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On the distortions of Archimedean copulas :

Application to the non-parametric estimation of their generators

Elena Di Bernardino∗, Didier Rullière†

Abstract

We study the impact of some distortions for Archimedean copulas. We give some admissibility
conditions for these distortions, and define some equivalence classes for both distortions and generators
of Archimedean copulas. We investigate some impacts of the distortions on the tails of the distorted
copula. We extend the r-fold composition of the diagonal section of a copula, from r ∈ N to r ∈ R.
This extension, coupled with results on equivalence classes, gives us new expressions of distortions and
generators. Estimators deriving directly from these expressions are proposed and their convergence
is investigated. We provide confidence bands for the estimated generators. Numerical illustrations
show the empirical performance of these estimators.

Keywords: Distortions, Archimedean copula, auto-nested copula, non-parametric estimation, tail de-
pendence.

1 Introduction

1.1 Basic notions and preliminaries

Assume that we have d underlying risks described by a d−dimensional nonnegative real-valued random
vector X = (X1, . . . , Xd). Denote its multivariate distribution function by F : Rd+ → [0, 1] with univari-
ate margins Fi(xi) = P (Xi ≤ xi), for i = 1, . . . , d. Sklar’s Theorem (1959) is a well-known result which
states that for any random vector X, its multivariate distribution function has the representation

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

where C is called the copula function. Effectively, it is a distribution function on the d−cube [0, 1]d with
uniform margins and it links the univariate margins to their full multivariate distribution. In the case
where we have a continuous random vector, we know that Ui = Fi(Xi) is an uniform random variable so
that we can write

C(u1, . . . , ud) = F (F−11 (u1), . . . , F−1d (ud)),

to be the unique copula associated with X, with quantile functions F−1i defined by:

F−1i (p) = inf{x ∈ R : Fi(x) ≥ p}, for p ∈ (0, 1).

In this paper, we mainly consider Archimedean copulas, which are copulas that can be written

Cφ(u1, . . . , ud) = φ(φ−1(u1) + . . .+ φ−1(ud)), (1)

where the function φ is called the generator of the Archimedean copula Cφ. The generator is a continuous
and decreasing function satisfying some supplementary assumptions that will be discussed hereafter. They
are symmetrical copulas, that is Cφ(u1, . . . , ud) = Cφ(uσ(1), . . . , uσ(d)) for any permutation σ of the set
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{1, . . . , d}. Such copulas play a central role in the understanding of dependencies of multivariate random
vectors. A good introduction is given in Nelsen (1999).

Distortions of Archimedean copulas are a simple way to generate new copulas from initial ones. Among
advantages of such distortions, we may cite the possible improvement of the fit of an initial copula, the
easy development of iterative distortion schemes, and some properties that may ease the estimation of
the distorted copula (for further details see for instance Di Bernardino and Rullière (2013)).

Then, following Valdez and Yugu (2011) (Definitions 3.2 and 3.6), Charpentier et al. (2006), Di Bernardino
and Rullière (2013), we now recall the definition of a distorted copula C̃, of an initial copula C0, using a
distortion function T , i.e.,

C̃(u1, . . . , ud) = T ◦ C0(T−1(u1), . . . , T−1(ud)), u1, . . . , ud ∈ [0, 1]. (2)

The function T : [0, 1]→ [0, 1] is a continuous and increasing function on the interval [0, 1], with T (0) = 0,
T (1) = 1, with supplementary assumptions that will be chosen to guarantee that C̃ is also a copula,
detailed hereafter. Such distortions are presented for instance in Durrleman et al. (2000). A particular
class of distortion is constituted by distortions defined in Bienvenüe and Rullière (2011) with the form
Tf : [0, 1]→ [0, 1] such that

Tf (u) =


0 if u = 0,

logit−1(f(logit(u))) if 0 < u < 1,
1 if u = 1,

(3)

where f any bijective increasing function, f : R → R. Function f is said to be a conversion function.
These distortions help working in the logit-scale, so that we only need to study composition of increasing
functions from R to R. The main advantage of Tf , with adequate conversion functions f , is to lead
to simple analytic expressions for inverse distortions and for level curves of the associated multivariate
distribution function. Developments using distortions in (3), with hyperbolic conversion function f , are
given in Bienvenüe and Rullière (2011), Bienvenüe and Rullière (2012), Di Bernardino and Rullière (2013).

1.2 Some problematic points

Among problems generated by distortions of Archimedean copulas, one can point out, in particular

i) The problem of uniqueness: distortions of a given initial copula leading to a given target copula
are not unique. This raises some problems for the analysis of the convergence of estimators of the
distortion. This also causes problems to compare distortions and to understand their impact, in
terms of changing of dependence structure. A further analysis shows that also a generator of an
Archimedean copula is not unique, causing the same kind of problems.

ii) The tail problem: the impact on the tail of the distorted copulas are partially known (see for
instance Durante et al. (2010)). In practice this impact has to be investigated. In particular the
relationship between the asymptote of the conversion function f in Equation (3) and the regular
variation of the distorted tails represents an open interesting point. A good understanding of the
tail behavior is indeed required to estimate the shape of the distortion near 0 and 1, in extreme
quantiles where there is a lack of data.

iii) The estimation problem: we aim here at finding non-parametric estimators of a distorted copula,
when no parametric shape is assumed for the generator of the distorted copula. This kind of non-
parametric estimation of distorted copulas has been treated by using level curves properties and
an iterative algorithm in Di Bernardino and Rullière (2013). However, the convergence of this
algorithm is not yet demonstrated, and properties of the obtained estimator are not easy to get.

We try to provide, in the following, some answers to these problems in the case of Archimedean families
of copulas.

The determination of sufficient and necessary conditions in order to obtain admissible distortions T is fun-
damental to propose tractable distortions in operational problems. The definition of equivalence classes
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for both distortions and generators is also necessary to select some standardized forms for practical use,
for the comparison and the interpretation of obtained distribution functions. To our knowledge, des-
pite relying on elementary calculations, the problem of equivalence classes and the selection of functions
among equivalence classes is not detailed in the literature.

Distorted copulas permit to introduce, in a more flexible way, families of copulas exhibiting different
behaviour in the tails. The tail behavior of a distorted copula can be assessed by determining the tail
coefficients of distorted copulas, or by distorting some existing models like the one of Ledford and Tawn
(1996). Much of the recent literature focuses on how the tail dependence properties are modified un-
der distortions (see e.g. Durante et al. (2010)). Results about the tail dependence coefficients of an
Archimedean copulas are given by Juri and Wüthrich (2002)-Juri and Wüthrich (2003) and Charpentier
and Segers (2007) in terms of regularly varying properties of the additive generator. In this paper we
propose some tail properties in terms of the asymptotic behavior of the distortion function T . In parti-
cular, we will focus on the Ledford and Tawn’s model (see Ledford and Tawn (1996)).

At last, the construction of non-parametric estimators are of great interest for practical studies. There
is a huge literature concerning the estimation of copula structures, see for example Genest and Rivest
(1993), Joe (2005), Autin et al. (2010), Hernández-Lobato and Suárez (2011). A comparison of different
parametric and non-parametric methods for estimating a copula is given, for example, in Kim et al.
(2007). Here, we will try to base our estimation on the diagonal section of a copula, which is central
for Archimedean copula (see, e.g., Nelsen et al. (2008)), and to exploit results on equivalence classes of
distortions and generators.

1.3 Organization of the paper

In Section 2, we give properties of both distortions and generators. In particular, we detail admissibility
conditions for distortions and generators (Section 2.1). We characterize equivalence classes for these two
functions (Section 2.2), and we investigate tail coefficients in terms of the asymptote of the conversion
function f in (3) and using a Ledford and Tawn’s distorted model (Sections 2.3 and 2.4).

In Section 3, we show the importance of the diagonal section of an Archimedean copula, and define
auto-nested copulas, which are extensions of k−fold diagonal sections of a copula when k belongs to the
whole real line (Section 3.1). Then we express distortions and generators using these auto-nested copulas
functions (Section 3.2).

In Section 4, we use properties of auto-nested copulas to develop some non parametric estimators of
distortions and generators of Archimedean copula. We propose some convergence properties of these es-
timators (Section 4.1). Confidence bands are given for auto-nested copulas and for estimated generators
(Section 4.2). At last, we show the empirical behavior of these estimators through numerical illustrations
(Section 4.3).

Finally exact analytical formulas for standardized generators, their inverses and theoretical auto-nested
copulas, in the case of most popular Archimedean families of copulas, are postponed in the Annex.

2 Properties of distortions and generators

2.1 Admissibility conditions

Remark 1 (Generator of a distorted copula). Let C0 the initial Archimedean copula with associated

generator φ. If φ̃ = T ◦ φ then C̃(u1, . . . , ud) = T ◦ C0(T−1(u1), . . . T−1(un)). So that φ̃ is the generator

of the distorted copula C̃.

From Theorem 2.2 in McNeil and Nešlehová (2009) Cφ(u1, . . . , ud) = φ(φ−1(u1) + . . . + φ−1(ud)) is a
d−dimensional copula if and only if its generator φ is d−monotone on [0,∞), where the d−monotony
definition is recalled hereafter.
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Definition 2.1 (d-monotone function). A real function f is called d−monotone in (a, b), where a, b ∈ R
and d ≥ 2, if it is differentiable there up to the order d− 2 and the derivatives satisfy

(−1)kf (k)(x) ≥ 0, k = 0, 1, . . . , d− 2

for any x ∈ (a, b) and further if (−1)d−2f (d−2) is non-increasing and convex in (a, b). For d = 1, f is
called 1−monotone in (a, b) if it is nonnegative and non-increasing there.

If f has derivatives of all orders in (a, b) and if (−1)kf (k)(x) ≥ 0, for any x ∈ (a, b), then f is called
completely monotone.

It follows some admissibility conditions for a distortion T .

Definition 2.2 (Admissible distortions and distorted copula). Let T : [0, 1]→ [0, 1] be a continuous and
increasing function on the interval [0, 1], with T (0) = 0, T (1) = 1. Let C0 an initial copula. We say that
T is an admissible distortion if

C̃T,C0(u1, . . . , ud) = T ◦ C0(T−1(u1), . . . , T−1(ud)) (4)

is a also copula.

In the following result we provide a specifical characterization for an admissible distortion T , starting
from a d−variate initial independent copula C0.

Proposition 2.1 (Admissibility conditions for the distortion). Let T be a bijection such that T : [0, 1]→
[0, 1]. Let C0 be the d−variate initial independent copula, i.e., C0(u1, . . . , ud) =

∏d
i=1 ui, and C̃ the

associated distorted dependence structure as in (4) . Then the formula (4) yields a copula if and only if

n∑
r=1

αnr x
n−1 T (n)(x) ≥ 0, ∀ n = 1, . . . , d, (5)

with αn1 = 1, αnn = 1 and αnr = r αn−1r + αn−1r−1 , for 2 ≤ r ≤ n− 1.

Proof: We prove this proposition by induction. We first remark that the distortion of an Archimedean
copula is still an Archimedean copula, so that C̃ is an Archimedean copula. From McNeil and Nešlehová
(2009), C̃ is a copula if and only if this distorted generator φ̃ = T ◦ φ is a d−monotone function. This
means that (−1)kφ̃(k) ≥ 0 for k = 0, 1, . . . , d− 2. This condition implies a specifical characterization for
our admissible distortion T .
Firstly, we show that the statement of Proposition 2.1 holds for d = 2. In particular in the case of a
bivariate independent copula the distorted generator T (e−t) has to be a 2−monotone function. Since T
is increasing, this means T (1)(x) + xT (2)(x) ≥ 0, for all x ∈ [0, 1]. This is exactly Equation (5) in the
case d = 2.

For d = n, it holds that

φ̃(n) = [T (e−t)](n) = (−1)n
∑n
r=1 α

n
r e−rt T (r)(e−t) = (−1)n

∑n
r=1 α

n
r x

r T (r)(x),

with

x = e−t and αnr =
∑

(i1,...,ir)∈Inr
n!∏r

k=1 ik!
∏n
k=1 jk!

where Inr = {(i1, . . . , ir) ∈ N∗, i1 ≥ . . . ≥ ir, i1 + . . . + ir = n}, and where the coefficients jk are
defined as the numbers of branches of size k in the tree-representation of the composed derivative
(using theory of rooted trees, see for instance Chomette (2003)). Then (−1)nφ̃(n) ≥ 0 if and only if∑n
r=1 α

n
r x

r T (r)(x) ≥ 0. Alternative expressions of coefficients αnr can be obtained using a combinatoric
approach derived by Faà di Bruno’s formula. The interested reader is referred for instance to Hardy
(2006).
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For d = n+ 1,

φ̃(n+1) = [T (e−t)](n+1) = (−1)n
n∑
r=1

αnr [e−rtT (r)(e−t)](1)

= (−1)n+1
n∑
r=1

r αnr e−rt T (r)(e−t) +

n∑
r=1

αnr e−(r+1)t T (r+1)(e−t)

= (−1)n+1
n+1∑
r=1

αn+1
r e−rt T (r)(e−t)

with αn+1
r = r αnr + αnr−1 for r ≤ n, αn+1

n+1 = αnn = . . . = α1
1 = 1 and αn0 = 0, ∀n. Then, for d = n + 1,

(−1)n+1 φ̃(n+1) ≥ 0 if and only if
∑n+1
r=1 α

n+1
r xr T (r)(x) ≥ 0.

Hence the result. 2

A discussion on the class of reachable copulas by distorting an initial copula is available in Di Bernardino
and Rullière (2013).

2.2 Equivalent distortions and generators

Definition 2.3 (Invariant class for Archimedean generator). Let φ be a generator of an Archimedean
copula Cφ, i.e., Cφ(u1, . . . , ud) = φ(φ−1(u1) + . . .+φ−1(ud)). Then a generator ψ of a copula Cψ is said
to belong to the same invariance class of φ if and only if Cφ = Cψ. We denote this class Iφ and we write
ψ ∈ Iφ. A generator ψ belonging to Iφ will be said to be equivalent to generator φ.

Analogously to Definition 2.3 we introduce the two following invariance classes respectively for the dis-
tortion and the conversion functions.

Definition 2.4 (Invariant class for distortions). Let C̃T1,C0
and C̃T2,C0

two distorted copula using distor-
tions T1 and T2 respectively and with the same initial copula C0 (see Equation (4)). Then the distortion
T2 is said to belong to the same invariance class of T1 if and only if C̃T1,C0 = C̃T2,C0 . We denote this
class IT,C0 and we write T2 ∈ IT1,C0 . A distortion T2 belonging to IT1,C0 will be said to be equivalent to
T1 starting from initial copula C0.

Definition 2.5 (Invariant class for conversion functions). Let C0 be an initial copula. Let f1 be a
conversion function associated to the distortion T1 as in (3). Then a conversion function f2 is said to
belong to the same invariance class of f1 if and only if CTf1 ,C0 = CTf2 ,C0 . We denote this class If,C0

and we write f2 ∈ If1,C0
. A conversion function f2 belonging to If1,C0

will be said to be equivalent to f1
starting from initial copula C0.

Proposition 2.2 (Equivalent generator). Let C0 an initial Archimedean copula with generator φ. Con-
sider the distorted function φ̃, then the distorted copula is unchanged with respect to C0,

φ̃ ∈ Iφ if and only if φ̃ = φ ◦ L,

where L is a linear function, i.e. L(x) = a x, for some a ∈ R \ {0}. The function φ̃ in the case of a > 0
is a generator (in the sense of Lemma 4.1.2. in Nelsen (1999)). The generator φ̃ is thus equivalent to φ
since it leads to the same distorted copula.

Proof: Assume that φ and φ̃ are continuous and invertible functions. Let

φ̃(φ̃−1(u1) + . . .+ φ̃−1(ud)) = φ(φ−1(u1) + . . .+ φ−1(ud)) .

It follows that
φ−1 ◦ φ̃(φ̃−1(u1) + . . .+ φ̃−1(ud)) = φ−1(u1) + . . .+ φ−1(ud) ,

and setting u1 = φ̃(s1), ..., ud = φ̃(sd), we get for any s1, . . . , sd:

φ−1 ◦ φ̃(s1 + . . .+ sd) = φ−1 ◦ φ̃(s1) + . . .+ φ−1 ◦ φ̃(sd). (6)
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Remark that if φ−1 ◦ φ̃ is the linear function L then Equation (6) is satisfied. Furthermore if (6) is
satisfied, then the function φ−1 ◦ φ̃ is additive. Since φ−1 ◦ φ̃ is continuous, this implies that φ−1 ◦ φ̃ is a
linear function (with in particular L(0) = 0). Hence the result. 2

Proposition 2.3 (Equivalent distortions). Let C0 the initial Archimedean copula with associated gene-
rator φ, and denote by L a linear function. Let T1 and T2 be two distortions respectively associated to
copulas C1 and C2 (see Equation (4)). If ψ1 = T1 ◦ φ, ψ2 = T2 ◦ φ, then

ψ2 ∈ Iψ1 if and only if T2 = T1 ◦ φ ◦ L ◦ φ−1.

Then T2 = T1 ◦ φ ◦ L ◦ φ−1 ∈ IT1,C0
. The distortion T2 is said to be equivalent to distortion T1, starting

from the initial copula C0, since they lead to the same distorted copula.

The proof of Proposition 2.3 comes down trivially from Proposition 2.2.

Proposition 2.4 (Equivalent conversion functions). Let C0 the initial Archimedean copula with associ-
ated generator φ. Let f1 and f2 be two conversion functions respectively associated to distortions Tf1 and
Tf2 , i.e., Tf1 = logit−1 ◦ f1 ◦ logit(x) and Tf2 = logit−1 ◦ f2 ◦ logit(x) (from Equation (3)). Then

CTf1 ,C0
= CTf2 ,C0

if and only if f2 = f1 ◦ τ, with τ = logit ◦ φ ◦ L ◦ φ−1 ◦ logit−1.

Then f2 = f1 ◦ τ ∈ If1,C0
. The conversion function f2 is said to be equivalent to conversion function f1,

starting from the initial copula C0, since they lead to the same distorted copula.

This result comes down from Proposition 2.3.

Proposition 2.5 (Equivalent distortion passing through a given point). Let C0 the initial Archimedean
copula with associated generator φ. Let T1 and T2 be two distortions of this initial copula, respectively
associated to copulas C1 and C2 (see Equation (4)). If L(x) = a x, x ∈ R, with

a =
φ−1 ◦ T−11 (y0)

φ−1(x0)
and T2 = T1 ◦ φ ◦ L ◦ φ−1,

then T2 ∈ IT1,C0
and T2(x0) = y0, for any given point (x0, y0) ∈ (0, 1)2. The distortion T2 is an equivalent

distortion of T1, starting from initial copula C0, passing through the point (x0, y0).

Corollary 2.1. Let C0 be the independent copula. Let

T2(x) = T1(xa), x ∈ [0, 1], with a =
ln(T−11 (y0))

ln(x0)
,

then T2 ∈ IT1,C0
and T2(x0) = y0, for any given point (x0, y0) ∈ (0, 1)2.

Proposition 2.5 and Corollary 2.1 can be useful in order to ensure the uniqueness of the distortion T
among the invariant class for distortions. In an iterative procedure of estimation the uniqueness of the
distortion is essential in order to permit the convergence of the procedure. These results will be useful
later in the estimation procedure of the distortion and generator functions (see Sections 3.2 and 4.1).

2.3 Tail coefficients of bivariate distorted copulas

The diagonal section of a bivariate copula C satisfying regular conditions can be also used to study the tail
dependence of the random pair (U, V ) (see Nelsen (1999)). Indeed the upper and lower tail dependence
parameters λU and λL, which are defined as

λU = limu→1− P[V > u |U > u] and λL = limu→0+ P[V ≤ u |U ≤ u],

(if the limits exist), can be computed as follows:

λU = 2− lim
u→1−

d
duC(u) and λL = lim

u→0+

d
duC(u),
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where C(u) = C(u, u) (see, e.g., Nelsen et al. (2008)).
In this section we are interested in the upper (resp. lower) tail of a bivariate distorted distribution func-
tion. Assume that the conversion function f has an asymptote f(x) = a x + b, for large (resp. small)
values of x, with a > 0 and b ∈ R. We denote the associated distortion Tf = logit−1◦f ◦ logit(x) (see (3)).

From Propositions 4.2 and 4.3 in Durante et al. (2010), we obtain the following result.

Proposition 2.6 (Upper and lower tail coefficients for logit-linear distorted copulas). Let C0 the initial
bivariate Archimedean copula with associated generator φ such that λL(C0) exists. We consider the
distortion Tf = logit−1 ◦ f ◦ logit(x), with f(x) = a x + b, for some a > 0 and b ∈ R and the associated

distorted copula C̃Tf ,C0
, as in (4). It holds that

if λL(C0) exists, then λL(C̃Tf ,C0) = (λL(C0))a,

if λU (C0) exists, then λU (C̃Tf ,C0
) = 2− (2− λU (C0))a.

Proof: Since Tf =
(
1 + ( x

1−x )−a e−b
)−1

, then limx→0+
Tf (x)

xa = c, with c > 0. From Proposition 4.2

in Durante et al. (2010), λL(C̃Tf ,C0
) = (λL(C0))a. Furthermore, since Tf =

(
1 + ( x

1−x )−a e−b
)−1

,

then limx→1−
1−Tf (x)
(1−x)a = c, with c > 0. From Proposition 4.3 in Durante et al. (2010), we obtain that

λU (C̃Tf ,C0
) = 2− (2− λU (C0))a. Hence the result. 2

Remark 2 (Admissible values of slope a). Since λU (C̃Tf ,C0
) ∈ [0, 1], one can obtain from Proposition

2.6 that

a ∈
(

0, ln(2)
ln(2−λU (C0))

]
.

Then Proposition 2.6 restricts the range of values for the parameter a. In particular when the initial copula
C0 is the bivariate independent copula, this means that a ∈ (0, 1]. Obviously if a = 1, λU (C̃Tf ,C0

) =

λU (C0) and λL(C̃Tf ,C0) = λL(C0).

Remark 3. From Proposition 2.6, we prove that there exists a particular function that satisfies the
assumption of Propositions 4.2-4.3 in Durante et al. (2010), i.e. Tf = logit−1 ◦ f ◦ logit(x). Furthermore
we obtain the value of the link-coefficient between the initial and the distorted tail coefficient, i.e. the
slope a of the asymptote of the conversion function f . Finally Proposition 2.6 restricts the range of values
for the parameter a.

2.4 Tail dependence in distorted Ledford and Tawn’s model

Ledford and Tawn propose a multivariate extreme value threshold model for joint tail estimation which
overcomes the problems encountered with existing techniques when the variables are asymptotically
independent (e.g., see Ledford and Tawn (1996); Ledford and Tawn (1997)). They propose a very flexible
and broadly applicable model on the diagonal of the bivariate distribution such that:

P[Z1 > r, Z2 > r] ∼ L(r) r−
1
η , as r →∞, (7)

where Z1 and Z2 are two with unit Fréchet marginal distributions, η ∈ (0, 1] is a constant, and L(r)
is a slowly varying (SV) function, i.e. L(t r)/L(r) → 1, as r → ∞, for all fixed t > 0. We denote
F (r, r) = P[Z1 > r, Z2 > r].

The parameter η characterizes the nature of the tail dependence. It is a constant that effectively determi-
nes the decay rate of F (r, r), for large r. Since the marginal variables are standardized (unit Fréchet),
the parameter η provides a measure of the dependence between the marginal tails. Accordingly, Ledford
and Tawn (1996) termed η the coefficient of tail dependence. For example, the marginal variables Z1 and
Z2 are
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- asymptotically independent and positively associated, if 1
2 < η < 1,

- asymptotically independent and negatively associated, if 0 < η < 1
2 ,

- perfectly independent, if η = 1
2 and L(r) = 1,

- asymptotically dependent, if η = 1 and L(r) 9 0, r →∞,

- perfectly dependent, if η = 1 and L(r) = 1.

Proposition 2.7 (Logit-linear distorted Ledford and Tawn’s model). Let C0 the initial bivariate in-
dependent copula and Z1 and Z2 are two with unit Fréchet marginal distributions. We consider the
distortion Tf = logit−1 ◦ f ◦ logit(x), with f(x) = a x + b, for some a > 0 and b ∈ R. Following the

Ledford and Tawn’s model in (7), F (r, r) = C0(FZ1(r), FZ2(r)) ∼ r−2, i.e. η = 1
2 and L(r) = 1. Then

the externally distorted survival distribution

F̃ (r, r) = T ◦ C0(FZ1
(r), FZ2

(r)) (8)

also satisfies the Ledford and Tawn’s model in (7), with η̃ = η
a and L̃(r) = r2 a

1+e−b (r2−1)a .

Proof: Since

F̃ (r, r) = T ◦ C0(FZ1(r), FZ2(r)) = T ◦ ((1− e−
1
r ) · (1− e−

1
r )) =

1

1 +

( (
1−e−

1
r

)2

1−
(
1−e−

1
r

)2

)−a
e−b

,

for r large, since η = 1
2 , we obtain F̃ (r, r) ∼ L̃(r) r−2 a = L̃(r) r−1/η̃, where L̃(r) = r2 a

1+e−b (r2−1)a . Remark

that L̃(r) is a SV function. Hence the result. 2

Remark 4 (Discussion of possible asymptotic dependence structure using logit-linear distortions). In
the following we discuss the different dependence structures in the join tail that one can generate using
Equation (8). In particular, since C0 in Proposition 2.7 is the independent copula, from Remark 2, we
consider the admissible values of slope a, i.e. a ∈ (0, 1]. Then,

− If a = 1 and b = 0, trivially T ≡ Id, then L̃(r) = 1, η̃ = η = 1
2 and the distorted random variables are

again perfectly independent.

− If a = 1
2 and b 6= 0, then η̃ = 1 and L̃(r) → eb 6= 0, as r → ∞. Then the distorted random variables

are asymptotically dependent.

− If a = 1
2 and b = 0, then η̃ = 1 and L̃(r) = 1, the distorted random variables are perfectly dependent.

− If a ∈ ( 1
2 , 1), then η̃ ∈ ( 1

2 , 1) and the distorted random variables are asymptotically independent and
positively associated.

Remark that if a ∈ (0, 12 ), then η̃ > 1 and the Ledford and Tawn’s model is no more available.

Then, using Ledford and Tawn’s distorted model in (8), starting from an initial independent copula C0 and
a ∈ (0, 12 ], we obtain a dependence range from perfectly independence to perfectly positive dependence.

3 Auto-nested copulas

3.1 Definition and properties

In the following, we define auto-nested copula functions. We have chosen this terminology in reference
to the nested copulas (e.g., see Hofert and Pham (2012)). These functions will be build exclusively from
the diagonal of a copula. They will be essential for the non-parametric estimation of a distortion or the
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non-parametric estimation of an Archimedean copula generator.
Some assumptions are needed to build these functions. In particular, we will say that an Archimedean
copula satisfy regular conditions if for all u ∈ [0, 1], C(u, . . . , u) is a continuous and strictly increasing
function of u, and if its generator φ is such that lim

t→+∞
φ(t) = 0.

We first remark that the diagonal of an Archimedean copula is essential to describe the copula. Some
constructions of copulas starting from the diagonal section are given for example in Nelsen et al. (2008)
and Wysocki (2012).

Remark 5 (Identity of Archimedean copulas). Let C1 and C2 be two Archimedean copulas satisfying
regular conditions. The two copulas are identical if and only if

C1(u, ..., u) = C2(u, ..., u), for all u ∈ [0, 1].

Proof: From Lemma 1 of Wysocki (2012), we get the identity of generators and thus of the copulas. 2

Remark that the diagonal section of a copula C has several probabilistic interpretations; for instance
is the restriction to [0, 1] of the distribution function of max(U1, . . . , Un) whenever (U1, . . . , Un) is the
random vector distributed as C. The interested reader is referred to Nelsen et al. (2008).

Definition 3.1 (Discrete auto-nested copula). Consider a copula C satisfying regular conditions. The
discrete auto-nested copula of C at order k, k ∈ Z, is the function Ck such that for all u ∈ [0, 1], Ck(u) = Ck−1 ◦ C1(u), k ∈ N

C−k(u) = C−k+1 ◦ C−1(u), k ∈ N
C0(u) = u,

where C1(u) = C(u, . . . , u) and C−1 is the inverse function of C1, so that C1 ◦ C−1 is the identity function.

Discrete auto-nested copulas correspond to the k-fold composition of the diagonal section C1 of the copula
(see Wysocki (2012)). They are defined for k ∈ Z (hence justifying the prefix discrete). For a family of
discrete auto-nested copulas {Ck}k∈Z, one can easily check that for all j ∈ Z, k ∈ Z, for all u ∈ [0, 1],

Cj+k(u) = Cj ◦ Ck(u).

A function of a family satisfying this proposition for all j, k ∈ R will be called an extended auto-nested
copula, or simply an auto-nested copula. The following definition aims at defining the r-fold composition
of the diagonal section C1 of the copula when r ∈ R is not a relative integer.

Definition 3.2 (Auto-nested copulas). Functions of a family {Cr}r∈R are called (extended) auto-nested
copulas of a copula C, if Ck(u) is the discrete auto-nested copula of C at order k, for all k ∈ Z, and if
furthermore

Cr1+r2(u) = Cr1 ◦ Cr2(u), ∀ r1, r2 ∈ R, ∀u ∈ [0, 1].

The study of auto-nested copulas is thus relying on the study of a family of univariate functions. Extended
auto-nested copulas can be seen as cumulative distribution functions of some indexed random variables
X◦r, r ∈ R, distributed on [0, 1], such that for all r1, r2 ∈ R, for all x ∈ [0, 1],

P
[
X◦(r1+r2) ≤ x

]
= P [X◦r1 ≤ P [X◦r2 ≤ x]] ,

with P [X◦r1 ≤ x] = Cr(x), and in particular X◦0 uniformly distributed on [0, 1]. A further study of prop-
erties of such a family (moments, etc.) could bring some new enlightenments on copulas and multivariate
analysis.

Proposition 3.1 (Auto-nested copula of an Archimedean copula). If C is an Archimedean copula asso-
ciated with a generator φ, then the auto-nested copula of C at order r is

Cr(x) = φ(dr · φ−1(x)), r ∈ R.
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Proof: We notice that C1(u) = φ(d · φ−1(u)), so that C2(u) = C1 ◦ C1(u) = φ(d2 · φ−1(u)), and we can
show by induction that Ck(u) = φ(dk · φ−1(u)) for all k ∈ Z. For any r ∈ R, we can easily check that
setting Cr(x) = φ(dr · φ−1(x)) is a discrete auto-nested copula for any r ∈ Z, and that Cr1+r2 = Cr1 ◦ Cr2
for any r1, r2 ∈ R. 2

Remark 6 (Some expressions of auto-nested copulas). We give here some expressions of auto-nested
copulas for some classical copulas that will be considered in numerical illustrations

- If C is the independence copula of generator φ(t) = exp(−t), Cr(u) = u(d
r).

- If C is a Gumbel copula of generator φ(t) = exp(−t1/θ), Cr(u) = u(d(r/θ)), θ ≥ 1.

- If C is a Clayton copula of generator φ(t) = (1 + θt)−1/θ, Cr(u) = (1 + dr(t−θ − 1))−1/θ, θ ∈ R∗.
Proposition 3.2 (Interpolation of auto-nested copulas). Let C be an Archimedean copula with generator
φ. For any real r ∈ [k, k + 1], k ∈ Z, the auto-nested copula of C satisfies:

Cr(x) = φ
((
φ−1 ◦ Ck(x)

)1−α (
φ−1 ◦ Ck+1(x)

)α)
, x ∈ [0, 1],

with α = r − brc and k = brc, where brc denotes the integer part of r.

Proof: Consider an Archimedean copula C and the associated auto-nested copulas Cr, for r ∈ R. By
Proposition 3.1, Cr(x) = φ(dr · φ−1(x)). Define gr(x) = r ln d− lnφ−1 ◦ Cr(x). One can easily check that
for all r ∈ R, gr(x) = − lnφ−1(x) does not depend on r, so that in particular for any k1, k2 ∈ Z and
α ∈ [0, 1],

gr(x) = (1− α)gk1(x) + αgk2(x). (9)

When (1− α)k1 + αk2 = r, this is equivalent to

lnφ−1 ◦ Cr(x) = (1− α) lnφ−1 ◦ Ck1(x) + α lnφ−1 ◦ Ck2(x), (10)

and the result holds for any k1, k2 ∈ Z and α ∈ [0, 1] such that (1− α)k1 + αk2 = r.

In practice, the interpolation in Proposition 3.2 aims at being used even when gk(x) is not a constant
function of k (e.g. if gk is estimated, or if the copula is not Archimedean) or when φ is approximated.
For this reason we present it in the particular case where k1 = brc and k2 = brc + 1. The choice of
α = r − brc follows from the condition (1 − α)k1 + αk2 = r, and also ensures that interpolations (9)
and (10) are correct for any r ∈ Z, even if gr(x) is not a constant function of r. 2

Corollary 3.1 (Interpolation in the Gumbel or Independence case). If C is a Gumbel copula with
generator φ(t) = exp(−t1/θ), then Cr can be expressed as a function of Ck and Ck+1, and this function
does not depend on the parameter θ of the copula:

Cr(x) = exp
(
− (− ln Ck(x))

1−α
(− ln Ck+1(x))

α
)
, x ∈ [0, 1] ,

with α = r − brc and k = brc, where brc denotes the integer part of r. This result includes also the case
of the independent copula, i.e. the Gumbel copula with parameter θ = 1.

In a further estimation section we will use interpolation functions (see Section 4). The interpolation
functions satisfying interpolation properties of Proposition 3.2 or Corollary 3.1 will be called perfect
interpolation functions, as stated in the following definition.

Definition 3.3 (Perfect interpolation functions). Let C be an Archimedean copula with generator φ. A
function z is said to be a perfect interpolation function for the copula C if for all r ∈ R,

Cr(x) = z
((
z−1 ◦ Ck(x)

)1−α (
z−1 ◦ Ck+1(x)

)α)
, x ∈ [0, 1],

with α = r−brc and k = brc, where brc denotes the integer part of r. As an example, from Proposition 3.2,
z(x) = φ(x) and z(x) = φ(xa), a ∈ R∗ are perfect interpolation functions. If C is an Gumbel copula, from
Corollary 3.1, z(x) = exp(−x) is a perfect interpolation function which does not depend on the parameter
of the copula.
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3.2 Expression of distortions and generators using auto-nested copulas

Proposition 3.3 (All points of distortion T ). Let C be an initial Archimedean copula and C̃(u1, ..., u2) =
T ◦ C(T−1(u1), . . . , T−1(ud)) a distorted copula, C and C̃ satisfying regular conditions. Let Cr and C̃r,
r ∈ R, be the respective auto-nested copulas of C and C̃. If T (x0) = y0, then T (xr) = yr for all r ∈ R,
with {

xr = Cr(x0),

yr = C̃r(y0).

Proof: Denote by φ and φ̃ the respective generators of C and C̃, where C̃(u, ..., u) = T ◦
C(T−1(u), . . . , T−1(u)). If C is an Archimedean copula, then C̃r(u) = φ̃(drφ̃−1(u)). Since φ̃ = T ◦ φ, we
have C̃r(u) = T ◦ φ(drφ−1 ◦ T−1(u)), so that for all u ∈ [0, 1],

T−1 ◦ C̃r(u) = Cr ◦ T−1(u).

Then, setting u = y0, we get T−1 ◦ C̃r(y0) = Cr(x0) since T−1(y0) = x0, and T is passing trough the point
(Cr(x0), C̃r(y0)) for any r ∈ R. 2

Proposition 3.4 (Distortion T using auto-nested copulas). Consider Archimedean copulas C and C̃
satisfying regular conditions and the associated auto-nested copulas Cr and C̃r, r ∈ R. If T is defined by
T (0) = 0, T (1) = 1 and for all x ∈ (0, 1),

T (x) = C̃r(x)(y0),

with r(x) such that Cr(x)(x0) = x,

then the distorted copula using distortion T is equal to C̃: for all u1, . . . , ud,

C̃(u1, ..., ud) = T ◦ C(T−1(u1), . . . , T−1(ud)),

where (x0, y0) ∈ (0, 1)2 can be arbitrarily chosen. In the case where C is the independence copula,

r(x) =
1

ln d
ln

(
− lnx

− lnx0

)
,

Proof: From Proposition 3.3 and Remark 5 we get C̃(u, . . . , u) = C(u, . . . , u) for all u ∈ (0, 1), and the
result holds using Remark 5. 2

Proposition 3.5 (Generator φ̃ using auto-nested copulas). Consider an Archimedean copula C̃ satisfying
regular conditions, and the associated auto-nested copulas C̃r, for r ∈ R. Assume that the copula C̃ is
reachable by distorting an Archimedean copula C, and denote by Cr, r ∈ R, the auto-nested copulas of C
and by φ its generator. A generator φ̃ of C̃ is defined for all t ∈ R∗+ by

φ̃(t) = C̃ρ(t)(y0) ,

with ρ(t) such that Cρ(t)(x0) = φ(t) ,

where (x0, y0) ∈ (0, 1)2 can be arbitrarily chosen. In the particular case where C is the independent
copula, then

ρ(t) =
1

ln d
ln

(
t

− lnx0

)
Proof: Directly comes from Proposition 3.4 and from φ̃ = T ◦ φ. 2

In particular, the suitable generator φ̃ is passing through the points

{(tr, ϕr)}r∈R =
{

(φ−1 ◦ Cr(x0), C̃r(y0))
}
r∈R

.
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If C̃ is distorted from an independent copula, the suitable generator φ̃ is passing through the points

{(tr, ϕr)}r∈R =
{

(−dr lnx0, C̃r(y0))
}
r∈R

.

Furthermore, if C̃ is an independent copula, C̃1(u) = ud and C̃r(u) = u(d
r), so that we can easily retrieve

φ̃(t) = exp

(
−
(

ln y0
lnx0

)
t

)
,

which is an equivalent generator of the independence generator φ(t) = exp(−t).

4 Non-parametric estimation

4.1 Estimators of distortions and generators

We aim here at finding non-parametric estimators of a distorted copula, when non-parametric shape
is assumed for the associated generator. Starting from results of Section 3 for Archimedean families of
copulas, we provide some straightforward estimators and some convergence properties of these estimators.

In this section, we consider a copula C satisfying regular conditions. We assume that an estimator of
the diagonal of the copula C1(u) := C(u, . . . , u) and an estimator of the inverse function C−1 of C1 are

available. We denote respectively Ĉ1 and Ĉ−1 these estimators.

Remark that some possible consistent estimators for C1 and C−1 are available in the literature. De-

heuvels (1979) investigated the consistency of the empirical copula Ĉ and Deheuvels (1980) obtained the

exact law and the limiting process of
√
n(Ĉ − C) when the two margins are independent. Fermanian

et al. (2002) extended these results by proving the weak convergence of the process in a more general case.

In the following, we show how to build estimators of a whole family of auto-nested copulas {Cr}r∈R, using

these two estimators Ĉ1 and Ĉ−1.

Proposition 4.1 (Estimation of nested-copulas). Consider a copula C satisfying regular conditions. Let

Ĉ1 be an estimator of C1, and Ĉ−1 be an estimator of the inverse function C−1. An estimator of Ck can
be obtained for any k ∈ Z by setting

Ĉk(u) = Ĉk−1 ◦ Ĉ1(u), k ∈ N \ {0}
Ĉ−k(u) = Ĉ−k+1 ◦ Ĉ−1(u), k ∈ N \ {0}
Ĉ0(u) = u.

At any order r ∈ R, an estimator Ĉr of Cr is

Ĉr(x) = z

((
z−1 ◦ Ĉk(x)

)1−α (
z−1 ◦ Ĉk+1(x)

)α)
, x ∈ [0, 1],

with α = r−brc and k = brc, where brc denotes the integer part of r, and where z is a strictly monotone
function driving the interpolation, ideally the generator of the considered copula C or any other perfect
interpolation function (see Definition 3.3). In particular, z is such that for any x ∈ [0, 1], z(x) ≥ 0. Note
that several interpolation functions may lead to the same interpolation, e.g. z1(x) and z2(x) = z1(xα),
α ∈ R∗ are both involving the same interpolation. Such interpolators will be called equivalent interpolators.

This estimation is a plug-in estimation relying on Definition 3.1 and Proposition 3.2. The function z
drives the interpolation of Cr, for r ∈ R, knowing values of Ck, for k ∈ Z. If known, the best choice is
the generator φ of the copula C, i.e. z(x) = φ(x). Otherwise, the identity function z(x) = x (linear
interpolation) could be possible, for x ∈ [0, 1]. However we recommend, in case of positive dependence,
the interpolator z(x) = exp(−x), x ∈ (0, 1], since it is the best choice for any independence or Gumbel
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copula, whatever the parameter of the copula, as a consequence of Proposition 3.1. Another natural
choice could be any estimator of the generator of the copula. Finally, remark that this function z does
not change values of any Ck, for k ∈ Z. Then the global shape of Cr, as a function of r ∈ R, is not heavily
impacted by the choice of z.

Proposition 4.2 (Non-parametric estimation of a distortion T ). Consider two Archimedean copulas C
and C̃ satisfying regular conditions and their respective auto-nested copulas Cr and C̃r, for r ∈ R. Assume
that C̃ is the distorted copula using distortion T and initial copula C. Denote by Ĉr an estimator of C̃r,
for r ∈ R. A non-parametric estimator of T is defined by T (0) = 0, T (1) = 1 and for all x ∈ (0, 1) by

T̂ (x) = Ĉr(x)(y0),

with r(x) such that Cr(x)(x0) = x,

where (x0, y0) ∈ (0, 1)2 can be arbitrarily chosen. In the case where the initial copula C is the independence
copula, then

r(x) =
1

ln d
ln

(
− lnx

− lnx0

)
.

In particular, the estimator T̂ is passing through the points

{(xk, yk)}k∈Z =
{

(Ck(x0), Ĉk(y0))
}
k∈Z

.

Remark that no interpolation function z is needed to get (xk, yk), for k ∈ Z.

Proposition 4.3 (Non-parametric estimation of a generator φ̃). Consider an Archimedean copula C̃
satisfying regular conditions, and associated auto-nested copulas C̃r, for r ∈ R. Assume that the copula
C̃ is reachable by distorting a given initial Archimedean copula C with associated generator φ. Denote by
Cr the auto-nested copulas of C and by Ĉr the estimator of C̃r, for r ∈ R. A non-parametric estimator φ̂
of φ̃ is defined, for all t ∈ R+, by

φ̂(t) = Ĉρ(t)(y0) ,

with ρ(t) such that Cρ(t)(x0) = φ(t) ,

where (x0, y0) ∈ (0, 1)2 can be arbitrarily chosen. In the case where the initial copula C is the independence
copula, then

ρ(t) =
1

ln d
ln

(
t

− lnx0

)
.

In particular, the estimator φ̂ of φ̃ is passing through the points

{(tk, ϕk)}k∈Z =
{

(φ−1 ◦ Ck(x0), Ĉk(y0))
}
k∈Z

,

where φ is the given initial generator. Remark that no interpolation function z is needed to get (tk, ϕk),
for k ∈ Z.

For a given Archimedean copula, there is a whole family of equivalent generators leading to this copula.
As stated in Proposition 2.2, generators φ1(t) and φ2(t) = φ1(a t) lead to the same copula function,
whatever the choice of a > 0. Then two different generators, φ1 and φ2, which lead to the same copula
may have very different graphical shapes, so that a graphical comparison of these generators would have
no sense. For these reasons, in Remark 7, we give formulas in order to force a generator to pass through
an arbitrarily chosen point (t0, ϕ0). After this “standardization procedure” we will able to graphically
compare different generators.

Remark 7 (Equivalent estimated generator passing through (t0, ϕ0)). If one chooses{
x0 = exp(−t0),
y0 = ϕ0,

then the estimator of the generator φ̃ in Proposition 4.3 is such that φ̃(t0) = ϕ0.
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Remark 8 (Equivalent theoretical generator passing through (t0, ϕ0)). Let (t0, ϕ0) ∈ R∗ × (0, 1). Let φ
be a generator of an Archimedean copula. If one set for all t ∈ R

φ̄(t) = φ(at) with a =
φ−1(ϕ0)

t0

then φ̄ is an equivalent generator of φ such that φ̄(t0) = ϕ0. This equation is equivalent to φ̄(t) = Cr(t)(ϕ0),

with r(t) such that dr(t) = t/t0.

As an example, we give here some standardized generators passing trough a given point (t0, ϕ0):

- Standardized Gumbel generator: φ̄(t) = ϕ
(t/t0)

1/θ

0 , θ ≥ 1. If (t0, ϕ0) = (1, e−1), φ̄(t) = exp(−t1/θ).

- Standardized independence generator: φ̄(t) = ϕ
(t/t0)
0 . If (t0, ϕ0) = (1, e−1), φ̄(t) = exp(−t).

- Standardized Clayton generator: φ̄(t) =
(

1 + (ϕ−θ0 − 1) tt0

)−1/θ
, θ ∈ R∗. If (t0, ϕ0) = (1, e−1),

φ̄(t) =
(
1 + (eθ − 1)t

)−1/θ
.

Exact analytical formulas for standardized generators, their inverses and theoretical auto-nested copulas
Cr, in the case of most popular Archimedean families of copulas, are postponed in the Annex.
In numerical applications (see Section 4.3) we will consider generators passing through (t0, ϕ0) = (1, e−1).
Applying Remark 7, this corresponds to x0 = y0 = e−1. In this case, applying Remark 8, standardized
independence and Gumbel generators correspond to the usual Gumbel-generator (see Nelsen (1999)), and

standardized Clayton generator becomes φ̄(t) =
(
1 + (eθ − 1)t

)−1/θ
which is an equivalent generator of

the usual generator φ(t) = (1 + θt)
−1/θ

.

4.2 Confidence bands

In this section our goal is to quantify the estimation error of the estimated generator φ̂ in terms of the
error of the estimation of Ĉ1. To this aim, we proceed in the following way. Firstly, we assume to be
able to quantify the estimation error of Ĉ1 (see Assumption 4.1). From this assumption we derive the

estimation error on any Ĉr(u), for r ∈ R (see Proposition 4.4). Finally, we use this last result to control

the estimation error of φ̂ (see Proposition 4.5). Illustrations of these results, in the particular case of a
Gumbel copula, are postponed in the numerical illustrations section (see Section 4.3).

So, we consider the following assumption on the estimation error of Ĉ1.

Assumption 4.1 (Estimation error on Ĉ1). For a copula C̃ satisfying regular conditions, denote C̃(u) =

C̃1(u) = C̃(u, . . . , u) and Ĉ(u) = Ĉ1(u) an estimator of C̃. There exists two nonnegative reals ε− and ε+

and a continuous and strictly monotone function h, from [0, 1] to X ⊂ R, such that for any u ∈ [0, 1],

h−1 ◦ Lε− ◦ h ◦ C̃(u) ≤ Ĉ(u) ≤ h−1 ◦ Lε+ ◦ h ◦ C̃(u), (11)

where Lε(u) = εu.

This kind of assumption allows a large variety of bounding of the quantity Ĉ(u), for example:

- h(x) = ln(x) leads to assuming C̃(u)ε
− ≤ Ĉ(u) ≤ C̃(u)ε

+

, where obviously ε+ ≤ 1 ≤ ε−.

- h(x) = x leads to assuming C̃(u) · ε− ≤ Ĉ(u) ≤ C̃(u) · ε+, where obviously ε− ≤ 1 ≤ ε+.

- h(x) = exp(x) leads to assuming C̃(u) + ln ε− ≤ Ĉ(u) ≤ C̃(u) + ln ε+, where obviously ε− ≤ 1 ≤ ε+.

Since this assumption may not be fulfilled in every possible situation, we consider in the following the
probability that this assumption is fulfilled.
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Proposition 4.4 (Estimation error on Ĉr, for r ∈ R+). Consider a copula C̃ with generator φ̃, satisfying

regular conditions. Denote by Ĉ an estimator of C̃. Denote by C̃r (resp. Ĉr) the auto-nested copula of C̃
(resp. Ĉ). Assume that Ĉr is interpolated with a perfect interpolation function in Proposition 4.1. If the

probability that Ĉ satisfies Assumption 4.1, for the function h = φ̃−1, is greater than a given threshold
η ∈ [0, 1], i.e., if there exists reals δ− and δ+ such that

P
[
C̃δ− ◦ C̃(u) ≤ Ĉ(u) ≤ C̃δ+ ◦ C̃(u), ∀u ∈ [0, 1]

]
≥ η, (12)

then it holds for any r ∈ R+ that

P
[
C̃rδ− ◦ C̃r(u) ≤ Ĉr(u) ≤ C̃rδ+ ◦ C̃r(u), ∀u ∈ [0, 1]

]
≥ η. (13)

Proof: Assume that there exists a real ε and such that for all u ∈ [0, 1],

Ĉ(u) ≤ h−1 ◦ Lε ◦ h ◦ C̃(u) . (14)

By Proposition 3.1, C̃(u) = φ̃ ◦ Ld ◦ φ̃−1(u), with Ld(u) = d · u. It follows

Ĉ(u) ≤ h−1 ◦ Lε ◦ h ◦ φ̃ ◦ Ld ◦ φ̃−1(u) ,

and in the case where h = φ̃−1,
Ĉ(u) ≤ φ̃ ◦ Lε·d ◦ φ̃−1(u) .

Since Equation (14) holds for any u ∈ [0, 1] then in particular for u = Ĉ(u1)

Ĉ ◦ Ĉ(u1) ≤ φ̃ ◦ Lε·d ◦ φ̃−1 ◦ Ĉ(u1) ≤ φ̃ ◦ L(ε·d)2 ◦ φ̃−1(u1) .

And, by induction for any k ∈ N∗,

Ĉk(uk) ≤ φ̃ ◦ L(ε·d)k ◦ φ̃−1(uk)

holds for any value uk such that Ĉk(uk) = u with u ∈ [0, 1], that is for all uk ∈ [0, 1]. Then[
Ĉ(u) ≤ φ̃ ◦ Lε ◦ φ̃−1 ◦ C̃(u), ∀u ∈ [0, 1]

]
=⇒

[
Ĉk(u) ≤ φ̃ ◦ L(ε·d)k ◦ φ̃−1(u), ∀u ∈ [0, 1]

]
. (15)

Setting δ+ such that dδ
+

= ε, from Proposition 3.1, we obtain φ̃ ◦ L(dδ+ ·d)k ◦ φ̃
−1(u) = C̃kδ++k and[

Ĉ(u) ≤ C̃δ+ ◦ C̃(u), ∀u ∈ [0, 1]
]

=⇒
[
Ĉk(u) ≤ C̃kδ+ ◦ C̃k(u), ∀u ∈ [0, 1]

]
. (16)

Proceeding the same way for both inequalities, checking the result is obvious when k = 0, result in
(16) holds for any k ∈ N. Now assume that z(x) is a perfect interpolation function (see Definition 3.3),

z(x) and φ̃(x) are equivalent interpolation functions, and both Ĉr and C̃r are interpolated with the same
interpolation function. Without loss of generality, assume z(x) and z−1(x) are decreasing functions of x
(would they be increasing, there exists decreasing equivalent interpolation functions). Assume now that

for any k ∈ N, and for all u ∈ [0, 1], C̃kδ− ◦ C̃k(u) ≤ Ĉk(u) ≤ C̃kδ+ ◦ C̃k(u). Since Cr and C̃r are interpolated
by the same perfect interpolation function z(x), then for any α ∈ [0, 1], recalling z−1(x) ≥ 0 for any
x ∈ [0, 1] as in Proposition 4.1,(

z−1 ◦ C̃kδ− ◦ C̃k(u)
)1−α

≥
(
z−1 ◦ Ĉk(u)

)1−α
≥
(
z−1 ◦ C̃kδ+ ◦ C̃k(u)

)1−α
(
z−1 ◦ C̃(k+1)δ− ◦ C̃k+1(u)

)α
≥
(
z−1 ◦ Ĉk+1(u)

)α
≥
(
z−1 ◦ C̃(k+1)δ+ ◦ C̃k+1(u)

)α
By Proposition 3.2, we get for any δ ∈ R, as in the proof of Proposition 3.2, if (1− α)k + α(k + 1) = r,

z

((
z−1 ◦ C̃kδ+k(u)

)1−α (
z−1 ◦ C̃(k+1)δ+k+1(u)

)α)
= C̃(1−α)(kδ+k)+α((k+1)δ+k+1)(u) = C̃rδ+r(u) . (17)
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Finally, setting k = brc, and since z is assumed to be decreasing, we get

C̃rδ− ◦ C̃r(u) ≤ Ĉr(u) ≤ C̃rδ+ ◦ C̃r(u)

and the result holds. If z(x) is not an equivalent interpolator as φ̃, one easily check that the result still
holds for integer values r ∈ N. 2

From Proposition 4.4, if all values of Ĉ(u), u ∈ [0, 1] are in a confidence band with a given confidence

level η (see (15)), then all values of Ĉr(u), u ∈ [0, 1] will be in a (larger) confidence band (see (16)), for
r ∈ R+.

These last results may be extended to the case where r ∈ Z− or r ∈ R− starting from a bounding
assumption for Ĉ−1. For the sake of simplicity, these extensions are omitted here. Using Proposition 4.4,

we quantify in the following result the error for the estimated generator φ̂.

Proposition 4.5 (Estimation error on φ̂). Assume that the interpolation function z(x) in Proposition 4.1
is a perfect interpolation function (as defined in Definition 3.3). If there exists some constants δ−, δ+,
γ−, γ+ such that P

[
C̃δ− ◦ C̃(u) ≤ Ĉ(u) ≤ C̃δ+ ◦ C̃(u), ∀u ∈ [0, 1]

]
≥ η,

P
[
C̃γ− ◦ C̃−1(u) ≤ Ĉ−1(u) ≤ C̃γ+ ◦ C̃−1(u), ∀u ∈ [0, 1]

]
≥ η,

(18)

then  P
[
C̃ρ(t)δ− ◦ φ̃(t) ≤ φ̂(t) ≤ C̃ρ(t)δ+ ◦ φ̃(t)

]
≥ η, if ρ(t) ≥ 0 ,

P
[
C̃ρ(t)γ− ◦ φ̃(t) ≤ φ̂(t) ≤ C̃ρ(t)γ+ ◦ φ̃(t)

]
≥ η, if ρ(t) < 0 ,

(19)

with ρ(t) such that Cρ(t)(x0) = φ(t), with φ(t) the generator of the initial non-distorted copula and Cr the
auto-nested copulas of the initial copula. In the case where the initial copula is the independence copula,
and if x0 = y0 = exp(−1), we get ρ(t) = ln t/ ln d.

Proof: As a direct consequence of the Equation (16) in the proof of Proposition 4.4, in all cases where

C̃δ− ◦ C̃(u) ≤ Ĉ(u) ≤ C̃δ+ ◦ C̃(u), ∀u ∈ [0, 1], we get C̃kδ− ◦ C̃k(u) ≤ Ĉk(u) ≤ C̃kδ+ ◦ C̃k(u), ∀u ∈ [0, 1]. We
can show that the same property holds for k ∈ R+. If ρ(t) > 0, then in particular for k = ρ(t) and u = y0,

we show that C̃δ− ◦ C̃(u) ≤ Ĉ(u) ≤ C̃δ+ ◦ C̃(u), ∀u ∈ [0, 1] implies C̃ρ(t)δ− ◦ φ̃(t) ≤ φ̂(t) ≤ C̃ρ(t)δ+ ◦ φ̃(t).
Proceeding the same way when ρ(t) < 0, we get the final result. 2

Remark 9. Remark that if in Proposition 4.5, the condition on the interpolation function z does not
hold, the result is still available for any t such that ρ(t) ∈ Z.

This last property gives direct confidence bounds for φ̂, depending on some constants δ− , δ+, γ−, γ+.
One should notice that if the distribution of the process {Ĉ(u)}0≤u≤1 is known, and if the family of
targeted copula is known, then δ− and δ+ can be computed at least numerically, e.g. by simulating
paths of the process {Ĉ(u)}0≤u≤1. If the family of targeted copulas is unknown, constants δ− and δ+

and final confidence bounds can be estimated by replacing C̃r, r ∈ R, by their estimators. For example
using results of Deheuvels (1980) and Fermanian et al. (2002), i.e. using the law and the limiting process

of
√
n(Ĉ − C̃), one can get suitable constants δ−, δ+ and γ−, γ+ for a given confidence level η, and thus

confidence bounds for φ̂.
In the following, we apply Proposition 4.5 in the case of a Gumbel copula.

Corollary 4.1 (Estimation errors in the Gumbel case). Consider a Gumbel copula C̃ with generator
φ̃(t) = exp(−t1/θ), and set z(x) = exp(−x) as interpolation function. We take as initial non-distorted
copula the independent copula, and x0 = y0 = exp(−1). If there exist some reals α−, α+, β−, β+ such

that Ĉ1 and Ĉ−1 satisfies
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P
[
C̃(u)α

−
≤ Ĉ(u) ≤ C̃(u)α

+

, ∀u ∈ [0, 1]
]
≥ η ,

and

P
[
C̃−1(u)β

−
≤ Ĉ−1(u) ≤ C̃−1(u)β

+

, ∀u ∈ [0, 1]
]
≥ η ,

then this implies the following bounding for φ̂,

P
[
φ̃(t)

(
tλ

−)
≤ φ̂(t) ≤ φ̃(t)

(
tλ

+
)]
≥ η , if t ≥ 1 , (20)

and

P
[
φ̃(t)

(
tµ

−)
≤ φ̂(t) ≤ φ̃(t)

(
tµ

+
)]
≥ η , if t < 1 , (21)

with λ− = lnα−

ln d , λ+ = lnα+

ln d and with µ− = ln β−

ln d , µ+ = ln β+

ln d .

Proof: By direct application of Proposition 4.4, setting α− = d(δ
−/θ) and α+ = d(δ

+/θ), and using

Remark 6, that gives in the Gumbel case C̃r(u) = u(d
(r/θ)), we obtain (e.g. when k > 0)

P
[
C̃k(u)(α

−)
k

≤ Ĉk(u) ≤ C̃k(u)(α
+)
k

, ∀u ∈ [0, 1]
]
≥ η, k ∈ N. (22)

The bounding on φ̂ holds by application of Proposition 4.5. In the case where C is an independent copula

and x0 = y0 = e−1, ρ(t) = ln t/ ln d, so that Cρ(t)δ+ = u(t
δ+/θ), and tδ

+/θ = tlnα
+/ ln d. Hence the result. 2

As expected, there is no uncertainty when t is in a neighbourhood of t0 = 1, since distortions are here
chosen such that (x0, y0) = e−1, implying that φ(t0) = ϕ0 with (t0, ϕ0) = (1, e−1).

4.3 Numerical illustrations

In this section we provide some numerical illustrations of the proposed non-parametric estimation pro-
cedure for the distortion T (Proposition 4.2) and the generator φ̃ (Proposition 4.3). The impact of the
choice of the function z driving the interpolation is also analyzed (see Proposition 4.1). In this section,
we will estimate the diagonal of the copula C1(u) := C(u, . . . , u) and its inverse function C−1 using the

consistent empirical copula Ĉ in Deheuvels (1979).

Firstly, using Proposition 4.3, we illustrate the finite sample properties of the non-parametric estimation
of the generator for an Archimedean copula. We take the independence initial copula C. Then φ̂(t) =

Ĉρ(t)(y0) where ρ(t) = 1
ln d ln

(
t

− ln x0

)
and d is the dimension of the problem. We have chosen here

x0 = y0 = e−1, and in this case

φ̂(t) = Ĉ(ln t/ ln d)(e−1).

The values of Ĉr, r ∈ R are interpolated from values of Ĉk, k ∈ Z. As a consequence, in the dimension
d = 2, for t ∈ [1000−1, 1000], φ̂(t) does only depend on Ĉk, with k ∈ {−10, . . . , 10}. For t ∈ [30−1, 30],

φ̂(t) does only depend on Ĉk, with k ∈ {−5, . . . , 5}. In practice, we thus only need to compute values of

Ĉk for a small range of values of k.
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4.3.1 Simulated data illustration

In Figure 1, we generate two bivariate samples of size n = 150 and n = 1500 from a Gumbel cop-
ula with parameter θ = 3 and we drawn the estimated generator on these two different samples. We
compare the obtained φ̂(t) with the theoretical standardized Gumbel-generator, i.e., φ̄(t) = exp(−t1/θ),
since (t0, ϕ0) = (1, e−1). In this case, we take as function z driving the interpolation, z(x) = exp(−x),
x ∈ (0, 1], since it is the best choice for any independence or Gumbel copula, whatever the parameter of
the copula, as a consequence of Proposition 3.1.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated and theoretical generator − Gumbel case  

t

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated and theoretical generator − Gumbel case  

t

Figure 1: Estimated versus theoretical Gumbel-generator with parameter θ = 3. Size of simulated samples
n = 150 (left) and n = 1500 (right). Estimated φ̂(t) = Ĉρ(t)(y0) as in Proposition 4.3 (full line). The

theoretical standardized Gumbel-generator, i.e., φ̄(t) = exp(−t1/θ), is drawn using a dashed line. We
force the generators to pass through the point (t0, ϕ0) = (1, e−1) (black point).

Analogously, in Figure 2, we generate two sample of size n = 150 and n = 1500 from a Clayton copula
with parameter θ = 6 and we drawn the obtained φ̂(t). We compare the obtained φ̂(t) with the theoretical

standardized Clayton-generator, i.e., φ̄(t) =
(
1 + (eθ − 1)t

)−1/θ
, since (t0, ϕ0) = (1, e−1). Also in this

case we take as interpolation function z(x) = exp(−x), x ∈ (0, 1].

Since in these estimations we use the consistent empirical copula Ĉ in Deheuvels (1979), then, as expec-
ted, the greater n is, the better the estimations are (see in Figures 1-2 the quality of the estimation in
the plots on the right-hand, for n = 150, with respect to that on the left-hand, for n = 1500).

Following Proposition 4.2, in Figure 3 we drawn the non-parametric estimation for the distortion T

starting from the independence initial copula C, i.e. T̂ (x) = Ĉr(x)(y0), with r(x) = 1
ln d ln

(
− ln x
− ln x0

)
. We

choose x0 = y0 = 0.5. We generate two samples of size n = 1500 from a Clayton (Figure 3, right) and
a Gumbel (Figure 3, left) copula with different parameters θ. In both cases we take as interpolation
function z(x) = exp(−x), x ∈ (0, 1].

In Figures 4-5 we provide an illustration of the estimation of a nested-copula (see Proposition 4.1). In
Figure 4 (resp. Figure 5) we generate a sample of size n = 1500 from a Clayton (resp. Gumbel) copula
with parameter θ = 6 (resp. θ = 3). We consider k = −3,−2,−1, 0, 1, 2, 3 and we estimate the auto-

nested copula Ĉk(u), for u ∈ [0, 1].

In order to evaluate the impact of the interpolation function z in the evaluation of Ĉr, r ∈ R, we define
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Figure 2: Estimated versus theoretical Clayton-generator with parameter θ = 6. Size of simulated samples
n = 150 (left) and n = 1500 (right). Estimated φ̂(t) = Ĉρ(t)(y0) as in Proposition 4.3 (full line). The

theoretical standardized Clayton-generator, i.e., φ̄(t) =
(
1 + (eθ − 1)t

)−1/θ
, is drawn using a dashed line.

We force the generators to pass through the point (t0, ϕ0) = (1, e−1) (black point).
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Figure 3: Non-parametric T̂ (x) as in Proposition 4.2 estimated on a sample of size n = 1500. (Left)
Clayton-case with parameter θ = 1 (black line), θ = 6 (blue right), θ = 10 (green line). (Right) Gumbel-
case with parameter θ = 3 (black line), θ = 6 (blue right), θ = 10 (green line). The red line represents
the bisectrix of the quadrant.

the theoretical auto-nested copula using a (possibly wrong) interpolator z as

Czr (x) = z
((
z−1 ◦ Ck(x)

)1−α (
z−1 ◦ Ck+1(x)

)α)
, x ∈ [0, 1] (23)

where k = brc and α = r − brc.
In Figure 6 we analyse the impact of the choice of the function z. Indeed this function drives the
interpolation of Cr, for r ∈ R, knowing values of Ck, for k ∈ Z (see Proposition 4.1). By Proposition 3.2,
if known, the best choice for z is the generator φ of the copula C.
However we illustrate the error obtained by using another interpolation function. In particular, we denote

- CIdr theoretical auto-nested copula in (23) where z is the identity function z(x) = x (linear interpolator),

- CGu
r theoretical auto-nested copula in (23) where z(x) = exp(−x) (Gumbel interpolator),
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Figure 4: Estimation of auto-nested copula Ĉk(u) as in Proposition 4.1 in the Clayton-case with parameter

θ = 6 for k = −3,−2,−1, 0, 1, 2, 3. The estimated Ĉk(u) are represented using full lines, the theoretical
one’s using dotted lines. The black upper curve corresponds to k = −3, the yellow lower curve to k = 3.

- CCl
r theoretical auto-nested copula in (23) where z(x) =

(
1 + (eθ − 1)x

)−1/θ
(Clayton interpolator).

In Figure 6 we consider a Clayton copula with parameter θ = 1. In this case, by Proposition 3.2, the
true theoretical auto-nested copulas in (23) are Czr = CCl

r , for r ∈ R. We drawn the theoretical errors
| CCl

r (u) − CIdr (u) | (Figure 6, left) and | CCl
r (u) − CGu

r (u) | (Figure 6, right), for u = 0.5, as a function
of r ∈ [−15, 15]. Trivially for r = k ∈ N the error is null since there is no interpolation procedure. For
r ∈ R \ N this error is not zero but however it is really small (< 0.01). In all cases, the induced relative
error is less than 1.5%.

As a consequence, there are no visual differences in graphical representations of φ̂ if using an interpolator
or another (and such figures are omitted here). It should be noticed that, even if interpolation error is

small, it can be easily reduced, if necessary, by replacing z by a previous estimation of φ̂ at a step ν, then
giving an estimation of φ̂ at a step ν + 1, ν ∈ N.

At last, we are looking for theoretical confidence bands for the estimated generator, in the Gumbel case,
as detailed in Corollary 4.1. Let C̃ be a Gumbel copula of parameter θ = 2. Corresponding estimators Ĉ1
and Ĉ−1 were build as previously, using a bivariate sample of size n = 2000. We just aim here at showing
the shape of the confidence bands, so that we did not estimate constants α−, α+, β−, β+ such that

 P
[
C̃(u)α

− ≤ Ĉ(u) ≤ C̃(u)α
+

, ∀u ∈ [0, 1]
]
≥ η ,

P
[
C̃−1(u)β

− ≤ Ĉ−1(u) ≤ C̃−1(u)β
+

, ∀u ∈ [0, 1]
]
≥ η ,

We have chosen for these constants some values α− = 1.05, α+ = 0.9, β− = 1.05, β+ = 0.9. For these
chosen constants, the confidence bands for Ĉ and Ĉ−1 are given in Figure 7 (left). This figure gives one

path of Ĉ(u) (resp. for Ĉ−1 ) and band [C(u)α
−
, C(u)α

+

] (resp. [C−1(u)α
−
, C−1(u)α

+

]) for chosen constants

α− and α+ (resp. β− and β+). The resulting theoretical confidence bands for φ̂ using Equations (20)

and (21) are given in Figure 7 (right). Obviously, the confidence band around φ̂(t) gets narrow when t is
close to t0 = 1, since φ̃(t) is the chosen equivalent generator passing through (t0, ϕ0) = (1, e−1).
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Figure 5: Estimation of auto-nested copula Ĉk(u) as in Proposition 4.1 in the Gumbel-case with parameter

θ = 3 for k = −3,−2,−1, 0, 1, 2, 3. The estimated Ĉk(u) are represented using full lines, the theoretical
one’s using dotted lines. The black upper curve corresponds to k = −3, the yellow lower curve to k = 3.
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Figure 6: Theoretical errors | CCl
r (u) − CIdr (u) | (left) and | CCl

r (u) − CGu
r (u) | (right), for u = 0.5, as a

function of r ∈ [−15, 15]. For r = k ∈ N the error is null (red points) since there is no interpolation
procedure.

4.3.2 Real data illustration

We now propose the non-parametric estimation φ̂(t) using two real-data set (see Proposition 4.3). Firstly,
we consider the Loss-ALAE data (for details see Frees and Valdez (1998)). The data size is n = 1500.
Each claim consists of an indemnity payment (the loss, X) and an allocated loss adjustment expense
(ALAE, Y ). Examples of ALAE are the fees paid to outside attorneys, experts, and investigators used
to defend claims.
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Figure 7: (Left) Confidence bands for Ĉ1 and Ĉ−1 for chosen parameters α− = β− = 1.05, α+ = β+ = 0.9.

(Right) Resulting confidence band for φ̂. C̃ is a Gumbel copula of parameter θ = 2, the size of generated
sample is n = 2000.

We take the independence initial copula C, x0 = y0 = e−1 and z(x) = exp(−x) (Gumbel interpolator).

The obtained non-parametric generator φ̂(t) is represented in Figure 8 (left). Different authors, in the
recent literature, agree that a satisfying fit on these data can be represented by the Gumbel-Hougaard
copula with parameter θ = 1.453 (see for instance Frees and Valdez (1998) and Genest et al. (2009)).
Then the standardized Gumbel generator with parameter θ = 1.453 is also represented in Figure 8 in
order to exhibit the quality of our non-parametric estimation.

Secondly, we consider a subset of the Framingham Heart study data (http://www.framingham.com/heart/).
We focus on the dependence structure underlying the diastolic (DBP) and the systolic (SBP) blood pres-
sures (in mm Hg) measured on 663 male subjects at their first visit (see Qu and Yin (2012)). Lambert
(2007) proposed a ratio approximation of the Archimedean copula generator and he found that the Gum-
bel copula was appropriate for this data without being fully satisfactory. The estimated parameter of
this Gumbel copula, θ = 2.11, is given in Qu and Yin (2012). Then, in Figure 8 (right), we represent

our estimation φ̂(t) and the standardized Gumbel generator with parameter θ = 2.11. As we can see the
non-parametric generator has a different form (in particular a different concavity) with respect to the
analytical function φ(t) = exp(− t

2.11 ).

Conclusions

We describe some properties on distortions of Archimedean copulas, among which the characterization of
an equivalence class for both distortions and generators. This characterization is necessary to build dis-
tortions and generators as function of what we call auto-nested copulas functions. Using their properties
we propose a non-parametric estimator for the auto-nested copula functions, as well as for the distortions
and the generators. This estimation is straightforward and does not rely on any optimization procedure.
Then we can easily get convergence properties of such estimates. Numerical illustrations showed the
simplicity of these estimators, the good fit to theoretical values in simulated example, the good fit to
literature parametric adjustments in real-data problems. Furthermore, in the present work we start the
investigation of the tail behavior of distorted Archimedean copulas. We prove some results that may be
understood as constraints relying on the distortions, in order to obtain some desired tail coefficients for
example. Such a study may help developing a further work on the estimation of the distortions around
values 0 and 1, corresponding to extreme quantiles of the distorted distribution.

Some perspectives are the following ones: using results in Di Bernardino and Rullière (2013), we can

22



0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated generator for Loss−ALAE data

t

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated generator for Framingham Heart study data

t

Figure 8: Non-parametric estimation of φ̂(t). (Left) Loss-ALAE data (black dotted line) and standardized
Gumbel generator with parameter θ = 1.453 (red line). (Right) Framingham Heart study data (black
dotted line) standardized Gumbel generator with parameter θ = 2.11 (red line). We force the generators
to pass through the point (t0, ϕ0) = (1, e−1) (black point).

get easily a whole parametric copula estimation, with a tunable number of parameters and without op-
timization procedures. The simplicity of the estimators may help the construction of nested copulas or
to obtain complex dependence structures with many parameters. Such development may also ease the
inversion and smoothing of the empirical copula as well as its tail estimation. At last, the measure of the
goodness of fit and the construction of specific tests, based on the non-parametric estimated generator of
a copula, are interesting perspectives.
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Annex

In this Annex we give the analytical formulas for standardized generators (φ̄(t)), their inverses (φ̄−1(t))
and theoretical auto-nested copulas (Cr), in the case of most popular Archimedean families of copulas.

In Table 1 we present some classical generators and their associated inverses (see Equation (1)), well
known in the literature (see for instance Nelsen (1999)).

Copula φ(t) φ−1(t) parameter θ

Ali-Mikhail-Haq 1−θ
exp(t)−θ ln

(
1−θ+θt

t

)
θ ∈ [0, 1)

Clayton (1 + θt)
−1/θ 1

θ (t−θ − 1) θ ∈ (0,∞)

Frank − 1
θ ln(1− (1− exp(−θ))e−t) − ln

(
exp(−θt)−1
exp(−θ)−1

)
θ ∈ (0,∞)

Gumbel exp
(
−t1/θ

)
(− ln(t))

θ
θ ∈ [1,∞)

Independence exp (−t) (− ln(t)) none

Joe 1− (1− exp(−t))1/θ − ln
(
1− (1− t)θ

)
θ ∈ [1,∞)

Table 1: Classical generators and their associated inverses in the case of most popular Archimedean
families of copulas.

Following Remarks 7 and 8, we give in Table 2 the equivalent theoretical generators associated to those
presented in Table 1 and the associated inverses. In particular, let (t0, ϕ0) ∈ R∗+ × (0, 1) and φ be a
classical generator of an Archimedean copula as in Table 1. Then the standardized generator φ̄ is an
equivalent generator of φ such that φ̄(t0) = ϕ0. We remark that :

C(u1, . . . , ud) = φ̄
(
φ̄−1(u1) + . . .+ φ̄−1(ud)

)
,

for all (t0, ϕ0) ∈ R+∗ × (0, 1).

In Table 2 we also provide the expressions for the theoretical auto-nested copulas Cr(u), for r ∈ R and
u ∈ (0, 1). Remark that C0(u) = u.

Copula Cr(u) φ̄(t) φ̄−1(t)

Ali-Mikhail-Haq
θ ∈ [0, 1)

1−θ
( 1−θ+θu

u )
(dr)−θ

1−θ(
1−θ+θϕ0

ϕ0

)t/t0−θ t0
ln( 1−θ+θt

t )
ln
(

1−θ+θϕ0
ϕ0

)
Clayton
θ ∈ (0,∞)

(
1 + dr

(
u−θ − 1

))−1/θ (
1 + t

t0

(
ϕ−θ0 − 1

))−1/θ
t0

(
t−θ−1
ϕ−θ

0 −1

)
Frank

θ ∈ (0,∞)
− 1
θ ln

((
1− e−θ

) (
e−θu−1
e−θ−1

)dr)
− 1
θ ln

((
1− e−θ

) (
e−θϕ0−1
e−θ−1

)t/t0)
t0

ln( 1−exp(−θt)
1−exp(−θ) )

ln
(

1−exp(−θϕ0)

1−exp(−θ)

)
Gumbel
θ ∈ [1,∞)

u(d(r/θ)) ϕ
((t/t0)1/θ)
0 t0

(
ln t
lnϕ0

)θ
Independence u(d

r) ϕ
(t/t0)
0 t0

ln t
lnϕ0

Joe
θ ∈ [1,∞)

1− (1− (1− (1− u)θ)(d
r))1/θ 1− (1− (1− (1− ϕ0)θ)t/t0)1/θ t0

ln(1−(1−t)θ)
ln(1−(1−ϕ0)θ)

Table 2: Standardized generators φ̄, such that φ̄(t0) = ϕ0, their associated inverses and theoretical
auto-nested copulas in the case of most popular Archimedean families of copulas.
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