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Abstract 

 
This paper deals with the analytical computation of the magnetic field distribution in a wholly superconducting 

reluctance motor. The rotor is made with high temperature superconductor bulks which nearly present a diamagnetic behavior 
under zero-field cooling. The stator consists of superconducting armature windings fed by AC currents of high amplitude. 
The superconducting stator winding can generate a high rotating magnetic field without the need of ferromagnetic material in 
the rotor. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the 
superconducting stator windings and the variable reluctance due to the superconducting bulks. The proposed analytical 
method is based on the resolution of Laplace’s equation (by the separation of variables method) for each sub-domain, i.e. 
rotor shaft, holes between superconducting bulks and air-gap. The global solution is obtained using boundary and continuity 
conditions. Magnetic field distribution and electromagnetic torque obtained by the analytical method are compared with those 
obtained from finite element analyses. 
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1. Introduction 

 
High temperature superconducting (HTS) materials can be used in various types of electrical devices like 

motors and generators which represent an important part of the superconducting applications [15]. Among them, 
Superconducting Synchronous Reluctance Motors (ScSynRM) are studied and tested by different authors as, 
Chu and Torii [5], Kovalev et al. [9], Malé et al. [12], and Oswald et al. [14]. 

Conventional synchronous reluctance motors (SynRM) with ferromagnetic materials present a simple 
structure and rugged characteristics [2]. The rotor of such motors consists of magnetic and nonmagnetic 
materials. The electromagnetic torque depends on the difference between the d- and q-axis inductances (Ld - Lq).  
Recently, some authors have proposed to replace the nonmagnetic materials by HTS bulks. HTS bulks present a 
diamagnetic behavior when they are zero-field cooling [14]. This property is used to decrease the q-axis 
inductance of reluctance motors in order to improve the performances of such motors.  

In this paper, we propose an analytical modeling of a wholly HTS ScSynRM without ferromagnetic 
materials in the rotor. Compared to [9] and [14], the proposed motor uses superconducting materials for both the 
stator and the rotor. Fig. 1 shows the structure of the studied motor. To simplify the analytical model, the HTS 
stator windings will be approximated by an equivalent current sheet placed on the stator bore as shown in Fig. 1. 
In addition, we will consider the superconductor materials as ideals (no AC losses in the HTS coils and perfect 
diamagnetic behavior of the HTS bulks).  

The performances of the studied superconducting reluctance motor would be analyzed by an analytical 
model developed in this paper. Analytical methods are, in general, less computational time consuming than 
numerical ones (like finite-element method) and can provide closed-form solutions giving physical insight for 
designers. They can be useful tools for the first step of design optimization. Here, the two-dimensional Laplace 
equation is solved in each sub-domain (rotor shaft, holes between HTS bulks, and airgap). The solution in each 
region is obtained using boundaries and interfaces conditions. 

The paper is organized as follows. The problem description and the assumptions of the model are presented 
in section 2. Section 3 describes the analytical method for magnetic field calculation in the different sub-
domains. The analytical results are then verified with finite-element method in section 4. 
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Fig. 1. Superconducting reluctance machine: (a) Stucture, (b) Simplified model (Q = 2, p = 1, �0 = 0). 
  

2. Problem description and assumptions 

 
The structure of the studied ScSynRM is shown in Fig. 1a. It consists of a three-phase concentrated HTS 

stator winding and Q HTS bulks placed in the rotor. In the HTS stator, the epoxy teeth insure the mechanical 
stiffness of the structure. The stator yoke acts as a magnetic shield, so its  height is chosen to avoid magnetic 
saturation. In order to simplify the analysis, the HTS stator winding is approximated by an equivalent p pole-
pairs current sheet placed on the stator bore as shown in Fig. 1b.  This current sheet should create the same 
fundamental component of the airgap flux density as the real HTS winding. The rotor contains a ring of Q holes 
sub-domains (region i, i=1 to Q) between the Q HTS bulks.   

The magnetic field generated by the stator interacts with the HTS bulks rotor. The electromagnetic torque is 
obtained by the magnetic flux lines deviation due to the flux shielding capability of the HTS bulks rotor. 

Analytical approaches for the magnetic field computation in classical ferromagnetic machines have been 
studied recently by many authors as Bellara et al. [1], Dubas and Espanet [6], Liu and Li [10], Chebak et al. [4], 
Tiegna et al. [16], Zhu et al. [17] for permanent magnets machines and Lubin et al. [11] for reluctance motor. A 
general formulation has been proposed by Gysen et al. [8]. However, the proposed analytical models are related 
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to iron-cored electrical machine (with perfect ferromagnetic boundary conditions to take into account the slotting 
effect) and cannot be used for the analysis of the proposed machine with HTS bulks. Therefore, it is necessary to 
develop a new analytical model for the analysis of this kind of motor. The mathematical approach developed in 
the paper is similar to the one proposed in [8]. It is based on boundary value problems with Fourier analysis. 
However, compared to previous works, we have to consider perfect diamagnetic boundary conditions (Dirichlet 
boundary conditions) in the boundary value problems to take into account the effect of the HTS bulks on the 
magnetic field distribution. 
The geometrical parameters of the studied HTS motor are: 

• for the rotor, inner and outer radii of the bulks R1 and R2 respectively, 
• for the equivalent current sheet, the radius R3 of the stator bore. 

As indicated previously, the three-phase stator winding is represented by a current sheet distributed over the 
stator bore. The studied HTS reluctance machine being a synchronous one, the static torque is obtained by 
moving the rotor while keeping the magnetic field created by the stator currents at a given position. In this case, 
the current sheet is written as: 
 

( ) ( )0 cossj J pθ θ=  (1) 
 
where J0 is the peak value of the current sheet in (A/m).  

The hole opening angle is β. The angular position of the i-th hole is defined as: 
 

0
2

2i
i

Q

β πθ θ= − + +  with  1 i Q≤ ≤  (2) 

 
where 0θ is the initial angular position of the rotor. 

In order to derive the analytical model, some assumptions are made: 
 

• The machine is supposed infinitely long in the z direction i.e. end effects are neglected. 
• Infinite permeability of the stator back iron, 
• HTS bulks have radial sides. 
• Perfect diamagnetic behavior of HTS bulks. 

 
Fig. 2a shows the flux lines distribution around a superconducting bulk when it is cooled down below its 

critical temperature Tc before a magnetic field is applied. The superconducting material is modeled by a power-
law which links the electric field E to the current density J ; E(J)=Ec(J/Jc)

n, where Jc is the critical current 
density, Ec is the critical electric field (10-4 V/m) and n is the power law index [3]. As it can be observed, the flux 
is repelled from the HTS bulk except on the edges. This is due to the presence of surface currents in the HTS 
bulk which prevent the penetration of the external magnetic field (Faraday’s law). The penetration of the flux 
inside the bulk depends on the superconductor characteristics, on the temperature cooling, and on the magnitude 
of the applied magnetic field. The characteristics of HTS windings (DI-BSCCO) and HTS bulks (YBaCuO) can 
be found in [18] and [19]. Fig. 2b shows the flux lines while assuming a perfect diamagnetic behavior of the 
HTS bulk. Compared to Fig. 2a, the flux is totaly rejected from the HTS bulk and the flux lines are tangential to 
the surface of the bulk. In terms of boundary conditions, we can set 0=A  on the surface of the bulk (the normal 
component of the flux density on the boundaries of the HTS bulk is null i.e. B.n=0). Calculations in this paper 
will neglect field penetration into the superconductor. So, The boundary condition 0=A  on all superconducting 
surfaces will be used in the next sub-section to derive the proposed analytical model. 

 

  
 

(a)      (b) 
 

 Fig. 2. Flux lines when the external field is applied after the cooling: (a) “real” HTS Bulk with Ec=10-4 V/m, Jc=100A/mm² and n=30,  
(b) “perfect” HTS Bulk. 
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3. Problem formulation and solution 

 
A magnetic vector potential formulation is used in 2D polar coordinates to describe the problem. According 

to the adopted assumptions, the magnetic vector potential A presents only one component along the z-direction 
and only depends on the r and � coordinates. The notations used in the paper are: 

 
( , )IA r θ=I zA e  for the shaft sub-domain 

( , )iA r θ=i zA e  for the i-th hole sub-domain 

( , )IIA r θ=II zA e  for the air-gap sub-domain 

 
For simplicity and more clarity of the general solutions in the different sub-domains, the following 

notations are adopted throughout the paper: 
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3.1 General solution of Laplace’s equation in the i-th hole sub-domain (region i) 

 
Fig. 3 shows the i-th hole sub-domain and its associated boundary conditions. The Laplace’s equation must 

be solved in a domain of inner radius R1 and outer radius R2 delimited by the angles θi and θi+β. 
 

2 2

2 2 2

1 1
0i i iA A A

r rr r θ
∂ ∂ ∂

+ + =
∂∂ ∂

        for 1 2

i i

R r R

θ θ θ β
≤ ≤�

� ≤ ≤ +	
 (5) 

 
Considering a diamagnetic behavior for the HTS bulks, the normal component of the magnetic field at the 

sides of the HTS bulk is null. The boundary conditions for the i-th hole domain are: 
 

0
i

iA θ θ= =          and        0
i

iA θ θ β= + =  (6) 

 

 
 

Fig. 3. i-th hole sub-domain and its boundary conditions. 
 

The continuity of the tangential magnetic field between the i-th hole and its neighbouring sub-domains 
(regions I and II) leads to: 
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The general solution of (5) can be found by using the separation of variables method [7] and is given by: 
 

1

( , ) sin ( )

n n
i i

i n n i
n

n
A r C r D r

π π
β β πθ θ θ

β

∞ −

=

� � � �� �= + −� �� � � �� �
A  (8) 

 

where i
nC  and i

nD  are the integration constants which are determinated by the interface conditions.  

Considering the interface conditions (6) and (7), the general solution of the magnetic vector potential in the 
i-th hole domain can be rewritten as: 
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where n is a positive integer, βπ/nP  and βπΕ /n  are defined by (3) and (4) respectively. The constants inC  and 

i
nD  are obtained using a Fourier series expansion of 

1RI rA ∂∂ and 
2RII rA ∂∂  over the hole-opening interval 

[θi , θi+β ]. 
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The expressions for the coefficients inC  and i
nD  are given in the appendix. 

3.2 General solution of Laplace’s equation in the the rotor shaft region (region I) 

 
The rotor shaft sub-domain and the associated boundary conditions are shown in Fig. 4. We have to solve 

Laplace’s equation in a circle of radius R1: 
2 2

2 2 2

1 1
0I I IA A A

r rr r θ
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+ + =
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            for               10

0 2

r R

θ π
≤ ≤�

� ≤ ≤	
 (12) 

 
The boundary condition at the radius r = R1 is difficult to handle because of the existence of the holes as 

shown in Fig. 1. Considering the continuity of the magnetic vector potential at the interface between the holes 
and the rotor shaft domains and considering that the magnetic vector potential is equal to zero elsewhere 
(diamagnetic properties of the superconducting bulks), the boundary condition at r = R1 can be written as: 

 

1( , ) ( )IA R Fθ θ=  (13) 
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where ( , )iA r θ is the magnetic vector potential in the i-th hole region which is given by (9). 

The general solution of (12) is well known [7]. By taking into account the boundary condition (13) and the 
fact that the magnetic vector potential must be finite at r = 0, the general solution of (12) can be written as:  
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where h is a positive integer. The coefficients IA0 , I
hA  and I

hC  are determined using a Fourier series expansion 

of ( )F θ  over the interval [0, 2π]  
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where Q is the number of HTS bulks in the rotor. It is worth noting that the interaction between the holes on the 
magnetic field distribution is related by the sum operation on Q in (16), (17) and (18). The expressions for the 

coefficients IA0 , I
hA  and I

hC  are given in the appendix. 

 

 
 

Fig. 4.  Rotor shaft sub-domain (region I) with its boundary conditions. 

3.3 General solution of Laplace’s equation in the air-gap sub-domain (region II) 

 
The air-gap sub-domain with its boundary conditions are shown in Fig. 5. We have to solve the laplace 

equation in an annulus of inner radius R2 and outer radius R3: 
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The same method as the one presented previously is used to determine the boundary condition at r = R2. 

Introducing the function G(�), the boundary condition is: 
 

2( , ) ( )IIA R Gθ θ=  (20) 
 
with 
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0
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G
                  elsewhere
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where ),( θrAi  is the magnetic vector potential in the i-th hole region which is given by  (9). 

The boundary condition at r = R3 is given by: 
 



 

 

7 

( )
3

0
II

s
r R

A
j

r
µ θ

=

∂
=

∂
 (22) 

 
By taking into account the boundary conditions (20) and (22), the general solution of the magnetic vector 

potential in the air-gap is given by: 
 

( )

( )

2 33
0

3 2 2 31

2 33

3 2 2 31

( , ) ( , )
( , ) cos

( , ) ( , )

( , ) ( , )
sin

( , ) ( , )

j jII II II
II j j

j jj

j jII II
j j

j jj

E r R P r RR
A r A A B j

j P R R P R R

E r R P r RR
                       C D j

j P R R P R R

θ θ

θ

∞

=

∞

=

� �
= + +� �

� �
� �

� �
+ +� �

� �
� �

A

A
 (23) 

     
where j is a positive integer.  

 
 
 

 
 

Fig. 5. Air-gap sub-domain (region II) with its boundary conditions. 
 

The integration constants IIA0 , II
jA , II

jB , II
jC  and II

jD are determined using Fourier series expansions of 

)(0 θµ sj and )(θG  over the air-gap interval [0, 2π]: 
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where the expressions for these coefficients are given in the appendix. 

The flux density distribution in the air-gap can be deduced from the magnetic vector potential by 
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The electromagnetic torque is obtained using the Maxwell stress tensor. A circle of radius Re in the airgap 

sub-domain is taken as the integration path. The electromagnetic torque is then expressed as follows: 
 

22
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where L is the axial length of the superconducting reluctance motor. 
 

4. Results and comparison with finite element 

 
In order to validate the proposed analytical model, a comparison with 2D finite element (FE) simulations 

has been done using FEMM software [13]. The geometrical parameters of the studied HTS reluctance motor are 
given in Table I. The geometrical parameters given in Table I have been chosen arbitrary. The main objective of 
this paper is to show the validity of the proposed analytical model.  

The analytical solutions in the different regions have been computed with a finite number of harmonic 
terms N and K as indicated in Table I. In the finite-element simulations, the surfaces of the HTS bulks have been 
modeled by homogeneous Dirichlet boundary conditions ( 0=A ) as in the analytical study. The mesh in the 
different regions have been refined until convergent results are obtained. 

 
 

Table I  
Parameters of the model 
Symbol     Quantity      Value 

R1      Inner radius of bulks    9 cm 
R2      Outer radius of bulks    9.5 cm 
R3      Radius of the current sheet    10 cm 
β      HTS bulk opening     π/Q 
J0      Maximum value of the current sheet   600A/mm 
p      Pole-pairs number     1 
Q      Number of bulks     2 
N      Number of harmonics in regions i   50 
K     Number of harmonics in region I and II  50 

 

4.1 Flux density distribution 

 
The magnetic flux lines for two rotor positions (θ0=0° and θ0=45°) are shown respectively in Fig. 6a-b. The 

position θ0 = 45° corresponds to the maximum torque position. The HTS bulks are represented in green color. As 
expected, the flux lines are repulsed by the superconducting bulks.  

The corresponding flux density distributions (radial and tangential components) in the middle of the air-gap 
(at r =9.75 cm) under no-load condition (θ0 = 0°) and load condition (θ0 = 45°) are plotted, respectively, in Fig. 7 
and Fig. 8. The effect of the HTS bulks on the flux density waveforms is very clear. 

One can see the distortion of the flux density distribution at the location of the HTS bulks. The radial flux 
density is almost null behind the bulks due to the diamagnetic behavior of the superconducting material. One can 
observe a very good agreement between the analytical and the finite elements predictions for both radial and 
tangential components. 
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(a)       (b) 
 

Fig. 6. Flux lines under (a): no-load condition (�0= 0°) and (b): load condition (�0=45°). 
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(a)       (b) 

Fig. 7. Flux density distribution for radial (a) and tangential (b) components in the middle of the airgap domain                                                   
under no-load condition (�0 = 0°). 
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(a)       (b) 

Fig. 8. Flux density distribution for radial (a) and tangential (b) components in the middle of the airgap domain under                                  
load condition (�0 = 45°). 
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4.2 Electromagnetic torque 

The static torque versus mechanical rotor position �0 is presented in Fig. 9. Compared to the FE 
simulations, one can see that the analytical calculation well tracks the electromagnetic torque. The torque 
characteristic shown in Fig. 9 presents the same behavior as conventional 2-pole Synchronous Reluctance 
Motors [11]. One can observe that a maximum per length torque of around 2700 N.m/m is obtained for a value 
of θ0  equal to 45°. This corresponds to an active torque density of about 60 kNm/m3 (if we consider an outer 
radius R = 12 cm for the stator core), a value which is at least twice that of state-of-the-art conventional SRM 
[2]. 

In order to have a good precision in the analytical torque evaluation, the number of harmonic terms used in 
the computations is equal to N=50 (regions i) and K=50 (regions I and II ) as indicated in Table I. The 
computation time is about 0.25s with the analytical model whereas the finite element simulation takes about 3s 
for a mesh of 50 000 elements (for one position of the rotor). The analytical computations being much faster, the 
presented model can advantageously be used in a preliminary design of HTS reluctance motor. 

 
We have also included in Fig.9 the torque vs. position curve while considering the real E-J power law, viz. 

E(J)=Ec(J/Jc)
n, of the HTS bulks. The computation is done for Ec=10-4 V/m, Jc=100A/mm² and n=30, which 

represent realistic values of YBCO bulks at a critical temperature of 30K. The problem is solved with 2-D finite-
element software (COMSOL multiphysics). The obtained pull-out torque is about 2280 Nm/m, a value which is 
15% lower when compared to the one obtained with the analytical model that uses the perfect diamagnetism of 
the HTS bulks. This result shows the ability of the analytical model in predicting the torque of the ScSynRM. 
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Fig. 9  Static torque versus rotor position for J0=600A/mm for p = 1. 

4.3 Effects of  pole-pair number and airgap length on the torque value 

 
The variation of the static torque versus the electrical rotor position p�0 for different values of the number 

of pole pairs is shown in Fig. 10. The results have been computed by using (29) and (30). The geometrical 
parameters are those given in Table I. As it can be observed in Fig. 10, the maximum torque decreases rapidly 
with the number of pole pairs. The optimum value corresponds to p = 1 and then Q = 2 (Q  must be equal to 2p 
for this reluctance motor). 

Fig. 11 shows the variation of the maximum torque as a function of the airgap length for p = 1. As 
expected, it can be observed that increasing the airgap length results in lower values of the maximum torque. 
However, the decreasing is relatively small compared to the large variation of the airgap length. It can be noted 
that the maximum torque varies approximately linearly with the airgap length.  

 



 

 

11 

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

Angle (elect. degrees)

S
ta

tic
 T

or
qu

e 
(N

.m
/m

)

 

 

p=1
p=2
p=3
p=4

 
 

Fig. 10.  Effect of the pole-pair number on the torque value. 
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Fig. 11.  Effect of the air gap length on the maximum torque for p = 1. 
 

5. Conclusion 

 
In this paper, we have developed an analytical model to calculate the magnetic field distribution and the 

electromagnetic performances of a superconducting reluctance motor. The proposed motor uses superconducting 
materials for both the stator and the rotor. The superconducting stator winding can generate a rotating magnetic 
field of high amplitude without the need of ferromagnetic material in the rotor. The magnetic field generated by 
the stator interacts with the HTS bulks rotor. The electromagnetic torque is obtained by the magnetic flux lines 
deviation due to the flux shielding capability of the HTS bulks rotor (reluctance effect). 

The proposed model is based on boundary value problems with Fourier analysis. To simplify the analysis, 
we have considered the HTS bulks as a perfect diamagnetic material, therefore homogeneous Dirichlet boundary 
condition 0=A  has been imposed on the surface of the HTS bulks. To show the effectiveness of the proposed 
model, we have compared the results with those obtained by finite element simulations. We have shown that the 
proposed analytical model is able to predict the performances of the proposed HTS motor. Moreover, the 
analytical model presents less computational time than numerical ones. Hence, it can be used as a preliminary 
tool to investigate the influence of the design parameters on the motor performances or for design optimisation 
of the studied machine. 

Appendix 
For the determination of the integration coefficients, we have to calculate integrals of the form: 

 
.
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The development of these integrals, which are used in the expressions of the integration coefficients, are given 
by: 
- for n uπ β≠  

( ) ( )
( ) ( )( ) ( )( )2 2
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u i i
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- for n uπ β=  
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( , ) sin cos 2 cos
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•  Expressions of the coefficients 0

IA , I
hA  and I

hC  for the rotor shaft sub-domain (region I). 

The development of (16), (17) and (18) gives 
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•  Expressions i

nC  and i
nD  for the i-th hole sub-domain (regions i). 

The development of (10) and (11) gives 
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 •  Expressions 0
IIA , II

jA , II
jB , II

jC  and II
jD for the air-gap sub-domain (region II ). 
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The development of (24) to (28) gives: 
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From (A.9) to (A.18), we have found the expressions of the ten coeffients (one of the coefficient is null i.e. 

A.17). To obtain the solution of the magnetic field in the different sub-domains, a system of linear equations has 
to be solved. The total number of equation depends on the number of harmonic terms used in each sub-domain. 
By rewriting the above equations in matrix and vectors format, a numerical solution can be found by using 
mathematical software (Matlab).   
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