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Abstract

This article is devoted to the introduction and study of a photoacoustic tomography
model, an imaging technique based on the reconstruction of an internal photoacous-
tic source distribution from measurements acquired by scanning ultrasound detectors
over a surface that encloses the body containing the source under study. In a nutshell,
the inverse problem consists in determining absorption and diffusion coefficients in a
system coupling a hyperbolic equation (acoustic pressure wave) with a parabolic equa-
tion (diffusion of the fluence rate), from boundary measurements of the photoacoustic
pressure. Since such kinds of inverse problems are known to be generically ill-posed,
we propose here an optimal control approach, introducing a penalized functional with
a regularizing term in order to deal with such difficulties. The coefficients we want
to recover stand for the control variable. We provide a mathematical analysis of this
problem, showing that this approach makes sense. We finally write necessary first
order optimality conditions and give preliminary numerical results.

Keywords: Photoacoustic tomography; inverse problem;optimal control.
AMS classification: 49J20, 35M33, 80A23, 93C20

1 Introduction

Photoacoustic imaging constitutes a cutting-edge technology that has drawn considerable
attention in the medical imaging area. It uniquely combines the absorption contrast
between two media with ultrasound high resolution. Moreover, it is non-ionizing and non-
invasive, and is the fastest growing new biomedical method, with clinical applications on
the way.

The main idea of the photoacoustic effect is simple. The tissue to be imaged is usu-
ally irradiated by a nanosecond-pulsed laser at a given optical wavelength. This energy
is converted into heat. Absorption of light by molecules beneath the surface creates a
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thermally induced pressure jump that propagates as a sound wave, which can be detected.
By detecting the pressure waves, we can localize their heterogeneities (i.e., where light
was absorbed) and obtain important information about the studied sample (See Figure 1
below).

Figure 1: Realization of a tomograph with integrating transducers, from Patch and
Scherzer[35].

This hybrid system uses an electromagnetic input and records ultrasound waves as an
output. The electromagnetic energy is distributed at a given time through the object. The
induced increase of temperature depends on the local absorption properties. For example,
vascularized tissues, as early-stage tumors, absorb more energy. This opens the way to the
detection of heterogeneities via measurements of the pressure field. Heterogeneities behave
like internal acoustic sources, and the signals recorded by pressure detectors outside the
medium under study provide information on their distribution.

Note that one speaks of thermo-acoustic tomography (TAT) when the heating is real-
ized by means of microwaves (with wavelengths comparable to 1 m), and of photoacoustic
tomography (PAT) when optical heating is used (high-frequency radiation near infrared
with sub-µm wavelength). While in TAT waves of radio frequency range are used to trig-
ger the ultrasound signal, in the PAT the frequency lies in the visual or near infrared
ranges. In brief, TAT and PAT are two hybrid techniques using electromagnetic waves as
an excitation (input) and acoustic waves as an observation (output).

Both techniques lead to an ill-posed inverse problem of the same form which, un-
der simplifying assumptions, entails inversion (in the wide sense) of the spherical Radon
transform.

In all generality, the study of such problems leads to a coupled system, constituted
by one equation driving the behavior of the acoustic pressure and another one depending
on the nature of the problem (PAT or TAT). In many works on the TAT problem, some
physical approximations permit to rewrite the direct problem as a single partial differential
equation (see the references mentioned below). More precisely, it writes: given the sound
speed c♣xq and measured data yobs on S ⑨ R

n (n ✏ 2, 3), find the initial value uo♣xq of
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the pressure y♣t, xq where y is the solution to the problem✩✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✪

❇2y
❇t2 ♣t, xq ✁ c2♣xq∆y♣t, xq ✏ 0, ♣t, xq P r0, T s ✂ R

n,

y♣0, xq ✏ uo♣xq, x P R
n,

❇y
❇t ♣0, xq ✏ 0, x P R

n,

y♣t, xq ✏ yobs♣t, xq, x P S, t P r0, T s.

(1.1)

We also mention [15] where a coupled system is introduced to model the TAT problem.
The initial value uo is the TAT image. This problem is known to be highly ill-posed. In
the sequel, we will propose a relevant model for the PAT problem.

In most reconstruction methods in PAT (or TAT), additional assumptions are per-
formed such as conditions on the support of the function to be recovered and/or the
observation surface, or a constant sound speed. Notice that a nice overview of the state
of the art for the thermo-acoustic inverse problem has been done in [26].

One currently has a choice between three main types of reconstruction procedures for
closed observation surfaces, namely the filtered backprojection formulae, eigenfunction
expansion methods and time reversal methods.

• The filtered backprojection approach is the most popular[17, 22, 23, 24, 29, 41]. How-
ever, it is not clear that backprojection-type formulae could be written for any closed
observation surface S. In [23], inversion formulae are provided assuming odd dimen-
sions and constant sound speed. Indeed, in this case the Huygens’ principle holds.
Roughly speaking, it asserts that for any initial source with a compact support, the
wave leaves any bounded domain in a finite time. This is no longer true if the spatial
dimension is even and/or the sound speed is not constant. All known formulae of
filtered backprojection type assume constant sound speed and thus are not available
for acoustically inhomogeneous media. In addition, the only closed bounded surface
S for which such formulae are known is a sphere. Let us also mention [34] where a
reconstruction algorithm in this vein (using the Radon transform) is proposed.

• Expansion series are useful in the case where the Huyghens principle is valid. This
approach was extended to the constant speed and arbitrary closed observation sur-
face and modified by the use of the eigenfunctions of the Laplacian with Dirichlet
conditions on S[10]. It theoretically works for any closed surface and for variable
sound speeds[38]. One can also refer to [28, 36].

• The time reversal method (see for example [25, 26]) can be used to approximate
the initial pressure when the sound speed inside the object is variable. It works for
arbitrary geometries of the closed observation surface S. Ammari et al.[3, 5] have
performed sharp analysis of these problems both from the modeling and numerical
point of view.

We also mention as possible additional techniques those based on finite elements
discretization[42].
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In this paper we propose to investigate the PAT model and the related inverse problem
with an alternative formulation. We use an optimal control approach. Indeed, in our model
the function to be recovered is the control function while the pressure is the state function
which satisfies a wave equation.

This article is organized as follows: Section 2 is devoted to the description of the math-
ematical model driving the behaviors of the light transport and the wave pressure. It leads
to the introduction of a coupled system of two partial differential equations, respectively
of hyperbolic and parabolic type, in Section 2.3. The inverse problem mentioned above
is interpreted as an optimal control problem in Section 3.1 and an existence result is pro-
vided. Section 3.2 is devoted to the differentiability analysis of the cost function and the
computation of its gradient. Necessary first order optimality conditions are then derived
in Section 3.3. We end the paper by giving leads for numerical experimentation.

In the sequel, if E ⑨ R
n Ls♣Eq is the space of measurable functions f on E such that➩

E
⑤f ⑤s ➔ �✽, s P r1,�✽q, L✽♣Eq is the space of essentially bounded functions on E

and L✽♣E, ra, bsq is the set of essentially bounded functions with values in ra, bs (where
a, b P L✽♣Eq). For s, q P N❨ t�✽✉, W s,q♣Eq is the Sobolev-space of Lq function s times
differentiable in the distributional sense whose derivatives are in Lq♣Eq (see [1, 13]). Note
that W 0,2♣Eq ✏ L2♣Eq and W 1,2♣Eq ✏ H1♣Eq. The space of functions in H1♣Eq whose
trace vanishes on ❇E is denoted H1

0
♣Eq. For s, q P N ❨ t�✽✉, the set of Cs functionals

from r0, T s to E is denoted Cs♣0, T ;Eq. The space of functions of bounded variation is
denoted BV ♣Eq (see [13]).

2 The Photo Acoustic model

2.1 Light transport

In the PAT set-up, the tissues to investigate are illuminated with a laser source in the
near infrared frequency range. As they propagate in the body, the particles are subject
to absorption and diffusion, and are governed by the Boltzmann equation[11]. However,
this equation requires the knowledge (in the direct problem) or the reconstruction (in the
inverse problem) of a phase function representing the probability of scattering from one
direction to another. Since this function depends on numerous factors, it is usually not
known, nor is it easy to reconstruct.

Fortunately, the modeling becomes easier when dealing with soft, deep tissues. As a
matter of fact, these latter are known to be highly diffusive media, so that the scattering
tends to lose anisotropy as the particles go deeper into the tissue.

In this situation, the fluence rate I, that is the average of the luminous intensity in all
the directions, satisfies the diffusion equation (see for example [11])

✩✫
✪

1

ν

❇I
❇t ♣t, xq � µa♣xqI♣t, xq ✁ div♣D∇Iq♣t, xq ✏ S♣t, xq, ♣t, xq P r0, T s ✂ Ω

I♣0, xq ✏ 0, x P Ω,
(2.2)

where ν is the speed of light, S is the incident light source, µa is the absorption
coefficient, D is the diffusion coefficient, and T → 0 is the duration of the acquisition
process.
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Here, Ω stands for the part of the body where the diffusion approximation is relevant.
Usually, this domain does not include the tissues next to the surface of the body, since
the photons first have a quasi ballistic behavior, which is not consistent with the diffusion
approximation. Yet, the scatter sites of the early propagation act as isotropic sources
for the diffusion equation (see Figure 2). As a consequence, when the incident light
comes from a source point (optical fiber) located at the surface of the body, we can
assume that the diffusion approximation holds in the entire body, provided that the source
term S in equation (2.2) is correctly chosen. Indeed, in the set up of Figure 2, if the real
source Sreal has an amplitude S0

real
and is located at x ✏ 0, we can define S with an

amplitude S0 ✏ aS0

real
and located at a depth of 1

µ
✶
t

, where a and µ
✶
t are, respectively, the

transport albedo and the total interaction coefficient [21]. Although they are not precisely
known, a model based on reasonable values of these two quantities (for the first layers of
the skin) should be precise enough for our purpose.

Figure 2: The incident light is scattered at different sites along the x axis.

From now on, we make the assumption that the diffusion approximation holds in the
entire body, which means that Ω stands now for the body. In order to complete this light
transport model, we need to find appropriate boundary conditions for Equation (2.2).

Following [27], we start from the Robin condition

I♣t, xq ✏ AD
❇I
❇ν ♣t, xq, a.e.♣t, xq P r0, T s ✂ ❇Ω,
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where A is related to the internal reflection and can be deduced from the Fresnel reflection
coefficients and ν denotes the outward pointing normal vector. This condition expresses
that no photon current goes back into the body from the external medium, and can be
satisfied with null Dirichlet conditions on an extrapolated boundary at 2AD from ❇Ω (as
in Figure 2)[21]. We will still denote by Ω this enlarged set so that the boundary condition
writes

I♣t, xq ✏ 0, a.e. ♣t, xq P r0, T s ✂ ❇Ω,
The fluence I is now assumed to vanish outside Ω.

2.2 Pressure wave

Photoacoustic tomography is a mixed medical imaging technique, meaning that the out-
coming signal is not of the same kind as the incoming energy. This is due to the thermo-
acoustic effect [24, 37]: the incident light is absorbed by the tissue, and the resulting
thermal expansion generates a pressure wave p0 governed by the system

✩✬✫
✬✪

❇2p0
❇t2 ♣t, xq ✁ div♣v2s∇p0q♣t, xq ✏ 1Ω♣xqΓ♣xqµa♣xq❇I❇t ♣t, xq, ♣t, xq P r0, T s ✂ B,

p0♣0, xq ✏ ❇p0
❇t ♣0, xq ✏ 0, x P B

where the notation 1Ω stands for the characteristic function of the domain Ω, defined for
almost every x P B by

1Ω♣xq ✏
✧

1 if x P Ω
0 otherwise.

Here, the Grueneisen coefficient Γ, coupling the energy absorption to the thermal
expansion, is assumed to be known. So is the speed of sound vs, satisfying vs P rvmin

s , vmax
s s,

with vmin
s → 0.

The domain B is the place where the wave propagates. Obviously, it includes Ω
and it has to be bounded in view of numerical simulations. The ball B is chosen large
enough in such a way that p0 vanishes on ❇B during the recording process. The size of B
depends consequently on the location of the recording equipment and the duration T of
the acquisition. In other words, the reflected wave coming from ❇B doesn’t have time to
reach the acquisition equipment before time T .

Remark 2.1. Actually, the source term of the wave equation should be Γ♣xq❇2T
❇t2

♣t, xq,
where T is solution of some heat equation

❇T
❇t ♣t, xq ✁K∆T ♣t, xq ✏ µa♣xqI♣t, xq,

(see [33] for example). Nevertheless, in most applications, the illumination is so short
that no thermal conduction can occur during the thermoacoustic coupling, so that the
constant K can be considered to vanish, leading to Equation (2.2). Most of well known
works on photoacoustic tomography make the further assumption that the illumination
approaches a Dirac pulse, so that the thermoacoustic coupling becomes instantaneous and
that the fluence rate I does not depend on time anymore. Yet, it is possible to achieve
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photoacoustic imaging with a continuous-wave laser illlumination (see e.g. [31]), though
there is a loss of resolution. This is the reason why we didn’t make the assumption of
a laser pulse illumination. The effect of the thermal conduction should be discussed in a
future work.

Without any loss of generality, and without loss of information, it is more convenient
to work with the new state p defined by

p♣t, xq ✏
➺ t

0

p0♣s, xqds.

According to Leibniz rule, this latter satisfies✩✬✬✬✬✫
✬✬✬✬✪

❇2p
❇t2 ♣t, xq ✁ div♣v2s∇pq♣t, xq ✏ 1Ω♣xqΓ♣xqµa♣xqI♣t, xq, ♣t, xq P r0, T s ✂ B,

p♣t, xq ✏ 0, ♣t, xq P r0, T s ✂ ❇B,

p♣0, xq ✏ ❇p
❇t ♣0, xq ✏ 0, x P B.

2.3 The direct problem

The effectiveness of photoacoustic tomography relies on the relation between inhomo-
geneities of the biological tissues and variations of the coefficients µa and D. Depending
on the frequency range of the illumination (usually in the red or near infrared region), the
gray level mapping of the absorptivity can achieve useful functional and structural imaging
through, for instance, quantification of oxygen saturation or hemoglobin content[32, 40].

These considerations suggest to define µ :✏ ♣µa, Dq as the control variable that we
want to identify. Let µmin

a ➔ µmax
a and Dmin ➔ Dmax denote positive real numbers. The

minimal (natural) assumptions on µa and D are

µa P rµmin
a , µmax

a s and D P rDmin, Dmaxs a.e. in B, (2.3)

so that these maps lie in L✽♣Bq. We recall that Ω and B are two bounded open sets of Rd

(d ➙ 2), with C1-boundaries, satisfying Ω ⑨ B. The set Ω being the (extrapolated) body,
we may assume that µa and D are known on B③Ω.

Introduce the set Q and its boundary Σ defined by

Q ✏ ♣0, T q ✂ Ω and Σ ✏ ♣0, T q ✂ ❇Ω.

Since there are two variables to reconstruct, we might need at least two sets of data.
This idea has been explored in a slightly different context in [14]. Following this work, we
assume that the experiment is repeated with different light sources, denoted by ♣Skq1↕k↕s
with s ➙ 2 and each Sk in L✽♣Qq.

Provided that the frequency of the sources Sk doesn’t change, the coefficients µa and D

remain the same. However, the fluence rate I and the acoustic signal p may change
with k. Then, we may define Ik and pk, for k P t1, . . . , s✉ as the solutions of the two state

equations
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✩✬✬✬✬✫
✬✬✬✬✪

❇2pk
❇t2 ♣t, xq ✁ div♣v2s∇pkq♣t, xq ✏ 1Ω♣xqΓ♣xqµa♣xqIk♣t, xq, ♣t, xq P ♣0, T q ✂ B,

pk♣t, xq ✏ 0, ♣t, xq P ♣0, T q ✂ ❇B,

pk♣0, xq ✏ ❇pk
❇t ♣0, xq ✏ 0, x P B,

(2.4)

and

✩✬✬✬✬✫
✬✬✬✬✪

1

ν

❇Ik
❇t ♣t, xq � µa♣xqIk♣t, xq ✁ div♣D∇Ikq♣t, xq ✏ Sk♣t, xq, ♣t, xq P ♣0, T q ✂ Ω,

Ik♣0, xq ✏ 0, x P Ω,
Ik♣t, xq ✏ 0 x P B③Ω
Ik♣t, xq ✏ 0, ♣t, xq P Σ.

(2.5)

The photoacoustic tomography model is completely described by the coupling of equa-
tions (2.5) and (2.4), in which Ik is extended to 0 on B③Ω. We first mention that this
system is well-posed, in other terms that (2.4)-(2.5) has a unique solution under standard
assumptions. The following theorem is standard and its proof can be found for example
in [20].

Theorem 2.1. Let Ω be a bounded connected open set of Rd with C1 boundary, Γ P L✽♣Bq,
vs P L✽♣B, rvmin

s , vmax
s sq. Assume that the assumptions (2.3) hold. Then,

i) Equation (2.5) has a unique solution Ik such that

Ik P C0♣0, T ;L2♣Ωqq ❳ L2♣0, T ;H1
0
♣Ωqq,

❇Ik
❇t P L2♣0, T ;H✁1♣Ωqq.

ii) Equation (2.4) has a unique solution pk such that

pk P C♣0, T ;H1
0 ♣Bqq ❳ C1♣0, T ;L2♣Bqq.

Remark 2.2. Even if they are reasonable in this setting, the assumptions made earlier
on the variables µa, D and vs are not sharp, neither are the regularity results stated here.
Nevertheless, our purpose does not require stronger statements.

The last step to complete the description of the direct model is the formalization of
data acquisition. In PAT, ultrasonic transducers are placed in a neighborhood of the body
and record the resulting pressure wave p0 for all times in r0, T s. Let us denote by ω the
set of the locations of these transducers, which can be either finite, discrete or (ideally)
some hypersurface of Rd. Assume for example that

ω ✏
N↕
i✏1

txi✉,

where each point xi belongs to B③Ω. Unfortunately, this choice of acquisition set do not
allow to apply some classic techniques of optimal control, such as Stokes’ theorem. To
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overcome this difficulty, we propose to thicken the set ω into a union of non empty open
sets of Rd. Namely, we replace in the sequel the set ω by the set ωε defined for ε → 0 by

ωε ✏
↕
xPω

B♣x, εq, (2.6)

where B♣x, εq denotes the open ball with radius ε centered at x. It is illustrated on
Figure 3.

Figure 3: The dots are ω, the blue (light gray) balls are ωε.

We thus make the assumption that the pressure p0k is known on r0, T s ✂ ωε. Still

defining the state variables pk as

➺ t

0

p0k♣t, xq dx, the PAT data are given by

tpk♣t, xq⑤1 ↕ k ↕ s, t P r0, T s, x P ωε✉ .

Actually, we don’t have access to such an information (we only record p0k on ω). Nev-
ertheless, once the space discretization step is set to δx, ε can be set to δx

2
, so that the

thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.

2.4 Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions of
(2.4)-(2.5), for the sake of clarity. Define Uad, the set of admissible controls µ ✏ ♣µa, Dq
as

Uad ✏
✥♣µa, DqPrL✽♣Bqs2 ⑤ µa P rµmin

a , µmax
a s andD P rDmin, Dmaxs a.e. inB✭ . (2.7)

Using Theorem 2.1, we define the maps
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I : Uad ÝÑ C0♣0, T ;L2♣Ωqq ❳ L2♣0, T ;H1
0 ♣Ωqq

♣µa, Dq ÞÝÑ I♣µa, Dq
(2.8)

where I♣µa, Dq satisfies (2.5) and

p : Uad ÝÑ C0♣0, T ;H1
0 ♣Bqq

♣µa, Dq ÞÝÑ p♣µa, Dq,
(2.9)

where p♣µa, Dq is the solution to (2.4).
The following theorem constitutes the main result of this section.

Theorem 2.2. The operator p defined by (2.9) is weakly continuous with respect to µ and
strongly continuous with respect to D from Uad to L2♣Bq. More precisely, let ♣µn

a , D
nqnPN P

UN

ad be such that µn
a weakly converges to µ✝a in L2♣Ωq and Dn strongly converges to D✝ in

L2♣Ωq for some ♣µ✝a, D✝q in Uad; then the sequence ♣pnqnPN defined by pn ✏ p♣µn
a , D

nq
strongly converges up to a subsequence to p✝ ✏ p♣µ✝a, D✝q in L2♣Qq.

Proof. Let ♣µn
a , D

nqnPN P rUadsN and ♣µ✝a, D✝q in Uad be such that µn
aáµ✝a (weakly)

in L2♣Ωq and Dn Ñ D✝ (strongly) in L2♣Ωq, as nÑ �✽.

Step 1: let us first prove that the sequence ♣InqnPN defined by In ✏ I♣µn
a , D

nq weakly
converges in L2♣0, T ;H1

0
♣Ωqq to some I✝ P L2♣0, T ;H1

0
♣Ωqq.

Indeed, note first that the weak formulation of System (2.5) writes: for every Ψ P
L2♣0, T ;H1

0
♣Ωqq, ➺

Q

1

ν

❇In
❇t Ψ�Dn∇In∇Ψ� µn

aI
nΨ✁ SΨ ✏ 0. (2.10)

Taking Ψ ✏ In yields: ➺
Q

�
Dn⑤∇In⑤2 � µn

a ⑤In⑤2
✟ ↕ ➺

Q

SIn,

since In♣0q ✏ 0. Using both Cauchy-Schwarz inequality and the fact that Dn and µn
a lie

in Uad for every n P N yields

min♣µmin
a , Dminq

➺ T

0

⑥In⑥2H1♣Ωq ↕ ⑥S⑥L2♣Qq

❞➺ T

0

⑥In⑥2H1♣Ωq, (2.11)

It thus follows that the sequence ♣InqnPN is uniformly bounded in L2♣0, T ;H1
0
♣Ωqq and

weakly converges (up to a subsequence) to some I✝ in L2♣0, T ;H1
0
♣Ωqq. This convergence

is actually strong in L2♣Qq by virtue of the Aubin-Lions lemma (see[30] Theorem 5.1 p.
58).

Step 2: Let us now prove that I✝ ✏ I♣µ✝a, D✝q. Notice first that the combination of
inequalities (2.10) and (2.11) ensures that ❇In

❇t is uniformly bounded in L2♣0, T ;H✁1♣Ωqq.
As a consequence, ❇I

✝

❇t belongs to L2♣0, T ;H✁1♣Ωqq and I✝ is thus the limit of a subsequence
of ♣InqnPN in C0♣0, T ;L2♣Ωqq. It ensures that I✝♣0q is well-defined and vanishes.
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With a slight notational abuse, we still denote by ♣InqnPN the subsequence introduced
above. Using a pointwise version of equation (2.10), we claim that for almost every
time t P r0, T s, one has

❅Ψ P H1
0 ♣Ωq,

➺
Ω

1

ν

❇In
❇t ♣t, ☎qΨ�Dn∇In♣t, ☎q∇Ψ� µn

aI
n♣t, ☎qΨ ✏

➺
Ω

S♣t, ☎qΨ.

The weak convergence of ❇In

❇t to ❇I✝

❇t yields➺
Ω

❇In
❇t ♣t, ☎qΨ Ñ

➺
Ω

❇I✝
❇t ♣t, ☎qΨ as n Ñ �✽.

Moreover, using the strong convergence of ♣In♣t, ☎qqnPN to I✝♣t, ☎q in L2♣Ωq for almost every
t P r0, T s, one gets ➺

Ω

µn
aI

n♣t, ☎qΨ Ñ
➺
Ω

µ✝
aI

✝♣t, ☎qΨ as n Ñ �✽.

Note that
①♣D✝ ✁Dnq∇I✝♣t, ☎q , ∇Ψ②L2♣Ωq Ñ 0 as n Ñ �✽.

and
①Dn∇♣I✝ ✁ Inq♣t, ☎q , ∇Ψ②L2♣Ωq Ñ 0 as n Ñ �✽,

since the sequence ♣DnqnPN strongly converges to D✝ as n Ñ �✽.
Combining these results with the following decomposition

①D✝∇I✝♣t, ☎q ✁Dn∇In♣t, ☎q , ∇Ψ②L2♣Ωq ✏ ①Dn∇♣I✝ ✁ Inq♣t, ☎q , ∇Ψ②L2♣Ωq

� ①♣D✝ ✁Dnq∇I✝♣t, ☎q , ∇Ψ②L2♣Ωq .

shows that I✝ ✏ I♣µ✝
a, D

✝q.

Step 3: let us finally show that the sequence ♣pnqnPN defined by pn ✏ p♣µn
a , D

nq strongly
converges, up to a subsequence, to p✝ ✏ p♣µ✝

a, D
✝q in L2♣Bq as n Ñ �✽. The source term

in (2.4) is hn ✏ 1ΩΓµ
n
aI

n. For every Ψ P L2♣r0, T s ✂ Bq we get

①hn ✁ h✝ , Ψ②L2♣r0,T s✂Bq ✏ ①hn ✁ h✝ , Ψ②L2♣Qq

✏ ①In ✁ I✝ , Γµn
aΨ②L2♣Qq � ①µn

a ✁ µ✝
a , ΓI

✝Ψ②L2♣Qq ,

with h✝ ✏ 1ΩΓµ
✝
aI

✝. Since ♣InqnPN strongly converges to I✝ in L2♣Qq, the sequence ♣hnqnPN
weakly converges to h✝ in L2♣r0, T s ✂ Bq (recall that In and I✝ vanish on B③Ω). Since
pn is solution to the wave equation (2.4), it implies that the sequence ♣pnqnPN strongly
converges up to a subsequence to p✝ in L2♣r0, T s ✂ Bq.
Remark 2.3. It would be interesting to investigate the robustness of the optimal control
approach with respect to some uncertainty of the coefficients of the diffusion and acoustic
equations. Theorem 2.2 provides yet some hints, and the issue of modeling the uncertain-
ties and investigate their influence on the optimal control solution will be the object of a
future study.
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3 The inverse problem

3.1 Formulation as an optimal control problem

Let us now consider the open set ωε defined by (2.6), where we will measure the outgoing
pressures pobsk at every time. In the sequel, ε is fixed and we rather write ω instead of
ωε, for the sake of simplicity. The asymptotic behavior of the solutions as ε Ñ 0 will be
investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect to µa

and D. We choose to add a penalization term in order to ensure the existence of an
optimal control.

Let us define the functional J by

J♣µq ✏ F♣µq � f♣µq, (3.12)

for every µ ✏ ♣µa, Dq P Uad, where f♣µq stands for a regularizing term and F is a least
square functional with respect to the measured pressure data. We set

Fk♣µq ✏ 1

2

➺
r0,T s✂ω

♣pk♣t, xq ✁ pobsk ♣t, xqq2dx dt

where pobsk is the measured pressure (observed state) on ω when the source signal is Sk.
Fix α ➙ 0 and β ➙ 0. Assuming that we perform s experiments, we define

F♣µq ✏
s➳

k✏1

Fk♣µq ✏
s➳

k✏1

1

2

➺
r0,T s✂ω

♣pk♣t, xq ✁ pobsk ♣t, xqq2dx dt

and

f♣µq ✏
✩✫
✪ α

➺
Ω

♣Bµaq2♣xqdx� βTV ♣Dq if D P BV ♣Ωq
�✽ otherwise.

Here BV ♣Ωq denotes the space of functions of bounded variation[2, 13], TV ♣Dq stands for
the total variation of D, and B : L2♣Ωq Ñ L2♣Ωq is an invertible linear operator.

Remark 3.1. The operator B is usually the L2♣Ωq identity operator. However one can
decide to focus on specific frequencies of µa and B can be chosen as a pass-band filter.
Following[16], B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice that fits
the physical meaning. Indeed, strong L2 convergence of the D part of minimizing sequences
is needed to use Theorem 2.2 and obtain an existence result. The TV term seems to be the
weakest one that provides such a convergence while respecting the physical requirements
since discontinuities (and contours) are preserved.

The original inverse problem to perform parameter identification can be viewed as the
following optimal control problem

♣Pq min
µPUad

J♣µq,

where the admissible set Uad is defined by (2.7).
Notice that the values of the coefficients µa and D on B③Ω are already known and

that Uad is a closed convex subset of L2♣Bq ✂ L2♣Bq.
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Theorem 3.1 (Existence of an optimal control µ). Assume that α ➙ 0 and β → 0. Then,
Problem (P) has at least a solution µ̄ ✏ ♣µ̄a, D̄q.
Proof. Let ♣µn

a , D
nqnPN be a minimizing sequence. Since ♣µn

aqnPN is bounded in L✽♣Ωq (and
in L2♣Ωq), it weakly converges (up to a subsequence) to some µ̄a in L2♣Ωq as nÑ �✽.
The sequence ♣DnqnPN is bounded in L✽ as well, so it is bounded in L1. From the bound-
edness of ♣TV ♣DnqqnPN, we deduce that ♣Dnq is bounded in BV and weakly converges up
to a subsequence to some D̄ in BV ♣Ωq as n Ñ �✽. The space BV ♣Ωq being compactly
embedded in L1♣Ωq, the sequence ♣DnqnPN strongly converges to D̄ for the L1-topology.
Since the sequence ♣DnqnPN is uniformly bounded in L✽♣Ωq, we get the strong convergence
of ♣DnqnPN to D̄ for the L2-topology.

Using Theorem 2.2, we conclude that the sequence ♣pnkqnPN defined by pnk ✏ pk♣µn
a , D

nq
strongly converges (up to a subsequence) to p̄k ✏ pk♣µ̄a, D̄q in L2♣r0, T s✂Bq, for every k P
t1, . . . , s✉ as n Ñ �✽. The lower semicontinuity of every Fk with respect to the L2-
convergence and the lower semicontinuity of f with respect to the L1-convergence implies
that the pair ♣µ̄a, D̄q is a solution of Problem (P).

Remark 3.2. We are not able to prove uniqueness by now. As already mentioned, it
seems necessary to get more that one data set, that is s ➙ 2 [14]. Moreover, we will have
to assume α → 0. Notice that, in [4, 7], the authors get a unique solution by reducing the
model.

3.2 Computation of the cost functional derivative

In order to write the necessary first order optimality conditions for Problem ♣Pq, we first
compute the derivative of F with respect to the control variable µ ✏ ♣µa, Dq. Since F ✏
s➳

k✏1

Fk, it suffices to compute the derivative of Fk. For the sake of clarity and readability,

we will omit the index k in the sequel.
In order to write the optimality conditions in the most simple way, let us notice that

L✽♣Bq ⑨ L2♣Bq so that we can endow Uad with the usual hilbertian structure of L2♣Bq.
Let µ P Uad and ξ ✏ ♣ξµa

, ξDq P L2♣Ωq ✂L2♣Ωq be an admissible perturbation of µ. In
the sequel, if µ P Uad ÞÑ g♣µq is a Gâteaux-differentiable functional at µ in direction ξ,
we will indifferently denote by ①dg♣µq, ξ② or ✾g♣µq the Gâteaux derivative of g at µ in
direction ξ, that is

✾g♣µq ✏ ①dg♣µq, ξ② ✏ lim
t×0

g♣µ� tξq ✁ g♣µq
t

.

A calculus of variation standard analysis permits to show, applying shrewdly the im-
plicit function theorem, that the functional F is differentiable at µ in direction ξ. Its
derivative writes

①dF ♣µq, ξ② ✏
➺
r0,T s✂ω

✁
p♣t, xq ✁ pobs♣t, xq

✠
✾p♣t, xqdx dt, (3.13)
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where ✾p is the solution of the system✩✬✬✬✬✫
✬✬✬✬✪

❇2 ✾p

❇t2 ✁ div♣v2s∇ ✾pq ✏ 1ΩΓξµa
I � 1ΩΓµa

✾I in r0, T s ✂ B

✾p♣0, ☎q✏ ❇ ✾p

❇t ♣0, ☎q ✏ 0 in B

✾p ✏ 0 on r0, T s ✂ ❇B

(3.14)

and I is solution of the following system✩✬✬✬✫
✬✬✬✪

1

ν

❇ ✾I

❇t � µa
✾I � ξµa

I ✁ div♣D∇ ✾Iq ✁ div♣ξD∇Iq ✏ 0 in Q

✾I♣0, ☎q ✏ 0 in Ω

✾I ✏ 0 on Σ

(3.15)

Since the expression (3.13) does not permit to express the first order optimality condi-
tions easily, it is convenient to introduce some adjoint states to rewrite this derivative into
a more workable expression. For that purpose, let us define q1 and q2 as the respective
solutions of the systems✩✬✬✬✬✫

✬✬✬✬✪

❇2q1
❇t2 ✁ div♣v2s∇q1q ✏ ♣p✁ pobsq1ωε

in r0, T s ✂ B

q1♣T, ☎q ✏ ❇q1
❇t ♣T, ☎q ✏ 0 in B

q1 ✏ 0 on r0, T s ✂ ❇B

(3.16)

and ✩✬✬✬✫
✬✬✬✪

✁1

ν

❇q2
❇t � µaq2 ✁ div♣D∇q2q ✏ Γµaq1 in Q

q2♣T, ☎q ✏ 0 on Ω

q2 ✏ 0 on Σ.

(3.17)

It is standard that under the assumptions of Theorem 2.1, System (3.17) has a unique
solution

q2 P C0♣0, T ;L2♣Ωqq ❳ L2♣0, T ;H1
0 ♣Ωqq

and System (3.16) has a unique solution

q1 P C0♣0, T ;H1
0 ♣Bqq ❳ C1♣0, T ;L2♣Bqq.

Let us now compute the derivative of F at µ in the direction ξ.

Proposition 3.1. For every ξ ✏ ♣ξa, ξDq P L2♣Ωq ✂ L2♣Ωq, the functional F is Gâteaux-
differentiable at µ ✏ ♣µa, Dq in the direction ξ and

①dF ♣µq , ξ ②L2♣Ωq ✏
➺
Ω

∇F ♣µq♣xqξ♣xqdx

✏
➺
Ω

✂ ❇F
❇µa

♣µa, Dq♣xqξµa
� ❇F

❇D ♣µa, Dq♣xqξD♣xq
✡

dx (3.18)
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where

∇F ♣µq ✏
✂ ❇F
❇µa

♣µq, ❇F❇D ♣µq
✡
✏
✂➺ T

0

♣1ΩΓq1 ✁ q2qI,✁
➺ T

0

∇q2 ☎∇I

✡
.

Proof. Using integration by parts and Green’s formula, one gets

①dF ♣µaq , ξ ②L2♣Ωq ✏
➺
r0,T s✂ω

✁
p✁ pobs

✠
✾p

✏
➺
r0,T s✂B

✾p

✂❇2q1
❇t2 ✁ div♣v2s∇q1q

✡

✏
➺
r0,T s✂B

q1

✂❇2 ✾p

❇t2 ✁ div♣v2s∇ ✾pq
✡

✏
➺
r0,T s✂B

q1

✁
1ΩΓξµa

I � 1ΩΓµa
✾I
✠

✏
➺
Q

Γq1ξµa
I �

➺
Q

Γq1µa
✾I.

Let us now rewrite the term

➺
Q

Γq1µa
✾I. One has

➺
Q

Γq1µa
✾I ✏

➺
Q

✂
✁1

ν

❇q2
❇t � µaq2 ✁ div♣D∇q2q

✡
✾I

✏
➺
Q

✄
1

ν

❇ ✾I

❇t � µa
✾I ✁ div♣D∇ ✾Iq

☛
q2

✏
➺
Q

♣✁ξµa
I � div♣ξD∇Iqq q2

We finally get ➺
Q

Γµaq1 ✾I ✏
➺
Q

♣✁ξµa
q2I ✁ ξD∇q2 ☎∇Iq (3.19)

so that

①dF ♣µaq , ξ ②L2♣Ωq ✏
➺
Q

♣♣Γq1 ✁ q2qIξµa
✁∇q2 ☎∇IξDq .

We deduce from the previous result the following expression of the derivative of F .

Theorem 3.2. For every ξ ✏ ♣ξa, ξDq P L2♣Ωq ✂ L2♣Ωq, the functional F is Gâteaux-
differentiable at µ ✏ ♣µa, Dq in the direction ξ and

①dF♣µq , ξ ②L2♣Ωq✂L2♣Ωq ✏
➺
Ω

∇F♣µq ☎ ξ

where

∇F ♣µq ✏
s➳

k✏1

✂➺ T

0

♣1ΩΓq
k
1 ✁ qk2 qIk,✁

➺ T

0

∇qk2 ☎∇Ik

✡
,



3 THE INVERSE PROBLEM 16

and, for every k P t1, . . . , s✉,✩✬✬✬✬✫
✬✬✬✬✪

❇2qk
1

❇t2 ✁ div♣v2s∇qk1 q ✏ ♣pk ✁ pobsk q1ωε
in r0, T s ✂ B

qk
1
♣T, ☎q ✏ ❇qk

1

❇t ♣T, ☎q ✏ 0 in B

qk
1
✏ 0 on r0, T s ✂ ❇B

(3.20)

✩✬✬✬✫
✬✬✬✪

✁1

ν

❇qk
2

❇t � µaq
k
2 ✁ div♣D∇qk2 q ✏ Γµaq

k
1 in Q

qk
2
♣T, ☎q ✏ 0 on Ω

qk
2
✏ 0 on Σ

(3.21)

3.3 First order optimality conditions for Problem ♣Pq

Assume that µ̄ ✏ ♣µ̄a, D̄q is an optimal solution to problem ♣Pq. Introduce the so called
indicator function of the set Uad, denoted ιUad

and defined by

ιUad
♣xq ✏

✧
0 if x P Uad

�✽ otherwise.

The regularization function f is not Gâteaux differentiable because of the Total Vari-
ation term. However the subdifferential ❇TV is well known[18] and we get

0 P ❇TV ♣µq ðñ µ P ❇TV ✝♣0q,

where the total variation conjugate functional TV ✝ is the indicator function ιK̄ of K̄ with

K ✏ ✥
div ϕ ⑤ ϕ P C1

c ♣Ω,R2q, ⑥ϕ⑥✽ ↕ 1
✭
.

This gives useful algorithms to compute the total variation subgradients (see [18, 39] for
example).

Writing ♣Pq as
min

µPrL✽♣Ωqs2
F♣µq � f♣µq � ιUad

♣µq,

the classical optimality condition reads

0 P ❇♣F♣µ̄q � f♣µ̄q � ιUad
♣µ̄qq .

Using standard computational rules[19] and decoupling the first order optimality condi-
tions on µa and D yields:

iq Equation on µa. For every µa P L✽♣Ωq such that µa P rµmin
a , µmax

a s,❇ ❇F
❇µa

♣µ̄a, D̄q � 2αB✝Bµ̄a , µa ✁ µ̄a

❋
L2♣Ωq

➙ 0 , (3.22)
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iiq Equation on D.

✁ ❇F
❇D ♣µ̄a, D̄q P ❇TV ♣D̄q � ❇ιrDmin,Dmaxs, (3.23)

where B✝ is the L2-adjoint operator of B.

With the previous computations, equation (3.22) writes

❅µa P L✽♣Ωq, s.t. µa P rµmin
a , µmax

a s,❈
s➳

k✏1

♣1ΩΓq
k
1 ✁ qk2 qIk � 2αB✝Bµ̄a , µa ✁ µ̄a

●
L2♣Ωq

➙ 0, (3.24)

while equation (3.23) becomes

❉δ✝ P ❇TV ♣D̄q, ❅D P L✽♣Ωq s.t. D P rDmin, Dmaxs,❈
s➳

k✏1

∇Ik ☎∇qk2 ✁ δ✝ , D ✁ D̄

●
L2♣Ωq

➙ 0. (3.25)

The following theorem summarizes these optimality conditions.

Theorem 3.3. Assume µ̄ ✏ ♣µ̄a, D̄q is an optimal solution to Problem ♣Pq. Then, there
exists qk

1
, qk

2
, k ✏ 1, ☎ ☎ ☎ , s and δ✝ P ❇TV ♣D̄q such that

• The 2s state equations (2.4) for the pression and (2.5) for the fluence are satisfied
(with s sources Sk, k P t1, . . . , s✉)

• The 2s adjoint state equations (3.20) -(3.21) are satisfied by qk
1
and qk

2
respectively,

for k P t1, . . . , s✉.
• Inequations (3.24) and (3.25) hold.

Remark 3.3. In the very case where D is constant and/or known, we are only interested
in µa. The (reduced) optimality system writes then : 2s state equations (2.4) and (2.5), 2s
adjoint state equations (3.20)-(3.21) and (3.24).

4 Numerical experiments

The approach we use leads to an optimality system that can be solved numerically. How-
ever, the solving of this coupled optimal control problem raises some issues like the non
differentiability of the BV regularization and the difference of speed scale (sound versus
light) of the two equations. There are many numerical difficulties that we do not detail
by now.

• One of them is related to the non differentiability of the BV regularization term.
One can use dedicated algorithms as Chambolle’s projection algorithm[18] for ex-
ample. However, we need to study precisely how such a projection algorithm can be
combined with the solving of the adjoint system. Another way could be to simply
use a differentiable approximation of the total variation as TV ♣Dq ✓

❛
⑥∇D⑥2 � ε,

where ε → 0 is small.
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• The second numerical delicate issue is the coupled state (and adjoint state) system
solving. The full coupled system has different time-scales. Indeed, the wave equation
has a characteristic time related to the speed of sound while the one of the fluence
is related to the speed of light. As discussed before, if the light source is a short
pulse (with respect to the speed of sound), then we can modify the fluence equation
by replacing it with the stationary one (dropping the ❇t term). This would then
replace the source term in the wave equation by a Dirac. Such a modification would
only simplify the derivation of the necessary condition as well as the numerical
implementation. On the other hand, when considering a long lasting light source,
we need to solve the 2 concurrent unstationary equations. Since this doesn’t solve the
time-scale difference problem, an idea is to use an asymptotic development to capture
the main features of the RTE solution and plug it into the wave equation.This implies
that we have to consider appropriate methods (multiscale, asymptotic methods or
adaptative meshes) to perform competitive numerical computations. In addition,
this has to be compared with existing methods.

Those interesting issues will be addressed in a forthcoming paper.
To illustrate the control approach and show that it is a relevant alternative method to

the classical ones (that we mentioned in the introduction), we briefly present numerical
experiments to compute a simple TAT model. Shortly speaking, we assume that the
fluence equation is not useful any longer and consider equation (1.1) as a good model for
TAT (as usual in TAT papers). More precisely we want to recover the source u which
drives the following equation✩✬✬✬✫

✬✬✬✪

✂❇2p
❇t2 ✁ div♣v2∇pq

✡
♣t, xq ✏ 0, ♣t, xq P r0, T s ✂ B,

p♣t, xq ✏ 0, ♣t, xq P r0, T s ✂ ❇B,
p♣0, xq ✏ u,

❇p
❇t ♣0, xq ✏ 0, x P B

(4.26)

from measurements pobs on the boundary of Ω where Ω is the 0-centered ball of radius
1④❄2 (so as to be outside the square containing the phantom). We consider the case where
the observation surface is not closed (half a sphere) and the sound speed v is not constant.
We consider a 2D problem. Though we should deal with the 3D problem, the 2D - one is
still interesting, since it covers the case where detectors are lineic[34]. With the previous
notations, we assume that k ✏ 1 (only one source), B is a mollifier[16] and β ✏ 0 (total
variation not included). The control problem writes

♣Pεq

✩✬✫
✬✪

min
1

2
⑥p♣uq ✁ pobs⑥2L2♣r0,T s✂ωq �

α

2
⑥Bu⑥2L2♣r0,T s✂Ωq

u P L2♣r0, T s ✂ Bq,
(4.27)

where p♣uq is the solution to (4.26) and u is supported in Ω ⑨ B. This uncoupled system
gives rise to the same kind of optimality system as the coupled system, except that there
is only a slight modification of adjoint equation (3.20) and necessary condition (3.22) to
consider. Moreover, we do not introduce bounds on u so no projection has to be performed.

The tests have been done using Shepp-Logan phantom. As our purpose is to illustrate
the relevance of our approach we do not focus on code and/or optimization methods so
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that we do not report CPU time for example. The known speed of sound is supposed to
be 1 outside the Shepp-Logan phantom and in r0.95, 1.05s inside. This choice of variation
of speed represents the real variations between soft tissues and water (where the body to
be reconstructed would be submerged).

Other methods than the optimal control approach could be used to solve this recon-
struction problem. Most of those methods have originally been devised so as to deal with
constant sound speed and a closed domain of observation and later on have been adapted
to less stringent assumptions. For example, the time-reversal method[36, 38] has been
adapted to variable speed of sound and open observation domain. A method based on the
eigenvalues of the Laplacian has been extended to deal with open observation domain[29].

We chose to solve the optimality system by means of the conjugate gradient algorithm.
The forward and backward problems are solved by means of a leapfrog discretization
scheme on a staggered grid. In order to avoid handling large grids (due to the size of B),
we use an appropriate PML (Perfectly Matched Layer) technique[12].

All the computations are performed on a standard computer using the Scilab software.
We use the algorithm on the 512 by 512 pixels Shepp-Logan phantom, given on Figure 4.

Figure 4: The Shepp-Logan phantom. Left: only the phantom (512✂512 pixels). Right:
phantom and detectors distribution (number of detectors will vary).

We investigate 5 different cases

• data are not corrupted or a white gaussian noise (SNR=0.15) is added to the simu-
lated data;

• the number of detectors is 500, 50 or 10 (only for noiseless data) with a uniform
angular sampling on the right half circle (as shown on Figure 4).

All the results correspond to a zero initialization of u and 10 iterations (20 for 10 detectors)
of the conjugate gradient. When tackling noiseless data, we use α ✏ 0.1 while we use
α ✏ 0.4 for noisy data. The data (pobs) are simulated with the known speed of sound
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while the forward and backward problems use a noisy speed with an added white gaussian
noise (SNR=0.02 so as to be less than the amplitude of the speed variation).

Figure 5 shows the results of the solving for uncorrupted data with 500, 50 and 10
detectors. For the noiseless data, we see that the reconstruction enables the recovery of

Figure 5: Noiseless data. Left: 500 detectors. Center: 50 detectors. Right: 10 detectors

all the features of the Shepp-Logan phantom when using 500 or 50 detectors. A close
inspection of the heavily dense (500) detectors population shows that the right side of
the phantom is better reconstructed than the left side, which is to be expected since the
detectors are in the right half plane. On the 50 detectors solving, we see some wave like
artifacts inside the phantom but also in the outside, coming from the sparsely distributed
detectors. The over pessimistic result with 10 detectors is only displayed because it clearly
shows that the properly reconstructed boundaries are only the ones tangential to circles
originating from the detectors.

Figure 6 shows the results for noisy data with 500 and 50 detectors. For the noisy

Figure 6: Noisy data. Left: 500 detectors. Right: 50 detectors.

data, both reconstructions are slightly blurrier than for the noiseless data, as expected
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since the regularization term is stronger. Even with sparsely distributed detectors, we can
still recover the different elements of the phantom.

5 Conclusion

We have presented a new model for PAT phenomena involving a coupled system. The
optimal control approach we use seems promising in this context. Techniques we use are
classical but they provide flexibility to study the inverse problem, especially in the case
where the direct problem is not easy to handle ( involving many nonlinear equations for
example). This leads to optimality systems that can be solved numerically, though there
remain challenging numerical issues.

Many open questions remain, as the uniqueness of the solution of the optimal control
problem for example. Identifiability issues have to be addressed as well. On the other
hand, we have to investigate precisely the behavior of the solutions when the observation
set ωε measure reduces to 0: this case corresponds to pointwise sensors. At last, we go
on developing precise models taking into account physical phenomena that are usually
neglected, especially in the TAT context where the direct problem can be described both
by a pressure equation and a Maxwell equation.
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