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On the transformations of Archimedean copulas :

Application to the non-parametric estimation of their generators

Elena Di Bernardino∗, Didier Rullière†

Abstract

We study the impact of some transformations into the class of Archimedean copulas. We give some
admissibility conditions for these transformations, and define some equivalence classes for both trans-
formations and generators of Archimedean copulas. We extend the r-fold composition of the diagonal
section of a copula, from r ∈ N to r ∈ R. This extension, coupled with results on equivalence classes,
gives us new expressions of transformations and generators. Estimators deriving directly from these
expressions are proposed and their convergence is investigated. We provide confidence bands for the
estimated generators. Numerical illustrations show the empirical performance of these estimators.
At last, we investigate some impacts of the transformations on the tails of the distorted copula.

Keywords: Transformations of Archimedean copulas, self-nested copula, non-parametric estimation, tail
dependence.

1 Introduction

1.1 Basic notions and preliminaries

Assume that we have a d−dimensional nonnegative real-valued random vector X = (X1, . . . , Xd). Denote
its multivariate distribution function by F : Rd+ → [0, 1] with continuous univariate margins Fi(xi) =
P (Xi ≤ xi), for i = 1, . . . , d. Sklar’s Theorem (1959) is a well-known result which states that for any
random vector X, its multivariate distribution function has the representation

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

where C is called the copula. Effectively, it is a distribution function on the d−cube [0, 1]d with uniform
margins and it links the univariate margins to their full multivariate distribution. In the case where we
have a continuous random vector, we know that Ui = Fi(Xi) is an uniform random variable so that we
can write

C(u1, . . . , ud) = F (F−11 (u1), . . . , F−1d (ud)),

to be the unique copula associated with X, with quantile functions F−1i defined by:

F−1i (p) = inf{x ∈ R : Fi(x) ≥ p}, for p ∈ (0, 1).

In this paper, we mainly consider Archimedean copulas, which are copulas that can be written

Cφ(u1, . . . , ud) = φ(φ−1(u1) + . . .+ φ−1(ud)), (1)

where the function φ is called the generator of the Archimedean copula Cφ. The generator is a continuous
and decreasing function, with φ(0) = 1, satisfying some supplementary assumptions that will be discussed
hereafter. In this paper, generators are assumed to be strict generators, such that lim

t→+∞
φ(t) = 0. In this
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case the generalized inverse φ← of the generator coincides with the inverse φ−1 (see Section 4 in Nelsen
(1999)).

Archimedean copulas are symmetrical copulas, that is Cφ(u1, . . . , ud) = Cφ(uσ(1), . . . , uσ(d)) for any
permutation σ of the set {1, . . . , d}. Such copulas play a central role in the understanding of dependencies
of multivariate random vectors. A good introduction to copulas in general is given in Nelsen (1999). For
a focus on Archimedean copulas in particular the reader is referred to McNeil and Nešlehová (2009).

Transformations of copulas are a simple way to generate new copulas from initial ones. Many types
of transformations of copulas has been considered in the literature, see for example Valdez and Yugu
(2011) or Michiels and De Schepper (2012) for a review of some existing transforms. A particular class
of transformation, based on mixtures, is also considered in Morillas (2005).
We consider here a particular transformation of a copula, using a function T and leading to the definition
of a distorted copula C̃ of an initial copula C0.

C̃(u1, . . . , ud) = T ◦ C0(T−1(u1), . . . , T−1(ud)), u1, . . . , ud ∈ [0, 1] . (2)

The function T : [0, 1]→ [0, 1] is a continuous and increasing function on the interval [0, 1], with T (0) = 0,
T (1) = 1, with supplementary assumptions that will be chosen to guarantee that C̃ is also a copula, de-
tailed hereafter. We will see that when C0 is an Archimedean copula, then the distorted copula C̃ will
be Archimedean, so that these transformations are essentially simply transforms of a given Archimedean
copula into another Archimedean copula (then the obtained transformed copula is still symmetric, for
example).

This kind of transformations has been considered for example in Durrleman et al. (2000), in Valdez and
Yugu (2011) (Definitions 3.6, in dimension d = 2), in Hofert (2011) (see Section 3.3, with T = ψ0 ◦(− log)
for an Archimedean generator ψ0). If we focus on the two-dimensional setting, the transformation con-
sidered in this paper corresponds to the Right Composition (RC, see Lemma 5 in Michiels and De Schepper
(2012)), initially defined in Genest et al. (1998).
Among advantages of such transformations, we may cite the possible improvement of the fit of an initial

copula, the easy development of iterative transformation schemes, and some properties that may ease the
estimation of the distorted copula (for further details see for instance Di Bernardino and Rullière (2013)).

1.2 Some problematic points

Among problems generated by transformations of Archimedean copulas, one can point out, in particular

i) The problem of uniqueness: transformations of a given initial copula leading to a given target
copula are not unique. This raises some problems for the analysis of the convergence of estimators
of the transformation. This also causes problems to compare transformations and to understand
their impact, in terms of changing of dependence structure. A further analysis shows that also a
generator of an Archimedean copula is not unique, causing the same kind of problems.

ii) The estimation problem: we aim here at finding non-parametric estimators of a distorted copula,
when no parametric shape is assumed for the generator of the distorted copula. This kind of non-
parametric estimation of distorted copulas has been treated by using level curves properties and
an iterative algorithm in Di Bernardino and Rullière (2013). However, the convergence of this
algorithm is not yet demonstrated, and properties of the obtained estimator are not easy to get.

iii) The tail problem: the impact on the tail of the distorted copulas are partially known (see for instance
Durante et al. (2010)). In practice this impact has to be investigated. In particular the relationship
between the asymptote of some class of parametric transformations T (see Example 1) and the
regular variation of the distorted tails represents an open interesting point. A good understanding
of the tail behavior is indeed required to estimate the shape of the transformation near 0 and 1, in
extreme quantiles where there is a lack of data.

We try to provide, in the following, some answers to these problems in the case of Archimedean families
of copulas.
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The determination of sufficient and necessary conditions in order to obtain admissible transformations T is
fundamental to propose tractable transformations in operational problems. Some elements on equivalence
classes of generators of Archimedean copulas have been given, e.g. in Nelsen et al. (2009). The definition
of equivalence classes for both transformations and generators is necessary to select some standardized
forms for practical use, for the comparison and the interpretation of obtained distribution functions. To
our knowledge, despite relying on elementary calculations, the problem of equivalence classes and the
selection of functions among equivalence classes is not fully detailed and exploited in the literature.

Distorted copulas permit to introduce, in a more flexible way, families of copulas exhibiting different
behaviour in the tails. The tail behavior of a distorted copula can be assessed by determining the tail
coefficients of distorted copulas, or by distorting some existing models like the one of Ledford and Tawn
(1996). Much of the recent literature focuses on how the tail dependence properties are modified under
transformations (see e.g. Durante et al. (2010)). Results about the tail dependence coefficients of an
Archimedean copulas are given by Juri and Wüthrich (2002), Juri and Wüthrich (2003) and Charpentier
and Segers (2007) in terms of regularly varying properties of the additive generator. In this paper we
propose some tail properties in terms of the asymptotic behavior of the transformation function T . In
particular, we will focus on the Ledford and Tawn’s model (see Ledford and Tawn (1996)).

At last, the construction of non-parametric estimators of an Archimedean copula or its generator are
of great interest for practical studies. There is a huge literature concerning the estimation of copula
structures, see for example Genest and Rivest (1993), Joe (2005), Autin et al. (2010), Hernández-Lobato
and Suárez (2011).

A comparison of different parametric and non-parametric methods for estimating a copula is given, for
example, in Kim et al. (2007). Due to the complicated theoretical results, Kim et al. (2007) have mainly
investigated the the bivariate case (d = 2). A particular focus on the dimensionality problem (d > 2) was
developed in in Embrechts and Hofert (2013). Non-parametric rank-based estimator for the generator
of Archimedean copula has been recently proposed by Genest et al. (2011). However this estimator is
constructed using successive numerical resolutions of root.

Conversely with the cited literature, our goal in this paper is to easily obtain a non-parametric estimator
for the generator of an Archimedean copula. We aim to derive direct analytical expressions for the desired
estimator, which does not rely on any numerical resolution of root or optimization, in order to simplify
both practical use and theoretical analysis. Our construction is mainly based on the diagonal section of a
copula. We recall that parametric estimators based on the diagonal section have been suggested already
in the literature, see, for example, Hofert et al. (2011). However, we will try to find non-parametric
estimators of transformations and of the generator based on the diagonal section, which is a central tool
for Archimedean copulas (see, e.g., Nelsen et al. (2008)). These estimators will be given in any dimension
d ≥ 2, and will exploit results on equivalence classes of transformations and generators. The tractable
expression of the obtained estimator plays a central role both in the numerical implementation (on real
and simulated data) and in the construction of confidence bands.

1.3 Organization of the paper

In Section 2, we give properties of both transformations and generators. In particular, we detail ad-
missibility conditions for transformations and generators (Section 2.1). In Section 2.2 we characterize
equivalence classes for these transformations and generators.

In Section 3, we define the notion of self-nested copula which are extensions of k−fold diagonal sections
of a copula when k belongs to the whole real line (see Section 3.1). Easy expressions of self-nested
copulas are given in the Archimedean case. Then in Section 3.2 we present the main result of the present
work, i.e. some expressions for the transformations T (see Proposition 3.1) and for the generators φ (see
Proposition 3.2) for Archimedean copulas using the notion of self-nested copula previously introduced.

The expressions introduced in Section 3.2 play a central role in the non-parametric estimation of trans-
formations and generators of Archimedean copula. We propose some convergence properties for the
proposed estimators (Section 4.1). Confidence bands are given for self-nested copulas and for estimated
generators (Section 4.2). At last, we show the empirical behavior of these estimators through numerical
illustrations (Section 4.3).
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In Section 5 we investigate tail coefficients in terms of the asymptote of some class of parametric trans-
formations T and using a Ledford and Tawn’s distorted model (see Section 5.2). This final part represents
a first investigation study and it could be a starting point for a future work.

Exact analytical formulas for standardized generators, their inverses and theoretical self-nested copulas,
in the case of most popular Archimedean families of copulas, are postponed in the Annex.

2 Properties of transformations and generators

2.1 Admissibility conditions

Remark 1 (Generator of a distorted copula). Let C0 the initial Archimedean copula with an associated

generator φ. If φ̃ = T ◦ φ then C̃(u1, . . . , ud) = T ◦ C0(T−1(u1), . . . T−1(un)). So that φ̃ is the generator

of the distorted copula C̃.

From Theorem 2.2 in McNeil and Nešlehová (2009) Cφ(u1, . . . , ud) = φ(φ−1(u1) + . . . + φ−1(ud)) is a
d−dimensional copula if and only if its generator φ is d−monotone on [0,∞), where the d−monotony
definition is recalled hereafter.

Definition 2.1 (d-monotone function). A real function f is called d−monotone in (a, b), where a, b ∈ R
and d ≥ 2, if it is differentiable there up to the order d− 2 and the derivatives satisfy

(−1)kf (k)(x) ≥ 0, k = 0, 1, . . . , d− 2

for any x ∈ (a, b) and further if (−1)d−2f (d−2) is non-increasing and convex in (a, b). For d = 1, f is
called 1−monotone in (a, b) if it is nonnegative and non-increasing there.

If f has derivatives of all orders in (a, b) and if (−1)kf (k)(x) ≥ 0, for any x ∈ (a, b), then f is called
completely monotone.

It follows some admissibility conditions for a transformation T .

Definition 2.2 (Admissible transformations and distorted copula). Let T : [0, 1]→ [0, 1] be a continuous
and increasing function on the interval [0, 1], with T (0) = 0, T (1) = 1. Let C0 an initial copula. We say
that T is an admissible transformation if

C̃T,C0
(u1, . . . , ud) = T ◦ C0(T−1(u1), . . . , T−1(ud)) (3)

is a also copula.

In the following result we provide a specifical characterization for an admissible transformation T , starting
from a d−variate initial independent copula C0.

Remark 2 (Multiplicative generators). Let T be a bijection such that T : [0, 1] → [0, 1]. Let C0 be

the d−variate initial independent copula, i.e., C0(u1, . . . , ud) =
∏d
i=1 ui, and C̃ the associated distorted

dependence structure as in Equation (3) . It is obvious that φ̃(t) = T (exp(−t)), so that

φ̃
(
φ̃−1(u1) + . . .+ φ̃−1(ud)

)
= T

(
T−1(u1) . . . T−1(ud)

)
(4)

It is thus clear that there is a simple isomorphism between additive and multiplicative generators of an
Archimedean copulas, as it appears in the book by Alsina et al. (2006). In this book, the authors give
conditions in dimension d = 2 such that C̃T,C0

is a t-norm (see Theorems 2.2.1 of this book) and conditions

such that C̃T,C0
is a copula (see Theorem 1.4.5. of this book).

Previous conditions do not require the differentiability of T . However, for some parametric forms of T ,
it may be useful to get supplementary conditions on the derivatives of T when T is differentiable, in the
dimension d > 2. As an example, in Morillas (2005) (Theorem 4.7, see also Fischer and Köck (2012),
Section 2.2), one can see that a sufficient condition on these derivatives is the absolute monotonicity
of order d of the transformation T in (4). However, this assumption if very restrictive since it deals
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with transformations T having positive derivatives of order j, ∀ j = 1, . . . , d. In the following lemma,
we give necessary and sufficient conditions for T , and show that requirements on T are less strong,
since the positivity of a given linear combination (with positive coefficients) of derivatives is required,
not the positivity of all linear combination with positive coefficients (which correspond to the absolute
monotonicity of order d).

Lemma 2.1 (Admissibility conditions for the transformation). Let T be a bijection such that T : [0, 1]→
[0, 1]. Let C0 be the d−variate initial independent copula, i.e., C0(u1, . . . , ud) =

∏d
i=1 ui, and C̃ the

associated distorted dependence structure as in (3) . If T is d times differentiable, then the formula (3)
yields a copula if and only if

n∑
r=1

αnr x
n−1 T (n)(x) ≥ 0, ∀ n = 1, . . . , d, (5)

with αn1 = 1, αnn = 1 and αnr = r αn−1r + αn−1r−1 , for 2 ≤ r ≤ n− 1.

Proof: We prove this proposition by induction. We first remark that the transformation of an Archimedean
copula is still an Archimedean copula, so that C̃ is an Archimedean copula. From McNeil and Nešlehová
(2009), C̃ is a copula if and only if this distorted generator φ̃ = T ◦ φ is a d−monotone function. This
means that (−1)kφ̃(k) ≥ 0 for k = 0, 1, . . . , d − 2. This condition implies a specific characterization for
our admissible transformation T in the case where T is d times differentiable. Firstly, we show that the
statement of Lemma 2.1 holds for d = 2. In particular in the case of a bivariate independent copula
the distorted generator T (e−t) has to be a 2−monotone function. Since T is increasing, this means
T (1)(x) + xT (2)(x) ≥ 0, for all x ∈ [0, 1]. This is exactly Equation (5) in the case d = 2. For n ≥ 2, one
can show that there exists coefficients αnr , r ∈ {1, . . . , n} such that the derivative of order n of T (e−t)
can be written

φ̃(n) = [T (e−t)](n) = (−1)n
∑n
r=1 α

n
r e−rt T (r)(e−t) = (−1)n

∑n
r=1 α

n
r x

r T (r)(x),

By differentiation, we get

φ̃(n+1) = (−1)n+1
∑n+1
r=1 α

n+1
r e−rt T (r)(e−t) ,

so that for all n ≥ 2, αn+1
r = r αnr + αnr−1 for r ≤ n, αn+1

n+1 = αnn = . . . = α1
1 = 1 and αn0 = 0.

Remark that (−1)nφ̃(n) ≥ 0 if and only if
∑n
r=1 α

n
r x

r T (r)(x) ≥ 0. Hence the result. Existence and
alternative expressions of coefficients αnr can be obtained using a combinatoric approach derived by Faà
di Bruno’s formula. The interested reader is referred for instance to Hardy (2006). The coefficients αnr
can be written by using the number of branches of a given size in the tree-representation of the composed
derivative (using theory of rooted trees, see for instance Chomette (2003)). 2

A discussion on the class of reachable copulas by distorting an initial copula is available in Di Bernardino
and Rullière (2013).

2.2 Equivalent transformations and generators

Definition 2.3 (Invariant class for Archimedean generator). Let φ be a generator of an Archimedean
copula Cφ, i.e., Cφ(u1, . . . , ud) = φ(φ−1(u1) + . . .+φ−1(ud)). Then a generator ψ of a copula Cψ is said
to belong to the same invariance class of φ if and only if Cφ = Cψ. We denote this class Iφ and we write
ψ ∈ Iφ. A generator ψ belonging to Iφ will be said to be equivalent to generator φ.

Analogously to Definition 2.3 we introduce the two following invariance classes respectively for the trans-
formation and the conversion functions.

Definition 2.4 (Invariant class for transformations). Let C̃T1,C0
and C̃T2,C0

two distorted copula using
transformations T1 and T2 respectively and with the same initial copula C0 (see Equation (3)). Then the
transformation T2 is said to belong to the same invariance class of T1 if and only if C̃T1,C0

= C̃T2,C0
. We

denote this class IT,C0 and we write T2 ∈ IT1,C0 . A transformation T2 belonging to IT1,C0 will be said to
be equivalent to T1 starting from initial copula C0.
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Lemma 2.2 (Equivalent generator, Nelsen (1999)). Let C0 an initial Archimedean copula with generator
φ. Consider the distorted function φ̃, then the distorted copula is unchanged with respect to C0,

φ̃ ∈ Iφ if and only if φ̃ = φ ◦ L,

where L is a linear function, i.e. L(x) = a x, for some a ∈ R \ {0}. The function φ̃ in the case of a > 0
is a generator (in the sense of Lemma 4.1.2. in Nelsen (1999)). The generator φ̃ is thus equivalent to φ
since it leads to the same distorted copula.

Proof: The demonstration of this results comes down from Theorem 4.1.5. c) in Nelsen (1999). Indeed
using the Nelsen’s result we have that φ̃ is an equivalent generator with φ̃−1(x) = c φ−1(x), for c > 0.
Hence the result. 2

Lemma 2.3 (Equivalent transformations). Let C0 the initial Archimedean copula with associated gene-
rator φ, and denote by L a linear function. Let T1 and T2 be two transformations respectively associated
to copulas C1 and C2 (see Equation (3)). If ψ1 = T1 ◦ φ, ψ2 = T2 ◦ φ, then

ψ2 ∈ Iψ1
if and only if T2 = T1 ◦ φ ◦ L ◦ φ−1.

Then T2 = T1 ◦ φ ◦ L ◦ φ−1 ∈ IT1,C0
. The transformation T2 is said to be equivalent to transformation

T1, starting from the initial copula C0, since they lead to the same distorted copula.

The proof of Lemma 2.3 comes down trivially from Lemma 2.2.

Lemma 2.4 (Equivalent transformation passing through a given point). Let C0 an initial Archimedean
copula with associated generator φ. Let T1 and T2 be two transformations of this initial copula, respectively
associated to copulas C1 and C2 (see Equation (3)). If L(x) = a x, x ∈ R, with

a =
φ−1 ◦ T−11 (y0)

φ−1(x0)
and T2 = T1 ◦ φ ◦ L ◦ φ−1,

then T2 ∈ IT1,C0
and T2(x0) = y0, for any given point (x0, y0) ∈ (0, 1)2. The transformation T2 is an

equivalent transformation of T1, starting from initial copula C0, passing through the point (x0, y0).

Corollary 2.1. Let C0 be the independent copula. Let

T2(x) = T1(xa), x ∈ [0, 1], with a =
ln(T−11 (y0))

ln(x0)
,

then T2 ∈ IT1,C0
and T2(x0) = y0, for any given point (x0, y0) ∈ (0, 1)2.

Lemma 2.4 and Corollary 2.1 can be useful in order to ensure the uniqueness of the transformation T
among the invariant class for transformations. In an iterative procedure of estimation the uniqueness of
the transformation is essential in order to permit the convergence of the procedure. These results will be
useful later in the estimation procedure of the transformation and generator functions (see Sections 3.2
and 4.1).

Example 1 (Transformations in the logit scale). A particular class of transformation is constituted by
transformations defined in Bienvenüe and Rullière (2011) with the form Tf : [0, 1]→ [0, 1] such that

Tf (u) =


0 if u = 0,

logit−1(f(logit(u))) if 0 < u < 1,
1 if u = 1,

(6)

where f any bijective increasing function, f : R → R. Function f is said to be a conversion function.
These transformations help working in the logit-scale, so that we only need to study composition of
increasing functions from R to R. The main advantage of Tf , with adequate conversion functions f , is to
lead to simple analytic expressions for inverse transformations and for level curves of the associated mul-
tivariate distribution function. Developments using transformations in (6), with hyperbolic conversion
function f , are given in Bienvenüe and Rullière (2011), Bienvenüe and Rullière (2012), Di Bernardino
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and Rullière (2013).

Let C0 the initial Archimedean copula with associated generator φ. Let f1 and f2 be two conversion
functions respectively associated to transformations Tf1 and Tf2 , i.e., Tf1 = logit−1 ◦ f1 ◦ logit(x) and
Tf2 = logit−1 ◦ f2 ◦ logit(x), then

CTf1 ,C0
= CTf2 ,C0

if and only if f2 = f1 ◦ τ, with τ = logit ◦ φ ◦ L ◦ φ−1 ◦ logit−1.

Then the conversion function f2 is said to belong to the same invariance class of f1, and we write
f2 ∈ If1,C0 . The conversion function f2 is said to be equivalent to conversion function f1, starting from
the initial copula C0, since they lead to the same distorted copula. This result comes down easily from
Lemma 2.3.

3 Self-nested copulas

3.1 Definition and properties

In the following, we define the self-nested copula functions. We have chosen this terminology in reference
to the nested copulas (see e.g. Hofert and Pham (2013)), as detailed below. The self-nested copula
functions introduced in the following will be essential for the non-parametric estimation proposed in
Section 4. They will be build mainly from the diagonal section δ1 of a copula,

δ1(u) = C(u, . . . , u) , u ∈ [0, 1] .

Remark that the diagonal section of a copula C has several probabilistic interpretations; for instance
is the restriction to [0, 1] of the distribution function of max(U1, . . . , Un) whenever (U1, . . . , Un) is the
random vector distributed as C. The interested reader is referred to Nelsen et al. (2008). As it will be
detailed, under some conditions, an Archimedean copula is uniquely determined by its diagonal section,
and the existence conditions of a copula with a given diagonal section is presented in Erdely et al. (2013).
Furthermore some properties of the diagonal of a copula, in the bivariate setting, are illustrated in Alsina
et al. (2006), Section 3.8.

Definition 3.1 (Discrete self-nested copula). Consider a d−dimensional copula C such that for all
u ∈ [0, 1], δ1(u) := C(u, . . . , u) is a continuous and strictly increasing function of u. The respective
discrete self-nested copula of C of order k and −k are the functions δk and δ−k such that for all u ∈ [0, 1],
for all k ∈ N,  δk(u) = δ1 ◦ . . . ◦ δ1(u), (k times)

δ−k(u) = δ−1 ◦ . . . ◦ δ−1(u), (k times)
δ0(u) = u.

(7)

where δ−1 is the inverse function of δ1, so that δ1 ◦ δ−1 is the identity function.

We now explain the chosen terminology of self-nested copulas. Indeed in Hofert and Pham (2013), for
some specific vectors u,u1, . . . ,ud of subsets of Rd, the authors state that a partially nested Archimedean
copula C with two nesting levels and d0 child copulas (or sectors or groups), is given by

C(u) = C0(C1(u1), . . . , Cd0(ud0)). (8)

One can easily check that the self-nested copulas deal with the particular case where C0 = C1 = . . . =
Cd0 = C and ui = u = (u, . . . , u) for all i ∈ {1, . . . , d0}. From Definition 3.1 we get, for instance,

δ1(u) := C(u),
δ2(u) := C(C(u), . . . , C(u)) = δ1 ◦ δ1(u),
δ3(u) := C(C(C(u), . . . , C(u)), . . . , C(C(u), . . . , C(u))) = δ2 ◦ δ1(u),
. . .

7



These quantities obviously correspond to the diagonal section of some nested copulas. A difference with
classical nested copulas scheme is that here all child vectors are identical, u = u1 = . . . = ud0 , whereas
in classical schemes u = (u1, . . . ,ud0)T.

Discrete self-nested copulas presented in Definition 3.1, correspond to the k-fold composition of the di-
agonal section δ1 of the copula (see Wysocki (2012)). They are defined for k ∈ Z (hence justifying the
prefix discrete). They can be linked with what is defined as iterates of the diagonal of a t-norm, and
with T-powers in Alsina et al. (2006) (see Lemma 1.3.5. of this book for example, in the dimension d = 2).

For a family of discrete self-nested copulas {δk}k∈Z, one can easily check that for all j ∈ Z, k ∈ Z, for all
u ∈ [0, 1],

δj+k(u) = δj ◦ δk(u).

A function of a family satisfying this proposition for all j, k ∈ R will be called an extended self-nested
copula, or simply a self-nested copula. The following definition aims at defining the r-fold composition of
the diagonal section δ1 of the copula when r ∈ R is not a relative integer.

Definition 3.2 (Self-nested copulas). Functions of a family {δr}r∈R are called (extended) self-nested
copulas of a copula C, if δk(u) is the discrete self-nested copula of C of order k for all k ∈ Z, as in
Definition 3.1, and if furthermore

δr1+r2(u) = δr1 ◦ δr2(u), ∀ r1, r2 ∈ R, ∀u ∈ [0, 1].

The existence of (extended) self-nested copulas of a copula C is automatically guaranteed when C is an
Archimedean copula (see detailed discussion below and in particular Lemma 3.1).

The study of self-nested copulas is thus relying on the study of a family of univariate functions. Extended
self-nested copulas can be seen as cumulative distribution functions of some indexed random variables
X◦r, r ∈ R, distributed on [0, 1], such that for all r1, r2 ∈ R, for all x ∈ [0, 1],

P
[
X◦(r1+r2) ≤ x

]
= P [X◦r1 ≤ P [X◦r2 ≤ x]] ,

with P [X◦r1 ≤ x] = δr(x), and in particular X◦0 uniformly distributed on [0, 1]. A further study of prop-
erties of such a family (moments, etc.) could bring some new enlightenments on copulas and multivariate
analysis.

Self-nested Archimedean copulas

We first remark that the diagonal of an Archimedean copula, under some suitable conditions, is essential
to describe the copula. So, in the following we recall important assumptions (which is fulfilled for many
Archimedean copulas, including the independent copula) for the unique determination of an Archimedean
copulas starting from the diagonal section (see, for instance, Erdely et al. (2013) and references therein).
Some constructions of copulas starting from the diagonal section are given for example in Nelsen et al.
(2008) and Wysocki (2012).

Remark 3 (Identity of Archimedean copulas, Theorem 3.5 by Erdely et al. (2013)). Let C a d−dimensional
Archimedean copula whose diagonal section δC satisfies δ

′

C(1−) = d. Then C is uniquely determined by
its diagonal.

Note that if |φ′(0)| < +∞ then the condition on the diagonal in Remark 3 in automatically satisfied.
Wysocki (2012) proves the same result asking that the strict generator of the d−dimensional Archimedean
copula satisfies : φ

′
(0) = −1. Remark that, under the multiplicative scaling in the equivalence class (see

Lemma 2.2), this condition is equivalent to |φ′(0)| < +∞ (see Lemma 1 in Wysocki (2012)). Condition in
Remark 3 is referred as Frank’s condition in Erdely et al. (2013) (see their Theorems 1.2 and 3.5). Then
if |φ′(0)| < +∞, up to a multiplicative constant, the function φ can be reconstructed from the diagonal
δ (see also Segers (2011)).
In Alsina et al. (2006), Section 3.8, a counterexample is given, in order to show that if d = 2 and φ is
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generator for an Archimedean copula C such that φ
′
(0) = −∞, or equivalently δ

′

C(1−) < 2, then the di-
agonal does not characterize uniquely the generator φ. To show that the situation of many Archimedean
copulas having the same diagonal is far from exceptional, a recipe to construct further examples is given
in Segers (2011).
Furthermore, it should be remarked that conditions satisfied by a diagonal section are given in Erdely
et al. (2013), Section 1, and existence of a copula with given diagonal section is recalled in their The-
orem A. These considerations will be also useful in Section 4.3.1 about “Upper tail dependence”.

Lemma 3.1 (Self-nested copula of an Archimedean copula). If C is an Archimedean copula associated
with a generator φ, then a family of self-nested copula of C is defined at each order r ∈ R by

δr(x) = φ(dr · φ−1(x)), for x ∈ (0, 1), r ∈ R.

Proof: We notice that δ1(u) = φ(d ·φ−1(u)), so that δ2(u) = δ1 ◦ δ1(u) = φ(d2 ·φ−1(u)), and we can show
by induction that δk(u) = φ(dk · φ−1(u)) for all k ∈ Z. For any r ∈ R, we can easily check that setting
δr(x) = φ(dr · φ−1(x)) is a discrete self-nested copula for any r ∈ Z, and that δr1+r2 = δr1 ◦ δr2 for any
r1, r2 ∈ R. 2

One can remark that previous equation can be written φ−1 ◦ δr(x) = dr · φ−1(x) and corresponds to the
Schröder’s equation. The set of all δn(x), for positive integers n, is also referred as the splinter or Picard
sequence of δ1(x) (see, e.g., Curtright and Zachos (2009)).

Remark 4 (Some expressions of self-nested copulas). We give here some expressions of self-nested copulas
for some classical copulas that will be considered in numerical illustrations (Section 4.3).

- If C is the independence copula of generator φ(t) = exp(−t), then δr(u) = u(d
r).

- If C is a Gumbel copula of generator φ(t) = exp(−t1/θ), then δr(u) = u(d(r/θ)), θ ≥ 1.

- If C is a Clayton copula of generator φ(t) = (1+θt)−1/θ, δr(u) = (1+dr(t−θ−1))−1/θ, θ ∈ R+\{0}.

From Lemma 3.1 one can obtain the following expression for the self-nested copulas (δr) using an inter-
polation procedure of the discrete self-nested copulas (δk).

Lemma 3.2 (Interpolation of self-nested copulas). Let C be an Archimedean copula with generator φ.
For any real r ∈ [k, k + 1], k ∈ Z, any family of self-nested copula of C as in Lemma 3.1 satisfies:

δr(x) = φ
((
φ−1 ◦ δk(x)

)1−α (
φ−1 ◦ δk+1(x)

)α)
, for x ∈ [0, 1],

with α = r − brc and k = brc, where brc denotes the integer part of r.

Proof: Consider an Archimedean copula C and an associated family of self-nested copulas δr, for r ∈ R.
By Lemma 3.1, δr(x) = φ(dr · φ−1(x)). Define gr(x) = r ln d− lnφ−1 ◦ δr(x). One can easily check that
for all r ∈ R, gr(x) = − lnφ−1(x) does not depend on r, so that in particular for any k1, k2 ∈ Z and
α ∈ [0, 1],

gr(x) = (1− α)gk1(x) + αgk2(x). (9)

When (1− α)k1 + αk2 = r, this is equivalent to

lnφ−1 ◦ δr(x) = (1− α) lnφ−1 ◦ δk1(x) + α lnφ−1 ◦ δk2(x), (10)

and the result holds for any k1, k2 ∈ Z and α ∈ [0, 1] such that (1− α)k1 + αk2 = r.

In practice, the interpolation in Lemma 3.2 aims at being used even when gk(x) is not a constant function
of k (e.g. if gk is estimated, or if the copula is not Archimedean) or when φ is approximated. For this
reason we present it in the particular case where k1 = brc and k2 = brc + 1. The choice of α = r − brc
follows from the condition (1 − α)k1 + αk2 = r, and also ensures that interpolations (9) and (10) are
correct for any r ∈ Z, even if gr(x) is not a constant function of r. 2

We present in the following a corollary result of Lemma 3.2 in the family of Gumbel-Hougaard copulas.
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Corollary 3.1 (Interpolation in the Gumbel or Independence case). If C is a Gumbel copula with
generator φ(t) = exp(−t1/θ), then δr can be expressed as a function of δk and δk+1, and this function
does not depend on the parameter θ of the copula:

δr(x) = exp
(
− (− ln δk(x))

1−α
(− ln δk+1(x))

α
)
, x ∈ [0, 1] ,

with α = r − brc and k = brc, where brc denotes the integer part of r. This result includes also the case
of the independent copula, i.e. the Gumbel copula with parameter θ = 1.

In a further estimation section we will use interpolation functions (see Section 4). The interpolation func-
tions satisfying interpolation properties of Lemma 3.2 or Corollary 3.1 will be called perfect interpolation
functions, as stated in the following definition.

Definition 3.3 (Perfect interpolation functions). Let C be an Archimedean copula with generator φ, and
δr, r ∈ R an associated family of self-nested copulas. A function z is said to be a perfect interpolation
function for the copula C if for all r ∈ R,

δr(x) = z
((
z−1 ◦ δk(x)

)1−α (
z−1 ◦ δk+1(x)

)α)
, x ∈ [0, 1],

with α = r− brc and k = brc, where brc denotes the integer part of r. As an example, from Lemma 3.2,
z(x) = φ(x) and z(x) = φ(xa), a ∈ R+ \ {0} are perfect interpolation functions. If C is an Gumbel
copula, from Corollary 3.1, z(x) = exp(−x) is a perfect interpolation function which does not depend on
the parameter of the copula.

Remark 5 (Identifiability problem). As remarked in Alsina et al. (2006), the diagonal section is not
always sufficient to fully determinate an Archimedean copula or its generator, and it may happen that two
distinct generators lead to the same diagonal sections. However, one will see that a family of auto-nested
copulas is sufficient to fully determinate an Archimedean copula. One may recall here that extended
auto-nested copulas are not only deriving from discrete auto-nested copula, and thus not only deriving
from a diagonal section. One interpolation function is also involved, which is sufficient to ensure the
unicity of the generator given a whole family of extended self-nested copula. As an example, if we select
an equivalent generator such that φ(t0) = ϕ0 for given constants (t0, ϕ0) ∈ (0,∞)× (0, 1), then one easily
see that δr(x) = φ(drφ−1(x)), so that δr(ϕ0) = φ(drt0), and thus φ(t) = δρ(t)(x), with ρ(t) such that

dρ(t)t0 = t.

3.2 New expressions of transformations and generators using self-nested copu-
las

In this section we present the main result of this paper, i.e. some expressions for the transformations
T (see Proposition 3.1) and for the generators φ (see Proposition 3.2) for Archimedean copulas using
the notion of self-nested copula previously introduced and discussed in Section 3.1. The expressions
introduced below will play a central role in the non-parametric estimation of the associated quantities (T
and φ) (see Section 4).

Lemma 3.3 (All points of transformation T ). Let C be an initial Archimedean copula and C̃(u1, ..., u2) =
T ◦ C(T−1(u1), . . . , T−1(ud)) a distorted copula. Let δr and δ̃r, r ∈ R, be the two respective self-nested
copulas families of C and C̃, as defined in Lemma 3.1. If T (x0) = y0, then T (xr) = yr for all r ∈ R,
with {

xr = δr(x0),

yr = δ̃r(y0).

Proof: Denote by φ and φ̃ the respective generators of C and C̃, where C̃(u, ..., u) = T ◦
C(T−1(u), . . . , T−1(u)). If C is an Archimedean copula, then δ̃r(u) = φ̃(drφ̃−1(u)). Since φ̃ = T ◦ φ, we
have δ̃r(u) = T ◦ φ(drφ−1 ◦ T−1(u)), so that for all u ∈ [0, 1],
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T−1 ◦ δ̃r(u) = δr ◦ T−1(u).

Then, setting u = y0, we get T−1 ◦ δ̃r(y0) = δr(x0) since T−1(y0) = x0, and T is passing trough the point
(δr(x0), δ̃r(y0)) for any r ∈ R. 2

Proposition 3.1 (Transformation T using self-nested copulas). Consider Archimedean copulas C and a
distorted copula C̃, such that C̃(u1, ..., ud) = T ◦ C(T−1(u1), . . . , T−1(ud)). Consider the two associated
families of self-nested copulas δr and δ̃r, r ∈ R as defined in Lemma 3.1. If T (x0) = y0, then T is such
that T (0) = 0, T (1) = 1 and for all x ∈ (0, 1),

T (x) = δ̃r(x)(y0),

with r(x) such that δr(x)(x0) = x,

where (x0, y0) ∈ (0, 1)2 can be arbitrarily chosen. In the case where C is the independence copula,

r(x) =
1

ln d
ln

(
− lnx

− lnx0

)
,

Proof: The result holds from Lemma 3.3. 2

Proposition 3.2 (Generator φ̃ using self-nested copulas). Consider an Archimedean copula C̃ and the
associated family of self-nested copulas δ̃r, for r ∈ R, as defined in Lemma 3.1. Assume that the copula
C̃ is reachable by distorting an Archimedean copula C, and denote by δr, r ∈ R, the family of self-nested
copulas of C. Denote by φ and φ̃ the respective generators of C and C̃. If one chooses y0 = φ̃(t0) and
x0 = φ(t0) for an arbitrary value t0 ∈ R+, then the generator φ̃ of C̃ is such that, for all t ∈ R∗+,

φ̃(t) = δ̃ρ(t)(y0) ,

with ρ(t) such that δρ(t)(x0) = φ(t) ,

where (x0, y0) ∈ (0, 1)2 can be arbitrarily chosen. In the particular case where C is the independent
copula, then

ρ(t) =
1

ln d
ln

(
t

− lnx0

)
Proof: Directly comes from Proposition 3.1 and from φ̃ = T ◦ φ. 2

In particular, the suitable generator φ̃ is passing through the points

{(tr, ϕr)}r∈R =
{

(φ−1 ◦ δr(x0), δ̃r(y0))
}
r∈R

.

If C̃ is distorted from an independent copula, the suitable generator φ̃ is passing through the points

{(tr, ϕr)}r∈R =
{

(−dr lnx0, δ̃r(y0))
}
r∈R

.

Furthermore, if C̃ is an independent copula, δ̃1(u) = ud and δ̃r(u) = u(d
r), so that we can easily retrieve

φ̃(t) = exp

(
−
(

ln y0
lnx0

)
t

)
,

which is an equivalent generator of the independence generator φ(t) = exp(−t).

4 Non-parametric estimation

4.1 Estimators of transformations and generators

We aim here at finding non-parametric estimators of a distorted copula, when non-parametric shape
is assumed for the associated generator. Starting from results of Section 3 for Archimedean families of
copulas, we provide some straightforward estimators and some convergence properties of these estimators.
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We assume that an estimator of the diagonal of the copula δ1(u) := C(u, . . . , u) and an estimator of the

inverse function δ−1 of δ1 are available. We denote respectively δ̂1 and δ̂−1 these estimators.

Remark that some possible consistent estimators for δ1 and δ−1 are available in the literature. Deheuvels

(1979) investigated the consistency of the empirical copula Ĉ and Deheuvels (1980) obtained the exact

law and the limiting process of
√
n(Ĉ − C) when the two margins are independent. Fermanian et al.

(2004) extended these results by proving the weak convergence of the process in a more general case.
Relevant papers related to the convergence of empirical copula process are also Rüschendorf (1976) and
Segers (2012).

Remark 6 (Deheuvels empirical copula estimator). In the literature one can find some different estim-
ators for δ1(u). One possible choice is represented by the rank-based estimate proposed of instance by
Deheuvels (1979) or by Fermanian et al. (2004). Let Xj = (Xj,1, . . . , Xj,d), for 1 ≤ j ≤ n be d-dimensional
sample. Since we work under unknown margins Fi, we consider the pseudo-observation based on the ranks
of Xj,i

Rnj,i = n F̂i(Xj,i),

where F̂i is the empirical marginal distribution, i.e., F̂i(xi) = 1
n

∑n
j=1 1(−∞,xi](Xj,i) (see, for instance,

Section 3 in Hofert et al. (2011)). Then, in this setting, we get for instance, for u ∈ (0, 1),

δ̂1(u) =
1

n

n∑
j=1

1{Rnj,1≤nu,...,Rnj,d≤nu}.

Many other possible estimators, including smooth estimators, are available in the literature, see for
example Omelka et al. (2009).

In the following, we detail how to build non-parametric estimators of some transformations and of the
generator of an Archimedean copula. The methodology is the following one: we start from an empirical
copula, which is based only on the data, as seen in the previous Remark 6. This empirical copula does not
use any knowledge on the parametric form of the copula or on the underlying margins. Indeed the margins
are non-parametrically estimated and thus replaced by pseudo-observations. All following estimations of
transformations of non-parametric Archimedean generator rely only on this empirical copula, and thus
do not use the underlying parametric structure of margins or joint distribution; they only rely on the
data.

We first show how to build estimators of a whole family of self-nested copulas {δr}r∈R, using these two

estimators δ̂1 and δ̂−1.

Definition 4.1 (Estimation of nested-copulas). Consider a copula C satisfying as in Definition 3.1. Let

δ̂1 be an estimator of δ1, and δ̂−1 be an estimator of the inverse function δ−1. Estimators of δk and δ−k
can be obtained for any k ∈ N \ {0} by setting

δ̂k(u) = δ̂1 ◦ . . . ◦ δ̂1(u), (k times)

δ̂−k(u) = δ̂−1 ◦ . . . ◦ δ̂−1(u), (k times)

δ̂0(u) = u.

(11)

At any order r ∈ R, an estimator δ̂r of δr is

δ̂r(x) = z

((
z−1 ◦ δ̂k(x)

)1−α (
z−1 ◦ δ̂k+1(x)

)α)
, x ∈ [0, 1],

with α = r−brc and k = brc, where brc denotes the integer part of r, and where z is a strictly monotone
function driving the interpolation, ideally the generator of the considered copula C or any other perfect
interpolation function (see Definition 3.3). In particular, z is such that for any x ∈ [0, 1], z(x) ≥ 0. Note
that several interpolation functions may lead to the same interpolation, e.g. z1(x) and z2(x) = z1(xα),
α ∈ R+ \ {0} are both involving the same interpolation. Such interpolators will be called equivalent
interpolators.
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This estimation is a plug-in estimation relying on Definition 3.1 and Lemma 3.2. The function z drives the
interpolation of δr, for r ∈ R, knowing values of δk, for k ∈ Z. If known, the best choice is the generator
φ of the copula C, i.e. z(x) = φ(x). Otherwise, the identity function z(x) = x (linear interpolation)
could be possible, for x ∈ [0, 1]. However we recommend, in case of positive dependence, the interpolator
z(x) = exp(−x), x ∈ (0, 1], since it is the best choice for any independence or Gumbel copula, whatever
the parameter of the copula, as a consequence of Corollary 3.1. Another natural choice could be any
estimator of the generator of the copula. Finally, remark that this function z does not change values of
any δk, for k ∈ Z. Then the global shape of δr, as a function of r ∈ R, is not heavily impacted by the
choice of z.

Using Definition 4.1 we now present two results to easily estimate non-parametrically the transformation
T (Definition 4.2) and the generator of an Archimedean copula (Definition 4.3).

Definition 4.2 (Non-parametric estimation of a transformation T ). Consider two Archimedean copulas
C and C̃ and their respective self-nested copulas δr and δ̃r, for r ∈ R. Assume that C̃ is the distorted
copula using transformation T and initial copula C. Denote by δ̂r an estimator of δ̃r, for r ∈ R. A
non-parametric estimator of T is defined by T (0) = 0, T (1) = 1 and for all x ∈ (0, 1) by

T̂ (x) = δ̂r(x)(y0),

with r(x) such that δr(x)(x0) = x,

where (x0, y0) ∈ (0, 1)2 can be arbitrarily chosen. In the case where the initial copula C is the independence
copula, then

r(x) =
1

ln d
ln

(
− lnx

− lnx0

)
.

In particular, the estimator T̂ is passing through the points

{(xk, yk)}k∈Z =
{

(δk(x0), δ̂k(y0))
}
k∈Z

.

Remark that no interpolation function z is needed to get (xk, yk), for k ∈ Z.

Definition 4.3 (Non-parametric estimation of a generator φ̃). Consider an Archimedean copula C̃ and
associated self-nested copulas δ̃r, for r ∈ R. Assume that the copula C̃ is reachable by distorting a given
initial Archimedean copula C with associated generator φ. Denote by δr the self-nested copulas of C and
by δ̂r the estimator of δ̃r, for r ∈ R. A non-parametric estimator φ̂ of φ̃ is defined, for all t ∈ R+, by

φ̂(t) = δ̂ρ(t)(y0) ,

with ρ(t) such that δρ(t)(x0) = φ(t) ,

where (x0, y0) ∈ (0, 1)2 can be arbitrarily chosen. In the case where the initial copula C is the independence
copula, then

ρ(t) =
1

ln d
ln

(
t

− lnx0

)
.

In particular, the estimator φ̂ of φ̃ is passing through the points

{(tk, ϕk)}k∈Z =
{

(φ−1 ◦ δk(x0), δ̂k(y0))
}
k∈Z

,

where φ is the given initial generator. Remark that no interpolation function z is needed to get (tk, ϕk),
for k ∈ Z.

For a given Archimedean copula, there is a whole family of equivalent generators leading to this copula.
As stated in Lemma 2.2, generators φ1(t) and φ2(t) = φ1(a t) lead to the same copula function, whatever
the choice of a > 0. Then two different generators, φ1 and φ2, which lead to the same copula may
have very different graphical shapes, so that a graphical comparison of these generators would have no
sense. For these reasons, in Remark 7, we give formulas in order to force a generator to pass through
an arbitrarily chosen point (t0, ϕ0). After this “standardization procedure” we will able to graphically
compare different generators.

13



Remark 7 (Equivalent estimated generator passing through (t0, ϕ0)). If one chooses{
x0 = exp(−t0),
y0 = ϕ0,

then the estimator of the generator φ̃ in Definition 4.3 is such that φ̃(t0) = ϕ0.

Remark 8 (Equivalent theoretical generator passing through (t0, ϕ0)). Let (t0, ϕ0) ∈ R+ \ {0} × (0, 1).
Let φ be a generator of an Archimedean copula. If one set for all t ∈ R

φ̄(t) = φ(at) with a =
φ−1(ϕ0)

t0

then φ̄ is an equivalent generator of φ such that φ̄(t0) = ϕ0. This equation is equivalent to φ̄(t) = δr(t)(ϕ0),

with r(t) such that dr(t) = t/t0.

As an example, we give here some standardized generators passing trough a given point (t0, ϕ0):

- Standardized Gumbel generator: φ̄(t) = ϕ
(t/t0)

1/θ

0 , θ ≥ 1. If (t0, ϕ0) = (1, e−1), φ̄(t) = exp(−t1/θ).

- Standardized independence generator: φ̄(t) = ϕ
(t/t0)
0 . If (t0, ϕ0) = (1, e−1), φ̄(t) = exp(−t).

- Standardized Clayton generator: φ̄(t) =
(

1 + (ϕ−θ0 − 1) tt0

)−1/θ
, θ ∈ R+\{0}. If (t0, ϕ0) = (1, e−1),

φ̄(t) =
(
1 + (eθ − 1)t

)−1/θ
.

Exact analytical formulas for standardized generators, their inverses and theoretical self-nested copulas
δr, in the case of most popular Archimedean families of copulas, are postponed in the Annex.

Remark that the tractable expression for the generator considered in this paper, based on the self-
nested copula, allows us to easily force the generator to pass through an arbitrarily chosen point. This
identifiability-problem of a generator in its equivalent class, under some multiplicative scaling factor
(see Lemma 2.2), is not always an elementary problem. For example, for the non-parametric generator
recently proposed by Genest et al. (2011), forcing the generator to pass through a chosen point could be
not trivial. We detail this problem in Section 4.3.

In numerical applications (see Section 4.3) we will consider generators passing through (t0, ϕ0) = (1, e−1).
Applying Remark 7, this corresponds to x0 = y0 = e−1. In this case, applying Remark 8, standardized
independence and Gumbel generators correspond to the usual Gumbel-generator (see Nelsen (1999)), and

standardized Clayton generator becomes φ̄(t) =
(
1 + (eθ − 1)t

)−1/θ
which is an equivalent generator of

the usual generator φ(t) = (1 + θt)
−1/θ

.

4.2 Confidence bands

In this section our goal is to quantify the estimation error of the estimated generator φ̂ in terms of the
error of the estimation of δ̂1. To this aim, we proceed in the following way. Firstly, we assume to be
able to quantify the estimation error of δ̂1 (see Assumption 4.1). From this assumption we derive the

estimation error on any δ̂r(u), for r ∈ R (see Proposition 4.1). Finally, we use this last result to control

the estimation error of φ̂ (see Proposition 4.1). Illustrations of these results, in the particular case of a
Gumbel copula, are postponed in Section 4.3.

So, we consider the following assumption on the estimation error of δ̂1.

Let I be a range of [0, 1]. We denote Ik =
{
u ∈ [0, 1], δ̂k(u) ∈ I

}
, k ∈ Z, and Ir = Ik ∩ Ik+1 for k = brc,

r ∈ R \ Z. Since δ0(u) = u for all u ∈ [0, 1], I0 = I. In the following we show that confidence bands on

δ̂1(u) for all u ∈ I induce confidence bands on δ̂r and on φ̂(u). The stronger version, when I = [0, 1],

induce stronger assumptions on δ̂1 and may induce larger confidence bands, so that a weaker version,
when I ⊂ [0, 1] can be useful to get confidence bands of estimators of T and φ on restricted range of
values.
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Assumption 4.1 (Estimation error on δ̂1). For a copula C̃ as in Definition 3.1, denote δ̃(u) = δ̃1(u) =

C̃(u, . . . , u) and δ̂(u) = δ̂1(u) an estimator of C̃. There exists two nonnegative reals ε− and ε+ and a
continuous and strictly monotone function h, from [0, 1] to X ⊂ R, such that for any u ∈ I,

h−1 ◦ Lε− ◦ h ◦ δ̃(u) ≤ δ̂(u) ≤ h−1 ◦ Lε+ ◦ h ◦ δ̃(u), (12)

where Lε(u) = εu.

This kind of assumption allows a large variety of bounding of the quantity δ̂(u), for example:

- h(x) = ln(x) leads to assuming δ̃(u)ε
− ≤ δ̂(u) ≤ δ̃(u)ε

+

, where obviously ε+ ≤ 1 ≤ ε−.

- h(x) = x leads to assuming δ̃(u) · ε− ≤ δ̂(u) ≤ δ̃(u) · ε+, where obviously ε− ≤ 1 ≤ ε+.

- h(x) = exp(x) leads to assuming δ̃(u) + ln ε− ≤ δ̂(u) ≤ δ̃(u) + ln ε+, where obviously ε− ≤ 1 ≤ ε+.

Since this assumption may not be fulfilled in every possible situation, we consider in the following the
probability that this assumption is fulfilled and we study the impact on confidence bands for self-nested
copulas.

Lemma 4.1 (Estimation error on δ̂r, for r ∈ R+). Consider an Archimedean copula C̃ with generator φ̃.

Denote by δ̂ an estimator of δ̃. Denote by δ̃r (resp. δ̂r) the self-nested copula of δ̃ (resp. δ̂). Assume that

δ̂r is interpolated with a perfect interpolation function in Definition 4.1. If the probability that δ̂ satisfies
Assumption 4.1, for the function h = φ̃−1, is greater than a given threshold η ∈ [0, 1], i.e., if there exists
reals g− and g+ such that

P
[
δ̃g− ◦ δ̃(u) ≤ δ̂(u) ≤ δ̃g+ ◦ δ̃(u), ∀u ∈ I

]
≥ η, (13)

then it holds for any r ∈ R+ that

P
[
δ̃rg− ◦ δ̃r(u) ≤ δ̂r(u) ≤ δ̃rg+ ◦ δ̃r(u), ∀u ∈ Ir

]
≥ η. (14)

Proof: Assume that there exists a real ε and such that for all u ∈ I,

δ̂(u) ≤ h−1 ◦ Lε ◦ h ◦ δ̃(u) . (15)

By Lemma 3.1, δ̃(u) = φ̃ ◦ Ld ◦ φ̃−1(u), with Ld(u) = d · u. It follows

δ̂(u) ≤ h−1 ◦ Lε ◦ h ◦ φ̃ ◦ Ld ◦ φ̃−1(u) ,

and in the case where h = φ̃−1,
δ̂(u) ≤ φ̃ ◦ Lε·d ◦ φ̃−1(u) .

Since Equation (15) holds for any u ∈ I then in particular for u = δ̂(u1), u1 ∈ I1,

δ̂ ◦ δ̂(u1) ≤ φ̃ ◦ Lε·d ◦ φ̃−1 ◦ δ̂(u1) ≤ φ̃ ◦ L(ε·d)2 ◦ φ̃−1(u1) .

And, by induction for any k ∈ N∗,

δ̂k(uk) ≤ φ̃ ◦ L(ε·d)k ◦ φ̃−1(uk)

holds for any value uk such that δ̂k(uk) = u with u ∈ I, that is for all uk ∈ Ik. Then[
δ̂(u) ≤ φ̃ ◦ Lε ◦ φ̃−1 ◦ δ̃(u), ∀u ∈ I

]
=⇒

[
δ̂k(u) ≤ φ̃ ◦ L(ε·d)k ◦ φ̃−1(u), ∀u ∈ Ik

]
. (16)

Setting g+ such that dg
+

= ε, from Lemma 3.1, we obtain φ̃ ◦ L(dg+ ·d)k ◦ φ̃
−1(u) = δ̃kg++k and[

δ̂(u) ≤ δ̃g+ ◦ δ̃(u), ∀u ∈ I
]

=⇒
[
δ̂k(u) ≤ δ̃kg+ ◦ δ̃k(u), ∀u ∈ Ik

]
. (17)
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Proceeding the same way for both inequalities, checking the result is obvious when k = 0, result in
(17) holds for any k ∈ N. Now assume that z(x) is a perfect interpolation function (see Definition 3.3),

z(x) and φ̃(x) are equivalent interpolation functions, and both δ̂r and δ̃r are interpolated with the same
interpolation function. Without loss of generality, assume z(x) and z−1(x) are decreasing functions of x
(would they be increasing, there exists decreasing equivalent interpolation functions). Assume now that

for any k ∈ N, and for all u ∈ Ik, δ̃kg− ◦ δ̃k(u) ≤ δ̂k(u) ≤ δ̃kg+ ◦ δ̃k(u). Since δr and δ̃r are interpolated
by the same perfect interpolation function z(x), then for any α ∈ [0, 1], recalling z−1(x) ≥ 0 for any
x ∈ [0, 1] as in Definition 4.1, for all u ∈ Ik ∩ Ik+1(

z−1 ◦ δ̃kg− ◦ δ̃k(u)
)1−α

≥
(
z−1 ◦ δ̂k(u)

)1−α
≥
(
z−1 ◦ δ̃kg+ ◦ δ̃k(u)

)1−α
(
z−1 ◦ δ̃(k+1)g− ◦ δ̃k+1(u)

)α
≥
(
z−1 ◦ δ̂k+1(u)

)α
≥
(
z−1 ◦ δ̃(k+1)g+ ◦ δ̃k+1(u)

)α
By Lemma 3.2, we get for any g ∈ R, as in the proof of Lemma 3.2, if (1 − α)k + α(k + 1) = r, for all
u ∈ Ir

z

((
z−1 ◦ δ̃kg+k(u)

)1−α (
z−1 ◦ δ̃(k+1)g+k+1(u)

)α)
= δ̃(1−α)(kg+k)+α((k+1)g+k+1)(u) = δ̃rg+r(u) . (18)

Finally, setting k = brc, and since z is assumed to be decreasing, we get for all u ∈ Ir

δ̃rg− ◦ δ̃r(u) ≤ δ̂r(u) ≤ δ̃rg+ ◦ δ̃r(u)

and the result holds. If z(x) is not an equivalent interpolator as φ̃, one easily check that the result still
holds for integer values r ∈ N. 2

From Proposition 4.1, if all values of δ̂(u), u ∈ I are in a confidence band with a given confidence level η

(see (16)), then all values of δ̂r(u), u ∈ Ir will be in a (larger) confidence band (see (17)), for r ∈ R+.

These last results may be extended to the case where r ∈ Z− or r ∈ R− starting from a bounding
assumption for δ̂−1. For the sake of simplicity, these extensions are omitted here. Using Proposition 4.1,

we quantify in the following result the error for the estimated generator φ̂.

Proposition 4.1 (Estimation error on φ̂). Assume that the interpolation function z(x) in Definition 4.1
is a perfect interpolation function (as defined in Definition 3.3). If there exists some constants g−, g+,
γ−, γ+ such that  P

[
δ̃g− ◦ δ̃(u) ≤ δ̂(u) ≤ δ̃g+ ◦ δ̃(u), ∀u ∈ I

]
≥ η,

P
[
δ̃γ− ◦ δ̃−1(u) ≤ δ̂−1(u) ≤ δ̃γ+ ◦ δ̃−1(u), ∀u ∈ I

]
≥ η,

(19)

then for all t ∈ ζ(I), with ζ(I) =
{
t ∈ R, Iρ(t)(y0) ∈ I

}
, P

[
δ̃ρ(t)g− ◦ φ̃(t) ≤ φ̂(t) ≤ δ̃ρ(t)g+ ◦ φ̃(t)

]
≥ η, if ρ(t) ≥ 0 ,

P
[
δ̃ρ(t)γ− ◦ φ̃(t) ≤ φ̂(t) ≤ δ̃ρ(t)γ+ ◦ φ̃(t)

]
≥ η, if ρ(t) < 0 ,

(20)

with ρ(t) such that δρ(t)(x0) = φ(t), with φ(t) the generator of the initial non-distorted copula and δr the
self-nested copulas of the initial copula. In the case where the initial copula is the independence copula,
and if x0 = y0 = exp(−1), we get ρ(t) = ln t/ ln d.

Proof: As a direct consequence of the Equation (17) in the proof of Proposition 4.1, in all cases where

δ̃g− ◦ δ̃(u) ≤ δ̂(u) ≤ δ̃g+ ◦ δ̃(u), ∀u ∈ I, we get δ̃kg− ◦ δ̃k(u) ≤ δ̂k(u) ≤ δ̃kg+ ◦ δ̃k(u), ∀u ∈ Ik. We can
show that the same property holds for k ∈ R+. If ρ(t) > 0, then in particular for k = ρ(t) and u = y0,

we show that δ̃g− ◦ δ̃(u) ≤ δ̂(u) ≤ δ̃g+ ◦ δ̃(u), ∀u ∈ I implies δ̃ρ(t)g− ◦ φ̃(t) ≤ φ̂(t) ≤ δ̃ρ(t)g+ ◦ φ̃(t), for all t
such that y0 ∈ Iρ(t). Proceeding the same way when ρ(t) < 0, we get the final result. 2
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Remark 9 (Integer values of ρ(t)). Remark that if in Proposition 4.1, the condition on the interpolation
function z does not hold, the result is still available for any t ∈ ζ(I) such that ρ(t) ∈ Z. Since y0 ∈ Iρ(t)
is equivalent to δ̂ρ(t)(y0) ∈ I, then in this case where ρ(t) ∈ Z,

t ∈ ζ(I) ⇔ φ̂(t) ∈ I

This last property gives direct confidence bounds for φ̂, depending on some constants g− , g+, γ−, γ+.
One should notice that if the distribution of the process {δ̂(u)}0≤u≤1 is known, and if the family of
targeted copula is known, then g− and g+ can be computed at least numerically, e.g. by simulating
paths of the process {δ̂(u)}0≤u≤1. If the family of targeted copulas is unknown, constants g− and g+ and

final confidence bounds can be estimated by replacing δ̃r, r ∈ R, by their estimators. For example using
results of Deheuvels (1980) and Fermanian et al. (2004), i.e. using the law and the limiting process of√
n(Ĉ − C̃), one can get suitable constants g−, g+ and γ−, γ+ for a given confidence level η, and thus

confidence bounds for φ̂.
In the following, we apply Proposition 4.1 in the case of a Gumbel copula.

Corollary 4.1 (Estimation errors in the Gumbel case). Consider a Gumbel copula C̃ with generator
φ̃(t) = exp(−t1/θ), and set z(x) = exp(−x) as interpolation function. We take as initial non-distorted
copula the independent copula, and x0 = y0 = exp(−1). If there exist some reals α−, α+, β−, β+ such

that δ̂1 and δ̂−1 satisfies

 P
[
δ̃(u)α

− ≤ δ̂(u) ≤ δ̃(u)α
+

, ∀u ∈ I
]
≥ η ,

P
[
δ̃−1(u)β

− ≤ δ̂−1(u) ≤ δ̃−1(u)β
+

, ∀u ∈ I
]
≥ η ,

then this implies the following bounding for φ̂, for all t ∈ ζ(I),
P
[
φ̃(t)

(
tλ
−)
≤ φ̂(t) ≤ φ̃(t)

(
tλ

+
)]
≥ η , if t ≥ 1 ,

P
[
φ̃(t)

(
tµ
−)
≤ φ̂(t) ≤ φ̃(t)

(
tµ

+
)]
≥ η , if t < 1 ,

(21)

with λ− = lnα−

ln d , λ+ = lnα+

ln d and with µ− = ln β−

ln d , µ+ = ln β+

ln d .

Proof: By direct application of Proposition 4.1, setting α− = d(g
−/θ) and α+ = d(g

+/θ), and using

Remark 4, that gives in the Gumbel case δ̃r(u) = u(d
(r/θ)), we obtain (e.g. when k > 0)

P
[
δ̃k(u)(α

−)
k

≤ δ̂k(u) ≤ δ̃k(u)(α
+)
k

, ∀u ∈ Ik
]
≥ η, k ∈ N. (22)

The bounding on φ̂ holds by application of Proposition 4.1. In the case where C is an independent copula

and x0 = y0 = e−1, ρ(t) = ln t/ ln d, so that δρ(t)g+ = u(t
g+/θ), and tg

+/θ = tlnα
+/ ln d. Hence the result.

2

As expected, there is no uncertainty when t is in a neighbourhood of t0 = 1, since transformations are
here chosen such that (x0, y0) = e−1, implying that φ(t0) = ϕ0 with (t0, ϕ0) = (1, e−1).
These results (Proposition 4.1 and Corollary 4.1) are theoretical results. In practice, it is not trivial to
choose constants such as α−, α+, β−, β+. One can propose two ways for trying to determinate such
constants:

• The theoretical way: for given values α−, α+, β−, β+, when the joint law of the whole empirical

process
{
δ̂(u), u ∈ [0, 1]

}
is given, probabilities in Equation (21) can be calculated explicitly, so that

sets of constants such that this assumption is fulfilled can be determined precisely. However, even

when results on this process
{
δ̂(u), u ∈ [0, 1]

}
are available (see Rüschendorf (1976), Fermanian

et al. (2004), Segers (2012)), it is not easy to calculate these probabilities, and would require more
theoretical analysis.
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• The numerical way: it is possible to randomly draw some paths of an empirical copula (e.g. when the
copula is given). For given coefficients α−, α+, β−, β+, it is possible to estimate the probability
in Equation (21), and to select coefficients leading to a target probability level. This can be
time consuming, since we both have to simulate paths and to find coefficients leading to a target
probability level. For some usual Archimedean copulas like the Gumbel copula, requiring that
δ̃(u)α

− ≤ δ̂(u) ≤ δ̃(u)α
+

for all u ∈ I is requiring that a(u) = ln δ̂(u)/ ln δ̃(u) is belonging to the
interval [α−, α+] for all u in the given subinterval I of [0, 1]. By drawing one or several trajectories
of a(u), we can interpret more clearly the meaning of these coefficients (see Figure 1).

A precise estimation of coefficients α−, α+, β−, β+ is still to be investigated, and illustrations such as
further Figures 7-8 mainly aim at showing the theoretical link between estimation errors of δ̂(u) and

estimation errors of φ̂(u), not at providing the best confidence bands for φ̂(u).
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Figure 1: 100 paths of ratios a(u) = ln δ̂(u)/ ln δ̃(u), for simulated bivariate data with Gumbel copula of
parameter θ = 2 (Kendall’s τ = 0.5) in the case where the data size is n = 3500 (left) or n = 2000 (right).
Here we choose bounds α+ = 0.9 and α− = 1.1 (dashed horizontal lines) and α+ = 0.95 and α− = 1.05
(full horizontal lines). The blue vertical lines represents the considered interval I =[0.05, 0.95] ⊂ [0, 1].

4.3 Numerical illustrations

In this section we provide some numerical illustrations of the proposed non-parametric estimation pro-
cedure for the transformation T (Definition 4.2) and the generator φ̃ (Definition 4.3). The impact of the
choice of the function z driving the interpolation is also analyzed (see Definition 4.1). Furthermore, we
estimate the diagonal of the copula δ1(u) := C(u, . . . , u) and its inverse function δ−1 using the consistent

empirical copula Ĉ in Deheuvels (1979).

4.3.1 Simulated data illustration

Estimation of a nested-copula
In Figure 2 we provide an illustration of the estimation of a nested-copula (see Definition 4.1): we gen-
erate a sample of size n = 1500 from a Clayton copula with parameter θ = 6 (left) or a Gumbel copula
with parameter θ = 3 (right). We consider k = −3,−2,−1, 0, 1, 2, 3 and we estimate the self-nested

copula δ̂k(u), for u ∈ [0, 1].

Estimation of the transformation T
Following Definition 4.2, in Figure 3 we drawn the non-parametric estimation for the transformation T
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Figure 2: Estimation of self-nested copula δ̂k(u) as in Definition 4.1 in the Clayton-case with parameter
θ = 6 (left), or in the Gumbel-case with parameter θ = 3 (right) for k = −3,−2,−1, 0, 1, 2, 3. The

estimated δ̂k(u) are represented using full lines, the theoretical one’s using dotted lines. The black upper
curve corresponds to k = −3, the yellow lower curve to k = 3.

starting from the independence initial copula C, i.e. T̂ (x) = δ̂r(x)(y0), with r(x) = 1
ln d ln

(
− ln x
− ln x0

)
. We

choose x0 = y0 = 0.5. We generate two samples of size n = 1500 from a Clayton (Figure 3, left) and a
Gumbel (Figure 3, right) copulas for different Kendall’s τ . In both cases we take as interpolation function
z(x) = exp(−x), x ∈ (0, 1].
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Figure 3: Non-parametric T̂ (x) as in Definition 4.2 estimated on a sample of size n = 1500. Bivariate
Clayton-case (left) and bivariate Gumbel-case (right) with Kendall’s τ = 0.25 (black lines), τ = 0.5 (blue
lines), τ = 0.75 (green lines). The red line represents the bisectrix of the quadrant. Each transformation
T (x) is passing through the point (0.5, 0.5) (black point).

Evaluation of the interpolation function impact
In order to evaluate the impact of the interpolation function z in the evaluation of δ̂r, r ∈ R, we define
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the theoretical self-nested copula using a (possibly wrong) interpolator z as

δzr (x) = z
((
z−1 ◦ δk(x)

)1−α (
z−1 ◦ δk+1(x)

)α)
, x ∈ [0, 1] (23)

where k = brc and α = r − brc.
In Figure 4 we analyse the impact of the choice of the function z. Indeed this function drives the
interpolation of δr, for r ∈ R, knowing values of δk, for k ∈ Z (see Definition 4.1). By Lemma 3.2, if
known, the best choice for z is the generator φ of the copula C.
However we illustrate the error obtained by using another interpolation function. In particular, we denote

- δIdr theoretical self-nested copula in (23) where z is the identity function z(x) = x (linear interpolator),

- δGu
r theoretical self-nested copula in (23) where z(x) = exp(−x) (Gumbel interpolator),

- δCl
r theoretical self-nested copula in (23) where z(x) =

(
1 + (eθ − 1)x

)−1/θ
(Clayton interpolator).

In Figure 4 we consider a Clayton copula with parameter θ = 1. In this case, by Lemma 3.2, the
true theoretical self-nested copulas in (23) are δzr = δCl

r , for r ∈ R. We drawn the theoretical errors
| δCl

r (u) − δIdr (u) | (Figure 4, left) and | δCl
r (u) − δGu

r (u) | (Figure 4, right), for u = 0.5, as a function
of r ∈ [−15, 15]. Trivially for r = k ∈ N the error is null since there is no interpolation procedure. For
r ∈ R \ N this error is not zero but however it is really small (< 0.01). In all cases, the induced relative
error is less than 1.5%.

As a consequence, there are no visual differences in graphical representations of φ̂ if using an interpolator
or another (and such figures are omitted here). It should be noticed that, even if interpolation error is

small, it can be easily reduced, if necessary, by replacing z by a previous estimation of φ̂ at a step ν, then
giving an estimation of φ̂ at a step ν + 1, ν ∈ N.

−15 −10 −5 0 5 10 15

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

r

−15 −10 −5 0 5 10 15

0.
00

0
0.

00
1

0.
00

2
0.

00
3

r

Figure 4: Theoretical errors | δCl
r (u) − δIdr (u) | (left) and | δCl

r (u) − δGu
r (u) | (right), for u = 0.5, as a

function of r ∈ [−15, 15]. For r = k ∈ N the error is null (red points) since there is no interpolation
procedure.

Estimation of the generator
Using Definition 4.3, we illustrate the finite sample properties of the non-parametric estimation of the
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generator for an Archimedean copula. We take the independence initial copula C. Then φ̂(t) = δ̂ρ(t)(y0)

where ρ(t) = 1
ln d ln

(
t

− ln x0

)
and d is the dimension of the problem. We have chosen here x0 = y0 = e−1,

and in this case
φ̂(t) = δ̂(ln t/ ln d)(e

−1).

The values of δ̂r, r ∈ R are interpolated from values of δ̂k, k ∈ Z. As a consequence, in the dimension
d = 2, for t ∈ [1000−1, 1000], φ̂(t) does only depend on δ̂k, with k ∈ {−10, . . . , 10}. For t ∈ [30−1, 30],

φ̂(t) does only depend on δ̂k, with k ∈ {−5, . . . , 5}. In practice, we thus only need to compute values of

δ̂k for a small range of values of k.

In Figures 5, we generate two bivariate samples of size n = 150 and n = 1500 from a Gumbel copula.
Three different levels of (bivariate) dependence are considered, i.e., Kendall’s τ = 0.25, 0.5 and 0.75.
We drawn the estimated generators on these two different samples for each level of dependence. We
compare the obtained φ̂(t) with the theoretical standardized Gumbel-generator, i.e., φ̄(t) = exp(−t1/θ),
since (t0, ϕ0) = (1, e−1). In this case, we take as function z driving the interpolation, z(x) = exp(−x),
x ∈ (0, 1], since it is the best choice for any independence or Gumbel copula, whatever the parameter of
the copula, as a consequence of Corollary 3.1.

Analogously, in Figure 6, we generate two sample of size n = 150 and n = 1500 from a Clayton copula
with Kendall’s τ = 0.25, 0.5 and 0.75. We compare the obtained φ̂(t) with the theoretical standardized

Clayton-generator, i.e., φ̄(t) =
(
1 + (eθ − 1)t

)−1/θ
, since (t0, ϕ0) = (1, e−1). Also in this case we take as

interpolation function z(x) = exp(−x), x ∈ (0, 1].

Since in these estimations we use the consistent empirical copula Ĉ in Deheuvels (1979), presented in
Remark 6, then, as expected, the greater n is, the better the estimations are (see in Figures 5-6 the quality
of the estimation in the plots on the left-hand, for n = 150, with respect to that on the right-hand, for
n = 1500).

Illustration for theoretical confidence bands
At last, we are looking for theoretical confidence bands for the estimated generator, in the Gumbel case,
as detailed in Corollary 4.1. Let C̃ be a Gumbel copula of parameter θ = 2 (i.e., Kendall’s τ = 0.5).

Corresponding estimators δ̂1 and δ̂−1 were build as previously, using a bivariate sample of size n = 2000.
We just aim here at showing the shape of the confidence bands, so that we did not estimate constants
α−, α+, β−, β+ such that P

[
δ̃(u)α

− ≤ δ̂(u) ≤ δ̃(u)α
+

, ∀u ∈ I
]
≥ η ,

P
[
δ̃−1(u)β

− ≤ δ̂−1(u) ≤ δ̃−1(u)β
+

, ∀u ∈ I
]
≥ η.

We have chosen for these constants some values α− = β− = 1.05, α+ = β+ = 0.95, (Figure 7) and
α− = β− = 1.1, (Figure 8). These constants are corresponding to horizontal (full and dashed) lines in

Figure 1, which illustrate the behavior of a(u) = ln δ̂(u)/ ln δ̃(u) for 100 paths of process, for u ∈ [0, 1].

For these chosen constants, the confidence bands for δ̂ and δ̂−1 are given in Figures 7-8 (left). These

figures give one path of δ̂(u) (resp. for δ̂−1 ) and band [δ(u)α
−
, δ(u)α

+

] (resp. [δ−1(u)α
−
, δ−1(u)α

+

]) for

chosen constants α− and α+ (resp. β− and β+). The resulting theoretical confidence bands for φ̂ using

Equation (21) are given in Figures 7-8 (right). Obviously, the confidence band around φ̂(t) gets narrow
when t is close to t0 = 1, since φ̃(t) is the chosen equivalent generator passing through (t0, ϕ0) = (1, e−1).
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Figure 5: Estimated versus theoretical Gumbel-generator with Kendall’s τ = 0.25, 0.5 and 0.75. Size of
simulated samples n = 150 (left column) and n = 1500 (right column). Estimated φ̂(t) = δ̂ρ(t)(y0) as

in Definition 4.3 (full line). The theoretical standardized Gumbel-generator, i.e., φ̄(t) = exp(−t1/θ), is
drawn using a dashed line. We force the generators to pass through the point (t0, ϕ0) = (1, e−1) (black
point).
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Figure 6: Estimated versus theoretical Clayton-generator with Kendall’s τ = 0.25, 0.5 and 0.75. Size of
simulated samples n = 150 (left column) and n = 1500 (right column). Estimated φ̂(t) = δ̂ρ(t)(y0) as in

Definition 4.3 (full line). The theoretical standardized Clayton-generator, i.e., φ̄(t) =
(
1 + (eθ − 1)t

)−1/θ
,

is drawn using a dashed line. We force the generators to pass through the point (t0, ϕ0) = (1, e−1) (black
point).
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Figure 7: (Left) Confidence bands for δ̂ and δ̂−1 for chosen parameters α− = β− = 1.05, α+ = β+ = 0.95.

(Right) Resulting confidence band for φ̂. The considered copula is a Gumbel copula of parameter θ = 2
(i.e., Kendall’s τ = 0.5), the size of generated sample is n = 2000. Horizontal blue lines are indicative
chosen thresholds 0.05 and 0.95 of Figure 1 (see Remark 9).
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Figure 8: (Left) Confidence bands for δ̂ and δ̂−1 for chosen parameters α− = β− = 1.1, α+ = β+ = 0.9.

(Right) Resulting confidence band for φ̂. The considered copula is a Gumbel copula of parameter θ = 2
(i.e., Kendall’s τ = 0.5), the size of generated sample is n = 2000. Horizontal blue lines are indicative
chosen thresholds 0.05 and 0.95 of Figure 1 (see Remark 9).
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Upper tail dependence
As Embrechts and Hofert (2011) explain, a possible limitation of a non-parametric estimation of the
generator of an Archimedean copula is the loss of the upper tail dependence. Indeed if φ has a finite
right-hand derivative at zero, the Archimedean copula generated by φ has upper tail independent bivariate
marginal copulas, i.e., λU = 0 (see Section 3 in Embrechts and Hofert (2011)).

For instance Embrechts and Hofert (2011) prove that the estimator φ̂n of generator proposed by Genest

et al. (2011) is such that limt→0−φ̂′n(t) < ∞. This means that the copula generated by φ̂n can never
have upper tail dependence for d > 2. In other word in the context of the estimator presented by Genest
et al. (2011) one can obtain a generator function as close as wanted to the underlying, unknown one, but
the corresponding Archimedean copula will never have upper tail dependence.

On the other hand, we remark that constructions based on the diagonal section of an Archimedean copula
can have some identifiability-problem in the case when |φ̂′(0)| = +∞ (see Remark 3 based on Theorem
3.5 in Erdely et al. (2013)). Indeed in this case the function φ can not be reconstructed in a unique way
from the only diagonal δ (see also discussion in Segers (2011)).
As a consequence, in previous Figures 5 and 6, it is important to remark that the global shape of the
generator does not reflect perfectly the asymptotic dependency structure. Generators with close appear-
ance but different right derivatives at 0 may lead to different asymptotic dependency.

In the following we construct an illustration study in order to investigate this interesting and problematic
behavior of our estimator as well as well of the estimator by Genest et al. (2011).

Let, for instance, (x0, y0) = (0.5, 0.5). From Definition 4.3, if Ĉ is distorted from an independent copula,

our generator φ̂ is passing through the points

{(tk, ϕk)}k∈N =
{

(−dk ln(x0), δ̂k(y0))
}
k∈R

.

We are thus interested to analyse the behaviour of the Newton’s difference quotient for tk > 0:

φ̂′(tk) :=
δ̂k+1(y0)− δ̂k(y0)

tk+1 − tk
. (24)

Checking that tk is an increasing function of k, with limk→−∞ tk = 0, and recalling that at the limit

φ̂(0) = 1, one can also define another difference quotient at the limit:

φ̂′(0) := lim
k→−∞

1− δ̂k(y0)

dk ln(x0)
. (25)

Under the assumption of the continuity of derivatives of φ̂, which implies conditions on interpolation
function z, this coefficient correspond to the right-hand derivative of φ at t = 0, so that one can write
φ̂′(0) = limt→0+

d
dt φ̂(t).

Considering the non-parametric estimator of φ(t) proposed in this paper, it is indeed expressed as a
composition of functions, and the number of composition increases infinitely when t gets closer to 0 (but
stays inferior to 20 as soon as t is greater to 10−10 for example, which ensure practical use of this estim-
ator). Our estimator and the Genest et al. (2011)’s one do not appear to be well-adapted to describe the
upper tail dependency in the Archimedean multivariate structures (see Remark 3 for our estimator, and
Embrechts and Hofert (2011) for the Genest et al. (2011)’s one).

In Figure 9 we propose the ratio of the estimated derivative of φ divided by the the true value of the
derivative. To construct these ratios we use our estimator (with derivative as in Equations (24) and (25))
and the estimator by Genest et al. (2011). These ratios seem to tend to 0 for values of k less than 30,
which indicates, on this data and for very small values of t, around 10−13, that the estimated derivative
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using our estimator as well the estimator by Genest et al. (2011), may become negligible compared to
the theoretical one. So the unboundedness of the derivative is not guaranteed with our estimator or with
Genest et al. (2011)’s estimator (as established theoretically in Embrechts and Hofert (2011) for this last
estimator).

−40 −30 −20 −10 0

0.
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Figure 9: Ratio φ̂′(tk)/φ′(tk) in terms of k, for k ∈ [−40,+1], i.e. tk ∈ [6.3e-13, 1.39]. Case of a Gumbel
copula with parameter θ = 4 (i.e., Kendall’s τ = 0.75), n = 2000, d = 3. Black dots: Ratio for our

estimator using Equation (24) for φ̂′. Blue crosses : Ratio for our estimator using Equation (25) for φ̂′.
Green full dots: Ratio using estimator of φ′ introduced by Genest et al. (2011).

Lambda function
We present here the λ function, as originally introduced in Genest and Rivest (1993) for inferential
purposes,

λ(u) = φ−1(u) · φ′(φ−1(u)) , (26)

where φ′ denotes the derivative of the generator φ. One can easily see, after some calculations, that this
coefficient is identical for any generator belonging to the same equivalent class (see Lemma 2.2), and on
the contrary of the generator itself, does not depend on the choice of some arbitrarily point (t0, ϕ0).

Following the same methodology as Genest et al. (2011), we have estimated the λ function, for our estim-
ator and for the estimator of Genest et al. (2011). For our estimator, complicated analytical expressions
using derivatives of the function z can be calculated. More simply, an approximation of the derivative by
finite differences leads to following estimator of λ, for a small value of h, u ∈ (h, 1− h):

λ̂(u) = φ̂−1(u) · φ̂(φ̂−1(u) + h)− φ̂(φ̂−1(u)− h)

2h
. (27)

This estimator however relies on the knowledge of both φ and φ−1, and thus involve numerical resolutions
of root to get the inverse function of φ. A more simple estimator of λ permit to avoid function inversions.
It is based on the fact that λ(u) = 1

ln d
∂
∂r δr(u)|r=0, so that we can simply propose

λ̂∗(u) =
1

ln d

δ̂h(u)− δ̂−h(u)

2h
. (28)

Remark that λ̂∗(u) only relies on self-nested copulas δ̂r. The estimation of λ function is also possible
using the Genest et al. (2011)’s estimator of φ and φ′ as detailed in Section 4.3 in Genest et al. (2011)).

In the following, we denote this estimator λ̂G(u).
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Figure 10: Estimation of λ function. Black: theoretical λ function. Dark green dashed line: λ̂G(u)

(estimator proposed by Genest et al. (2011)), Black dotted line: λ̂(u) (i.e., our estimator using Equation

(27)). Violet dotted-dashed line: λ̂∗(u) (i.e. our estimator using Equation (28)). Parameters setting :
n = 200, (right column) and n = 1000 (left column), d = 2. Kendall’s tau parameter is τ = 0.75 (θ = 4)
(upper row) and τ = 0.25 (θ = 1.333) (bottom row).

In Figures 10 and 11, we have estimated the λ function, we get λ̂(u) and λ̂∗(u) for our estimator, and

λ̂G(u) for the estimator by Genest et al. (2011). The chosen parameter setting in Figures 10 and 11 is
exactly as in Figure 2 in Genest et al. (2011). The results show that, empirically on this data-set, all these

estimators are very close. The violet dashed line λ̂∗(u) seems performing a little bit better especially in
upper illustrations of Figure 10, in the dimension d = 2.

On tested data, no estimator seems to perform significantly better. Despite it would require more
numerical studies to compare all available estimators. However, in our case, estimators relying on self-
nested copulas have several advantages among which:

• For the generator itself, the facility to get generators passing through a given point (see Remark 7),
contrary to the estimator in Genest et al. (2011) which relies on the choice of a radius rm. As
remarked by Genest et al. (2011), if we are interested in the estimation of the λ function then the
choice of rm in their procedure is completely arbitrary. For instance we can easily set rm = 1.
However in order to compare other estimated values (which depend on rm) and theoretical one
(which does not), like φ or φ′, the choice of rm is not trivial. For instance, in Figure 9 we illustrate

the behavior of the ratio φ̂′(t)/φ′(t) and we had to find of the Genest et al. (2011)’s estimator the
value rm = 5500 to get a correct result.
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Figure 11: Estimation of λ function. Black: theoretical λ function. Dark green dashed line: λ̂G(u)

(estimator proposed by Genest et al. (2011)), Black dotted line: λ̂(u) (i.e., our estimator using Equation

(27)). Violet dotted-dashed line: λ̂∗(u) (i.e. our estimator using Equation (28)). Parameters setting :
n = 200, (right column) and n = 1000 (left column), d = 5. Kendall’s tau parameter is τ = 0.75 (θ = 4)
(upper row) and τ = 0.25 (θ = 1.333) (bottom row).

• Both estimators of T or φ are relying on direct analytical expressions, whereas the estimator in Gen-
est et al. (2011) rely on a large number of root resolution procedures. Indeed in the Genest et al.
(2011)’s estimator we have to solve a triangular non-linear system containing m equations. For
instance, if the sample size is n = 2000 the value m is approximately around 1200− 1300.

• Some first theoretical results on confidence bands. Such results would probably be difficult to get
with estimators relying on successive optimization procedures or root resolutions.

4.3.2 Real data illustration

We now propose the non-parametric estimation φ̂(t) using two real-data set (see Definition 4.3). Firstly,
we consider the Loss-ALAE data (for details see Frees and Valdez (1998)). The data size is n = 1500.
Each claim consists of an indemnity payment (the loss, X) and an allocated loss adjustment expense
(ALAE, Y ). Examples of ALAE are the fees paid to outside attorneys, experts, and investigators used
to defend claims.

We take the independence initial copula C, x0 = y0 = e−1 and z(x) = exp(−x) (Gumbel interpolator).

The obtained non-parametric generator φ̂(t) is represented in Figure 12 (left). Different authors, in the
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recent literature, agree that a satisfying fit on these data can be represented by the Gumbel-Hougaard
copula with parameter θ = 1.453 (see for instance Frees and Valdez (1998) and Genest et al. (2009)).
Then the standardized Gumbel generator with parameter θ = 1.453 is also represented in Figure 12 in
order to exhibit the quality of our non-parametric estimation.

Secondly, we consider a subset of the Framingham Heart study data (http://www.framingham.com/heart/).
We focus on the dependence structure underlying the diastolic (DBP) and the systolic (SBP) blood pres-
sures (in mm Hg) measured on 663 male subjects at their first visit (see Qu and Yin (2012)). Lambert
(2007) proposed a ratio approximation of the Archimedean copula generator and he found that the Gum-
bel copula was appropriate for this data without being fully satisfactory. The estimated parameter of
this Gumbel copula, θ = 2.11, is given in Qu and Yin (2012). Then, in Figure 12 (right), we represent

our estimation φ̂(t) and the standardized Gumbel generator with parameter θ = 2.11. As we can see the
non-parametric generator has a slightly different form (in particular a different concavity) with respect
to the analytical function φ(t) = exp(− t

2.11 ).
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Figure 12: Non-parametric estimation of φ̂(t). (Left) Loss-ALAE data (black dotted line) and stand-
ardized Gumbel generator with parameter θ = 1.453 (red line). (Right) Framingham Heart study data
(black dotted line) standardized Gumbel generator with parameter θ = 2.11 (red line). We force the
generators to pass through the point (t0, ϕ0) = (1, e−1) (black point).

5 Tail coefficients of bivariate distorted copulas

In this last section we investigate the impact of transformations of Archimedean copulas, considered in
this paper, in the tail of the joint distribution. The results obtained in this section are simple consequences
from known results about Archimedean copulas, using new transformed generators. We underline that
this section represents a first investigation study and it could be a starting point for a future work.

The diagonal section of a bivariate copula C can be also used to study the tail dependence of the random
pair (U, V ) (see Nelsen (1999)). Indeed the upper and lower tail dependence parameters λU and λL,
which are defined as

λU = limu→1− P[V > u |U > u] and λL = limu→0+ P[V ≤ u |U ≤ u],

(if the limits exist), can be computed as follows:

λU = 2− lim
u→1−

d
duδ(u) = 2− δ′C(1−) and λL = lim

u→0+

d
duδ(u) = δ

′

C(0+),
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where δC(u) = C(u, u) (see, e.g., Nelsen et al. (2008)).

5.1 Tail dependence for logit-distorted copulas

Like in Example 1, we consider transformations Tf : [0, 1]→ [0, 1] such that

Tf (u) =


0 if u = 0,

logit−1(f(logit(u))) if 0 < u < 1,
1 if u = 1,

(29)

where f is any bijective increasing function, f : R→ R, and is said to be a conversion function.
We are here interested in the upper (resp. lower) tail of a bivariate distorted distribution function.
Assume that the conversion function f has an asymptote f(x) = a x + b, for large (resp. small) values
of x, with a > 0 and b ∈ R. We denote the associated transformation Tf = logit−1 ◦ f ◦ logit(x), see
Equation (29).

From Propositions 4.2 and 4.3 in Durante et al. (2010), we obtain the following result.

Proposition 5.1 (Upper and lower tail coefficients for logit-linear distorted copulas). Let C0 the initial
bivariate Archimedean copula with associated generator φ such that λL(C0) exists. We consider the
transformation Tf = logit−1 ◦ f ◦ logit(x), with f(x) = a x + b, for some a > 0 and b ∈ R and the

associated distorted copula C̃Tf ,C0
, as in (3). It holds that

if λL(C0) exists, then λL(C̃Tf ,C0) = (λL(C0))a, and a ∈ (0,+∞),

if λU (C0) exists, then λU (C̃Tf ,C0
) = 2− (2− λU (C0))a, and a ∈

(
0,

ln(2)

ln(2− λU (C0))

]
.

Proof: Since Tf =
(
1 + ( x

1−x )−a e−b
)−1

, then limx→0+
Tf (x)

xa = c, with c > 0. From Proposition 4.2

in Durante et al. (2010), λL(C̃Tf ,C0
) = (λL(C0))a. Furthermore, since Tf =

(
1 + ( x

1−x )−a e−b
)−1

,

then limx→1−
1−Tf (x)
(1−x)a = c, with c > 0. From Proposition 4.3 in Durante et al. (2010), we obtain that

λU (C̃Tf ,C0) = 2− (2− λU (C0))a. Since λU (C̃Tf ,C0) ∈ [0, 1], then we obtain the result. 2

Remark 10 (Admissible values of slope a). Proposition 5.1 restricts the range of values for the parameter
a. In particular when the initial copula C0 is the bivariate independent copula, this means that a ∈ (0, 1].

Obviously if a = 1, λU (C̃Tf ,C0) = λU (C0) and λL(C̃Tf ,C0) = λL(C0).

Remark 11. From Proposition 5.1, we prove that there exists a particular function that satisfies the
assumption of Propositions 4.2-4.3 in Durante et al. (2010), i.e. Tf = logit−1 ◦ f ◦ logit(x). Furthermore
we obtain the value of the link-coefficient between the initial and the distorted tail coefficient, i.e. the
slope a of the asymptote of the conversion function f . Finally Proposition 5.1 restricts the range of values
for the parameter a.

5.2 Tail dependence in distorted Ledford and Tawn’s model

Ledford and Tawn propose a multivariate extreme value threshold model for joint tail estimation which
overcomes the problems encountered with existing techniques when the variables are asymptotically
independent (e.g., see Ledford and Tawn (1996); Ledford and Tawn (1997)). They propose a very flexible
and broadly applicable model on the diagonal of the bivariate distribution such that:

P[Z1 > r, Z2 > r] ∼ L(r) r−
1
η , as r →∞, (30)

where Z1 and Z2 are two random variables with unit Fréchet marginal distributions, η ∈ (0, 1] is a
constant, and L(r) is a slowly varying (SV) function, i.e. L(t r)/L(r)→ 1, as r →∞, for all fixed t > 0.
We denote F (r, r) = P[Z1 > r, Z2 > r].
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The parameter η characterizes the nature of the tail dependence. It is a constant that effectively determi-
nes the decay rate of F (r, r), for large r. Since the marginal variables are standardized (unit Fréchet),
the parameter η provides a measure of the dependence between the marginal tails. Accordingly, Ledford
and Tawn (1996) termed η the coefficient of tail dependence. For example, the marginal variables Z1 and
Z2 are

- asymptotically independent and positively associated, if 1
2 < η < 1,

- asymptotically independent and negatively associated, if 0 < η < 1
2 ,

- perfectly independent, if η = 1
2 and L(r) = 1,

- asymptotically dependent, if η = 1 and L(r) 9 0, r →∞,

- perfectly dependent, if η = 1 and L(r) = 1.

Proposition 5.2 (Logit-linear distorted Ledford and Tawn’s model). Let C0 the initial bivariate inde-
pendent copula and Z1 and Z2 are two random variables with unit Fréchet marginal distributions. We
consider the transformation Tf = logit−1 ◦ f ◦ logit(x), with f(x) = a x + b, for some a > 0 and b ∈ R.

Following the Ledford and Tawn’s model in (30), F (r, r) = C0(FZ1(r), FZ2(r)) ∼ r−2, i.e. η = 1
2 and

L(r) = 1. Then the externally distorted survival distribution

F̃ (r, r) = T ◦ C0(FZ1(r), FZ2(r)) (31)

also satisfies the Ledford and Tawn’s model in (30), with η̃ = η
a and L̃(r) = r2 a

1+e−b (r2−1)a .

Proof: Since

F̃ (r, r) = T ◦ C0(FZ1
(r), FZ2

(r)) = T ◦ ((1− e−
1
r ) · (1− e−

1
r )) =

1

1 +

( (
1−e−

1
r

)2

1−
(
1−e−

1
r

)2

)−a
e−b

,

for r large, since η = 1
2 , we obtain F̃ (r, r) ∼ L̃(r) r−2 a = L̃(r) r−1/η̃, where L̃(r) = r2 a

1+e−b (r2−1)a . Remark

that L̃(r) is a SV function. Hence the result. 2

Remark 12 (Discussion of possible asymptotic dependence structure using logit-linear transformations).
In the following we discuss the different dependence structures in the joint tail that one can generate
using Equation (31). In particular, since C0 in Proposition 5.2 is the independent copula, from Remark
10, we consider the admissible values of slope a, i.e. a ∈ (0, 1]. Then,

− If a = 1 and b = 0, trivially T ≡ Id, then L̃(r) = 1, η̃ = η = 1
2 and the distorted random variables are

again perfectly independent.

− If a = 1
2 and b 6= 0, then η̃ = 1 and L̃(r) → eb 6= 0, as r → ∞. Then the distorted random variables

are asymptotically dependent.

− If a = 1
2 and b = 0, then η̃ = 1 and L̃(r) = 1, the distorted random variables are perfectly dependent.

− If a ∈ ( 1
2 , 1), then η̃ ∈ ( 1

2 , 1) and the distorted random variables are asymptotically independent and
positively associated.

Remark that if a ∈ (0, 12 ), then η̃ > 1 and the Ledford and Tawn’s model is no more available.

Then, using Ledford and Tawn’s distorted model in (31), starting from an initial independent copula
C0 and a ∈ (0, 12 ], we obtain a dependence range from perfectly independence to perfectly positive
dependence.
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Conclusions

We described some properties on transformations of Archimedean copulas, among which the characte-
rization of an equivalence class for both transformations and generators. This characterization was
necessary to build transformations and generators as function of what we called self-nested copulas func-
tions. Using their properties we proposed a non-parametric estimator for the self-nested copula functions,
as well as for the transformations and the generators. This estimation is straightforward and does not
rely on any optimization procedure. Then we can easily get convergence properties of such estimators.
Numerical illustrations showed the simplicity of these estimators, the good fit to theoretical values in sim-
ulated example, the good fit to literature parametric adjustments in real-data problems. Furthermore,
in the present work we started the investigation of the tail behavior of distorted Archimedean copulas.
We proved some results that may be understood as constraints relying on the transformations, in order
to obtain some desired tail coefficients for example. Such a study may help developing a further work on
the estimation of the transformations around values 0 and 1, corresponding to extreme quantiles of the
distorted distribution.

Some perspectives are the following ones: using results in Di Bernardino and Rullière (2013), we can
get easily a whole parametric copula estimation, with a tunable number of parameters and without
optimization procedures.

One limitation of the presented transformations is that they transform Archimedean copulas into other
Archimedean copulas. The resulting copula is thus symmetric in the sense that it does not vary if margins
are permuted. However, on real data, copulas may not be symmetrical. A way to cope with this problem
is to work with nested copulas, as defined in Hofert and Pham (2013), or hierachical Kendall copulas,
as defined in Brechmann (2013). Considering Archimedean nested copulas, nonparametric estimation of
child Archimedean copulas can be done using presented transformations, so as the estimation of root
Archimedean copulas on resulting pseudo-data. Complex parametric dependence structures with many
parameters can be derived from nonparametric estimation, as detailed in Di Bernardino and Rullière
(2013). The choice of the right nested structure and the analysis of the resulting dependencies are
interesting perspectives.

Such development may also ease the inversion and smoothing of the empirical copula as well as its tail
estimation. Furthermore, a whole benchmark study would be required to compare different available
estimators of the generator of an Archimedean copula. In this sense a development of λ function study
started in Section 4.3.1 could be an important future work. At last, the measure of the goodness of fit
and the construction of specific tests, based on the non-parametric estimated generator of a copula, are
interesting perspectives.
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Annex

In this Annex we give the analytical formulas for standardized generators (φ̄(t)), their inverses (φ̄−1(t))
and theoretical self-nested copulas (δr), in the case of most popular Archimedean families of copulas.

In Table 1 we present some classical generators and their associated inverses (see Equation (1)), well
known in the literature (see for instance Nelsen (1999)).

Copula φ(t) φ−1(t) parameter θ

Ali-Mikhail-Haq 1−θ
exp(t)−θ ln

(
1−θ+θt

t

)
θ ∈ [0, 1)

Clayton (1 + θt)
−1/θ 1

θ (t−θ − 1) θ ∈ (0,∞)

Frank − 1
θ ln(1− (1− exp(−θ))e−t) − ln

(
exp(−θt)−1
exp(−θ)−1

)
θ ∈ (0,∞)

Gumbel exp
(
−t1/θ

)
(− ln(t))

θ
θ ∈ [1,∞)

Independence exp (−t) (− ln(t)) none

Joe 1− (1− exp(−t))1/θ − ln
(
1− (1− t)θ

)
θ ∈ [1,∞)

Table 1: Classical generators and their associated inverses in the case of most popular Archimedean
families of copulas.

Following Remarks 7 and 8, we give in Table 2 the equivalent theoretical generators associated to those
presented in Table 1 and the associated inverses. In particular, let (t0, ϕ0) ∈ R+ \ {0} × (0, 1) and φ be
a classical generator of an Archimedean copula as in Table 1. Then the standardized generator φ̄ is an
equivalent generator of φ such that φ̄(t0) = ϕ0. We remark that :

C(u1, . . . , ud) = φ̄
(
φ̄−1(u1) + . . .+ φ̄−1(ud)

)
,

for all (t0, ϕ0) ∈ R+∗ × (0, 1).

In Table 2 we also provide the expressions for the theoretical self-nested copulas δr(u), for r ∈ R and
u ∈ (0, 1). Remark that δ0(u) = u.

Copula δr(u) φ̄(t) φ̄−1(t)

Ali-Mikhail-Haq
θ ∈ [0, 1)

1−θ
( 1−θ+θu

u )
(dr)−θ

1−θ(
1−θ+θϕ0

ϕ0

)t/t0−θ t0
ln( 1−θ+θt

t )
ln
(

1−θ+θϕ0
ϕ0

)
Clayton
θ ∈ (0,∞)

(
1 + dr

(
u−θ − 1

))−1/θ (
1 + t

t0

(
ϕ−θ0 − 1

))−1/θ
t0

(
t−θ−1
ϕ−θ0 −1

)
Frank

θ ∈ (0,∞)
− 1
θ ln

((
1− e−θ

) (
e−θu−1
e−θ−1

)dr)
− 1
θ ln

((
1− e−θ

) (
e−θϕ0−1
e−θ−1

)t/t0)
t0

ln( 1−exp(−θt)
1−exp(−θ) )

ln
(

1−exp(−θϕ0)

1−exp(−θ)

)
Gumbel
θ ∈ [1,∞)

u(d(r/θ)) ϕ
((t/t0)1/θ)
0 t0

(
ln t
lnϕ0

)θ
Independence u(d

r) ϕ
(t/t0)
0 t0

ln t
lnϕ0

Joe
θ ∈ [1,∞)

1− (1− (1− (1− u)θ)(d
r))1/θ 1− (1− (1− (1− ϕ0)θ)t/t0)1/θ t0

ln(1−(1−t)θ)
ln(1−(1−ϕ0)θ)

Table 2: Standardized generators φ̄, such that φ̄(t0) = ϕ0, their associated inverses and theoretical
self-nested copulas in the case of most popular Archimedean families of copulas.
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