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Spiral and Wavy Vortex Flows in Short Counter-Rotating Taylor-Couette Cells

Differentially rotating cylinders result in a rich variety of vortical flows for cylindrical Couette flow. In this study we investigate the case of a short, finite-length cavity with counter-rotating cylinders via direct numerical simulation using a three-dimensional spectral method. We consider aspect ratios ranging from 5 to 6. Two complex flow regimes, wavy vortices and interpenetrating spirals, occur with similar appearance to those found experimentally for much larger aspect ratios. For wavy vortices the wave speed is similar to that found for counter-rotating systems and systems in which the outer cylinder is stationary. For the interpenetrating spiral structure, the vortices are largely confined to the unstable region near the inner cylinder. The endwalls appear to damp and stabilize the flow as the aspect ratio is reduced to the point that in some cases the vortical flow is suppressed. At higher inner cylinder speeds, the interpenetrating spirals acquire a waviness and the vortices, while generally near the inner cylinder, can extend all of the way to the outer cylinder.

Introduction

The Taylor-Couette system, consisting of shear flow between differentially rotating concentric cylinders, provides valuable insight into the stability of flows in rotating systems and the interaction of various vortical structures. The Taylor-Couette configuration with a fixed outer cylinder has been investigated experimentally and numerically in great detail since Taylor's pioneering work [START_REF] Taylor | Stability of a viscous liquid contained between two rotating cylinders[END_REF]. Experiments for infinitely long cylinders have established that as the rotational speed of the inner cylinder increases, the flow changes according to the following scenario: stable Couette flow, axisymmetric Taylor vortices, wavy vortices, modulated wavy vortices, and turbulent vortices [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF][START_REF] Fenstermacher | Dynamical instabilities and the transition to chaotic Taylor vortex flow[END_REF]. The velocity field in non-wavy and wavy vortex has been studied in detail experimentally [START_REF] Akonur | Three-dimensional velocity field for nonwavy and wavy Taylor-Couette flow[END_REF][START_REF] Wereley | Spatio-temporal character of supercritical circular Couette flow[END_REF] and numerically (Coughlin and Marcus, 1992a,b;[START_REF] Marcus | Simulation of Taylor-Couette flow. Part 2. Numerical results for wavy-vortex flow with one travelling wave[END_REF]. However, the flow state for wavy vortex flow depends strongly on how the final rotational speed is achieved (impulsively or quasi-statically) [START_REF] Coles | Transition in circular Couette flow[END_REF][START_REF] Ghoshmoulic | Taylor-Couette instability of travelling waves with a continuous spectrum[END_REF].

The rotation of the outer cylinder in addition to the inner cylinder results in a variety of other flow regimes for long cylinders: wavy inflow and outflow, wavelets, twisted vortices, and corkscrew regimes for co-rotating cylinders; interpenetrating spirals, wavy interpenetrating spirals, intermittent turbulent spots, and spiral turbulence regimes for counter-rotating cylinders [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. Several of these flow regimes, particularly spiral turbulence, have been studied experimentally in long cylinders [START_REF] Coles | Transition in circular Couette flow[END_REF][START_REF] Colovas | Turbulent bursting and spatiotemporal intermittency in the counterrotating Taylor-Couette system[END_REF]Edwards et al., 1991b;[START_REF] Goharzadeh | Experimental characterization of intermittency regimes in the Couette-Taylor system[END_REF][START_REF] Hegseth | Spiral turbulence and phase dynamics[END_REF][START_REF] Hegseth | Bifurcations from Taylor vortices between corotating concentric cylinders[END_REF][START_REF] Snyder | Waveforms in rotating Couette flow[END_REF][START_REF] Vanatta | Exploratory measurements in spiral turbulence[END_REF]. Computational studies of differentially rotating cylinders have considered both the co-rotating case [START_REF] Antonijoan | Transitions from Taylor vortex flow in a co-rotating Taylor-Couette system[END_REF] and counterrotating case [START_REF] Antonijoan | Non-linear spirals in the Taylor-Couette Problem[END_REF][START_REF] Jones | On flow between counter-rotating cylinders[END_REF][START_REF] Sanchez | Spiral vortices between concentric cylinders[END_REF], without any axial confinement. In addition, the chaotic nature of the flow between long counter-rotating cylinders has been studied using bifurcation theory [START_REF] Chossat | The Couette-Taylor Problem[END_REF][START_REF] Golubitsky | Pattern formation and bistability in flow between counterrotating cylinders[END_REF][START_REF] Stern | Chaos in counter-rotating Couette flow[END_REF].

Experimentally, the endwalls strongly influence the flow by constraining the axial motion of the flow and by pumping fluid in the endwall boundary layers. Away from the endwalls the flow is geostrophic, so that the centrifugal force due to the azimuthal velocity is balanced by the pressure gradient force resulting in no radial flow. This balance is upset near the endwalls where the no-slip boundary condition results in an azimuthal velocity near the endwall that is different from that away from the endwall. The imbalance between the pressure gradient imposed away from the endwall and the centrifugal force related to the azimuthal velocity in the endwall boundary layer results in a radial flow near the endwall. For the case of the inner cylinder rotating with the outer cylinder fixed, the direction of the radial flow in the Ekman layer is easy to predict. For endwalls rotating with the inner cylinder, centrifugal viscous pumping causes an outflow at the endwalls. For endwalls fixed to the outer cylinder, the imbalanced pressure gradient and centrifugal forces result in an inflow at the endwalls. For differentially rotating cylinders, the situation is more complicated. Depending on the rates and directions of rotation of the cylinders and the endwalls, the force imbalance can result in inflow, outflow, or both (depending on radial position). The direction of the radial flow near the endwalls can be predicted by comparing the pressure gradient force away from the endwalls with the centrifugal force at the endwall. The imbalance in these forces drives the flow at the endwalls. This Ekman layer flow at the endwalls determines the rotation of the vortices nearest the endwalls, which appear well below the critical speed for Taylor vortices [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF][START_REF] Koga | Taylor vortices in short fluid columns[END_REF][START_REF] Sobolik | Interaction between the Ekman layer and the Couette-Taylor instability[END_REF]. These endwall vortices subsequently determine the rotation of the entire vortex structure above the critical speed for Taylor vortices, even for relatively long cylinders [START_REF] Burkhalter | Steady supercritical Taylor vortex flow[END_REF].

For short cylinders with the outer cylinder fixed, the endwalls play a significant role: the transition to non-wavy vortical flow occurs at a lower rotational speed and the subsequent transition to wavy vortical flow occurs at a higher rotational speed than in the case of infinitely long cylinders because the endwall vortices related to the Ekman layers alter the vortical structure [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF]. Furthermore, the axial wave number, which is such that pairs of nearly square vortical cells appear in the infinite cylinder case, can be strongly influenced by the distance between the endwalls. The key parameter is the aspect ratio, L = 2h/d,w h e r e2 h is the distance between the endwalls and d is the annular gap. For aspect ratios that are even integers, the axial wavelength of the vortex pair is that predicted by theory for identical endwall conditions. However, an odd or non-integer aspect ratio results in vortices, particularly those near the endwalls, stretching or compressing to accommodate the proper vortical rotation defined by the endwall conditions [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF]. In some cases, "anomalous" vortex structures have been identified where the rotation of the endwall vortices is opposite that predicted based on endwall conditions [START_REF] Cliffe | A numerical and experimental study of anomalous modes in the Taylor experiment[END_REF].

The effect of endwall conditions on the flow for differentially rotating cylinders was of concern in the classic paper by [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF], even though the aspect ratio was L = 30 to minimize endwall effects. In this paper we address the flow between short counter-rotating cylinders in which the Ekman layers near the endwalls interact with the vortical structures. To our knowledge, there have been no investigations, experimental or computational, of endwall effects in short differentially rotating cylindrical Couette systems. We use direct numerical simulation based on a spectral Chebyshev-Fourier method that has been shown to be efficient for the complex development of rotating flows with walls [START_REF] Serre | Annular and spiral patterns in flows between rotating and stationary discs[END_REF] to study flow between short, counter-rotating cylinders.

Geometry and Numerical Method

The configuration that is considered is an annular cavity between two concentric cylinders of inner and outer radii r * i and r * o , respectively, that rotate independently at Ω i and Ω o . The endwalls at z * =±h rotate with the outer cylinder at Ω o . The flow is described by the incompressible three-dimensional Navier-Stokes equations written in cylindrical coordinates (r * , z * ,θ) in an absolute frame of reference, according to the velocity-pressure formulation. Parameters characteristic of the physical problem are the Reynolds numbers 

Re i = Ω i r * i d/ν and Re o = Ω o r * o d/ν, the radius ratio η = r * i /r * o ,
-r * o -r * i )/d, r ∈[-1; 1], and z = z * /h, z ∈[-1; 1] to allow the use of Chebyshev polynomials.
On the domain boundaries the radial velocity v r and the axial velocity v z obey the no-slip condition. The azimuthal velocity v θ is more difficult to handle because of the singularity at r =-1 between the endwall rotating at Ω o and the inner cylinder rotating at Ω i . The profiles at the upper and lower endwalls are set so that the velocity is that of the rotating endwall except very near the inner cylinder where the velocity exponentially changes to that of the inner cylinder. Then the dimensionless form of the boundary conditions for the azimuthal velocity is

             v θ = 1, at r = 1 , v θ = β, with β = Re i Re o , at r =-1 , v θ = 1 2 (1 -η)r + 1 + η e -a -e a 1 - β η e -ar + β η e -a -e a , at z =±1 . (1) 
The region in which the velocity changes from Ω o to Ω i at the endwall is set to about 0.05 d by adjusting the decay coefficient a. This small region is consistent with the size of the gap between a rotating inner cylinder and a fixed endwall that would be necessary in an experimental system. The dimensionless incompressible Navier-Stokes momentum equation is

∂V ∂t + (V •∇)V =-∇p + 1 Re ∆V , (2) 
where V = (v r ,v θ ,v z ). The solutions to the Navier-Stokes equations are computed using a pseudo-spectral Fourier-Chebyshev collocation method taking advantage of the orthogonality properties of Chebyshev polynomials and providing exponential convergence [START_REF] Serre | Annular and spiral patterns in flows between rotating and stationary discs[END_REF]. The time scheme is semi-implicit and second-order accurate. It corresponds to a combination of the second-order backward implicit Euler scheme for the time term, an explicit Adams-Bashforth scheme for the non-linear terms, and an implicit formula for the viscous diffusion term [START_REF] Vanel | A pseudospectral solution of vorticity streamfunction equations using the influence matrix technique[END_REF]. Then the discretized form of the momentum equation is

3V j+1 -4V j + V j-1 2δt + 2 V j •∇ V j -V j-1 •∇ V j-1 =-∇p j+1 + 1 Re ∆V j+1 , ( 3 
)
where j is the solution at time t j = j δt, δt being the time step. An improved projection algorithm allows velocity-pressure coupling (Raspo et al., 2001). The mesh grid is defined by the Gauss-Lobatto collocation points along (r, z) and an equidistant distribution of points in the azimuthal direction, with N, M,a n dK being the number of radial, axial, and azimuthal points for the spatial mesh. The approximation of flow variables is given by

Ψ NMK (r, z,θ,t) = N n=0 M m=0 K/2-1 k=-K/2 Ψ nmk (t)T n (r)T m (z) e ikθ , (4) 
where

Ψ = (v r ,v θ ,v z , p), (r, z,θ)∈[-1; 1] 2 ×[0;
2π[, T n and T m are Chebyshev polynomials, and Ψ nmk are the Fourier coefficients. The grid mesh is N = 61, M = 121 in the radial and axial directions, respectively. The high grid resolution in the axial direction is helpful in avoiding any predisposition to a particular number of vortices appearing due to a particular grid spacing. The choice for the number of azimuthal points K will be discussed later.

Preliminary axisymmetric computations for a fixed outer cylinder (η = 0.83) were undertaken to compare our results with that expected for three aspect ratios: 16, 32, 48. In all cases Taylor vortices were obtained for Re > Re c with the axial wavelength and critical Reynolds number in good agreement with theory [START_REF] Recktenwald | Taylor vortex formation in axial through-flow: linear and weakly nonlinear analysis[END_REF].

We consider three counter-rotating flow regimes identified by [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]: wavy vortex flow (WVF), interpenetrating spirals (IPS), and wavy interpenetrating spirals (WIS). Geometric parameters for our computations are 4 L 6a n dη = 0.75. In order to reduce the computing time, the solution is first assumed to be axisymmetric, setting K = 4. From the flow at rest, Re i is progressively increased keeping Re o =-150. Vortices resulting from the Ekman boundary layer arise close to the endwalls driving the adjacent vortices. The vortical motion propagates to the center of the cavity as Re i increases. Upon reaching the desired Re i , K is increased to permit three-dimensional flow, and Re o is set to the desired value. Since we use direct numerical simulation, no assumptions are made regarding any symmetries in the flow field.

Three-Dimensional Simulations for Short, Counter-Rotating Cylinders

Wavy Vortex Flow

Axisymmetric simulation at Re i = 750, Re o =-150, and L = 6 results in eight rolls in the annulus with a temporal periodicity of f/ f i = 0.687 calculated via spectral analysis of the time history, where f i is the rotational frequency of the inner cylinder. This axisymmetric solution is interpolated on 120 Fourier modes (K = 120) as the initial condition for wavy vortex flow (WVF). The Reynolds number is changed to Re o =-250 resulting in the WVF state shown in Figure 1, consistent with the expected flow state at this combination of Reynolds numbers based on long cylinders [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. The appearance of eight vortices at L = 6 indicates that the vortices do not form the expected square vortical cells. However, the wavelength of λ/d = 1.5 is not very different from λ/d = 1.67 to 1.76 for WVF between long counter-rotating cylinders at somewhat lower Reynolds numbers [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. Consequently, this result appears to be independent of the length of the cylinders. We also performed simulations at L = 5 and found six vortices, equivalent to λ/d = 1.67. Otherwise the flow at L = 5isverysimilartothat at L = 6.

The shaded contours of v θ in a cylindrical surface at the center of the annulus in Figure 1(a) clearly show the wavy character of the flow. Since darker areas indicate regions having v θ near that of the outer cylinder, dark waves are inflow boundaries. The rolls are evident in the meridional slices in Figures 1(b) and 1(c). The radially inward flow at the endwalls is that predicted from the imbalance between the pressure gradient force and the centrifugal field. The vortices fill the annular gap extending to the outer cylinder, even though the unstable region based on the radius where the azimuthal velocity vanishes for stable flow extends only about 0.72d from the inner cylinder. Consistent with previous studies of WVF between long cylinders, there is significant fluid transport between vortices [START_REF] Marcus | Simulation of Taylor-Couette flow. Part 2. Numerical results for wavy-vortex flow with one travelling wave[END_REF][START_REF] Wereley | Spatio-temporal character of supercritical circular Couette flow[END_REF]. In addition, the flattening of the outflow boundaries while inflow boundaries retain their waviness is similar to WVF between long cylinders [START_REF] Wereley | Spatio-temporal character of supercritical circular Couette flow[END_REF].

From Figure 1(a), it is evident that the waves are somewhat irregular compared with the experimental visualization of WVF between counter-rotating cylinders (Figure 5 of [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]). For instance, the amplitude from wave to wave is not uniform. In addition, the structure near the endwalls is not wavy. Based on several meridional slices of the velocity vectors like that shown in Figure 1(c), the strength of the endwall vortices varies substantially with azimuthal position. In Figure 1(c) the second and sixth vortical rolls from the bottom are weaker than the other rolls. Yet at other azimuthal positions, these rolls are stronger. Likewise, the slight variation in the phase of the waves at different axial positions is randomness or modulation in the flow field, not a systematic variation. These results suggest that the interaction between the endwall layers and the wavy vortices strongly influences the details of the flow, perhaps making the waviness more irregular than with distant endwalls. The irregularity does not appear to be a computational artifact. Tracking the Fourier modes over the entire simulation indicates that several modes persist with apparently random amplitudes and no tendency toward decay.

A total of five waves occur around the annulus for L = 6andsevenwavesforL = 5, which is reasonably close to the six or seven waves found in long counter-rotating cylinders [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF] and within the range of one to eight for short cylinders with the outer cylinder fixed (Edwards et al., 1991a;[START_REF] Mullin | Transition to oscillatory motion in the Taylor experiment[END_REF][START_REF] Streett | A numerical simulation of the appearance of chaos in finite-length Taylor-Couette flow[END_REF]. The dominant frequency in the velocity field based on Fourier analysis, which is related to the traveling azimuthal waves, is f/ f i = 0.40, similar to the value of 0.35 and 0.40 for L = 8 and 10, found experimentally for short cylinders with the outer cylinder fixed (Edwards et al., 1991a), but somewhat greater than that of 0.14 found for long counter-rotating cylinders [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. However, simply measuring the frequency of the waviness or the speed of the azimuthal waves with respect to the speed of the inner cylinder is not particularly instructive because the outer cylinder is also rotating. We propose a more meaningful measure of the wave speed

γ = c w -r o Ω o r i Ω i -r o Ω o = 1 2k (1 + η) f f i -µ η -µ , ( 5 
)
where c w is the speed of the wave in a fixed reference frame, k is the number of azimuthal waves, and µ = ηβ = Ω o /Ω i is the rotation ratio. If the wave travels at the same speed as the inner cylinder, γ = 1; if the wave travels at the same speed as the outer cylinder, γ = 0. The use of γ permits the comparison of the wave speed for co-rotating cylinders, counter-rotating cylinders, and the outer cylinder fixed.

The value for γ is plotted in Figure 2 as a function of the aspect ratio for several different studies of WVF, computational and experimental, as well as for both a fixed and a counter-rotating outer cylinder [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]Edwards et al., 1991a;[START_REF] Mullin | Transition to oscillatory motion in the Taylor experiment[END_REF][START_REF] Streett | A numerical simulation of the appearance of chaos in finite-length Taylor-Couette flow[END_REF][START_REF] Wereley | Spatio-temporal character of supercritical circular Couette flow[END_REF]. In all cases we include only the data for the conditions nearest to transition to WVF, not higher Reynolds numbers where a reduction in wave speed is well documented for a fixed outer cylinder [START_REF] King | Wave speeds in wavy Taylor-vortex flow[END_REF][START_REF] Wereley | Spatio-temporal character of supercritical circular Couette flow[END_REF]. For larger aspect ratios (L > 10), it is remarkable that the value for γ is between 0.4and0.5, given the wide range of radius ratios (0.75 η 0.88), rotation rate Circles denote the results for the outer cylinder rotating; all others are for a fixed outer cylinder. ratios (-0.62 µ 0), and other conditions. The value for γ decreases for small aspect ratios, particularly for the previous computational studies (Edwards et al., 1991a;[START_REF] Streett | A numerical simulation of the appearance of chaos in finite-length Taylor-Couette flow[END_REF] and the current results, probably because the endwalls are fixed to the outer cylinder. The experimental results of Mullin and Benjamin have a higher wave speed at small L [START_REF] Mullin | Transition to oscillatory motion in the Taylor experiment[END_REF], and a theoretical analysis having square vortical cells predicts γ = 0.31 for L approaching infinity [START_REF] Jones | The transition to wavy Taylor vortices[END_REF]. Nevertheless, it is clear that the wave speed results for counter-rotating cylinders, both our computations and the experiments of [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF], are consistent with other results for a fixed outer cylinder when considered in terms of γ .

Spiral Flows

The axisymmetric simulation at Re i = 750, Re o =-150, and L = 6 is used as the initial condition for spiral vortex flow and interpolated onto a three-dimensional grid using 96 Fourier modes (K = 96). The Reynolds numbers are changed to Re i = 330 and Re o =-500, which corresponds to interpenetrating spiral (IPS) vortex flow for long counter-rotating cylinders [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. The general structure is that of two spiral vortices with opposite helicity interpenetrating each other in the entire cavity, except near the upper and lower endwalls, where only one type of spiral occurs as shown in Figure 3. In this figure the isosurfaces were chosen to display the structure of the flow most clearly. Isosurfaces of v r in Figure 3(a) display regions of inflow (v r < 0). Isosurfaces of v θ in Figure 3(b) provide information about where the radial flow carries inner cylinder momentum outward (ridges) and outer cylinder momentum inward (valleys). Figure 3(c) displays isosurfaces of the magnitude of the velocity in the meridional plane, defined as v m = (v r + v z ) 1/2 . These isosurfaces correspond approximately to vortex tubes, and, thus, represent the vortical structure of the flow. One spiral intersects the upper endwall at an angle of 9 • , whereas the other spiral intersects the lower endwall at 5 • . The appearance is quite similar to that found experimentally for long cylinders (L = 30) with the two spirals having opposite helicity [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. Unlike the experiments where both spirals only occur near the middle of the length of the annulus, both spirals in Figure 3 extend over nearly the entire length of the annulus. A time-dependent animation of our simulations shows that the spirals move around the axis of rotation in the same direction as the outer cylinder.

The projections of velocity vectors on meridional planes such as shown in Figure 4 indicate that the IPS vortex structures are not separated radially, just as was found experimentally [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. The vortices are confined to the unstable layer, which, based on the radius where the azimuthal velocity vanishes for stable flow, extends about 0.36d from the inner cylinder. However, the Ekman layer flow at the endwalls spans the entire annular gap. The flow at the endwalls is radially outward, consistent with the imbalance between the pressure gradient force and the centrifugal force for these Reynolds numbers. Decreasing the length of the cylinders to L = 5.2 weakens the vortical motion, evident as the smaller isosurfaces for the same value of the velocity in Figure 3(d)-(f). Except near the top of Figure 3(d) and near the bottom of Figure 3(f), the spiral structure is not evident. However, this is merely a result of the particular isosurfaces that were chosen (to match those for L = 6). Using other values for the isosurfaces makes the spirals more obvious, though not as obvious as for L = 6. Vector plots in meridional planes indicate that the size and location of vortices are similar to that for the L = 6 case.

Decreasing the axial length of the system to L = 5 results in a distinct transient in the vortical structure. Initially, after a transition time of t * /(d 2 /ν) = 0.15 (where d 2 /ν is the viscous time scale of the flow), the IPS structure switches to a triple helical structure with three spiral arms, each having the same sense, winding around the annulus. The spiral vortices are evenly spaced and extend from the lower endwall to the upper endwall. However, this flow regime eventually decays by time t * /(d 2 /ν) = 2.36 to pure Ekman vortical cells driven by the endwalls with no evidence of any Taylor vortices. Examination of the time history of velocity at the middle of the length of the annulus shows that all of the modes decay resulting in this flow. Similar results occur for L = 4, indicating that the phenomenon is not a consequence of an odd aspect ratio at L = 5 that would tend toward an even number of vortices based on identical endwall conditions. It appears that the endwalls suppress the vortical structure altogether for this set of Reynolds numbers and L 5.

Returning to the longer annulus of L = 6, increasing the inner cylinder speed to Re i = 375 (K = 150) with Re o =-500 results in wavy interpenetrating spirals (WIS), shown in Figure 5. The Reynolds number at which the WIS structure occurs is consistent with its appearance for long cylinders [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. The general structure appears similar to that observed experimentally at slightly different Reynolds numbers in that the vortices are "not as well defined visually as wavy-vortex flow". Figures 5(a) and 5(c) shows the IPS vortical structure, which is more complex than for the IPS case. The waviness is most evident in the isosurface of the azimuthal velocity shown in Figure 5(b). Vector plots shown in Figure 6 indicate that the vortices have diameters ranging from 0.4d to d. They tend to be nearer the inner cylinder, but contrary to the IPS case they are not confined to the unstable layer.

Conclusions

This study of the structure of spiral and wavy vortex flows between short counter-rotating cylinders is quite preliminary in that a wide range of the parameter space remains unexplored. Nevertheless, some initial conclusions can be drawn. Even though the aspect ratio that we considered is quite short, similar vortical structures appear at Reynolds number combinations consistent with those for experiments using a much longer apparatus [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. This is not to say that the transitions between flow regimes occur at precisely the same Reynolds number combinations found experimentally. We have not addressed this issue -we can only say that aspect ratio does not appear to change drastically the types of vortical flow nor the approximate Reynolds numbers at which they appear.

The conclusion that the aspect ratio does not substantially change the flow regimes is only valid for aspect ratios L > 5. For shorter aspect ratios we found that in some cases the vortical structure is suppressed, presumably because the Ekman structures at the endwalls dominate. The result that these endwall structures dominate only for very small aspect ratios is in itself somewhat surprising, given that it is generally known that the rotation of the endwall vortices determines the rotational sense of vortices throughout the entire length of the annulus, even for very long cylinders. Since we only see the disappearance of the vortical struc-ture for L < 5, we can surmise that the endwalls only exert a dominant influence damping the centrifugal instability that leads to vortical flow for an axial distance of 2 -3d from the endwalls. However, substantially more work, both computational and experimental, is necessary to elucidate the interaction between the endwall flow and the vortical structures. In particular, we are pursuing direct numerical simulation of the flow with a variety of endwall conditions such as having the endwalls rotate with the inner cylinder rather than the outer cylinder.
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Figure 1 .

 1 Figure 1. Three-dimensional time-dependent WVF, Re i = 750, Re o =-250, L = 6, η = 0.75. Instantaneous iso-values of the azimuthal component of velocity (a) in an unwrapped circumferential surface (θ, z),0 θ π,t h a ti sa tr = (r i + r o )/2 (midpoint of the annulus), (b) in a meridional plane (r, z) at θ = π/3. (The left side is the outer cylinder and the right side is the inner cylinder.) (c) Projection of the velocity vectors (v r ,v z ) in the meridional plane (r, z) at θ = π/3.

Figure 2 .

 2 Figure 2. Dependence of the wave speed on the aspect ratio for computations (filled symbols) and experiments (open symbols).Circles denote the results for the outer cylinder rotating; all others are for a fixed outer cylinder.

Figure 3 .

 3 Figure 3. Three-dimensional time-dependent IPS regime for Re i = 330, Re o =-500. Isosurfaces of components of velocity and of the meridional velocity, for L = 6a n dL = 5.2: (a,d) v r =-2.23 × 10 -3 (inward flow); (b,e) v θ =-1.49 × 10 -1 ; (c,f) v m = 2.7 × 10 -2 .

Figure 4 .

 4 Figure 4. Velocity vectors in the meridional plane for the IPS regime for Re i = 330, Re o =-500, L = 6. From left to right, vector plot for θ = 0, π/6, π/3, π/2, 2π/3, 5π/6, π. Foreground: outer cylinder; background: inner cylinder.

Figure 5 .

 5 Figure 5. Three-dimensional time-dependent regime for Re i = 375, Re o =-500, L = 6. Isosurfaces of components of velocity and of the meridional velocity. (a) v r =-2.23 × 10 -3 ;( b )v θ =-1.49 × 10 -1 ;( c )v m = 2.7 × 10 -2 .

Figure 6 .

 6 Figure 6. Velocity vectors in the meridional plane for the WIS regime for Re i = 375, Re o =-500, L = 6. From left to right, vector plot for θ = 0, π/6, π/3, π/2, 2π/3, 5π/6, π. Foreground: outer cylinder; background: inner cylinder.
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