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A spectral projection method for the simulation of 
complex three-dimensional rotating flows

In this paper, we present an efficient projection method to solve the three-dimensional time-dependent

incompressible Navier–Stokes equations in primitive variables formulation using spectral approximations.

This method is based on a modification of the algorithm proposed byGoda [J. Comp. Phys. 30 (1979) 76]. It
brings an improvement byintroducing a preliminarystep for the pressure in order to allow a temporal

evolution of the normal pressure gradient at the boundaries. Its efficiency is brought to the fore by com-

parison with the Goda’s algorithm. The modified projection method is then applied to the simulation of
complex three-dimensional flows in rotating cavities, involving either a throughflow or a differential ro-
tation.

Keywords: Projection methods; Spectral approximations; Instabilities; Rotating systems

1. Introduction

When solving the incompressible Navier–Stokes equations with the primitive variables, the

main difficulties arise from the lack of an evolution equation for the pressure, which only appears

through its gradient in the momentum equations, and from the treatment of the incompressibility

constraint. For incompressible flows, the pressure is not a thermodynamic variable since it

does not satisfy a state equation. From a mathematical point of view, it is a kind of Lagrange
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multiplier ensuring that the velocity field is divergence free at each time step. This leads to a

strong coupling between the pressure and the velocity field. Several techniques were proposed in

order to treat this coupling. The way chosen in the present paper is to use projection methods.

These methods, also called fractional steps or splitting methods, consist in solving the momentum

and the continuity equations in two main steps. First, a predicted velocity field, which is not

divergence free, is computed from the discretized momentum equations. In a second step, this

velocity field is corrected in order to fulfil the incompressibility constraint. This latter step is

generally performed by solving a Poisson equation for the pressure, which is derived from the

momentum equations by requiring incompressibility. However, it can also be treated as a Darcy

problem [2,14].

The first projection method was developed by Chorin [4] and Temam [33] for finite difference

approximations. The predicted velocity field was computed by only taking into account the

convective and diffusive terms in the momentum equations. The pressure field at the current

time step, ensuring that the velocity field is divergence free, was then obtained in the projection

step by solving a Poisson equation with the predicted velocity divergence as source term.

Homogeneous Neumann boundary conditions were used for the pressure. This scheme was first

order accurate in time. However, due to the implicit character of the scheme, the boundary

conditions for the pressure induce a loss of accuracy in the final solution. This lack of accuracy

was corrected by Fortin et al. [7] by using an explicit scheme. In the framework of finite el-

ement approximations, Goda [9] proposed an improvement of the method by taking into ac-

count the pressure gradient at the previous time step in the computation of the predicted

velocity field. The projection step was then performed by solving a Poisson problem for an

intermediate variable u which is in fact the pressure difference between the current and the

previous time steps. This improved algorithm was used later with finite difference approxi-

mations and a Crank–Nicolson scheme for time discretization by Van Kan [35] who showed

that the method keeps the accuracy order of the temporal scheme. However, the main weakness

of this algorithm lies in the fact that the homogeneous Neumann boundary condition imposed

for the intermediate variable u constrains the normal pressure gradient at the boundary to keep

its initial value.

More recently, Botella [2] used a similar projection method with a third order temporal scheme

and a collocation–Chebyshev approximation. However, in his approach, the projection step is

treated as a Darcy problem, which does not require boundary conditions for the pressure. In

order to get rid of the pressure spurious modes, Botella used a PN � PN�2 discretization, i.e. the

pressure is approximated with polynomials of degree two less than those used for the velocity

field. A similar projection scheme was also used by Heinrichs [14] with a PN � PN approximation

for the solution of the unsteady Stokes equations. He compared his method with the classical one

(i.e. when the projection step is solved through a Poisson equation for the pressure) in the case of a

steady exact solution. The results showed that the same space accuracy is obtained with the two

methods provided that the Poisson problem is solved with the improved Neumann boundary

condition proposed by Karniadakis et al. [18].

Another projection algorithm, based on the Chorin–Temam method, was also proposed for

finite difference approximations by Kim and Moin [19]. They introduced the gradient of an in-

termediate variable U in the boundary condition of the predicted velocity field. The equations are

solved using this new variable U instead of the pressure. This method was also used in association
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with a Chebyshev–Tau approximation by Shen [30] to solve two-dimensional incompressible

Navier–Stokes equations.

However, all the projection schemes described above induce a slip velocity on the boundary

since the tangential boundary conditions are not prescribed in the projection step [32].

More complex projection algorithms were also proposed in the literature. In the framework of

spectral element discretizations, Karniadakis et al. [18] developed a method in which the Navier–

Stokes equations are solved over three steps. A first velocity field, which does not fulfil the in-

compressibility constraint, is computed explicitly by taking into account only the non-linear

terms. Then, the projection step is performed by solving the pressure Poisson equation with the

divergence of this predicted velocity as a source term. The final divergence free velocity field is

computed implicitly during a third step by taking into account the diffusive terms and the pressure

gradient at the current time step. Karniadakis et al. also proposed a high order pressure boundary

condition for the projection step. Neumann conditions are obtained by projecting the discretized

momentum equations normally to the boundary. The viscous linear terms are written in terms of

a solenoidal part, approximated by an explicit scheme, and an irrotational part, approximated

by an implicit scheme. Such a decomposition of the viscous terms was previously proposed in

association with a reflection technique by Pracht [22]. The pressure boundary condition used by

Karniadakis et al. avoids the propagation and the accumulation of time differencing errors and

allows the pressure compatibility condition to be automatically satisfied. A similar method was

used later by Batoul et al. [1] with a collocation–Chebyshev approximation. It can be noted that

the algorithm proposed by Karniadakis et al. is in fact a projection method in which the diffusion

and the projection steps are inverted. Thus, the velocity field satisfies both the normal and the

tangential boundary conditions but it does not fulfil the incompressibility constraint in a boundary

layer of thickness ðtdtÞ1=2.
In this paper, an efficient projection method is proposed to solve the three-dimensional time-

dependent incompressible Navier–Stokes equations using a collocation–Chebyshev–Fourier ap-

proximation. This method is a modification of the projection algorithm developed by Goda. The

accuracy of projection methods depends strongly on the boundary conditions prescribed for the

pressure. Detailed studies on these pressure boundary conditions were carried out by several

authors [12,21]. The improvement brought by the algorithm proposed here results from a special

treatment of the pressure boundary conditions. More precisely, a preliminary step is introduced in

which an intermediate pressure field is computed from the Navier–Stokes equations [16,17]. This

preliminary pressure, which is taken into account in the computation of the predicted velocity

field, allows the normal pressure gradient at the boundary to vary with time in order to recover the

one of the solution of the Navier–Stokes equations. Moreover, it involves a better achievement of

the incompressibility constraint on the boundary.

The first section is devoted to the description of the mathematical modelling and the numerical

approximation. Then, the Goda’s projection method (GPM) and the modified one are presented.

In Section 4, the space and the time accuracies are checked on exact analytical solutions. In

particular, we show the inability of the GPM to treat correctly solutions with time-dependent

pressure gradients on the boundary and that the introduction of the preliminary pressure allows

to recover a high accuracy for such solutions. The final section is devoted to the application of the

modified algorithm to the simulation of three-dimensional rotating cavities with and without

throughflow.
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2. Mathematical modelling and numerical approximation

2.1. Mathematical modelling

We consider the three-dimensional time-dependent and incompressible flows of a Newtonian

fluid contained in an annular cavity bounded by two co-axial cylinders of respective radii a and b

ðb > aÞ and two disks spaced by a distance 2L. Depending on the problem, one or several walls of

the system rotates around the axis (0z) with an angular velocity X. The flow is governed by the

three-dimensional Navier–Stokes equations considered in the primitive variables formulation:

oV

ot
þ V � rV ¼ �rp þ tDVþ F in D ð1Þ

V ¼W on C ¼ oD ð2Þ

r � V ¼ 0 in D ¼ D [ C ð3Þ

8

>

>

>

<

>

>

>

:

where V is the velocity of components (u, v, w) respectively in radial r, azimuthal h and axial

z directions, p is the pressure, t the kinematic viscosity, F represents body forces and D is the

Laplacian operator written for cylindrical coordinates:

ðDVÞr ¼ r2u�
u

r2
�

2

r2
ov

oh
; ðDVÞh ¼ r2v�

v

r2
þ

2

r2
ou

oh
; ðDVÞz ¼ r2w

with

r2 ¼
o
2

or2
þ
1

r

o
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þ
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r2
o
2

oh2
þ

o
2

oz2

Eqs. (1)–(3) are completed by specific initial conditions for the velocity:

V ¼ V0 with r � V0 ¼ 0 in D ð4Þ

2.2. Time discretization and space approximation

The Navier–Stokes equations are discretized in time by using the second order semi-implicit

scheme proposed by Vanel et al. [34], which consists of a fully implicit discretization of the dif-

fusive terms with an Adams–Bashforth evaluation of the convective terms. The resulting dis-

cretized equations write:

3Vnþ1 � 4Vn þ Vn�1

2dt
þ 2ðV � rVÞ

n
� ðV � rVÞ

n�1
¼ �rpnþ1 þ tDVnþ1 þ Fnþ1 in D ð5Þ

Vnþ1 ¼Wnþ1 on C ð6Þ

r � Vnþ1 ¼ 0 in D ð7Þ

8

>

>

>

<

>

>

>

:

with dt the time step.

Due to the cylindrical configuration, the solution ðV; pÞ of the above equations is 2p—periodic

in the azimuthal direction. Thus, the space approximation in this direction is done using a
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Fourier–Galerkin method. We note K the cut-off frequency of the Fourier series. On the other

hand, in the radial and axial directions, as boundary layers develop in the meridian plane, a

collocation–Chebyshev approximation is used. First, a coordinate transformation ðr; zÞ ! ðY ;ZÞ
is performed in order to change each meridian plane ðr; zÞ into the square domain ½�1;þ1� �
½�1;þ1�, in which the Chebyshev polynomials are defined. Then, for each Fourier mode, the

solution ðV; pÞ is approximated by Chebyshev polynomials of degree at most equal to N in the

radial direction and to M in the axial direction. The approximation UKNM , for U ¼ u, v, w, p, is

computed at each triplet ðYi; hq;ZjÞ, where Yi, i ¼ 0; . . . ;N , and Zj, j ¼ 0; . . . ;M , are the Gauss–

Lobatto collocation points and hq are defined by hq ¼ 2pq=K, q ¼ 0; . . . ;K � 1.

For the computation of the non-linear terms, the derivatives in each space direction are cal-

culated in the spectral space and the products are performed in the physical one [10]. A FFT

algorithm is used to connect the spectral and physical spaces. On the other hand, for the diffusive

term (which appears in the implicit part of Eq. (5)), we use the spectral differentiation matrices.

Finally, all the resulting Helmholtz and Poisson problems are solved using a full diagonal-

ization technique for each Fourier mode. The details of the three-dimensional solver used are

described in Ref. [23].

3. Projection methods

The first method that we expose below was initially proposed by Goda [9] for finite element

approximations. We applied it later to spectral approximations for the computation of axisym-

metric and three-dimensional rotating flows [23]. The second method brings an improvement to

the basic algorithm by introducing at each time step a preliminary step for the pressure which

allows a correct temporal evolution of the normal pressure gradient at the boundary [16,17].

3.1. The Goda’s projection method (GPM)

Eqs. (5)–(7) constitute a Stokes type problem coupling the velocity components u, v, w and the

pressure p. The basic idea of the projection method is to compute the solution in two steps.

• Prediction step

First, a predicted velocity field V is computed implicitly from Eq. (5) in which the pressure

gradient at the current time step tnþ1 ¼ ðnþ 1Þdt is replaced by the one at the previous time step

tn ¼ ndt:

3V � 4Vn þ Vn�1

2dt
þ 2ðV � rVÞ

n
� ðV � rVÞ

n�1
¼ �rpn þ tDV þ Fnþ1 in D ð8Þ

V ¼Wnþ1 on C ð9Þ

8

>

<

>

:

• Projection step

The velocity field V is then corrected by taking into account the pressure gradient at tnþ1 in

order to satisfy the incompressibility constraint:
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3

2dt
ðVnþ1 � VÞ ¼ �rðpnþ1 � pnÞ in D ð10Þ

Vnþ1 � n ¼Wnþ1 � n on C ð11Þ

r � Vnþ1 ¼ 0 in D ð12Þ

8

>

>

>

<

>

>

>

:

with n the normal to the boundary.

This step is performed by computing an intermediate variable u ¼ 2dtðpnþ1 � pnÞ=3 through

a Poisson problem. A Poisson equation is derived from Eq. (10) by prescribing the continuity

condition (12), and Neumann boundary conditions are obtained by projecting Eq. (10) in the

normal direction to the boundary. The Poisson problem to solve is therefore:

r2u ¼ r � V in D ð13Þ

ou

on
¼ 0 on C ð14Þ

8

>

<

>

:

with o=on the normal derivative.

The final velocity and pressure fields are then computed from the formulas:

Vnþ1 ¼ V �ru

pnþ1 ¼ pn þ 3
2 dt

u

�

in D ð15Þ

• Computation of the initial pressure

The initial pressure p0 is computed from the Poisson equation with the Neumann boundary

condition obtained from the momentum equation at t ¼ 0.

It must be noted that, since the temporal scheme used involves three time levels, the initial-

ization requires a special treatment. So, at the first time step, i.e. for n ¼ 0, we impose U�1 ¼ U0,

for U ¼ u, v, w.

• Remarks

The velocity field Vnþ1 computed by Eq. (15) is divergence free inside the computational domain

D. However, it does not fulfil exactly the incompressibility constraint on the boundary, since

Eq. (13) ensuring this condition is solved only inside the domain.

On the other hand, only the boundary conditions for the normal velocity component are

prescribed in the projection step. This induces a slip velocity on the boundary. This slip velocity is

defined by Vs ¼ sðVnþ1 �Wnþ1Þ, with s the tangent to the boundary, in a two-dimensional domain

and by Vs ¼ n� ððVnþ1 �Wnþ1Þ � nÞ in a three-dimensional one. According to Eq. (15), we have

in the two-dimensional case:

Vs ¼ �s � ru ¼ �
2dt

3

o

os
ðpnþ1 � pnÞ ð16Þ

which implies that the slip velocity Vs is Oðdt2Þ.
Finally, it must be noted that, due to the homogeneous Neumann boundary condition pre-

scribed for u, the normal pressure gradient at the boundary is held at its initial value during the

time integration.
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3.2. The modified projection method (MPM)

A detailed description of the algorithm is given in Ref. [17] for the solution of the 2D

Navier–Stokes equations with a Chebyshev–collocation approximation. We present here its

extension to three-dimensional configurations (see also Ref. [16]). The aim of this method is to

allow a correct temporal evolution of the normal pressure gradient at the boundary in order

to follow the one of the solution of the Navier–Stokes equations. The improvement is per-

formed by computing a preliminary pressure consistent with a divergence free velocity field.

• Preliminary step

A preliminary pressure �ppnþ1 is computed from the Poisson equation, derived from Eq. (5) by

requiring incompressibility, with Neumann boundary conditions in which the diffusion term

DVnþ1 is approximated using an Adams–Bashforth scheme. The Poisson problem to solve is

therefore:

r2
�ppnþ1 ¼ r � ½ � 2ðV � rVÞn þ ðV � rVÞn�1 þ Fnþ1� in D ð17Þ

o�ppnþ1

on
¼ n �

�3Wnþ1 þ 4Vn � Vn�1

2dt

�

� 2ðV � rVÞn þ ðV � rVÞn�1

þ tð2DVn � DVn�1
�

þ Fnþ1

�

on C ð18Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

However, this Poisson problem does not fulfil the compatibility condition, leading to an un-

stable algorithm. So, in order to satisfy the compatibility condition, the diffusion term has been

treated as proposed by Karniadakis et al. [18]: the velocity Laplacian is then decomposed into a

solenoidal part and an irrotational part. Since the velocity fields Vn and Vn�1 are divergence free,

the diffusion term writes:

2DVn � DVn�1 ¼ �2r�r� Vn þr�r� Vn�1

• Prediction step

As in the GPM, the predicted velocity field V is computed implicitly from Eq. (5) in which the

pressure gradient at the current time step tnþ1 is now replaced by the gradient of the preliminary

pressure:

3V � 4Vn þ Vn�1

2dt
þ 2ðV � rVÞn � ðV � rVÞn�1 ¼ �r�ppnþ1 þ tDV þ Fnþ1 in D ð19Þ

V ¼Wnþ1 on C ð20Þ

8

>

<

>

:

• Projection step

The velocity field V is then corrected by taking into account the pressure gradient at tnþ1 so

that the final velocity field satisfies the incompressibility constraint:
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3

2dt
ðVnþ1 � VÞ ¼ �rðpnþ1 � �ppnþ1Þ in D ð21Þ

Vnþ1 � n ¼Wnþ1 � n on C ð22Þ

r � Vnþ1 ¼ 0 in D ð23Þ

8

>

>

>

<

>

>

>

:

This step is performed by computing an intermediate variable u ¼ 2dtðpnþ1 � �ppnþ1Þ=3 from a

Poisson problem similar to Eqs. (13) and (14):

r2u ¼ r � V in D ð24Þ

ou

on
¼ 0 on C ð25Þ

8

>

<

>

:

The final velocity and pressure fields are then obtained from the formulas:

Vnþ1 ¼ V �ru

pnþ1 ¼ �ppnþ1 þ 3
2 dt

u

(

in D ð26Þ

• Remarks

The computation of the preliminary pressure and its introduction in the prediction step allow

the normal pressure gradient at the boundary to vary with time. Indeed, at each time step, we have

on the boundary:

ou

on
¼ 0 )

opnþ1

on
¼

o�ppnþ1

on
on C

It must be noted that, as in the GPM, the velocity field Vnþ1 computed by Eq. (26) fulfils the

incompressibility constraint inside the computational domain D and the normal boundary con-

ditions. On the other hand, it does not satisfy the tangential boundary conditions, which induces

here again a slip velocity on the boundary. However, our results showed that this slip velocity is

now Oðdt3Þ (see Section 4.2). In the two-dimensional case, the slip velocity can be expressed as:

Vs ¼ s � ðVnþ1 �Wnþ1Þ ¼ �s � ru ¼
2dt

3

o

os
ð�ppnþ1 � pnþ1Þ ð27Þ

According to this formula, the slip velocity Vs is Oðdt3Þ only if the difference �ppnþ1 � pnþ1 is

Oðdt2Þ. Our tests on the exact unsteady solution (38)–(41) showed that this difference is actually

Oðdt2Þ.

4. Numerical results for exact solutions

The variables are made dimensionless by taking ðb� aÞ=2 and L as characteristic lengths in

the radial and axial directions respectively, t=L as characteristic velocity and L2=t as character-

istic time. The geometric parameters are then the aspect ratio G ¼ ðb� aÞ=ð2LÞ and the curva-

ture parameter Rc ¼ ðbþ aÞ=ðb� aÞ, and the physical parameter is the Reynolds number Re ¼
2Xðb� aÞ

2
=t. In a reference frame rotating at angular velocity X, the dimensionless Navier–

Stokes equations write:
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ou

ot
þ

u

G

ou

oY
þ

v

GðY þ RcÞ

ou

oh
þ w

ou

oZ
�

v2

GðY þ RcÞ
�

Re

4G2
v

¼ �
1

G

op

oY
þr2u�

u

G2ðY þ RcÞ
2
�

2

G2ðY þ RcÞ
2

ov

oh
þ Fu ð28Þ

ov

ot
þ

u

G

ov

oY
þ

v

G Y þ Rcð Þ

ov

oh
þ w

ov

oZ
þ

uv

G Y þ Rcð Þ
þ

Re

4G2
u

¼ �
1

G Y þ Rcð Þ

op

oh
þr2v�

v

G2 Y þ Rcð Þ
2
þ

2

G2 Y þ Rcð Þ
2

ou

oh
þ Fv ð29Þ

ow

ot
þ

u

G

ow

oY
þ

v

G Y þ Rcð Þ

ow

oh
þ w

ow

oZ
¼ �

op

oZ
þr2wþ Fw ð30Þ

1

G

ou

oY
þ

u

G Y þ Rcð Þ
þ

1

G Y þ Rcð Þ

ov

oh
þ
ow

oZ
¼ 0 ð31Þ

where F ¼ ðFu; Fv; FwÞ is a source term computed from the chosen exact solution ðVe; peÞ and:

r2 ¼
1

G2

o
2

oY 2
þ

1

Y þ Rc

o

oY
þ

1

Y þ Rcð Þ2
o
2

oh2

!

þ
o
2

oZ2

The tests reported in the following sections were performed with the parameters values G ¼ 1,

Rc ¼ 2 and Re ¼ 500.

4.1. Exact steady solution

First, the space accuracy of the two projection methods was checked on the exact steady

solution defined in D ¼ �1;þ1½ � � ½0; 2p½� �1;þ1½ � by:

ueðY ; h;ZÞ ¼
1

2p
sin pYð Þð Þ2 sin 2pZð Þ cos hð Þ ð32Þ

veðY ; h; ZÞ ¼ �
1

2p
ðsinðpY ÞÞ2 sinð2pZÞ sinðhÞ ð33Þ

weðY ; h;ZÞ ¼ �
1

2pG
sin 2pYð Þ sin pZð Þð Þ2 cos hð Þ ð34Þ

pe Y ; h;Zð Þ ¼ cos pYð Þ½ þ cos pZð Þ� cos hð Þ ð35Þ

The velocity field Ve is actually divergence free and satisfies homogeneous Dirichlet boundary

conditions. The space accuracy of the algorithms was evaluated by computing the L2 discrete

errors at the inner collocation points, ErðUÞ, and at the boundary collocation points, ErBðUÞ, for
U ¼ u, v, w, p. The slip velocity is evaluated by computing the L2 discrete norm of one component

of the tangential velocity at boundaries Y ¼ �1 and Z ¼ �1 i.e.:

9



Vsk kB ¼
1

2K N þM � 2ð Þ

X

K=2�1

q¼�K=2

X

N�1

i¼1

uKNM Yi; hq;


"

� 1
�2

þ
X

M�1

j¼1

wKNM



� 1; hq;Zj

�2

#!1=2

:

The main weakness of the GPM lies in the fact that the normal pressure gradient at the

boundary is held at its initial value. In order to study the influence of this initial value on the space

accuracy of the algorithm, two initial conditions for the velocity were considered:

IC1 : V0 ¼ ð0; 0; 0Þ ð36Þ

IC2 : V0 ¼ Ve þ
1

200p2
Ve ð37Þ

For the first initial condition, the maximum of the difference between the initial pressure

gradient at the boundary, op0=on, and the exact one, ope=on, is equal to p, whereas, in the case of

IC2, this maximum is 1:6� 10�3. For the modified projection method (MPM), only the initial

condition IC1 was used.

The steady solution is assumed to be obtained when the residual Res Uð Þ ¼ max
ði;j;qÞ

Un
KNM Yi; hq;Zj

 �

�
�

�

Un�1
KNM Yi; hq; Zj

 �

j=dt reaches 10�12 for the velocity components and 10�9 for the pressure. For all

the resolutions tested, the time step used is dt ¼ 5� 10�3.

The values of the error at the inner collocation points are reported for the radial velocity

component u and for the pressure in Fig. 1a. For the solution computed with the MPM, these

errors exhibit an exponential decay, which is characteristic of spectral approximations, and they

reach the machine accuracy for N ¼ M ¼ K ¼ 32. On the other hand, a very slow decay is ob-

served for the GPM and the machine accuracy is never obtained even for the largest resolution.

However, when the initial condition IC2 is used, ErðuÞ and ErðpÞ seem to exhibit an exponential

Fig. 1. Space accuracy of the GPM and of the MPM for a 3D stationary exact solution. (a) Evolution of the error

ErðUÞ for the radial velocity component u and for the pressure p, versus the polynomial degrees N ¼ M ¼ K. (b)

Evolution of the error ErBðUÞ on the boundary for the pressure and for the normal pressure gradient, versus the

polynomial degrees N ¼ M ¼ K.
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decay for N �M � K 6 16� 16� 16 before decreasing slowly (with the same slope as the one

observed in the case of IC1) for the larger resolutions. The same behaviour was obtained for the

errors ErðvÞ and ErðwÞ.
Fig. 1a shows also that the values of the errors depend strongly on the difference between the

initial and the exact pressure gradients on the boundary. For N ¼ M ¼ K ¼ 54, ErðuÞ and ErðpÞ
are about 6� 10�7 and 8� 10�6 respectively when IC1 is used whereas they are almost three

orders of magnitude smaller with the initial condition IC2.

A similar difference of behaviours between the GPM and the MPM is noted on the error at

boundaries for the pressure (Fig. 1b). The fundamental difference between the GPM and the

MPM can be clearly seen on the error of the normal pressure gradient on the boundary (Fig. 1b).

The MPM allows the normal pressure gradient to vary with time in order to recover the one of the

exact solution whatever the initial condition is. Indeed, ErBðop=onÞ exhibits an exponential decay

and it reaches the machine accuracy for N ¼ M ¼ K ¼ 32. On the other hand, for the solution

computed with the GPM, ErBðop=onÞ remains constant for all the resolutions tested when using

the initial condition IC1. When IC2 is used (for which max op0=on� ope=onj j is about a thousand

times smaller than for IC1), ErBðop=onÞ decreases for N �M � K6 16� 16� 16 before re-

maining constant for larger resolutions. In fact, for N �M � K 6 16� 16� 16, the error due to

the space approximation is larger than the initial error ErBðop0=onÞ, which explains the decrease

of ErBðop=onÞ and also the fast decay of ErðuÞ, ErðpÞ and ErBðpÞ.
We have pointed out above that, when the polynomial degree is sufficiently large to represent

the solution (i.e. for N ¼ M ¼ KP 16), the errors ErðuÞ and ErðpÞ for the GPM decrease slowly,

when increasing the resolution, with the same slope for the two initial conditions tested. In order

to bring to the fore more precisely the effect of the initial pressure gradient at the boundary on

the computed solution, tests were carried out with different initial conditions for the velocity such

that 1:6� 10�36 max op0=on� ope=onj j6 200. The polynomial degrees were fixed to N ¼ M ¼
K ¼ 40. The results, reported in Fig. 2, show that the errors ErðuÞ and ErðpÞ increase linearly with

max op0=on� ope=onj j.
From their definition, the two projection methods satisfy exactly the incompressibility con-

straint inside the computational domain. We have checked that the velocity fields computed with

the GPM and the MPM are actually divergence free with a discrete norm krVKNMkI ranging from

10�9 to 10�14 for the GPM and from 10�9 to 10�16 for the MPM, when increasing the resolution.

On the other hand, the incompressibility constraint is not prescribed on the boundary. However,

Fig. 3a shows that the discrete norm of the velocity divergence for the MPM reaches the machine

accuracy for N ¼ M ¼ K ¼ 32. On the other hand, for the GPM, krVKNMkB exhibits a very slow

decay when increasing the resolution and it is only about 10�3 (7� 10�7 respectively) for N ¼
M ¼ K ¼ 54 when using IC1 (IC2 respectively).

Finally, the discrete norm of the slip velocity is reported in Fig. 3b. For the GPM, kVskB varies

from 10�17 for the lowest resolution to 7� 10�12 for the highest one. For the MPM, kVskB exhibits

an exponential decay and it reaches the machine accuracy for N ¼ M ¼ K ¼ 32. So, for resolu-

tions N �M � K 6 24� 24� 24, the slip velocity induced by the MPM is much larger than the

one obtained with the GPM. This is due to the fact that, when the steady solution is reached, the

difference pnþ1 � �ppnþ1 does not converge to zero (on the contrary of pnþ1 � pn) for small resolu-

tions. Indeed, we observed that kVskB follows the same decay as pnþ1 � �ppnþ1k kB when increasing

the polynomial degrees.
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4.2. Exact time-dependent solution

The time accuracy of the two projection methods was checked on the exact time-dependent

solution defined in D ¼ �1;þ1½ � � ½0; 2p½� �1;þ1½ � by:

Fig. 2. Space accuracy of the GPM for a 3D stationary exact solution. Variation of the errors ErðuÞ and ErðpÞ with the

maximum of the difference between the initial and the exact pressure gradients on the boundary for the polynomial

degrees N ¼ M ¼ K ¼ 40.

Fig. 3. Space accuracy of the GPM and of the MPM for a 3D stationary exact solution. (a) Evolution of the discrete

norm of the velocity divergence on the boundary versus the polynomial degrees N ¼ M ¼ K. (b) Evolution of the

discrete norm of the slip velocity versus the polynomial degrees N ¼ M ¼ K.
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uie Y ; h;Z; tð Þ ¼ ue Y ; h; Zð Þðcos 4ptð Þ2 þ 1Þ ð38Þ

vie Y ; h; Z; tð Þ ¼ ve Y ; h; Zð Þðcos 4ptð Þ2 þ 1Þ ð39Þ

wi
e Y ; h;Z; tð Þ ¼ we Y ; h;Zð Þðcos 4ptð Þ2 þ 1Þ ð40Þ

pie Y ; h;Z; tð Þ ¼ pe Y ; h; Zð Þðcos 4ptð Þ2 þ 1Þ þ A Yð þ ZÞ cos hð Þ cos 4ptð Þ ð41Þ

This solution is time periodic with a period T ¼ 0:25. It is used to define the initial condition for

the velocity V0 ¼ Ve ðt ¼ 0Þ. On the boundary, the normal pressure gradient is given by:

opie
on

¼ A cos hð Þ cos 4ptð Þ on C

So, when A 6¼ 0, the normal pressure gradient of the exact solution varies with time on the

boundary. The two projection methods are compared for A ¼ 0 and 10. When A ¼ 10, the maxi-

mum during time between the initial and the exact normal pressure gradients on the boundary is

equal to 20. A comparison with the initial Chorin–Temam method is also performed in the case

A ¼ 10.

The polynomial degrees were fixed to 40 in each space direction in order to ensure a sufficiently

high space accuracy. The time step was then decreased from dt ¼ 5� 10�3 to dt ¼ 5� 10�5. When

the periodic state is reached, the time accuracy is evaluated by computing the temporal maximum

of the L2 discrete errors at the inner collocation points, EriðUÞ, and at the boundary collocation

points, EriBðUÞ. In the same way, the slip velocity is evaluated by computing the maximum value

during time of kVsðtÞkB.
The results are presented in Figs. 4–6. When there is no pressure gradient variation in time on

the boundary (i.e. A ¼ 0), the two projection methods exhibit the same temporal behaviour in

O(dt2) for the radial velocity component and for the pressure inside the computational domain

(Fig. 4) and also for the pressure on the boundary (Fig. 5a). The same temporal behaviour was

observed for the azimuthal and axial velocity components.

The basic difference between the GPM and the MPM can be clearly seen on the variation of the

errors when the exact solution presents a time-dependent pressure gradient on the boundary

ðA ¼ 10Þ. The second-order accuracy is still obtained for both the radial velocity and the pressure

computed with the MPM (Figs. 4 and 5a). On the other hand, for the GPM, the errors EriðuÞ and
EriðpÞ exhibit a temporal behaviour in Oðdt2Þ for dtP 10�3, and then they remain constant for

smaller time steps (Fig. 4). The same saturation is observed for the error on the pressure on the

boundary (Fig. 5a). This saturation of the errors was observed elsewhere for a 2D analytic

solution [17]. It is due to the error in space induced by the incorrect treatment of the pressure

gradient on the boundary. Indeed, it can be noted that the saturation value of EriðuÞ is almost the

same as the error ErðuÞ obtained for the steady exact solution when max op0=on� ope=onj j ¼ 20

(Fig. 2). The saturation value of EriðpÞ is larger than the error ErðpÞ reported in Fig. 2, but the

time-dependent analytic pressure (41) has a spatial part different from the one of the steady

solution (35) (because of the term AðY þ ZÞ cosðhÞ cosð4ptÞ). When increasing the resolution up to

N �M � K ¼ 54� 54� 54, the space error is smaller and the temporal behaviour in Oðdt2Þ of the
errors EriðuÞ and EriðpÞ is obtained until dt ¼ 5� 10�4 (Fig. 4). This confirms the fact that the
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saturation of the errors is due to the error in space. It must be noted that all the behaviours

mentioned above for the radial velocity are also observed for the azimuthal and the axial velocity

components. However, in spite of the bad behaviour of the GPM, the errors obtained with this

method are smaller than the ones given by the initial Chorin–Temam algorithm which ensures

only a first-order accuracy (Fig. 4).

Fig. 5b shows clearly the difference of behaviour resulting from the treatment of the pressure

gradient on the boundary between the GPM and the MPM. For the GPM (as for the Chorin–

Temam method), EriBðop=onÞ remains constant for all the time steps whereas a temporal behav-

iour in Oðdt2Þ is obtained with the MPM.

Fig. 4. Time accuracy of the Chorin–Temam method (C–T), of the GPM, of the MPM and of the MPM1. Evolution of

the error EriðUÞ for a 3D time-dependent exact solution (a) for the radial velocity component u and (b) for the pressure,

versus the time step dt.

Fig. 5. Time accuracy of the Chorin–Temam method (C–T), of the GPM, of the MPM and of the MPM1. Evolution of

the error EriBðUÞ on the boundary for a 3D time-dependent exact solution (a) for the pressure and (b) for the normal

pressure gradient, versus the time step dt.
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4.2.1. Slip velocity

Another improvement brought by the MPM concerns the slip velocity. For all the exact

solutions tested (with A ¼ 0 or 10), the temporal maximum of kVsðtÞkB is Oðdt3Þ with the MPM

whereas it is only Oðdt2Þ with the GPM, in accordance with Eq. (16) (Fig. 6). This is explained by

the fact that the temporal maximum of pnþ1 � �ppnþ1k kB is Oðdt2Þ for the MPM, which induces a

behaviour in Oðdt3Þ for the slip velocity, according to Eq. (27). Fig. 6 shows also that the Chorin–

Temam method exhibits a OðdtÞ slip velocity.

The slip velocity is generated by the projection step in which only the boundary condition for

the normal component of the velocity is prescribed. Then, it is taken into account in the com-

putation of the convective terms r � rV since it appears in the reconstruction of the final velocity

at the previous time steps through Eqs. (15) and (26). However, it is possible to prescribe the

actual boundary conditions for Vnþ1 by replacing these equations by:

Vnþ1 � n ¼ V � n�ru � n in D

Vnþ1 � s ¼ V � s�ru � s in D ð42Þ

Vnþ1 � s ¼Wnþ1 � s on C

8
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>

>

<

>

>

>

:

A similar modification was tested by Strikwerda and Lee [32] for the projection method pro-

posed by Kim and Moin [19]. They observed that the same order of accuracy is obtained with and

without this modification.

We have used Eq. (42) with the GPM as well as with the MPM. In the case of the GPM, using

formulae (42) or (15) gives exactly the same results in terms of stability and accuracy. On the

other hand, the MPM becomes unstable when the final velocity is computed by Eq. (42). In fact,

for the MPM, the slip velocity appears not only in the source term of the Helmholtz equation for

V (through the convective term) but also in the boundary condition of the preliminary pressure

through the terms �2ðr � rVÞ
n
þ ðr � rVÞ

n�1
and � 2r�r� Vn þr�r� Vn�1. When the

diffusion term was written in the Laplacian form in the boundary condition of �ppnþ1, convergence

Fig. 6. Time accuracy of the Chorin–Temam method (C–T), of the GPM, of the MPM and of the MPM1. Evolution of

the temporal maximum of the discrete norm of the slip velocity versus the time step dt, for a 3D time-dependent exact

solution.
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was obtained for the MPM only for dt6 5� 10�4 and the temporal maximum of krVnþ1kB was

about one hundred times larger than the one obtained when using Eq. (26). So, using formulas

(42) for the MPM leads in all the cases to a loss of stability and/or to a loss of accuracy.

4.2.2. Splitting error

The splitting error introduced by the MPM is 2dt tr2ðrðpnþ1 � �ppnþ1ÞÞ=3 which is Oðdt3Þ since
pnþ1 � �ppnþ1 is Oðdt2Þ. So it is smaller by one order of magnitude than that induced by the GPM

which is Oðdt2Þ. Nevertheless, we tried to construct an algorithm free of this splitting error. To this

end, we followed the same approach as Kim and Moin’s one for their algorithm [19]. Namely, Eq.

(21) in the projection step is replaced by:

3

2dt
Vnþ1


� V
�

¼ �crU in D

with cP 1. The projection step is then solved through a Poisson problem for this new variable U

and the final pressure is built so that the splitting error is equal to zero:

pnþ1 ¼ �ppnþ1 þ cU�
2dt

3
tcr2U in D

Three values of the parameter c were considered ðc ¼ 1; 1:5; 2Þ but no real influence was ob-

served. The tests showed that this new algorithm is neither more stable nor more accurate than the

MPM, since the errors obtained with the two methods are almost the same.

4.2.3. Accuracy of the preliminary step

In order to study the effect of the temporal scheme used for the diffusion term in the boundary

condition (18) on the accuracy of the solution, tests were performed with DVn used for the ap-

proximation of DVnþ1 instead of the Adams–Bashforth scheme. The resulting algorithm is called

the first order MPM (MPM1). As for the MPM, the diffusion term in the boundary condition of

the preliminary pressure is written in the form r�r� Vn in order to ensure stability. The

comparison with the MPM was performed on the exact solution (38)–(41) with A ¼ 1. The results

are reported on Figs. 4–6.

Fig. 4 reveals that the two methods exhibit the same behaviour in Oðdt2Þ for the radial ve-

locity and for the pressure inside the computational domain, with an error for the pressure

slightly larger with the MPM1. On the other hand, the second order accuracy on the boundary

is lost for the MPM1. The errors EriBðpÞ and EriBðop=onÞ are only Oðdt1:8Þ and OðdtÞ respec-

tively. Moreover the error EriBðop=onÞ is much larger than the one generated by the MPM. In

the same way, the slip velocity induced by the MPM1 recovers the behaviour in Oðdt2Þ of the

GPM. This is due to the fact that the difference pnþ1 � �ppnþ1 is now OðdtÞ whereas it was Oðdt2Þ
with the MPM. Consequently, it is necessary to use a second order scheme for the approxi-

mation of the diffusion term in the boundary condition of the preliminary pressure if one wants

to obtain a real improvement in terms of accuracy on the boundary with regards to the Goda’s

method.
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5. Application to complex rotating flows

The MPM has been applied to the study of three-dimensional instability phenomena of

boundary layers involved in rotating systems. Two configurations were considered: a rotating

cavity with a superposed radial outflow (the two disks spaced by 2L rotating at the same angular

speed X) and an enclosed rotor–stator annular and interdisk cavity (the lower disk being

stationary and the upper one rotating with the angular speed X). A detailed study of the physical

results can be found in Refs. [27,28]. In the framework of the present paper, we only report the

major features in order to show the efficiency of the MPM.

The scales for the dimensionless variables are L for length, X�1 for time and Xb for velocity.

The two geometric parameters are the aspect ratio G ¼ ðb� aÞ=ð2LÞ and the curvature parameter

Rc ¼ ðbþ aÞ=ðb� aÞ. The relevant physical parameters are the Reynolds number defined here by

Re ¼ Xð2LÞ2=t and, when the flow is submitted to a radial forced flow, the dimensionless

parameter Cw ¼ Q=tb, with Q the mass flow rate. In all the cases, the boundary conditions cor-

respond to no-slip conditions for u and w at the rigid walls. For the open cavity, an Ekman

boundary layer flow [15] is considered as inflow and outflow. For the rotor–stator cavity, the

boundary conditions of the azimuthal velocity component are v ¼ 0 on the stator and v ¼
ðRc þ rÞ=ðRc þ 1Þ on the rotating disk. In order to suppress the singularity of the azimuthal ve-

locity condition at the junction between the stationary cylindrical envelope and the rotor, a linear

azimuthal velocity profile is imposed on the inner and outer cylinders, called respectively the shaft

and the shroud.

A characteristic of the flows developing in such rotating systems is the co-existence of adjacent

and coupled flow regions which are very different in terms of flow properties and of the length

scales as it is the case for the Ekman (on a rotating disk) or B€oodewadt (on a stationary disk)

boundary layers and the geostrophic core region. Two classes of generic instabilities develop

above rotating and/or stationary disks that are referred in the literature according to the standard

terminology type I and type II [13]. The type I instability, also called ‘crossflow’, is associated

with the presence of inflection points in the normal velocity profiles to the disk plane (i.e. the

radial velocity profiles in our case). On the other hand, Lilly [20] showed, using a linear stability

analysis, that the type II instability, appearing at lower values of the critical Reynolds number

and with a larger wavelength, is related to the combined effects of the Coriolis and viscosity

forces.

In our simulations, the spatial structure of instabilities are displayed by the velocity fluctuations

computed from the numerical solutions at given instants with respect to the average flow. The

dynamic behaviour of the variables is analysed at several significant locations in each boundary

layer and in the geostrophic core. The radial wavelength is defined by kr ¼ ðb� aÞ=nr where nr is
the number of vortices pairs along the radius. On the other hand, for the spiral patterns, the

general wavelength is defined by k ¼ 2prj sinðeÞj=n where n is the number of spiral arms over 2p at

the radius r and e is the angle of the wave front with the geostrophic velocity (it is defined positive

when it is rolled up towards the axis of the disk in the rotation direction). The wavelength is sized

in terms of the length scale of the Ekman layer d ¼ ðt=XÞ1=2, as it is usual in the literature.

The results were obtained using resolutions up to N �M � K ¼ 64� 64� 128, depending on

the values of the mass flow rate Cw (for the open rotating cavity) or the Reynolds number Re

(for the rotor–stator cavity). The time steps used are dt ¼ 4� 10�3 and 2� 10�3, depending on the
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resolution. For time-dependent solutions, the computing time is sized at the level of the largest

characteristic time in rotating flows, i.e. the viscous time tt ¼ L2=t [13].

5.1. Rotating cavity with radial outflow

The base flow solution is stationary and axisymmetric and corresponds to the Ekman layer

flow. For this type of flow, the Coriolis force dominates with respect to inertial and centrifugal

forces near the walls. The flow organizes itself symmetrically and parallel Ekman boundary layers

form on the two rotating disks with the same mass flow rate [27]. In the numerical solutions, the

meridian flow in ðr; zÞ mainly concentrates near these two Ekman layers while outside, in the

geostrophic core, the Coriolis force balances the pressure force and the flow is mainly governed by

an azimuthal flow. All the results presented in this section were obtained with the geometric

parameters G ¼ 3:37 and Rc ¼ 5 and the Reynolds number Re ¼ 1750.

Multiple periodic solutions with different numbers of spiral arms were obtained for a same

value of Cw. The spiral patterns with eight arms are presented in Fig. 7. The wave front angle

e with the geostrophic velocity is negative (about �10�). Due to the computational cost, the

transition to three-dimensional patterns was not carried out actually over very large time stages

but it was accelerated by introducing ‘artificial’ initial disturbances. The general form of these

disturbances is a sinðph) where p is an arbitrary number, corresponding to an azimuthal wave-

length, and a is the amplitude coefficient (a ¼ 0:05 generally). The disturbance is superposed to the

axisymmetric solution locally near the entry section. We noted that the number n of spiral arms

follows the periodicity of the disturbance, nP p for pP ðb� aÞ=kr (�6) [27]. The solutions are

stable to further disturbances with p 6¼ n. On the other hand, we noted that the angular frequency

r increases with the number of arms, r / n. These 3D spiral patterns have been already observed

in experiments on Ekman layer flows and the characteristic parameters are in good agreement

with those obtained by Caldwell and Van Atta [3] and Faller and Kaylor [5]. Moreover, the

present results are quite similar to those given by the stability analysis in the case of an infinite

disk [6]. Thus, the spiral structure of the computed rotor layer flow exhibits the same charac-

teristics as the type II instability of the Ekman boundary layer.

Fig. 7. Rotating cavity with radial outflow. Three-dimensional displays of instantaneous iso-surfaces of the axial

velocity component, for 0 < z6 1, projected in a plane ðr; hÞ, 06 h6 p, for Cw ¼ 530 and Re ¼ 1750. Spiral patterns

with eight arms.
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5.2. Rotor–stator cavity

In the case of a rotor–stator cavity, the base flow is a Batchelor flow, composed by two separate

boundary layers above each disk, with an outflow on the rotating disk (i.e. the radial velocity

component is positive) and an inflow on the stationary disk (i.e. the radial velocity component is

negative). These boundary layers are separated by a geostrophic core in solid body rotation (the

authors refer to Ref. [28] for more details). By analogy with the single disk case, the layer over the

rotating disk is called Ekman layer and the other one, on the stationary disk, is called B€oodewadt

layer. The results presented below were obtained in cavities with an aspect ratio G ¼ 5 and a

curvature parameters Rc ¼ 4.

• Axisymmetric annular instabilities

Two kinds of axisymmetric instabilities have been simulated succeeding to the stationary base

flow. The first one, obtained for Re ¼ 330, is a stationary instability on the B€oodewadt layer,

characterized by three pairs of circular rolls (with 66 kr=d6 11). This instability has never been

obtained numerically before. This stationary solution exhibits characteristics closely similar to the

instability phenomenon observed in the experiments of Sirivat [31] which were carried out for a

cylindrical interdisk cavity (i.e. without the inner cylinder) of G ¼ 10:52. Sirivat observed, for
Re ¼ 88:6, stationary circular rolls of wavelength 9:46 kr=d6 14, related to the type II instability

of the B€oodewadt layer.

When further increasing the rotation rate, the instability becomes time-dependent. For Re ¼
400, the solution is oscillatory with a fundamental frequency r ¼ 4:7. The axisymmetric vortices

are visible along the two layers on both disks and travel following the flow (Fig. 8). Inside the

Ekman layer, three pairs of large size circular rolls (with 19:56 kr=d6 30) arise, whereas, in the

B€oodewadt layer, the solution exhibits about five pairs of counter-rotating rolls (with 116 kr=d6
17:6). The vortices move with a radial phase velocity V/ ¼ krr=ð2pÞ, which slightly decreases with

the radial location such as 0:086 V/=Xr6 0:12. Recent experiments of Gauthier et al. [8] and

Schouveiler et al. [26] report about the same kind of oscillatory axisymmetric patterns in a cy-

lindrical cavity, but far from the axis. Typical angular frequency and wavelength are then r ¼ 4

and kr=d ¼ 25:4 for Re ¼ 128 in a cavity of large aspect ratio ðG ¼ 10:45Þ.
• Three-dimensional spiral instabilities

The same disturbance as the one used for the study of the open cavity was superposed to the

axisymmetric solution, locally near the outer cylinder (more precisely for GðRc þ 0:7Þ6
r6GðRc þ 1ÞÞ. We noted that the three disturbances, of respective azimuthal wavelength

Fig. 8. Rotor–stator cavity. Axisymmetric time-dependent instability for Re ¼ 400. Iso-lines of the fluctuation of the

axial velocity.
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p ¼ 2p=3, 2p=8 and 2p=12, give rise to the same three-dimensional solution. The rolls, which

progressed as rings in the case of the axisymmetric solution, form now spiral arms and expand

inside the cavity.

For Re ¼ 400, we observed the co-existence of spiral and annular structures inside the

B€oodewadt layer and dislocations near the rotating disk (Fig. 9). The time history reveals two

major frequencies of different magnitude in the different regions of the cavity. We noted that

the smallest frequency r2 ¼ 8 is dominant magnitude in the stationary disk layer whereas the

larger one r1 ¼ 16:2 is conversely dominant in the rotating disk layer and at the rotor–shroud

corner. On the other hand, both frequencies are of same magnitude at the rotor–shaft and

stator–shroud corners. Inside the Ekman layer, we observed seven pairs of rolls in the radial

direction and 18 spiral arms in the azimuthal direction with an angle e which steeply decreases

between a and b from �20� to �7:5�. The associate wavelength increases in the range 11:46
k=d6 17:9. The vortices travel outward with a phase velocity V/ such as 0:126 V/=Xr6 0:30.
The spiral structures have characteristic parameters ðk; eÞ relevant to a type II instability.

Inside the B€oodewadt layer, we observed four pairs of spiral and annular rolls with an average

radial wavelength kr=d ¼ 19:2 and two pairs close to the shroud with a larger wavelength

kr=d ¼ 26. The latter develops in rings whereas the first one develops into 18 spiral arms which

form an angle e such as 15:6�6 e6 23� close to the shaft (more precisely for 156 r6 18). The

persisting axisymmetric structures interact with the spiral arms at r ¼ 18 and travel inward

with a radial phase velocity V/ such as 0:196 V/=Xr6 0:27. The co-existence of spiral and

annular structures was first described by Savas [25] who reported patterns involving simul-

taneously spiral waves with 23 arms of positive angle and circular waves during a transient

spin down. Savas identified these spirals to the type I instability of the B€oodewadt layer. The

axisymmetric structures were observed close to the external wall as it is the case in our nu-

merical solution.

Fig. 9. Rotor–stator cavity. Complex spiral and annular patterns of the instability for Re ¼ 400. Three-dimensional

displays of iso-surfaces of the axial velocity component fluctuation in both Ekman and B€oodewadt layers.
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6. Conclusion

We have presented an efficient projection method to solve the three-dimensional incompressible

Navier–Stokes equations using a Chebyshev–collocation–Fourier approximation coupled with a

second-order time discretization. This method is based on a modification of the algorithm pro-

posed by Goda [9] for finite element approximations. The main weakness of the Goda’s method

lies in the fact that the normal pressure gradient on the boundary is held at its initial value. The

MPM proposed in this paper allows to overcome this drawback by computing a preliminary

pressure which satisfies to a Poisson problem derived from the Navier–Stokes equations. A

Neumann boundary condition, similar to the one proposed by Karniadakis et al. [18], is used with

an Adams–Bashforth scheme for the approximation of the diffusion term.

The results for an exact steady solution clearly show the weakness of the GPM, due to the

incorrect treatment of the normal pressure gradient on the boundary. The space accuracy of the

GPM strongly depends on the difference between the initial and the exact pressure gradients, and,

therefore, it depends on the initial condition used for the velocity. Moreover, even for small values

of this difference (about 10�3), the machine accuracy is never reached for any variable. On the

other hand, for the MPM, the errors on the velocity components and on the pressure decay ex-

ponentially when increasing the resolution and they regularly reach the machine accuracy when

the polynomial degrees are sufficiently high. We noted also that, although the incompressibility

constraint is not prescribed on the boundary, the discrete norm of the velocity divergence reaches

the machine accuracy for the solution computed with the MPM. For the GPM, the velocity di-

vergence on the boundary strongly depends on the difference between the initial and the exact

pressure gradients and it remains quite large whatever the resolution is.

The results for a time-dependent exact solution with an unsteady pressure gradient on the

boundary bring to the fore the inability of the GPM to correctly treat this type of solutions. The

errors on the velocity and on the pressure exhibit a saturation due to the error in space induced by

the incorrect treatment of the normal pressure gradient on the boundary. On the other hand, the

results for the MPM confirm the second-order accuracy for each variable. Moreover, the intro-

duction of the preliminary pressure reduces the slip velocity by one order of magnitude compared

with the GPM.

The MPM has been applied successfully to the computation of complex instability phenomena

in a rotating cavity with a superposed radial outflow and in a rotor–stator cavity. Axisymmetric

annular and three-dimensional spiral structures, similar to the ones observed in the experiments,

have been obtained. In addition, it must be noted that the MPM has been also extended to three-

dimensional cylindrical configurations containing the rotation axis [29] and it has been applied

successfully to the computation of instabilities and vortex breakdown in cylindrical rotor–stator

cavities.
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