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Abstract

This article is devoted to the introduction and study of a photoacoustic tomography
model, an imaging technique based on the reconstruction of an internal photoacous-
tic source distribution from measurements acquired by scanning ultrasound detectors
over a surface that encloses the body containing the source under study. In a nutshell,
the inverse problem consists in determining absorption and diffusion coefficients in a
system coupling a hyperbolic equation (acoustic pressure wave) with a parabolic equa-
tion (diffusion of the fluence rate), from boundary measurements of the photoacoustic
pressure. Since such kinds of inverse problems are known to be generically ill-posed,
we propose here an optimal control approach, introducing a penalized functional with
a regularizing term in order to deal with such difficulties. The coefficients we want
to recover stand for the control variable. We provide a mathematical analysis of this
problem, showing that this approach makes sense. We finally write necessary first
order optimality conditions and give preliminary numerical results.

Keywords: Photoacoustic tomography; inverse problem;optimal control.
AMS classification: 49J20, 35M33, 80A23, 93C20

1 Introduction

Photoacoustic imaging constitutes a cutting-edge technology that has drawn considerable
attention in the medical imaging area. It uniquely combines the absorption contrast
between two media with ultrasound high resolution. Moreover, it is non-ionizing and non-
invasive, and is the fastest growing new biomedical method, with clinical applications on
the way.

The main idea of the photoacoustic effect is simple. The tissue to be imaged is usually
irradiated by a nanosecond-pulsed laser at an optical wavelength. This energy is converted
into heat. Absorption by light by molecules beneath the surface creates a thermally�This work is supported by ANR (AVENTURES - ANR-12-BLAN-BS01-0001-01):The fourth author was partially supported by the ANR project OPTIFORM
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induced pressure jump that propagates as a sound wave, which can be detected. By
detecting the pressure waves, we can localize their heterogeneities (i.e., where light was
absorbed) and obtain important informations about the studied sample (See Figure 1
below).

Figure 1: Realization of a tomograph with integrating transducers, from Patch and
Scherzer[28].

This hybrid systems uses an electromagnetic input and record ultrasound waves as an
output. The electromagnetic energy is distributed at a given time through the object.
The induced increase of temperature depends on the local absorption properties. For
example, cancerous tissues absorb more energy than healthy ones. This opens the way to
the detection of heterogeneities via measurements of the pressure field. Heterogeneities
behave like internal acoustic sources, and the signals recorded by pressure detectors outside
the medium under study provide information on their distribution.

Note that one speaks of thermo-acoustic tomography (TAT) when the heating is real-
ized by means of microwaves (with wavelengths comparable to 1 m), and of photoacoustic
tomography (PAT) when optical heating is used (high-frequency radiation near infrared
with sub-µm wavelength). While in TAT waves of radio frequency range are used to trig-
ger the ultrasound signal, in the PAT the frequency lies in the visual or near infrared
ranges. In brief, TAT and PAT are two hybrid techniques using electromagnetic waves as
an excitation (input) and acoustic waves as an observation (output).

Both techniques lead to an ill-posed inverse problem of the same form which, un-
der simplifying assumptions, entails inversion (in the wide sense) of the spherical Radon
transform.

In all generality, the study of such problems leads to a coupled system, constituted
by one equation driving the behavior of the acoustic pressure and another one depending
on the nature of the problem (PAT or TAT). In many works on the TAT problem, some
physical approximations permit to rewrite the direct problem as a single partial differential
equation (see the references mentioned below). More precisely, it writes: given the sound
speed cpxq and measured data yobs on S � R

n (n � 2, 3), find the initial value uopxq of
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the pressure ypt, xq where y is the solution to the problem$'''''''&'''''''%
B2yBt2 pt, xq � c2pxq∆ypt, xq � 0, pt, xq P r0, T s � R

n,

yp0, xq � uopxq, x P R
n,ByBt p0, xq � 0, x P R
n,

ypt, xq � yobspt, xq, x P S, t P r0, T s. (1.1)

We also mention [10] where a coupled system is introduced to model the TAT problem.
The initial value uo is the TAT image. This problem is known to be highly ill-posed. In
the sequel, we will propose a relevant model for the PAT problem.

In most reconstruction methods in PAT (or TAT), additional assumptions are per-
formed such as conditions on the support of the function to be recovered and/or the
observation surface, or a constant sound speed. Notice that a nice overview of the state
of art for the thermo-acoustic inverse problem has been done in [21].

One currently has a choice between three main types of reconstruction procedures for
closed observation surfaces, namely the filtered backprojection formulae, eigenfunction
expansion methods and time reversal methods.

• The filtered backprojection approach is the most popular[12, 17, 18, 19, 24, 34]. How-
ever, it is not clear that backprojection-type formulae could be written for any closed
observation surface S. In [18], inversion formulae are provided assuming odd dimen-
sions and constant sound speed. Indeed, in this case the Huygens’ principle holds.
Roughly speaking, it asserts that for any initial source with a compact support, the
wave leaves any bounded domain in a finite time. This is no longer true if the spatial
dimension is even and/or the sound speed is not constant. All known formulae of
filtered backprojection type assume constant sound speed and thus are not available
for acoustically inhomogeneous media. In addition, the only closed bounded surface
S for which such formulae are known is a sphere. Let us also mention [27] where a
reconstruction algorithm in this vein (using the Radon transform) is proposed.

• Expansion series are useful in the case where the Huyghens principle is valid. This
approach was extended to the constant speed and arbitrary closed observation sur-
face and modified by the use of the eigenfunctions of the Laplacian with Dirichlet
conditions on S[5]. It theoretically works for any closed surface and for variable
sound speeds[31]. One can also refer to [23, 29].

• The time reversal method (see for example [20, 21]) can be used to approximate
the initial pressure when the sound speed inside the object is variable. It works for
arbitrary geometries of the closed observation surface S. The sound speed can be
chosen variable. Ammari et al.[2, 3] have performed sharp analysis of these problems
both from the modeling and numerical point of view.

We also mention as possible additional techniques those based on finite elements
discretization[35].
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In this paper we propose to investigate the PAT model and the related inverse problem
with an alternative formulation. We use an optimal control approach. Indeed, in our model
the function to be recovered is the control function while the pressure is the state function
which satisfies a wave equation.

This article is organized as follows: Section 2 is devoted to the description of the math-
ematical model driving the behaviors of the light transport and the wave pressure. It leads
to the introduction of a coupled system of two partial differential equations, respectively
of hyperbolic and parabolic type, in Section 2.3. The inverse problem mentioned above
is interpreted as an optimal control problem in Section 3.1 and an existence result is pro-
vided. Section 3.2 is devoted to the differentiability analysis of the cost function and the
computation of its gradient. Necessary first order optimality conditions are then derived
in Section 3.3. We end the paper by giving leads for numerical experimentation.

2 The Photo Acoustic model

2.1 Light transport

In the PAT set-up, the tissues to investigate are illuminated with a laser source in the
near infrared frequency range. As they propagate in the body, the particles are subject
to absorption and diffusion, and are governed by the Boltzmann equation[6]. However,
this equation requires the knowledge (in the direct problem) or the reconstruction (in the
inverse problem) of a phase function representing the probability of scattering from one
direction to another. Since this function depends on numerous factors, it is usually not
known, nor easy to reconstruct.

Fortunately, the modeling becomes easier when dealing with soft, deep tissues. As a
matter of fact, these latter are known to be highly diffusive media, so that the scattering
tends to lose anisotropy as the particles go deeper into the tissue.

In this situation, the fluence rate I, that is the average of the luminous intensity in all
the directions, satisfies the diffusion equation (See for example [6])$&% 1

ν

BIBt pt, xq � µapxqIpt, xq � divpD∇Iqpt, xq � Spt, xq, pt, xq P r0, T s � Ω

Ip0, xq � 0, x P Ω,
(2.2)

where ν is the speed of light, S is the incident light source, µa is the absorption
coefficient, D is the diffusion coefficient, and T ¡ 0 is the duration of the acquisition
process.

Here, Ω stands for the part of the body where the diffusion approximation is relevant.
Usually, this domain does not include the tissues next to the surface of the body, since
the photons first have a quasi ballistic behavior, which is not consistent with the diffusion
approximation. Yet, the scatter sites of the early propagation act as isotropic sources
for the diffusion equation (see Figure 2). As a consequence, when the incident light
comes from a source point (optical fiber) located at the surface of the body, we can
assume that the diffusion approximation holds in the entire body, provided that the source
term S in equation (2.2) is correctly chosen. Indeed, in the set up of Figure 2, if the real
source Sreal has an amplitude S0

real
and is located at x � 0, we can define S with an
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amplitude S0 � aS0
real

and located at a depth of 1

µ
1
t

, where a and µ
1
t are, respectively, the

transport albedo and the total interaction coefficient [16]. Although they are not precisely
known, a model based on reasonable values of these two quantities (for the first layers of
the skin) should be precise enough for our purpose.

Figure 2: The incident light is scattered at different sites along the x axis.

From now on, we make the assumption that the diffusion approximation holds in the
entire body, which means that Ω stands now for the body. In order to complete this light
transport model, we need to find appropriate boundary conditions for Equation (2.2).

Following [22], we start from the Robin condition

Ipt, xq � AD
BIBν pt, xq, a.e.pt, xq P r0, T s � BΩ,

where A is related to the internal reflection and can be deduced from the Fresnel reflection
coefficients and ν denotes the outward pointing normal vector. This condition expresses
that no photon current goes back into the body from the external medium, and can be
satisfied with null Dirichlet conditions on an extrapolated boundary at 2AD from BΩ (as
in Figure 2)[16]. We will still denote by Ω this enlarged set so that the boundary condition
writes

Ipt, xq � 0, a.e. pt, xq P r0, T s � BΩ,
The fluence I is now assumed to vanish outside Ω.
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2.2 Pressure wave

Photoacoustic tomography is a mixed medical imaging technique, meaning that the out-
coming signal is not of the same kind as the incoming energy. This is due to the thermo-
acoustic effect [19, 30]: the incident light is absorbed by the tissue, and the resulting
thermal expansion generates a pressure wave p0 governed by the system$'&'% B2p0Bt2 pt, xq � divpv2s∇p0qpt, xq � 1ΩpxqΓpxqµapxqBIBt pt, xq, pt, xq P r0, T s � B,

p0p0, xq � Bp0Bt p0, xq � 0, x P B

where the notation 1Ω stands for the characteristic function of the domain Ω, defined for
almost every x P B by

1Ωpxq � " 1 if x P Ω
0 otherwise.

Here, the Grueneisen coefficient Γ, coupling the energy absorption to the thermal
expansion, is assumed to be known. So is the speed of sound vs, satisfying vs P rvmin

s , vmax
s s,

with vmin
s ¡ 0.

The domain B is the place where the wave propagates. Obviously, it includes Ω
and it has to be bounded in view of numerical simulations. The ball B is chosen large
enough in such a way that p0 vanishes on BB during the recording process. The size of B
depends consequently on the location of the recording equipment and the duration T of
the acquisition. In other words, the reflected wave coming from BB doesn’t have time to
reach the acquisition equipment before time T .

Without any loss of generality, and without loss of information, it is more convenient
to work with the new state p defined by

ppt, xq � » t

0

p0ps, xqds.
This latter satisfies$''''&''''% B2pBt2 pt, xq � divpv2s∇pqpt, xq � 1ΩpxqΓpxqµapxqIpt, xq, pt, xq P r0, T s � B,

ppt, xq � 0, pt, xq P r0, T s � BB,
pp0, xq � BpBt p0, xq � 0, x P B.

2.3 The direct problem

The effectiveness of photoacoustic tomography relies on the relation between inhomo-
geneities of the biological tissues and variations of the coefficients µa and D. Depending
on the frequency range of the illumination (usually in the red or near infrared region), the
gray level mapping of the absorptivity can achieve useful functional and structural imaging
through, for instance, quantification of oxygen saturation or hemoglobin content[26, 33].
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These considerations suggest to define µ :� pµa,Dq as the control variable that we
want to identify. Let µmin

a   µmax
a and Dmin   Dmax denote positive real numbers. The

minimal (natural) assumptions on µa and D are

µa P rµmin
a , µmax

a s and D P rDmin,Dmaxs a.e. in B, (2.3)

so that these maps lie in L8pBq.
We recall that Ω and B are two bounded open sets of Rd (d ¥ 2), with C1-boundaries,

satisfying Ω �� B. The set Ω being the (extrapolated) body, we may assume that µa

and D are known on BzΩ.
Introduce the set Q and its boundary Σ defined by

Q � p0, T q � Ω and Σ � p0, T q � BΩ.
Since there are two variables to reconstruct, we might need at least two sets of data.

This idea has been explored in a slightly different context in [9]. Following this work, we
assume that the experiment is repeated with different light sources, denoted by pSkq1¤k¤s
with s ¥ 2 and each Sk in L8pQq.

Provided that the frequency of the sources Sk doesn’t change, the coefficients µa and D

remain the same. However, the fluence rate I and the acoustic signal p may change
with k. Then, we may define Ik and pk, for k P t1, . . . , su as the solutions of the two state

equations$''''&''''% B2pkBt2 pt, xq � divpv2s∇pkqpt, xq � 1ΩpxqΓpxqµapxqIkpt, xq, pt, xq P p0, T q � B,

pkpt, xq � 0, pt, xq P p0, T q � BB,
pkp0, xq � BpkBt p0, xq � 0, x P B,

(2.4)

and$''''&''''% 1

ν

BIkBt pt, xq � µapxqIkpt, xq � divpD∇Ikqpt, xq � Skpt, xq, pt, xq P p0, T q � Ω,

Ikp0, xq � 0, x P Ω,
Ikpt, xq � 0 x P BzΩ
Ikpt, xq � 0, pt, xq P Σ.

(2.5)

The photoacoustic tomography model is completely described by the coupling of equa-
tions (2.5) and (2.4), in which Ik is extended to 0 on BzΩ. We first mention that this
system is well-posed, in other terms that (2.4)-(2.5) has a unique solution under standard
assumptions. The following theorem is standard and its proof can be found for example
in [15].

Theorem 2.1. Let Ω be a bounded connected open set of Rd with C1 boundary, Γ P L8pBq,
vs P L8pB, rvmin

s , vmax
s sq. Assume that the assumptions (2.3) hold. Then,
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i) Equation (2.5) has a unique solution Ik such that

Ik P C0p0, T ;L2pΩqq X L2p0, T ;H1
0 pΩqq,BIkBt P L2p0, T ;H�1pΩqq.

ii) Equation (2.4) has a unique solution pk such that

pk P Cp0, T ;H1
0 pBqq X C

1p0, T ;L2pBqq.
Remark 2.1. Even if they are reasonable in this setting, the assumptions made earlier
on the variables µa, D and vs are not sharp, neither are the regularity results stated here.
Nevertheless, our purpose does not require stronger statements.

The last step to complete the description of the direct model is the formalization of
data acquisition. In PAT, ultrasonic transducers are placed in a neighborhood of the body
and record the resulting pressure wave p0 for all times in r0, T s. Let us denote by ω the
set of the locations of these transducers, which can be either finite, discrete or (ideally)
some hypersurface of Rd. Assume for example that

ω � N¤
i�1

txiu,
where each point xi belongs to BzΩ. Unfortunately, this choice of acquisition set do not
allow to apply some classic techniques of optimal control, such as Stokes’ theorem. To
overcome this difficulty, we propose to thicken the set ω into a union of non empty open
sets of Rd. Namely, we replace in the sequel the set ω by the set ωε defined for ε ¡ 0 by

ωε � ¤
xPωBpx, εq, (2.6)

where Bpx, εq denotes the open ball with radius ε centered at x. It is illustrated on
Figure 3.

We thus make the assumption that the pressure p0k is known on r0, T s � ωε. Still

defining the state variables pk as

» t

0

p0kpt, xqdx, the PAT data are given bytpkpt, xq|1 ¤ k ¤ s, t P r0, T s, x P ωεu .
Actually, we don’t have access to such an information (we only record p0k on ω). Nev-

ertheless, once the space discretization step is set to δx, ε can be set to δx
2
, so that the

thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.
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Figure 3: The dots are ω, the blue (light gray) balls are ωε.

2.4 Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions of
(2.4)-(2.5), for the sake of clarity. Define Uad, the set of admissible controls µ � pµa,Dq
as

Uad � pµa,DqPrL8pBqs2 | µa P rµmin
a , µmax

a s andD P rDmin,Dmaxs a.e. inB( . (2.7)

Using Theorem 2.1, we define the maps

I : Uad ÝÑ C0p0, T ;L2pΩqq X L2p0, T ;H1
0 pΩqqpµa,Dq ÞÝÑ Ipµa,Dq (2.8)

where Ipµa,Dq satisfies (2.5) and
p : Uad ÝÑ C

0p0, T ;H1
0 pBqqpµa,Dq ÞÝÑ ppµa,Dq, (2.9)

where ppµa,Dq is the solution to (2.4).
The following theorem constitutes the main result of this section.

Theorem 2.2. The operator p defined by (2.9) is weakly-strongly continuous from Uad

to L2pBq. More precisely, let pµn
a ,D

nqnPN P UN

ad be such that µn
a weakly converges to µ�a

in L2pΩq and Dn strongly converges to D� in L2pΩq for some pµ�a,D�q in Uad; then the
sequence ppnqnPN defined by pn � ppµn

a ,D
nq strongly converges up to a subsequence to p� �

ppµ�a,D�q in L2pBq.
Proof. Let pµn

a ,D
nqnPN P rUadsN and pµ�a,D�q in Uad be such that µn

aáµ�a (weakly)
in L2pΩq and Dn Ñ D� (strongly) in L2pΩq, as nÑ �8.
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Step 1: let us first prove that the sequence pInqnPN defined by In � Ipµn
a ,D

nq weakly
converges in L2p0, T ;H1

0 pΩqq to some I� P L2p0, T ;H1
0 pΩqq.

Indeed, note first that the weak formulation of System (2.5) writes: for every Ψ P
L2p0, T ;H1

0
pΩqq, »

Q

1

ν

BInBt Ψ�Dn∇In∇Ψ� µn
aI

nΨ� SΨ � 0. (2.10)

Taking Ψ � In yields: »
Q

�
Dn|∇In|2 � µn

a |In|2� ¤ »
Q

SIn,

since Inp0q � 0. Using both Cauchy-Schwarz inequality and the fact that Dn and µn
a lie

in Uad for every n P N yields

minpµmin
a ,Dminq » T

0

}In}2H1pΩq ¤ }S}L2pQqd» T

0

}In}2H1pΩq, (2.11)

It thus follows that the sequence pInqnPN is uniformly bounded in L2p0, T ;H1
0 pΩqq and

weakly converges (up to a subsequence) to some I� in L2p0, T ;H1
0 pΩqq. This convergence

is actually strong in L2pQq by virtue of the Aubin-Lions lemma (see[25] Theorem 5.1 p.
58).

Step 2: Let us now prove that I� � Ipµ�a,D�q. Notice first that the combination of
inequalities (2.10) and (2.11) ensures that BInBt is uniformly bounded in L2p0, T ;H�1pΩqq.
As a consequence, BI�Bt belongs to L2p0, T ;H�1pΩqq and I� is thus the limit of a subsequence
of pInqnPN in C0p0, T ;L2pΩqq. It ensures that I�p0q is well-defined and vanishes.

With a slight notational abuse, we still denote by pInqnPN the subsequence introduced
above. Using a pointwise version of equation (2.10), we claim that for almost every
time t P r0, T s, one has�Ψ P H1

0 pΩq, »
Ω

1

ν

BInBt pt, �qΨ �Dn∇Inpt, �q∇Ψ� µn
aI

npt, �qΨ � »
Ω

Spt, �qΨ.

The weak convergence of BInBt to BI�Bt yields»
Ω

BInBt pt, �qΨ Ñ »
Ω

BI�Bt pt, �qΨ as n Ñ �8.

Moreover, using the strong convergence of pInpt, �qqnPN to I�pt, �q in L2pΩq for almost every
t P r0, T s, one gets »

Ω

µn
aI

npt, �qΨ Ñ »
Ω

µ�aI�pt, �qΨ as n Ñ �8.

Note that xpD� �Dnq∇I�pt, �q , ∇ΨyL2pΩq Ñ 0 as n Ñ �8.

and xDn∇pI� � Inqpt, �q , ∇ΨyL2pΩq Ñ 0 as n Ñ �8,
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since the sequence pDnqnPN strongly converges to D� as n Ñ �8.
Combining these results with the following decompositionxD�

∇I�pt, �q �Dn
∇Inpt, �q , ∇ΨyL2pΩq � xDn

∇pI� � Inqpt, �q , ∇ΨyL2pΩq� xpD� �Dnq∇I�pt, �q , ∇ΨyL2pΩq .

shows that I� � Ipµ�a,D�q.
Step 3: let us finally show that the sequence ppnqnPN defined by pn � ppµn

a ,D
nq strongly

converges, up to a subsequence, to p� � ppµ�a,D�q in L2pBq as n Ñ �8. The source term
in (2.4) is hn � 1ΩΓµ

n
aI

n. For every Ψ P L2pr0, T s � Bq we getxhn � h� , ΨyL2pr0,T s�Bq � xhn � h� , ΨyL2pQq� xIn � I� , Γµn
aΨyL2pQq � xµn

a � µ�a , ΓI�ΨyL2pQq ,

with h� � 1ΩΓµ
�
aI

�. Since pInqnPN strongly converges to I� in L2pQq, the sequence phnqnPN
weakly converges to h� in L2pr0, T s � Bq (recall that In and I� vanish on BzΩ). Since
pn is solution to the wave equation (2.4), it implies that the sequence ppnqnPN strongly
converges up to a subsequence to p� in L2pr0, T s � Bq.
3 The inverse problem

3.1 Formulation as an optimal control problem

Let us now consider the open set ωε defined by (2.6), where we will measure the outgoing
pressures pobsk at every time. In the sequel, ε is fixed and we rather write ω instead of
ωε, for the sake of simplicity. The asymptotic behavior of the solutions as ε Ñ 0 will be
investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect to µa

and D. We choose to add a penalization term in order to ensure the existence of an
optimal control.

Let us define the functional J by

Jpµq � Fpµq � f pµq, (3.12)

for every µ � pµa,Dq P Uad, where f pµq stands for a regularizing term and F is a least
square functional with respect to the measured pressure data. We set

Fkpµq � 1

2

»r0,T s�ω

ppkpt, xq � pobsk pt, xqq2dxdt
where pobsk is the measured pressure (observed state) on ω when the source signal is Sk.
Fix α ¥ 0 and β ¥ 0. Assuming that we perform s experiments, we define

Fpµq � ş

k�1

Fkpµq � ş

k�1

1

2

»r0,T s�ω

ppkpt, xq � pobsk pt, xqq2dxdt
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and

f pµq � $&% α

»
Ω

pBµaq2pxqdx� βTV pDq if D P BV pΩq�8 otherwise.

Here BV pΩq denotes the space of functions of bounded variation[1, 8], TV pDq stands for
the total variation of D, and B : L2pΩq Ñ L2pΩq is an invertible linear operator.

Remark 3.1. The operator B is usually the L2pΩq identity operator. However one can
decide to focus on specific frequencies of µa and B can be chosen as a pass-band filter.
Following[11], B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice that fits
the physical meaning. Indeed, strong L2 convergence of the D part of minimizing sequences
is needed to use Theorem 2.2 and obtain an existence result. The TV term seems to be the
weakest one that provides such a convergence while respecting the physical requirements
since discontinuities (and contours) are preserved.

The original inverse problem to perform parameter identification can be viewed as the
following optimal control problem pPq min

µPUad

Jpµq,
where the admissible set Uad is defined by (2.7).

Notice that the values of the coefficients µa and D on BzΩ are already known and
that Uad is a closed convex subset of L2pBq � L2pBq.
Theorem 3.1 (Existence of an optimal control µ). Assume that α ¥ 0 and β ¡ 0. Then,
Problem (P) has at least a solution µ̄ � pµ̄a, D̄q.
Proof. Let pµn

a ,D
nqnPN be a minimizing sequence. Since pµn

aqnPN is bounded in L8pΩq (and
in L2pΩq), it weakly converges (up to a subsequence) to some µ̄a in L2pΩq as n Ñ �8.
The sequence pDnqnPN is bounded in L8 as well, so it is bounded in L1. From the bounded-
ness of pTV pDnqqnPN, we deduce that pDnq is bounded in BV and weakly converges up to
a subsequence to some D̄ in BV pΩq as n Ñ �8. The space BV pΩq being compactly em-
bedded in L1pΩq, then the sequence pDnqnPN strongly converges to D̄ for the L1-topology.
Since the sequence pDnqnPN is uniformly bounded in L8pΩq, we get the strong convergence
of pDnqnPN to D̄ for the L2-topology.

Using Theorem 2.2, we conclude that the sequence ppnkqnPN defined by pnk � pkpµn
a ,D

nq
strongly converges (up to a subsequence) to p̄k � pkpµ̄a, D̄q in L2pr0, T s�Bq, for every k Pt1, . . . , su as n Ñ �8. The lower semicontinuity of every Fk with respect to the L2-
convergence and the lower semicontinuity of f with respect to the L1-convergence implies
that the pair pµ̄a, D̄q is a solution of Problem (P).

Remark 3.2. We are not able to prove uniqueness by now. As already mentioned, it
seems necessary to get more that one data set, that is s ¥ 2 [9]. Moreover, we will have
to assume α ¡ 0.
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3.2 Computation of the cost functional derivative

In order to write the necessary first order optimality conditions for Problem pPq, we first
compute the derivative of F with respect to the control variable µ � pµa,Dq. Since F �
ş

k�1

Fk, it suffices to compute the derivative of Fk. For the sake of clarity and readability,

we will omit the index k in the sequel.
In order to write the optimality conditions in the most simple way, let us notice that

L8pBq � L2pBq so that we can endow Uad with the usual hilbertian structure of L2pBq.
Let µ P Uad and ξ � pξµa

, ξDq P L2pΩq �L2pΩq be an admissible perturbation of µ. In
the sequel, if µ P Uad ÞÑ gpµq is a Gâteaux-differentiable functional at µ in direction ξ,
we will indifferently denote by xdgpµq, ξy or 9gpµq the Gâteaux derivative of g at µ in
direction ξ, that is 9gpµq � xdgpµq, ξy � lim

t×0

gpµ� tξq � gpµq
t

.

A calculus of variation standard analysis permits to show, applying shrewdly the im-
plicit function theorem, that the functional F is differentiable at µ in direction ξ. Its
derivative writes xdF pµq, ξy � »r0,T s�ω

�
ppt, xq � pobspt, xq	 9ppt, xqdxdt, (3.13)

where 9p is the solution of the system$''''&''''% B2 9pBt2 � divpv2s∇ 9pq � 1ΩΓξµa
I � 1ΩΓµa

9I in r0, T s � B9pp0, �q� B 9pBt p0, �q � 0 in B9p � 0 on r0, T s � BB (3.14)

and I is solution of the following system$'''&'''% 1

ν

B 9IBt � µa
9I � ξµa

I � divpD∇ 9Iq � divpξD∇Iq � 0 in Q9Ip0, �q � 0 in Ω9I � 0 on Σ

(3.15)

Since the expression (3.13) does not permit to express the first order optimality condi-
tions easily, it is convenient to introduce some adjoint states to rewrite this derivative into
a more workable expression. For that purpose, let us define q1 and q2 as the respective
solutions of the systems$''''&''''% B2q1Bt2 � divpv2s∇q1q � pp� pobsq1ωε

in r0, T s � B

q1pT, �q � Bq1Bt pT, �q � 0 in B

q1 � 0 on r0, T s � BB (3.16)

and
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ν

Bq2Bt � µaq2 � divpD∇q2q � Γµaq1 in Q

q2pT, �q � 0 on Ω

q2 � 0 on Σ.

(3.17)

It is standard that under the assumptions of Theorem 2.1, System (3.17) has a unique
solution

q2 P C
0p0, T ;L2pΩqq X L2p0, T ;H1

0 pΩqq
and System (3.16) has a unique solution

q1 P C0p0, T ;H1
0 pBqq X C1p0, T ;L2pBqq.

Let us now compute the derivative of F at µ in the direction ξ.

Proposition 3.1. For every ξ � pξa, ξDq P L2pΩq � L2pΩq, the functional F is Gâteaux-
differentiable at µ � pµa,Dq in the direction ξ andxdF pµq , ξ yL2pΩq � »

Ω

∇F pµqpxqξpxqdx� »
Ω

� BFBµa
pµa,Dqpxqξµa

� BFBD pµa,DqpxqξDpxq
 dx (3.18)

where

∇F pµq � � BFBµa
pµq, BFBD pµq
 � �» T

0

p1ΩΓq1 � q2qI,� » T

0

∇q2 �∇I



.

Proof. Using integration by parts and Green’s formula, one getsxdF pµaq , ξ yL2pΩq � »r0,T s�ω

�
p� pobs

	 9p� »r0,T s�B

9p�B2q1Bt2 � divpv2s∇q1q
� »r0,T s�B

q1

�B2 9pBt2 � divpv2s∇ 9pq
� »r0,T s�B

q1

�
1ΩΓξµa

I � 1ΩΓµa
9I	� »

Q

Γq1ξµa
I � »

Q

Γq1µa
9I.

Let us now rewrite the term

»
Q

Γq1µa
9I. One has»

Q

Γq1µa
9I � »

Q

��1

ν

Bq2Bt � µaq2 � divpD∇q2q
 9I� »
Q

�
1

ν

B 9IBt � µa
9I � divpD∇ 9Iq� q2� »

Q

p�ξµa
I � divpξD∇Iqq q2
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We finally get »
Q

Γµaq1 9I � »
Q

p�ξµa
q2I � ξD∇q2 �∇Iq (3.19)

so that xdF pµaq , ξ yL2pΩq � »
Q

ppΓq1 � q2qIξµa
�∇q2 �∇IξDq .

We deduce from the previous result the following expression of the derivative of F .

Theorem 3.2. For every ξ � pξa, ξDq P L2pΩq � L2pΩq, the functional F is Gâteaux-
differentiable at µ � pµa,Dq in the direction ξ andxdFpµq , ξ yL2pΩq�L2pΩq � »

Ω

∇Fpµq � ξ
where

∇F pµq � ş

k�1

�» T

0

p1ΩΓq
k
1 � qk2qIk,� » T

0

∇qk2 �∇Ik



,

and, for every k P t1, . . . , su,$''''&''''% B2qk1Bt2 � divpv2s∇qk1q � ppk � pobsk q1r0,T s�ωε
in r0, T s � B

qk1pT, �q � Bqk
1Bt pT, �q � 0 in B

qk1 � 0 on r0, T s � BB (3.20)$'''&'''% �1

ν

Bqk2Bt � µaq
k
2 � divpD∇qk2 q � Γµaq

k
1 in Q

qk
2
pT, �q � 0 on Ω

qk2 � 0 on Σ

(3.21)

3.3 First order optimality conditions for Problem pPq
Assume that µ̄ � pµ̄a, D̄q is an optimal solution to problem pPq. Introduce the so called
indicator function of the set Uad, denoted ιUad

and defined by

ιUad
pxq � "

0 if x P Uad�8 otherwise.

The regularization function f is not Gâteaux differentiable because of the Total Vari-
ation term. However the subdifferential BTV is well known[13] and we get

0 P BTV pµq ðñ µ P BTV �p0q,
where the total variation conjugate functional TV � is the indicator function ιK̄ of K̄ with

K �  
div ϕ | ϕ P C

1
c pΩ,R2q, }ϕ}8 ¤ 1

(
.
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This gives useful algorithms to compute the total variation subgradients (see [13, 32] for
example).

Writing pPq as
min

µPrL8pΩqs2 Fpµq � f pµq � ιUad
pµq,

the classical optimality condition reads

0 P BpFpµ̄q � f pµ̄q � ιUad
pµ̄qq .

Using the standard computational rules[14] and decoupling the first order optimality con-
ditions on µa and D yields:

iq Equation on µa. For every µa P L8pΩq such that µa P rµmin
a , µmax

a s,B BFBµa
pµ̄a, D̄q � 2αB�Bµ̄a , µa � µ̄a

F
L2pΩq ¥ 0 , (3.22)

iiq Equation on D. � BFBD pµ̄a, D̄q P BTV pD̄q � BιrDmin,Dmaxs, (3.23)

where B� is the L2-adjoint operator of B.

With the previous computations, equation (3.22) writes�µa P L8pΩq, s.t. µa P rµmin
a , µmax

a s,C
ş

k�1

p1ΩΓq
k
1 � qk2qIk � 2αB�Bµ̄a , µa � µ̄a

G
L2pΩq ¥ 0, (3.24)

while equation (3.23) becomesDδ� P BTV pD̄q, �D P L8pΩq s.t. D P rDmin,Dmaxs,C
ş

k�1

∇Ik �∇qk2 � δ� , D � D̄

G
L2pΩq ¥ 0. (3.25)

The following theorem summarizes these optimality conditions.

Theorem 3.3. Assume µ̄ � pµ̄a, D̄q is an optimal solution to problem pPq. Then, there
exists qk1 , q

k
2 , k � 1, � � � , s and δ� P BTV pD̄q such that

• The 2s state equations (2.4) for the pression and (2.5) for the fluence are satisfied
(with s sources Sk, k P t1, . . . , su)

• The 2s adjoint state equations (3.20) -(3.21) are satisfied by qk1 and qk2 respectively,
for k P t1, . . . , su.

• Inequations (3.24) and (3.25) hold.

Remark 3.3. In the very case where D is constant and/or known, we are only interested
in µa. The (reduced) optimality system writes then : 2s state equations (2.4) and (2.5), 2s
adjoint state equations (3.20)-(3.21) and (3.24).
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4 Numerical experiments

The approach we use leads to an optimality system that can be solved numerically. How-
ever, the solving of this coupled optimal control problem raises some issues like the non
differentiability of the BV regularization and the difference of speed scale (sound versus
light) of the two equations. This interesting issue will be addressed in a forthcoming paper.

To illustrate the control approach and show that it is a relevant alternative method to
the classical ones (that we mentioned in the introduction), we briefly present numerical
experiments to compute a simple TAT model. Shortly speaking, we assume that the
fluence equation is not useful any longer and consider equation (1.1) as a good model for
TAT (as usual in TAT papers). More precisely we want to recover the source u which
drives the following equation$'''&'''% �B2pBt2 � divpv2∇pq
 pt, xq � 0, pt, xq P r0, T s � B,

ppt, xq � 0, pt, xq P r0, T s � BB,
pp0, xq � u,

BpBt p0, xq � 0, x P B

(4.26)

from measurements pobs on the boundary of Ω where Ω is the 0-centered ball of radius
1{?2 (so as to be outside the square containing the phantom). We consider the case where
the observation surface is not closed (half a sphere) and the sound speed v is not constant.
We consider a 2D problem. Though we should deal with the 3D problem, the 2D - one is
still interesting, since it covers the case where detectors are lineic[27]. With the previous
notations, we assume that k � 1 (only one source), B is a mollifier[11] and β � 0 (total
variation not included). The control problem writespPεq $'&'% min

1

2
}ppuq � pobs}2L2pr0,T s�ωq � α

2
}Bu}2L2pr0,T s�Ωq

u P L2pr0, T s � Bq, (4.27)

where ppuq is the solution to (4.26) and u is supported in Ω � B. This uncoupled system
gives rise to the same kind of optimality system as the coupled system, except that there
is only a slight modification of adjoint equation (3.20) and necessary condition (3.22) to
consider. Moreover, we do not introduce bounds on u so no projection has to be performed.

The tests have been done using Shepp-Logan phantom. As our purpose is to illustrate
the relevance of our approach we do not focus on code and/or optimization methods so
that we do not report CPU time for example. The known speed of sound is supposed to
be 1 outside the Shepp-Logan phantom and in r0.95, 1.05s inside. This choice of variation
of speed represents the real variations between soft tissues and water (where the body to
be reconstructed would be submerged).

Other methods than the optimal control approach could be used to solve this recon-
struction problem. Most of those methods have originally been devised so as to deal with
constant sound speed and a closed domain of observation and later on have been adapted
to less stringent assumptions. For example, the time-reversal method[29, 31] has been
adapted to variable speed of sound and open observation domain. A method based on the
eigenvalues of the Laplacian has been extended to deal with open observation domain[24].
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We chose to solve the optimality system by means of the conjugate gradient algorithm.
The forward and backward problems are solved by means of a leapfrog discretization
scheme on a staggered grid. In order to avoid handling large grids (due to the size of B),
we use an appropriate PML (Perfectly Matched Layer) technique[7].

All the computations are performed on a standard computer using the Scilab software.
We use the algorithm on the 512 by 512 pixels Shepp-Logan phantom, given on Figure 4.

Figure 4: The Shepp-Logan phantom. Left: only the phantom (512�512 pixels). Right:
phantom and detectors distribution (number of detectors will vary).

We investigate 5 different cases

• data are not corrupted or a white gaussian noise (SNR=0.15) is added to the simu-
lated data;

• the number of detectors is 500, 50 or 10 (only for noiseless data) with a uniform
angular sampling on the right half circle.

All the results correspond to a zero initialization of u and 10 iterations (20 for 10 detectors)
of the conjugate gradient. When tackling noiseless data, we use α � 0.1 while we use
α � 0.4 for noisy data. The data (pobs) are simulated with the known speed of sound
while the forward and backward problems use a noisy speed with an added white gaussian
noise (SNR=0.02 so as to be less than the amplitude of the speed variation).

Figure 5 shows the results of the solving for uncorrupted data with 500, 50 and 10
detectors. For the noiseless data, we see that the reconstruction enables the recovery of
all the features of the Shepp-Logan phantom when using 500 or 50 detectors. A close
inspection of the heavily dense (500) detectors population shows that the right side of
the phantom is better reconstructed than the left side, which is to be expected since the
detectors are in the right half plane. On the 50 detectors solving, we see some wave like
artifacts inside the phantom but also in the outside, coming from the sparsely distributed
detectors. The over pessimistic result with 10 detectors is only displayed because it clearly
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Figure 5: Noiseless data. Left: 500 detectors. Center: 50 detectors. Right: 10 detectors

shows that the properly reconstructed boundaries are only the ones tangential to circles
originating from the detectors.

Figure 6 shows the results for noisy data with 500 and 50 detectors. For the noisy

Figure 6: Noisy data. Left: 500 detectors. Right: 50 detectors.

data, both reconstructions are slightly blurrier than for the noiseless data, as expected
since the regularization term is stronger. Even with sparsely distributed detectors, we can
still recover the different elements of the phantom.

5 Conclusion

We have presented a new model for PAT phenomena involving a coupled system. The
optimal control approach we use seems promising in this context. Techniques we use are
classical but they provide flexibility to study the inverse problem, especially in the case
where the direct problem is not easy to handle ( involving many nonlinear equations for
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example). This leads to optimality systems that can be solved numerically, though it
remains challenging numerical issues.

Many open questions remain, as the uniqueness of the solution of the optimal control
problem for example. Identifiability issues have to be addressed as well. On the other
hand, we have to investigate precisely the behavior of the solutions when the observation
set ωε measure reduces to 0: this case corresponds to pointwise sensors. At last, we go
on developing precise models taking into account physical phenomena that are usually
neglected, especially in the TAT context where the direct problem can be described both
by a pressure equation and a Maxwell equation.
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