less than 0.1 T in the direction of magnetization.

From comparisons with FEM simulations, we can observe that
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model.
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Figure 12. Cogging torque due to PM alone (If = 0A). (a) Simplified
model, (b) exact model.
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Figure 13. Back-Emf (If = 15A). (a) Simplified model, (b) exact
model.

analytical models (SM and EM) results agreed very well in the PM
subdomain and are approximately the same for simplified and exact
models.

Self and mutual inductances are given in Figs. 10 and 11. We can
observe a very good agreement between exact and simplified analytical
models and FEM results. From Fig. 10, we can determine the values
of q-axis and d-axis self-inductance. The maximum value of the self-
inductance corresponds to the q-axis rotor position (θr = 10◦). The
minimal value of the self-inductance corresponds to the d-axis rotor
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Figure 14. Electromagnetic torque (If = 15 A). (a) Simplified model,
(b) exact model.
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position (θr = 40◦). To determine the mutual inductance, the machine
is fed with two–phase stator currents. The q-axis and d-axis rotor
positions in this case corresponds to θr = 20◦ and θr = 50◦ respectively
(Fig. 11). It can be seen from the comparison between simplified and
exact models results (Fig. 10) that we have the same waveforms for the
self-inductance with a difference of approximately 0.5 mH. As expected,
the exact model gives a higher value of the self-inductance. This is
due to the lower equivalent air-gap dimension caused by the presence
of the tooth-tips. For mutual inductance (Fig. 11), this difference
in amplitude is approximately 0.2mH. There is a small difference in
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amplitude between exact analytical model and exact FEM model as
shown in Fig. 11(b). This difference is due to the number of harmonics
limitation used in the exact analytical model. This limitation is
discussed in [16] and [18].

In control process, rotor DC excitation current can be set to
zero, negative or positive values in order to increase or decrease
electromagnetic torque, flux linkage and back-Emf. Cogging torque is
also dependent on the value of the excitation current. We can observe
from Figs. 12, 13 and 14 that exact model gives approximately the same
amplitude compared to simplified model with a different waveform for
cogging torque, back-emf and electromagnetic torque which is due to
the presence of stator and rotor tooth-tips for the exact model. The
results from exact and simplified analytical models are in very good
agreement with the results obtained with simplified and exact FEM
models.

Using the simplified and exact analytical models, the impact of
the DC excitation current If on the electromagnetic performances of
the studied parallel double excitation PM motor is presented here.
Average torque and back-Emf control capability are shown in Figs. 15
and 16. The study is done for If ranging from −25A to 25 A. We can
observe that back-Emf and average electromagnetic torque increase
with DC excitation current increase. Simplified and exact analytical
models give approximately the same values with small differences for
average torque for large values of DC excitation current.
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6.2. Spoke-type PM Motors

Analytical simplified model presented in this paper for the spoke-type
PM motor contains 12 equations with 12 unknowns. The exact model
presented by the authors in [16] included 20 equations. The solution
of the system of linear equations leads to the vector potential and
flux density in each subdomain. Radial and tangential components
of the flux density due to permanent magnets acting alone are shown
in Figs. 17 and 18, for simplified and exact analytical models and
for FEM simulations. Both analytical models give approximately the
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same results for the studied machine where rotor and stator tooth-tips
openings are closer to rotor and stator slots openings.

To study the effect of armature reaction on the demagnetization
risk of ferrite magnets, we show in Fig. 19 the tangential component of
the flux density (radial flux density is null) in the middle of the first PM
subdomain. As shown, the demagnetization risk is avoided at no-load
and on-load conditions. Simplified and exact analytical models give
the same results. Once again, analytical results are in good agreement
with those obtained by FEM for both simplified and exact models.

Self and mutual inductances variations with rotor position are
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Figure 20. Phase A self inductance. (a) Simplified model, (b) exact
model.
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Progress In Electromagnetics Research B, Vol. 47, 2013 169

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

 

FEM (SM)

Analytical  (SM)

0 2 4 6 8 10
-0 .8

-0 .6

-0 .4

-0 .2

0

0.2

0.4

0.6

T
c 

(N
m

)

 

FEM (EM)

Analytical  (EM)

(b)(a)

T
c 

(N
m

)

Rotor position (mechnical degrees) Rotor position (mechnical degrees)

Figure 22. Cogging torque. (a) Simplified model, (b) exact model.
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Figure 23. Emf. (a) Simplified model, (b) exact model.

shown in Figs. 20 and 21. Both results obtained from analytical
models and FEM are in excellent agreement. From Fig. 20, we can
determine the values of q-axis and d-axis self inductances. Q-axis
self inductance (maximal inductance) corresponds to θr = 10◦ (rotor
position) and d-axis self inductance (minimal inductance) corresponds
to θr = 40◦. When the machine is fed with two–phase stator current,
q-axis and d-axis rotor positions are located at θr = 20◦ and θr = 50◦

respectively (Fig. 21). It can be seen from Figs. 20 and 21 a difference
of approximately 0.5 mH when we compare the amplitudes of self
and mutual inductances for simplified and exact model. The mutual
inductance variation with rotor position (Fig. 21) obtained with the
analytical exact model presents a small difference with FEM (EM).
This is due to the limiting number of harmonics used in the calculation
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Figure 24. Electromagnetic torque. (a) Simplified model, (b) exact
model.

as discussed in [16] and [18].
In Fig. 22, we show that the peak value of cogging torque is smaller

than in parallel double excitation machine. This is due to the absence
of rotor slots (DC current excitation) for spoke-type machine. The
results obtained with FEM and with analytical models (SM and EM)
are in very good agreement. We can observe that the cogging torque
(Fig. 22(b)) obtained with the exact model, presents a smaller peak
value and not the same waveform than the one obtained with the
simplified analytical model (Fig. 22(a)). This result can be explain
by the presence of stator and rotor tooth-tips for the exact model.

Analytical prediction of back-EMF and electromagnetic torque are
shown in Figs. 23 and 24. The results are in good agreement with those
issued from FEM. Slight differences in amplitude and waveform can be
observed between simplified and exact model. This is due to the rotor
and stator slots tooth-tips for the exact model.

7. CONCLUSION

In this paper, we have proposed simplified analytical model for parallel
double excitation and spoke-type PM machines. Compared to our
previous work [16], the proposed model doesn’t take into account
the stator and rotor tooth-tips and the exact shape of polar pieces.
The simplified models need fewer equations for the predictions of
magnetic field. The proposed analytical models have been used to
predict magnetic field distribution and electromagnetic performances
for double excitation and spoke-type PM machines. The Accuracy
of analytical models has been verified with finite element simulations
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for the air-gap and PM subdomains. In comparison with radial
surface-mounted PM motors where the effect of stator slot tooth-tips
doesn’t modify highly the waveform and amplitude of magnetic field
distribution even when the tooth-tips opening are smaller than the slots
opening [6], it is not the case for parallel double excitation and spoke-
type PM motors which have tooth-tips both in the rotor and stator
sides. For this type of machines, the effect of stator, rotor and PM
tooth-tips can modify highly the amplitude and waveform of magnetic
field distribution and electromagnetic performances when rotor, stator
and PM tooth-tips opening is smaller than slots opening, due to the
mutual influence between stator and rotor slots.

The demagnetization risk of ferrite magnets has been analyzed
with the proposed models. We have shown that the DC excitation
current and the armature reaction reduce the flux density in the
magnets but without demagnetization risk.

APPENDIX A.

Fourier series coefficients of general solution in different regions of
parallel double excitation permanent magnet machines are determined
by resolution of a system of equations. Some of those equations are
detailed as follows.

From Equation (31), we get

A5j, 0+A6j, 0 ln (Rr)−Mjµ0Rr =
1

a

∞
∑

n=1

(A7nRnp
r )

gj+
a
2

∫

gj−
a
2

sin(np θ)dθ

+
1

a

∞
∑

n=1

(A9nRnp
r )

gj+
a
2

∫

gj−
a
2

cos(np θ)dθ(A1)

Development of Equation (32) gives:

A5j,mR
−

mπ
a

r + A6j,mR
mπ
a

r

=
2

a

∞
∑

n=1

(A7nRnp
r ) ·

gj+
a
2

∫

gj−
a
2

sin(np θ) cos
(mπ

a

(

θ − gj +
a

2

))

dθ

+
2

a

∞
∑

n=1

(A9nRnp
r ) ·

gj+
a
2

∫

gj−
a
2

cos (np θ)cos
(mπ

a

(

θ−gj+
a

2

))

dθ (A2)
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From Equation (33), we have:
(

np

µ0

)

(

−A7nRnp−1
r

)

=
1

πµ0µr

2p
∑

j=1

∞
∑

m=1

(mπ

a
A5j,mR

−
mπ
a

−1
r −

mπ

a
A6j,mR

mπ
a

−1
r

)

·

gj+
a
2

∫

gj−
a
2

sin (np θ) cos
(mπ

a

(

θ − gj +
a

2

))

dθ

−

(

1

πµ0µr

) 2p
∑

j=1

A6j, 0

Rr

gj+
a
2

∫

gj−
a
2

sin (np θ)dθ (A3)

Equation (34) gives
(

np

µ0

)

(

−A9nRnp−1
r

)

=
1

πµ0µr

2p
∑

j=1

∞
∑

m=1

(mπ

a
A5j,mR

−
mπ
a

−1
r −

mπ

a
A6j,mR

mπ
a

−1
r

)

·

gj+
a
2

∫

gj−
a
2

cos (np θ) cos
(mπ

a

(

θ − gj +
a

2

))

dθ

−

(

1

πµ0µr

) 2p
∑

j=1

A6j, 0

Rr

gj+
a
2

∫

gj−
a
2

cos (np θ)dθ (A4)

Equation (35) gives

A5j, 0 + A6j, 0 ln (Rm) − Mjµ0Rm

=
1

a

∞
∑

n=1

(

A1nRnp
m + A2nR−np

m

)

gj+
a
2

∫

gj−
a
2

sin (np θ) dθ

+
1

a

∞
∑

n=1

(

A3nRnp
m + A4nR−np

m

)

gj+
a
2

∫

gj−
a
2

cos (np θ) dθ (A5)
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Equation (36) gives

A5j,mR
−(mπ

a )
m + A6j,mR

(mπ
a )

m

=
2

a

∞
∑

n=1

(

A1nRnp
m +A2nR−np

m

)

·

gj+
a
2

∫

gj−
a
2

sin (np θ) cos
(mπ

a

(

θ−gj+
a

2

))

dθ

+
2

a

∞
∑

n=1

(

A3nRnp
m+A4nR−np

m

)

·

gj+
a
2

∫

gj−
a
2

cos(np θ)cos
(mπ

a

(

θ−gj+
a

2

))

dθ(A6)

Equation (37) development gives

C1ir,0 +
1

2
µ0Jrirr

2
5 ln (Rm) −

1

4
µ0JrirR

2
m

=
1

cr

∞
∑

n=1

(

A1nRnp
m + A2nR−np

m

)

βir+ cr
2

∫

βir−
cr
2

sin (np θ) dθ

+
1

cr

∞
∑

n=1

(

A3nRnp
m + A4nR−np

m

)

βir+ cr
2

∫

βir−
cr
2

cos (np θ) dθ (A7)

Equation (38) development gives

C1ir, m

(

(

Rm

r5

)
mπ
cr

−

(

Rm

r5

)

−
mπ
cr

)

=
2

cr

∞
∑

n=1

(

A1nRnp
m +A2nR−np

m

)

·

βir+ cr
2

∫

βir−
cr
2

sin (np θ)cos
(mπ

cr

(

θ−βir+
cr

2

))

dθ

+
2

cr

∞
∑

n=1

(

A3nRnp
m+A4nR−np

m

)

·

βir+ cr
2

∫

βir−
cr
2

cos(np θ)cos
(mπ

cr

(

θ−βir+
cr

2

))

dθ (A8)
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Equation (39) development gives

np

µ0

(

−A1nRnp−1
m + A2nR−np−1

m

)

=
1

π

2p
∑

j=1

∞
∑

m=1

mπ

aµ0µr

(

A5j,mR
−

mπ
a

−1
m − A6j,mR

mπ
a

−1
m

)

·

gj+
a
2

∫

gj−
a
2

cos
(mπ

a

(

θ − gj +
a

2

))

sin (np θ) dθ

−
1

πµ0µr

2p
∑

j=1

A6j, 0

Rm

gj+
a
2

∫

gj−
a
2

sin (np θ) dθ

−
1

πµ0

Nr
∑

ir=1

∞
∑

m=1

C1ir, m
mπ

Rmcr

(

(

Rm

r5

)
mπ
cr

+

(

Rm

r5

)

−
mπ
cr

)

·

βir+ cr
2

∫

βir−
cr
2

cos
(mπ

cr

(

θ − βir +
cr

2

))

sin (np θ) dθ

+
1

πµ0

Nr
∑

ir=1

(

−
1

2

µ0Jrirr
2
5

Rm
+

1

2
µ0JrirRm

)

·

βir+ cr
2

∫

βir−
cr
2

sin (np θ) dθ (A9)

Equation (40) development gives

np

µ0

(

−A3nRnp−1
m + A4nR−np−1

m

)

=
1

π

2p
∑

j=1

∞
∑

m=1

mπ

aµ0µr

(

A5j,mR
−

mπ
a

−1
m − A6j,mR

mπ
a

−1
m

)

·

gj+
a
2

∫

gj−
a
2

cos
(mπ

a

(

θ − gj +
a

2

))

cos (np θ) dθ

−
1

πµ0µr

2p
∑

j=1

A6j, 0

Rm

gj+
a
2

∫

gj−
a
2

cos (np θ) dθ
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−
1

πµ0

Nr
∑

ir=1

∞
∑

m=1

C1ir, m
mπ

Rmcr

(

(

Rm

r5

)
mπ
cr

+

(

Rm

r5

)

−
mπ
cr

)

·

βir+ cr
2

∫

βir−
cr
2

cos
(mπ

cr

(

θ − βir +
cr

2

))

cos (np θ) dθ

+
1

πµ0

Nr
∑

ir=1

(

−
1

2

µ0Jrirr
2
5

Rm
+

1

2
µ0JrirRm

)

·

βir+ cr
2

∫

βir−
cr
2

cos (np θ) dθ (A10)

Equation (41) development gives

Ci, 0 +
1

2
µ0Jir

2
4 ln (Rs) −

1

4
µ0JiR

2
s

=
1

c

∞
∑

n=1

(

A1nRnp
s + A2nR−np

s

)

αi+
c
2

∫

αi−
c
2

sin (np θ) dθ

+
1

c

∞
∑

n=1

(

A3nRnp
s + A4nR−np

s

)

αi+
c
2

∫

αi−
c
2

cos (np θ) dθ (A11)

Equation (42) development gives

Ci,m

(

(

Rs

r4

)
mπ
c

−

(

Rs

r4

)

−
mπ
c

)

=
2

c

∞
∑

n=1

(

A1nRnp
s +A2nR−np

s

)

·

αi+
c
2

∫

αi−
c
2

cos
(mπ

c

(

θ−αi+
c

2

))

sin(np θ) dθ

+
2

c

∞
∑

n=1

(

A3nRnp
s +A4nR−np

s

)

·

αi+
c
2

∫

αi−
c
2

cos
(mπ

c

(

θ−αi+
c

2

))

cos(np θ)dθ (A12)
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Equation (43) development gives
np

µ0

(

−A1nRnp−1
s + A2nR−np−1

s

)

= −
1

πµ0

Qs
∑

i=1

∞
∑

m=1

Ci,m
mπ

cRs

(

(

Rs

r4

)
mπ
c

+

(

Rs

r4

)

−
mπ
c

)

·

αi+
c
2

∫

αi−
c
2

cos
(mπ

c

(

θ − αi +
c

2

))

sin (np θ) dθ

+
1

πµ0

Qs
∑

i=1

(

−
1

2

µ0Jir
2
4

Rs
+

1

2
µ0JiRs

)

·

αi+
c
2

∫

αi−
c
2

sin (np θ) dθ (A13)

Equation (44) development gives
np

µ0

(

−A3nRnp−1
s + A4nR−np−1

s

)

= −
1

πµ0

Qs
∑

i=1

∞
∑

m=1

Ci,m
mπ

cRs

(

(

Rs

r4

)
mπ
c

+

(

Rs

r4

)

−
mπ
c

)

·

αi+
c
2

∫

αi−
c
2

cos
(mπ

c

(

θ − αi +
c

2

))

cos (np θ) dθ

+
1

πµ0

Qs
∑

i=1

(

−
1

2

µ0Jir
2
4

Rs
+

1

2
µ0JiRs

)

.

αi+
c
2

∫

αi−
c
2

cos (np θ) dθ (A14)

The system of equations to solve in parallel double excitation PM
motors is constituted by the 14 equations from (A1) to (A14) with the
unknowns A1n, A2n, A3n, A4n, A5j, 0, A6j, 0, A5j,m, A6j,m, A7n, A9n,
Ci, 0, Ci,m, C1ir,0, C1ir, m. For spoke-type PM motors, Equations (A7)
and (A8) are omitted and Equations (A9) and (A10) are modified as
explained in Equations (45) and (46).
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